The present invention relates to improvements in or relating to optical wireless communications, particularly to optical wireless links for a local area network (LAN).
The provision of voice data and visual communications to mobile users has become an important area of research and product development. The degree of mobility of users varies widely, from wide area “roaming” at one end of the range, to users within a room requiring a small degree of mobility but extremely high bandwidth communications at the other end of the range. Wireless communication links are essential for providing communications with mobile users, and while radio communications are useful in providing good coverage over large areas, the data transfer rates achievable with radio communications are rather limited compared to the data transfer rates achievable with fixed networks, for instance using fibre optics. Thus radio links tend to act as a bottleneck for data. The advantage of optical links over radio links, namely providing much higher bandwidth and thus much higher data transfer rate, is well-known. Optical local area networks (LANs) have been proposed, and fall into two main types as illustrated in
An alternative approach, as illustrated in
The present invention is concerned with an optical network which uses line-of-sight links, and provides a cellular coverage area. This type of network is illustrated schematically in
Further details of the light source 12 and detector 18 are illustrated in
The receiver is schematically illustrated in
The present invention is further concerned with certain components of the system. For instance, in one aspect the present invention provides an integrated solid state light emitter comprising a closely integrated and scalable array of solid state light sources with a corresponding array of drive circuits. Preferably, the emitter comprises a two dimensional unit cell array of solid state light sources formed in an emitter layer and superposed on a corresponding two dimensional unit cell array of respective drive circuits formed in a driver layer, each drive circuit producing a shaped drive signal for the corresponding light source in response to an input logic signal, wherein the surface area of each unit cell of the drive circuit array is less than or equal to the surface area of each unit cell of the light source array, whereby each drive circuit is confined within a region underlying the corresponding light source unit cell.
As an alternative, the solid state light sources need not be superposed on the drive circuits. Similarly, the solid state light sources could be arranged other than with respective drive circuits on a 1 to 1 basis.
By confining the area of the drive circuit within the region underlying the corresponding light source the light source array is easily scalable. In other words, the light source array can be made as large as desired, without particularly increasing the difficulty of fabrication.
A similar approach is used in the detector array. Thus another aspect of the invention provides an integrated solid state light detector comprising a two dimensional unit cell array of solid state light detectors formed in an detector layer and superposed on a corresponding two dimensional unit cell array of respective sense circuits formed in an sense circuit layer, each sense circuit for producing a data signal in response to an input light signal to the detector, wherein the surface area of each unit cell of the sense circuit array is less than or equal to the surface area of each unit cell of the detector array, whereby each sense circuit is confined within a region underlying the corresponding detector unit cell.
The key features of a suitable approach to integration are
The invention described here uses a vertical stacking of components to achieve both these aims.
Other approaches might also be used, such as the use of specialised materials processing that allows the emitters and drive circuitry to be integrated onto a single substrate, and similarly for the receiver. Further it may be possible to integrate detectors, transmitters and electronics onto a single substrate in this way.
It may also be possible to use a intermediate substrate with emitter and driver attached separately to the substrate, with this providing the electrical interconnection between the two components.
Another option is to attach both emitter and detector array to a common silicon IC to produce a single component that can both emit and detect for a higher level of integration.
The light sources in the emitter may be resonant cavity light-emitting diodes or laser diodes which transmit light at a wavelength of about 900 nm or more, more preferably 1400 nm or more. In the detector, the individual detectors may be photodiodes and the detector may be provided with optical filter layers for narrowing the bandwidth of light received.
The arrays may be hexagonal close packed arrays and in both the emitter and detector the optoelectronic transducer and its associated electronic circuitry may be formed in two separate substrates which are then integrated together by a flip-chip technique. Preferably the electronic circuitry is formed in a CMOS circuit.
The drive circuits for the light source's emitter may be adapted to apply a constant bias current, as well as current peaking at the rising edge of the drive signal and charge extraction at the falling edge of the drive signal. This achieves a better shape to the response of the light source. In one embodiment this shaping of the drive signal is achieved using only logic switching circuits to produce edge-triggered pulses of short width.
The light emitter and/or the detector may include one or more adaptive optical elements, such as a spatial light modulator, to steer and/or focus at the light beam. The element may act as a Fresnel lens and/or a hologram.
In the detectors, the sense circuits may comprise a pre-amplifier and a post-amplifier, with the post-amplifier in one embodiment comprising a differential amplifier stage followed by a transimpedance amplifier.
These components may be used in an optical wireless local area network (LAN) comprising at least one base station and a plurality of terminal stations. The downlink from base station to terminal may be line-of-sight, whilst if a lower data rate is satisfactory the uplink from terminal station to base station may be an undirected (diffuse) optical link or a radio link.
The invention will be further described by way of example, with reference to the accompanying drawings in which:
a) illustrates schematically a receiver for use in a cellular optical network;
b) illustrates schematically a receiver for use in a cellular optical network;
a) illustrates signals in the driver circuits for the light sources;
b) illustrates signals in the driver circuits for the light sources;
c) illustrates signals in the driver circuits for the light sources;
d) illustrates signals in the driver circuits for the light sources;
e) illustrates signals in the driver circuits for the light sources;
f) illustrates signals in the driver circuits for the light sources;
a) schematically illustrates generation of pulses for current peaking and charge extraction in the light source drive circuits;
b) schematically illustrates generation of pulses for current peaking and charge extraction in the light source drive circuits;
c) schematically illustrates generation of pulses for current peaking and charge extraction in the light source drive circuits;
a) illustrates signals in drive circuits without charge peaking and charge extraction;
illustrates signals in drive circuits without charge peaking and charge extraction;
b) illustrates signals in drive circuits without charge peaking and charge extraction;
c) illustrates signals in drive circuits without charge peaking and charge extraction;
a) illustrates signals in drive circuits with charge peaking and charge extraction;
b) illustrates signals in drive circuits with charge peaking and charge extraction;
c) illustrates signals in drive circuits with charge peaking and charge extraction;
a) illustrates the transient response of the receiver;
b) illustrates the transient response of the receiver;
c) illustrates the transient response of the receiver;
d) illustrates the transient response of the receiver;
a) illustrates the use of adaptive optical elements to steer and focus light beams in the optical network;
b) illustrates the use of adaptive optical elements to steer and focus light beams in the optical network;
c) illustrates the use of adaptive optical elements to steer and focus light beams in the optical network;
d) illustrates the use of adaptive optical elements to steer and focus light beams in the optical network
a) to (c) illustrate different arrangements for local area networks;
As indicated above, the light source in the system consists of an array of light emitters, in this embodiment resonant cavity light emitting diodes. The diodes are driven by respective driver circuits implemented as current sources. Thus the driver circuit converts a digital voltage input signal into a train of current pulses. In order to improve the optical rise time and fall time of the LED, the drivers provide a small bias current IB to the LED at all operational times. This keeps the space-charge capacitance charged, avoiding a delay in carrier injection and a consequent delay in light output. To further improve the rise time and fall time, peaking current is injected in the form of a current spike IP into the diode terminal at the start of each low to high transition in the data signal. This is followed by a controlled decay to the steady high level of the data signal. Fall-time at the end of the input signal can be reduced by injecting a reverse current IR into the diode at the beginning of each high to low transition. This is known as charge extraction.
In order that large arrays of light sources can be constructed it is advantageous if the drive circuitry for each light source is of similar or smaller surface area than the light source itself. This means that an integrated component can then be produced in which the drive circuitry for each light source underlies the corresponding light source. The array is then scalable, i.e. it can be made as large as desired without fabrication problems caused by the drive circuit for one light source extending under another light source.
One embodiment of drive circuitry achieving this will be described with reference to
In
Transistor pairs M19-M20, M21-M22 and M23-M24 form the invertor string for the NOR-gate generator 52. The NOR-gate is made of four transistors M25, M26, M27 and M28. This pulse generator drives pass transistor M30 and the reverse current produced is determined by the amount of current that M29 conducts, which, in turn, is determined by the magnitude of VEXT. Transistors M31-M38 are invertor buffers which enable the data signals to drive subsequent loads.
The bias current IB is provided by transistor M6. The input data signal drives a CMOS switch (comprising transistors M2 and M3) which conduct the current from transistor M1 to the input of the current mirror formed by transistors M4 and M5. This current is then amplified to provide the modulation current IM which is the basic drive signal for the diode.
The light sources are 980 nm bottom emitting Resonant Cavity LEDs, grown on double polished n+ GaAs substrates. The emission wavelength and emission angular beam profile are set by the emission wavelength of the active region (quantum wells) and the resonance wavelength of the cavity. The difference between the two wavelengths is known as detuning, and this is optimised to maximise the power received at the photodetector for the particular optical system used. The particular wavelength within this rage (980-1000 nm) is chosen to be (ideally) within an optically quiet region of the ambient light optical spectrum.
The plan view of the light source array is shown in
The light source array is flip-chip bonded to the CMOS driver circuits formed on a separate substrate to produce an integrated light emitter.
The receiver uses an array of photo diodes (34) each supplying its signal to a respective sense circuit consisting of a pre-amplifier followed by a post-amplifier. The pre-amplifier is a three stage transimpedance amplifier with an NMOS load at the output of each stage to control gain and stability. This is shown schematically in
The nomograph is computed from known parametric data corresponding to the CMOS process to be used. It relates DC bias conditions, bandwidth, stability and gain with transistor dimensions W1, W2 and W3 in a manner not practicable using traditional design methods. This approach allows optimised values to be chosen for the transistor dimensions.
The post-amplifier is schematically illustrated in
The detectors are substrate illuminated InGaAsP PIN diodes grown on InP substrates. These will operate at both 980 and 1500 nm. The I-region is relatively thick for these types of device, in order to minimise the capacitance. The bandwidth of the circuit is limited by the capacitance and the transit time for carriers to pass across the detector junction. These two are competing and preferably the detectors work at an optimum point between these effects. The thickness of the detector and the DC bias voltage of the detector are optimised to achieve this.
The plan view of the detector array is shown in
The detector picks up the desired power (at a specified wavelength) and optical noise over a range of wavelengths. Narrowing the optical bandwidth by integrating optical filters with the detectors can be achieved using the structure shown in
The optical receiver is fabricated using CMOS process technology. The preamplifier and post-amplifier are both formed in the same substrate, both fitting within the surface area of the photo diode supplying them. In fact, of course, an array of amplifiers is formed, corresponding to the array of photo detectors. The sense circuitry and detector array are flip-chip bonded together to form an integrated device. Except for the photo diode detector and decoupling capacitors, the receiver chip requires no external circuit components. In this implementation three sets of power/ground supplies are used for the analog circuitry and substrate. This prevents noise coupling from switching (digital) circuitry onto sensitive (analog) circuitry through the low resistive paths to the power supply. Externally the analog and substrate power/ground supplies are connected in order to suppress the source-to-bulk noise voltage effect that can corrupt the transistor drain current.
The transfer function from the post-amplifier voltage input to final output is illustrated in
One of the chief difficulties in a fixed optical wireless design is the power budget. Even with fixed optics, only a small fraction of the available power within a cell is received at the photo diode. This problem is compounded by the large fall off in optical power density towards the edge of the cell. In order to optimise the power budget of the optical link, it is possible to focus the light from the transmitter onto the detector, or to steer the light beam onto detectors at the receiver. This is achieved by using an adaptive optical element which can take the form of a Fresnel lens or a computer generated hologram. These can be achieved using a spatial light modulator which is an electronically addressed, pixelated device capable of binary phase modulation. For instance, devices which use nematic liquid crystals and having a pixel pitch of 42 micrometers with 640 by 480 pixel resolution are available. Patterns can be programmed into the device (to define the state of each pixel) such that the device acts as a desired optical element.
a) illustrates the use of an adaptive optical steerer 70 in front of the fixed optical element 26 and source array 22. The adaptive optical steerer 70 is effective to move the emitted beams within their cells.
b) illustrates the use of the adaptive optical elements 72 to focus and steer the beams from the source array 22. The central beam 72 illustrate the output with the adaptive optics inactive, whereas beam 74 illustrates the effect of focussing and steering the beam using the adaptive optical element.
c) illustrates the use of an adaptive optical element 76 in the receiver. The element is programmed to steer and focus the beam through the fixed optical element 40 on to the detector array 34. The adaptive optical element can be programmed to steer the beam to a particular detector in the array and this configuration allows light from multiple transmitters to be focussed on to the same detector, for instance to allow “handover” between base stations.
Rather than using a spatial light modulator, deformable mirrors or other adaptive optical elements may be used.
In order that the receiver can track the light source and can reject noise (i.e. extraneous light from other angles), an optical shutter 252 is positioned over the single detector so that different areas of the detector can be selectively exposed as at 252a or shut-off as at 252b. A spatial light modulator (SLM) may be used for this such as CRL 128×128 2D SLM. The optical shutter 252 may have an essentially binary characteristic, such that its areas 252a, b etc are “on” or “off”. Alternatively an analogue (variable transmittivity) may be used to allow different proportions of the input signal from different directions to be incident upon the detector, and thus to combine in different weights (according to the transmittivity of the optical shutter areas). This can improve noise rejection by allowing combination of signals in proportion to their signal-to-noise ratios.
As with the previous receiver embodiment a lens system 254 collects the incoming light and in combination with the optical shutter 252 gives the angular sensitivity to the receiver.
Rather than using a single detector and optical shutter, the optical shutter may be combined with an array of small area detectors 260 as shown in
The use of the optical shutter 252, 262 allows the overall shape of the detector area to be varied as desired which can allow compensation for alterations and imperfections in the optical system.
The receiver may be used as a “hub” in an optical LAN allowing the reception of time-multiplexed signals from different light sources.
In the system described above, the data links are symmetrical in that each end of the link contains an identical transmitter and receiver. However, there are circumstances where a high bandwidth is only required in one direction, such as for web browsing. In this case, other modes of operation are possible.
Of course it is possible for the transceivers at the base station and receiver to be provided with both optical and radio or optical line of sight and optical diffuse transceivers. These transceivers could be used selectively according to bandwidth, cost or any other criteria. It is possible for the radio link to be used for data requests, and the optical link to be used for transfer of data when the user is within the optical coverage area.
Number | Date | Country | Kind |
---|---|---|---|
0025463.1 | Oct 2000 | GB | national |
This application is a divisional of application Ser. No. 10/399,326, filed Dec. 18, 2003, now U.S. Pat. No. 6,914,266, which in turn is a U.S. national phase of international application PCT/GB01/04628 filed 17 Oct. 2001, which designated the U.S.
Number | Name | Date | Kind |
---|---|---|---|
5321542 | Freitas et al. | Jun 1994 | A |
5416627 | Wilmoth | May 1995 | A |
5485055 | Keyser | Jan 1996 | A |
5493437 | Lebby et al. | Feb 1996 | A |
5893721 | Huang et al. | Apr 1999 | A |
5903373 | Welch et al. | May 1999 | A |
6081356 | Branc et al. | Jun 2000 | A |
6414774 | Scifres | Jul 2002 | B1 |
6650451 | Byers et al. | Nov 2003 | B1 |
6914266 | Edwards et al. | Jul 2005 | B2 |
Number | Date | Country |
---|---|---|
0 513 993 | Nov 1992 | EP |
0 785 580 | Jul 1997 | EP |
9608090 | Mar 1996 | WO |
0048338 | Aug 2000 | WO |
0128001 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050207758 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10399326 | US | |
Child | 11130192 | US |