Embodiments pertain to wireless communications. Some embodiments relate to antennas for wireless communications including for data transfer and/or energy transfer. Some embodiments relate to antennas and devices that use electromagnetic fields.
Wireless devices, sometimes referred to as mobile platforms, become smaller and thinner while the data rates at which they communicate continue to increase. The number and complexity of the antennas used by these devices continue to increase. This presents a number of challenges. One such challenge is the limited space available for the antennas. This is becoming an additional challenge as mobile platforms become wearable. Moreover, the additional complexity of wireless networks and mobile communications place additional demands on the antenna systems to deliver reliability, flexibility and capacity expectations of such devices.
Thus there are general needs for improved apparatuses for communicating wirelessly including antennas and antenna systems suitable for mobile platforms.
The following description and the drawings sufficiently illustrate specific embodiments to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. Embodiments set forth in the claims encompass all available equivalents of those claims.
In these embodiments, since the line-space pair of the conductive patches 102 is no greater than the human visual acuity, the electrically-isolated conductive patches 102 of the optically transparent antenna 100 may not be visible or perceptible to a human (i.e., a naked eye without the aid of a magnifying lens). In some embodiments, the electrically-isolated conductive patches 102 are arranged to minimize or not harm the usability of the device (e.g., not hinder recognition of a display underneath) or is at least be unobtrusive. In other words, the optically transparent antenna 100 may be invisible or nearly invisible to the human eye. In these embodiments, electromagnetic coupling between the patches 102 and between the feed line 106 and the patches 102 allow the optically transparent antenna 100 to function as an antenna for wireless data transfer. In these embodiments, the patches 102 may function as a single radiating element or several radiating elements depending on the particular antenna configuration realized by the particular placement of the patches 102 or the shape of the area covered by the patches 102.
As described in more detail below, the optically transparent antenna 100 may function as an antenna for a mobile platform. In some embodiments, the optically transparent antenna 100 may reside on a display surface or back surface of a mobile platform. In some embodiments, the non-conductive surface 104 may be either a display surface (i.e., the front surface) or a back surface of a wireless device or mobile platform. In some embodiments, the display surface may be a touch screen.
The term “human visual acuity” (i.e., the resolution of the human eye), may refer to an angular resolution (i.e., number of arc-minutes per line-space pair). Thus for a constant angular resolution, the line-space pair that can be perceived by a human varies linearly with the viewing distance (e.g., increases with the viewing distance). Accordingly, the line-space pair of the patches 102 may be selected to be less than the human visual acuity based on a (predetermined viewing distance.
In some embodiments, the patches 102 may comprise conductive metal solids. The patches 102 may comprise copper, gold, silver, aluminum, tin, iron or another highly-conductive material. In some of these embodiments, the feed line 106 may be a transparent conductive material so that the entire antenna (both the patches 102 and the feed line) is not perceptible to a human. These embodiments are described in more detail below.
In some embodiments in which the optically transparent antenna 100 is used for data transfer or data communication, the spacing or pitch 205 may be less than approximately one-tenth of a wavelength of an operating frequency of the optically transparent antenna 100. This allows the patches 102 to operate as a larger conductor.
In these embodiments, to be optically transparent to a human, the size 203 of the patches may be less than the predetermined size value for a particular viewing distance and the spacing or pitch may be greater than a predetermined spacing or pitch value for the particular viewing distance. As illustrated in
In some embodiments, the size 203 may be no greater than approximately 100 micro-meters (um), and the spacing 205 may be at least approximately 75 um. In some embodiments, the size 203 and the spacing 205 may be the same for ease of fabrication, although this is not a requirement. For example, both the size 203 and the spacing 205 may be 75 um. In this example embodiment, the line-space pair would have a value of 150 um 75 um+75 um). In some other embodiments, both the size 203 and the spacing 205 may be 100 um. In this example, the line-space pair would have a value of 200 um (i.e., 100 um+100 um). In some embodiments, the maximum size 203 of the patches 102 may be 100 um and the minimum spacing 205 between the patches 102 may be approximately 75 um so that the patches are not perceptible by a human eye at most viewing distances. In some example embodiments, the size 203 of the patches 102 may range from approximately 50 um to 100 um and the spacing 205 may range approximately 75 um to 1.50 um, although the spacing 205 may be as smalls as 50 um. In some 50 um×50 um example embodiments, the minimum spacing 205 between the patches 102 may be approximately 50 um so that the patches 102 are not perceptible by a human eye at some viewing distances.
In wireless communication embodiments (e.g., for data transfer), the optically transparent antenna 100 may be configured for wireless communications. In these embodiments, the spacing 205 may be less than approximately one-tenth of a wavelength of the operating frequency of the optically transparent antenna 100. The wavelength of the operating frequency may be very large (e.g., 10× or greater) compared to the size 203 of the patches 102 and compared to the spacing 205 between the patches 102. In an example embodiment, when the optically transparent antenna 100 is arranged to operate at a frequency of 60 GHz (e.g., wavelength of approximately 5 mm (5000 um)), the spacing 205 between the patches 102 may be less than 500 um, and preferably much less than 500 um. The optically transparent antenna 100 may be arranged to operate at microwave frequencies as well as millimeter-wave frequencies. In power-harvesting and energy-transfer embodiments, on the other hand, the spacing 205 may be greater than one-tenth of a wavelength, although this is not a requirement.
In some embodiments, the optically transparent antenna 100 may be nearly-invisible (almost or just barely perceptible to a human). In these near-invisible embodiments, the conductive patches 102 may have a line-space pair that is slightly greater than a human visual acuity for a predetermined viewing distance.
In some embodiments in which the patches 102 are substantially square in shape (see
In some other embodiments when the patches 102 are substantially circular in shape (see
Although
In some embodiments, the patches 102 may be manufactured using a high-density interface (HDI) technology, although the scope of the embodiments is not limited in this respect. In these HDI embodiments, the spacing 205 and the size 203 may be the same.
Referring to
In some embodiments, the transparent conductive material that may comprise the feed line 106 may be a transparent oxide film comprising indium-tin oxide (ITO), Aluminum-doped Zinc Oxide (AZO), or Fluorine-doped tin oxide (FTO), or a silver-coated polyester film (e.g., AgHT). In some alternate embodiments, the teed line 106 may comprise a solid (i.e., non-transparent) conductive material (i.e., similar to that of the patches 102).
In these embodiments, the transparent conductive layer 310 may comprise transparent oxide film comprising indium-tin oxide (ITO), Aluminum-doped Zinc Oxide (AZO) or Fluorine-doped tin oxide (FTO), or comprising a silver-coated polyester film (e.g., AgHT).
In these embodiments, the transparent conductive layer 310 may be less than 0.2 um thick. The inclusion of the transparent conductive layer 310 (either above or below the patches 102) may provide for an improvement in antenna gain and/or an increase in the resonant bandwidth of the optically transparent antenna 100. The use of a thin transparent conductive layer 310 or film helps preserve the transparency of the optically transparent antenna 100 while improving performance.
Referring back to
In some embodiments, the plurality of electrically-isolated conductive patches 102 may be arranged in accordance with a pattern to provide a slotted-loop antenna. In these embodiments, illustrated
In some embodiments, the operating frequency may be in the 2-3 GHz band (for wavelengths ranging from 14 to 10 centimeters) or the 5 GHz band (for wavelengths of about 6 centimeters). In some other embodiments, the operating frequency may be in the millimeter wave frequency band (e.g., 30 GHz to 75 GHz) for wavelengths ranging from 10 to 4 millimeters; however the scope of the embodiments is not limited to these operating frequencies and wavelengths.
In accordance with embodiments, the plurality of electrically-isolated conductive patches 102 may be arranged to provide almost any type of antenna. For example, the plurality of electrically-isolated conductive patches 102 may be arranged to provide a planar antenna including dipole antennas, monopole antennas, patch antennas including planar inverted F antennas (PIFA), loop antennas, slot antennas, microstrip antennas, etc. In some embodiments, the plurality of electrically-isolated conductive patches 102 may also be arranged to provide a phased-array antenna. When configured for a PIFA, resonant occurs at a quarter-wavelength (thus reducing the required space needed on a device). In PIFA embodiments, the plurality of electrically-isolated conductive patches 102 may be arranged in inverted-F configuration,
In these embodiments, the line-space pair of the conductive patches 102 may be selected to be less than a human visual acuity for a predetermined viewing distance 508. The size 203 of the patches 102 may be no greater than a predetermined size value selected for the predetermined viewing distance 508 and the spacing 205 between the patches may be at least a predetermined spacing value selected for the predetermined viewing distance 508 so that the patches are not perceptible to a human eye 506.
In these embodiments, since the patches 102 are not perceptible to the human eye, a user of the mobile platform 500 will not notice them when viewing the display surface 504 or when looking at the back surface 514. The use of the display surface 504 and/or the back surface 514 allows larger areas to be utilized for antenna placement as compared conventional antenna placement such as plastic window designs. Furthermore, the optically transparent antenna 100 does not require much extra space enabling slimmer, lighter and more compact mobile platforms.
The mobile platform 500 may be, for example, a smartphone or handset (or other mobile platform). The non-conductive surface 104 may be a glass or plastic-based surface of the mobile platform 500. In some embodiments, the non-conductive surface 104 may be a flexible surface (e.g., of a flexible device such as a bendable smart phone or wearable device). The use of patches 102 is particularly advantageous for flexible surfaces, as there is less risk that the patches fall off the surface when bending, because the stress developed over a small area of a patch is much less than the stress of a larger structure. In some embodiments, the mobile platform 500 may be a wearable mobile platform. In some embodiments, the non-conductive surface 104 may be a curved or contoured surface. Again applying patches 102 on curved surfaces is advantageous, because the curvature (i.e., a deviation from a flat plane over the size of a small patch) is much less than for a larger structure.
In some embodiments, the predetermined viewing distance 508 may be selected based on a device type. Viewing distances may be shorter for handheld device types than for other device types, such as computer displays or monitors or television screens. For handheld devices, such as mobile platform 500, the predetermined viewing distance 508 may range from twenty to forty centimeters (cm). In these handheld embodiments, the size 203 of the patches 102 may no greater than approximately 100 um and the spacing 205 between the patches may be at least approximately 75 um. For computer displays the predetermined viewing distance 508 may be as great as to 60 cm or more allowing greater line-space pairs to be used. For television displays, the predetermined viewing distance 508 may be as great as 300 cm or more allowing even greater line-space pairs to be used.
In some embodiments, when the non-conductive surface 104 comprises a display surface 504, the patches 102 may be positioned in-between pixels of a display, although this is not a requirement. These embodiments may help prevent any reduction in the luminosity of the display due to the patches 102.
In other embodiments, the patches 102 may be place on keys of a keyboard or keypad. In some embodiments, the optically transparent antenna 100 may utilize a ground plane 318 (
In some embodiments, the optically transparent antenna 100 may be placed on both the back and front/display surfaces of a mobile platform 500 or on front and back displays in case dual displays are employed, for use in dual-antenna communication techniques, such as MIMO, spatial multiplexing, and diversity communication techniques. In some embodiments, separate optically transparent antenna may be included for transmitting and receiving.
In some other embodiments, the optically transparent antenna 100 may be placed around edges of a display surface 504. In some of these embodiments, the feed line 106 may utilize a solid conductor and the feed line 106 may be hidden at the display edges.
In some embodiments, the optically transparent antenna 100 may enable large-area implementation on both active and passive devices as well as on other Objects. This provides a large antenna surface to enhance power delivery with intentional energy transfer and/or power harvesting. In energy-transfer and power-harvesting embodiments, the optically transparent antenna 100 may enable ambient electromagnetic energy to be converted into electrical energy (e.g., to charge a batter of the device 500).
In some embodiments, the optically transparent antenna 100 may be provided on a personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone, a smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly. In some embodiments, the mobile platform 500 may induct one or more of a keyboard, a display, anon-volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements. The display may be an LCD screen including a touch screen.
In some mesh embodiments, rather than a plurality of conductive patches 102 with open spaces therebetween, the optically transparent antenna may comprise open regions (i.e., holes) in place of the patches and conductive material in place of the spaces between the patches (i.e., the inverse of the embodiments illustrated
Although
The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.