The present invention is related generally to hot-stamping and more particularly, to the production of an optical device by hot-stamping a diffractive and optically variable portions of the device together.
U.S. Pat. 6,987,590 in the name of Phillips et al., discloses an optical device that includes a light transmissive substrate having a surface relief pattern applied thereon, in the form of a hologram. In fabricating this optical device a patterned layer of a reflective material is applied over portions of the surface relief pattern so as to form alphanumeric characters, bars codes, or pictorial or graphical designs. An optically active coating is deposited or applied as an ink or paint over the patterned layer of reflective material and exposed portions of the surface relief pattern in order to provide desirable optical effects to the exposed portions of the surface relief pattern. In some embodiments, the optically active coating is a color shifting thin film, or contains color shifting flakes. Optionally, the material of the optically active coating is index matched to the light transmissive substrate in order to optically erase the effect of the surface relief pattern in the portions of the surface relief pattern not covered by the reflective material. This aforementioned patent application provides an optical structure having a light transmissive substrate having a surface relief pattern formed thereon; a patterned layer of a reflective material applied onto portions of the surface relief pattern of the light transmissive substrate, such that some portions of the surface relief pattern are covered by the reflective material, and other portions of the surface relief pattern are exposed. The structure further has an optically active coating underlying the patterned layer and exposed portions of the surface relief pattern. This structure is a type of chromagram.
The term chromagram used hereafter is meant to include optical structures that have a patterned or windowed substrate together with special effect coatings or layers supported by or supporting the patterned or windowed substrate. Chromagrams of various designs are known from our patent applications and used as security devices or for enhancing the security of products and for their aesthetic appeal.
By use of the term “patterned” layer, it is meant that a reflective, opaque, or partially transmissive layer is applied over a substrate which may be planar or have a surface relief pattern therein, in a manner that forms a desired “pattern” or design. By way of non-limiting examples, the patterned reflective layer can be formed in the shape of letters, numerals, bar codes and/or graphical or pictorial designs.
One type of chromagram is an optical structure that exhibits the effects of stamped or etched surface relief patterns, such as holograms or diffractive gratings together with a pattern such as alphanumeric characters, bar codes, or graphical or pictorial designs, and additional optical effects in the regions around such pattern. Such structures are described in U.S. Pat. Application 2006077496 in the name of Argoitia et al. published Apr. 13, 2006. Another chromagram-type structure is described in U.S. Pat. Application 20050128543 in the name of Phillips et al. In this publication patterned substrates having windowed regions that one can see through, are coated with optically variable coatings or optically variable inks that can be seen through the windows. For all intents and purposes, all references described heretofore or hereafter are incorporated herein by reference.
U.S. Pat. Application 20070058227 in the name of Raksha et al., discloses an optical device comprising a hologram and a layer of color-shifting magnetically aligned flakes together forming an image that is difficult to counterfeit and is highly attractive. Optionally, a transparent diffractive grating is laminated to a magnetically formed image.
Although not limited thereto, this invention primarily relates to types of Chromagrams that combine security features of a hologram and a color shifting layer conveniently joined by an adhesive layer. This invention also relates to chromagrams having a windowed or patterned substrate adhesively joined to a layer of foil.
A key aspect of such chromagrams is that one layer having transmissive regions and some optical feature such as a hologram or a patterned opaque or patterned partially transmissive regions is hot stamped to another layer, web or substrate that has optical features that can be seen through the windows. This is a significant departure from prior art Chromagrams and windowed optical structures. Of course hot stamping, a dry process, is well known, however is typically used to hot stamp a device or security device such as a hologram to an object or substrate. Hot stamp transfer foils have been provided in conjunction with hot stamp machines to affix images onto various substrates such as paper, plastic film and even rigid substrates.
One commercially available machine for hot stamping images onto substrates is the Malahide E4-PK produced by Malahide Design and Manufacturing Inc. Machines of this type are shown and described on the Internet at hotstamping.com. Simplistically, in a hot-stamping process, a die is attached to the heated plate which is pressed against a load roll of hot stamping foil to affix the foil to an article or substrate.
Hot stamping is described or mentioned in the U.S. Pats. 5,002,312, US 5,059,245, US 5,135,812, US 5,171,363, US 5,186,787, US 5,279,657 and 7,005,178, in the name of Roger Phillips of Flex Products Inc. of Santa Rosa Ca.
A novel and inventive aspect of this invention is to provide a process and device made by the process for fabricating a security device, by using hot stamping to make the security device, which may then be further hot stamped to an object or substrate.
Heretofore chromagrams or layered security devices have been fabricated by depositing or coating one layer of material over another onto a substrate. Generally, such process would be done in a single manufacturing facility. However, is has been discovered that some facilities are better equipped or have persons better skilled at producing some coatings and substrates, than others. For example we have found that some off-shore manufacturing facilities produce excellent windowed or reflective patterned substrates and also have staff very skilled in the manufacture of holograms or diffraction gratings within the substrate supporting the windowed coating. We have also found that our facility in the United States produces very high quality coatings and pigments such as optically variable foils and flakes.
This invention provides a means for manufacturing a first coated substrate in one location and a second coated substrate in a second location and marrying together the two coatings to form a single optical device that can be applied to a substrate or object. A novel aspect of this invention is that one of the coatings is adhesively bonded to the second coating by way of hot stamping in such a manner as to allow a first coating to be visible through windows or uncoated regions in the second coating. This is a significant departure from the way in which these optical structures were formed in the past, where each of the layers were coated one after the other to form the desired chromagram.
It is another object of this invention, to provide a hot stamp image with multilayer security features.
A method is provided for manufacturing a device. The method includes: a) providing a diffractive structure for forming at least a portion of an image; b) providing an optically variable structure separate from the diffractive structure, for providing an optically variable feature to the image; c) covering the diffractive structure or the optically variable structure with an adhesive, wherein the adhesive comprises energy activated binder; and d) after steps (a)-(c), activating the adhesive and coupling the diffractive structure and optically variable structure together in a predetermined mutual arrangement, wherein the energy activated binder forms an adhesive layer.
In accordance with one aspect of this invention, a device is provided, comprising: a diffractive structure for forming at least a portion of the image; an optically variable structure for providing the optically variable feature to the image; and an adhesive layer for coupling the diffractive structure and optically variable structure in a predetermined mutual arrangement. The adhesive between the diffractive structure and the optically variable structure is an internal adhesive layer of the device. Additionally, an external adhesive layer may be provided to the diffractive structure or the optically variable structure for attaching the device to an object.
In accordance with another aspect of this invention, a method for forming a device is provided, comprising the steps of:
In an embodiment of the instant invention an adhesive material on a de-metalized surface of a hologram is followed underneath with an optically variable ink that has already been applied to the banknote or substrate.
In an embodiment of this invention optically variable ink is first printed on a substrate followed by hot-stamp process bonding together the optically variable ink layer with a substrate having a windowed hologram.
In yet an alternative embodiment banknote or document has hot stamped thereon a demetallized hologram, wherein the hot stamp adhesive has optically variable flakes mixed therein in direct contact with the demetallized surface of a hologram.
In an aspect of the invention the optically variable ink can be seen through portions of the de-metalized hologram or where both can be seen at the same time.
In accordance with the invention there is provided a demetallized hologram or windowed hologram hot stamped on to an optically variable foil.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is to be appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention is related to optical devices wherein a relief structure providing an optical effect such as a hologram or diffraction grating is coupled to an optically variable structure by an adhesive, which may be an energy activated adhesive. The resulting optical structure exhibits unique optical effects.
For the purpose of this application, the term “energy activated adhesive” or “energy activated binder”, means a bonding substance that requires an energy source for curing. The energy activated adhesives include, but are not limited to, hot stamp adhesives, UV or e-beam activated adhesives, thermoplastic and thermoset adhesives, paint-based polymeric compositions, varnishes, and staining compositions. By way of example, an adhesive is selected from the group of: polymethacrylate, polyacrylate, polyamide, nitrocellulose, alkyd resin, polyvinyl alcohol, polyvinyl acetate, and polyurethane.
The methods of activating the adhesives include hot stamping, UV curing, applying heat, pressure, or a beam of electrons. For brevity, an energy activated adhesive, possibly with special flakes therein, is referred to as “an adhesive” hereinbelow where it does not lead to confusion.
As was described heretofore, in the background of the invention, the field of hot stamping and more particularly, hot stamping of one optical coating or substrate with another is well known. For example, coated substrates bearing images, logos or other indicia are hot stamped onto lottery cards, passports, banknotes, driver’s licenses, poker chips, and a variety of other articles and substrates are well known.
The adhesive may be printed into patterns or flood coated over the entire surface. If patterned, the product becomes more tamper proof since the product cannot be physically removed in one piece. Attempts to remove the device by dissolving the adhesive using solvents would also be detrimental since the solvent would also attack the hardcoat/release which in turn would destroy the device, making tampering obvious.
The device disclosed in the present application comprises a diffractive structure, which can take various conventional forms including diffraction patterns such as diffraction gratings, refraction patterns, holographic patterns such as two-dimensional and three-dimensional holographic images, demetallized holograms, coatings with varied index of refraction, light transmissive dielectric coatings with refractive flakes therein or thereon, KinegramR devices, PixelgramR devices, corner cube reflectors, zero order diffraction structures, moiré patterns, and light interference patterns based on microstructures having dimensions of from about 0.1 µm to about 10 µm.
In accordance with one embodiment of the present invention, the diffractive structure comprises a reflector layer, having at least a part demetallized. A demet layer can be made of Al, Cu, Ni, and other metals and metal alloys that have been patterned by demetallization. Various techniques may be used to pattern the metal layer, such as chemical etching or oil ablation in vacuum, both done in registration with the relief image.
In one embodiment of the present invention, the diffractive structure comprises a windowed or segmented opaque layer having one or more light transmissive windows to allow combining of optical effects provided by the diffractive and optically variable structures, so that the optically variable structure is visible through said windows when the device is viewed from the side of the diffractive structure. Preferably, the windowed coating is reflective to provide an additional security feature.
The diffractive structure may be embossed on an embossable resin layer made of such materials as type G PET, Polycarbonate, polyvinyl chloride or polymethacrylate. An embossable layer may be combined with hardcoat/release layer. An embossing may be either patterned or continuous.
The diffractive structure may comprise a grating formed in a substrate, preferably a light transmissive or essentially transparent substrate, which may be made of Polyethylene Terephtalate (PET), Oriented Polypropylene (OPP) or other suitable plastic material. By way of example, a PET layer has a thickness of 6-25 microns.
The diffractive structure may comprise a high refraction index layer coated on a relief pattern, such as an embossed resin layer. The high refraction index layer may be made of a material having the index of refraction no less than 1.65. A high refractive index layer can be made of ZnS, TiO2, ZrO2, etc.
In one embodiment of the present invention, the diffractive structure is visible through the OV structure, so the substrate supporting the diffractive structure may be opaque.
In one embodiment of the present invention, the diffractive structure is a windowed substrate having a coated pattern thereon, wherein regions that are uncoated form windows therethrough the color shifting background is visible.
The device disclosed in the present application comprises an optically variable structure which, in one embodiment, is a multilayer optical interference film comprising a reflector layer, an absorber layer, and a dielectric layer between the reflector and absorber layers, as it is known in the art. A reflective layer can be made of any metal that has a reflectance over 20%, preferably aluminum. By way of example, a dielectric layer is made of MgF2 or other transparent material as known in the art.
An absorber can be a grey metal with a ratio of n/k about 1, where n is the real part of the refractive index and k is the imaginary part of the reflective index, for example Cr or Ni or other transition metal, or can be a non-selective absorber across the visible spectrum, or can be a cermet, as described in the article entitled “Influence of Nanosized Metal Clusters on the Generation of Strong Colors and Controlling of their Properties through Physical Vapor Deposition (PVD)” by R. Domnick et al., 49th Annual Technical Conference Proceedings (2006), Society of Vacuum Coaters, incorporated herein by reference. By way of example, a cermet material comprises silver islands in a dielectric matrix.
In another embodiment of the present invention, the optically variable structure is a multilayer optical interference film comprising a first and second absorber layers, and a dielectric layer therebetween. This multilayer film configuration is disclosed in U.S. Pat. No. 5,278,590 to Phillips et al. Such a film structure allows optically variable structure 10b to be transparent to light incident upon the surface thereof.
In yet another embodiment, the optically variable structure is a multilayer optical interference film comprising alternating low and high refraction index layers, where the individual layers have an index of refraction between 1.38 and 2.3
In one embodiment of the present invention, the optically variable structure comprises a light transmissive dielectric coating with a plurality of multilayer optical interference flakes therein or thereon. Such flakes are described, for example, in U.S. Pat. No. 6,749,777 granted to Argoitia et al.
Alternatively, the optically variable structure comprises optically variable ink, comprising optical effect flakes in a carrier, wherein the flakes may have one or more predetermined optical characteristics; for example, flakes may be optically variable changing color with a change in angle of incident light, or flakes may be diffractive, or may have covert symbols therein or thereon, or the flakes may simply be reflective or absorptive. In some instances, optical effect flakes have a combination of optical effects, for example, they may be diffractive and color shifting, or they may be diffractive and reflective, or diffractive and highly absorptive depending upon the desired effect. Furthermore, flakes having different optical effects may be mixed together in desired ratios. Pigments that may be added include those based on interference, for example mica based pigments, Fabry Perot type pigments, liquid crystal type pigments, including those that color shift with viewing angle, non- shifting pigments like gold and nickel, and other metallic flakes.
In one embodiment of the present invention, the optically variable ink is printed onto a substrate such as a banknote or any other security document.
The substrate supporting the optically variable structure is either opaque or light-transmissive in various embodiments of the present invention.
Generally, in the prior art manufacture of chromagrams, an optical effect coating would be applied directly over the Al, as well as over the uncoated portions of the light transmissive substrate. However, in accordance with this invention an entirely separate structure 10b shown in
A novel and inventive aspect of this invention is the manufacture of a windowed structure, such as diffractive structure 10a, and a separate optically variable structure, such as structure 10b, wherein the two structures can be married or bonded together forming a chromagram by the application of heat and pressure via hot stamping. Each of the first and second structures can vary; several non-limiting examples are given throughout this application.
In embodiments of the present application the hot stamp adhesive can be applied and dried upon either a diffractive structure, structure 10a in the aforedescribed example, or an optically variable structure, such as 10b, or both structures, prior to bonding the two structures together. The thickness for hot stamp adhesive may be between 3 µm and 10 µm, with preferable range 3-7 µm.
Further described embodiments of the present invention shown in
In embodiment shown in
Preferably, reflective layer 16 is windowed, so that substrate 12 has one or more regions 100 thereon embossed and covered with reflective material, said regions separated by regions 17 shown in
The structure shown in
Another embodiment of the present invention shown in
With reference to
In another embodiment of the present invention, similar to the structures shown in
In
These covert flakes serve as a means of authentication. If the covert flakes provide an optical effect, for example under a microscope or being IR activated, additionally to holographic effects exhibited by this structure, though the windows where the Al coating is missing, covert flakes 45 can be seen on color shifting background.
In another embodiment, optically variable flakes are added to adhesive 40 at low concentrations so that the OV foil colors are modified when viewing from the top.
According to another embodiment of the present invention,
The structure shown in
Conveniently, the aforedescribed manufacturing process allows the first and second substrates to be manufactured in two different facilities and stored in rolls to be united later.
Conveniently, the second substrate may have any type of optical effect coating thereon that can be seen through windows in the first substrate. Conveniently any of these first windowed substrates can be married to these second coated substrates at a later time or immediately, by way of hot stamping the two together or by hot roll laminating.
In another embodiment of the present invention, alternatively to hot-stamping, a UV activated adhesive is used to bond the two structures together. By way of example, an optically variable foil printed with an adhesive is brought together with a laminating sheet containing the demet hologram; the adhesive is then cured by irradiating the laminating sheet with UV light, wherein the laminating sheet has a transparent or at least UV light - transmissive substrate. One way to overcome the obstacle to UV light posed by the reflective metal covering the hologram, is to use a patterned or windowed reflective layer wherein areas covered with metal are very narrow, estimated to be less than 2 microns, so that UV light can cure the adhesive by coming in at an angle. Another way is to use a semitransparent reflective layer in the OV structure or to use e-beam curing.
In one embodiment of the present invention, shown in
In another embodiment of the present invention shown in
In a structure similar to the structure shown in
In reference to
In one embodiment of the present invention, adhesive layer is patterned so that the diffractive structure has regions not bonded to the optically variable structure.
In another embodiment of the present invention, the adhesive layer is patterned so that one of the structures, by way of example a OV foil, is bonded to the substrate supporting the second structure, a hologram in our example, forming a frame, or a part of it, around the hologram.
In one embodiment, shown in
In one embodiment of the present invention, comprising a demetallized hologram hot stamped onto an optically variable foil, a patterned layer of color shifting ink is deposited underneath the demet hologram. This allows the color shift from the foil to show though to the observer. The flakes of the optically variable ink are generally opaque so that a continuous coating of ink would block out the underlying foil. Alternatively, the color shifting ink has a low concentration of flakes so that the color shift of the foil could still be seen though the optically variable ink; the foil colors are modified by the partially transparent optically variable ink. Alternatively, a patterned layer of the optically variable ink is deposited on the top side of the demet hologram, so that both the color shift from the ink and from the OV foil are visible.
Referring now to
This application is a continuation of commonly assigned and co-pending U.S. Pat. Application Serial No. 16/425,532, filed May 29, 2019, which is a divisional of commonly assigned and co-pending U.S. Pat. Application Serial No. 14/644,556, filed Mar. 11, 2015, which is a divisional of U.S. Pat. Application Serial Number 13/250,480, filed Sep. 30, 2011, which is a continuation-in-part of U.S. Pat. Application Ser. No. 11/682,059 filed Mar. 5, 2007, which claims priority from U.S. Provisional Application No. 60/861,608 filed on Nov. 29, 2006, U.S. Provisional Application No. 60/832,826 filed on July 24,_2006, U.S. Provisional Application No. 60/744,842 filed on Apr. 14, 2006, and U.S. Provisional Application No. 60/779,484 filed on Mar. 6, 2006, which are incorporated herein by reference for all purposes. U.S. Pat. Application Serial Number 13/250,480 is a continuation-in-part of U.S. Pat. Application Ser. No. 11/738,855 filed on Apr. 23, 2007, which claims priority of U.S. Provisional Application No. 60/747,142 filed May 12, 2006. Application Ser. No. 11/738,855 is a continuation-in-part of U.S. Pat. Application Ser. No. 11/682,059 filed Mar. 5, 2007, which claims priority from U.S. Provisional Application No. 60/861,608 filed on Nov. 29, 2006; U.S. Provisional Application No. 60/832,826 filed on Jul. 24, 2006; U.S. Provisional Application No. 60/744,842 filed on Apr. 14, 2006; and U.S. Provisional Application No. 60/779,484 filed on Mar. 6, 2006, which are incorporated herein by reference for all purposes. These applications are all incorporated herein by reference for all purposes. All patents and patent applications mentioned heretofore and hereafter are incorporated herein by reference, for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2570856 | Pratt et al. | Oct 1951 | A |
3011383 | Sylvester et al. | Dec 1961 | A |
3123490 | Bolomey et al. | Mar 1964 | A |
3293331 | Doherty | Dec 1966 | A |
3338730 | Slade et al. | Aug 1967 | A |
3610721 | Abramson et al. | Oct 1971 | A |
3627580 | Krall | Dec 1971 | A |
3633720 | Tyler | Jan 1972 | A |
3676273 | Graves | Jul 1972 | A |
3790407 | Merten et al. | Feb 1974 | A |
3791864 | Steingroever | Feb 1974 | A |
3845499 | Ballinger | Oct 1974 | A |
3853676 | Graves | Dec 1974 | A |
3873975 | Miklos et al. | Mar 1975 | A |
4011009 | Lama et al. | Mar 1977 | A |
4054922 | Fichter | Oct 1977 | A |
4066280 | LaCapria | Jan 1978 | A |
4099838 | Cook et al. | Jul 1978 | A |
4126373 | Moraw | Nov 1978 | A |
4155627 | Gale et al. | May 1979 | A |
4168983 | Vittands et al. | Sep 1979 | A |
4186943 | Lee | Feb 1980 | A |
4197563 | Michaud | Apr 1980 | A |
4244998 | Smith | Jan 1981 | A |
4271782 | Bate et al. | Jun 1981 | A |
4310584 | Cooper et al. | Jan 1982 | A |
4398798 | Krawczak et al. | Aug 1983 | A |
4434010 | Ash | Feb 1984 | A |
4543551 | Petersen | Sep 1985 | A |
4657349 | Labes et al. | Apr 1987 | A |
4705300 | Berning et al. | Nov 1987 | A |
4705356 | Berning et al. | Nov 1987 | A |
4721217 | Phillips et al. | Jan 1988 | A |
4756557 | Kaule et al. | Jul 1988 | A |
4756771 | Brodalla et al. | Jul 1988 | A |
4779898 | Berning et al. | Oct 1988 | A |
4788116 | Hochberg | Nov 1988 | A |
4838648 | Phillips et al. | Jun 1989 | A |
4856857 | Takeuchi et al. | Aug 1989 | A |
4867793 | Franz et al. | Sep 1989 | A |
4930866 | Berning et al. | Jun 1990 | A |
4931309 | Komatsu et al. | Jun 1990 | A |
5002312 | Phillips et al. | Mar 1991 | A |
5009486 | Dobrowolski et al. | Apr 1991 | A |
5059245 | Phillips et al. | Oct 1991 | A |
5079058 | Tomiyama et al. | Jan 1992 | A |
5079085 | Hashimoto et al. | Jan 1992 | A |
5084351 | Philips et al. | Jan 1992 | A |
5106125 | Antes | Apr 1992 | A |
5128779 | Mallik | Jul 1992 | A |
5135812 | Phillips et al. | Aug 1992 | A |
5142383 | Mallik | Aug 1992 | A |
5171363 | Phillips et al. | Dec 1992 | A |
5177344 | Pease | Jan 1993 | A |
5186787 | Phillips et al. | Feb 1993 | A |
5192611 | Tomiyama et al. | Mar 1993 | A |
5214530 | Coombs et al. | May 1993 | A |
5223360 | Prengel et al. | Jun 1993 | A |
5254390 | Lu | Oct 1993 | A |
5278590 | Phillips et al. | Jan 1994 | A |
5279657 | Phillips et al. | Jan 1994 | A |
5314767 | Bussard | May 1994 | A |
5331443 | Stanisci | Jul 1994 | A |
5339737 | Lewis et al. | Aug 1994 | A |
5364467 | Schmid et al. | Nov 1994 | A |
5364689 | Kashiwagi et al. | Nov 1994 | A |
5368898 | Akedo | Nov 1994 | A |
5411296 | Mallik | May 1995 | A |
5424119 | Phillips et al. | Jun 1995 | A |
5437931 | Tsai et al. | Aug 1995 | A |
5447335 | Haslop | Sep 1995 | A |
5464710 | Yang | Nov 1995 | A |
5474814 | Komatsu et al. | Dec 1995 | A |
5549774 | Miekka et al. | Aug 1996 | A |
5549953 | Li | Aug 1996 | A |
5571624 | Phillips et al. | Nov 1996 | A |
5591527 | Lu | Jan 1997 | A |
5613022 | Odhner et al. | Mar 1997 | A |
5624076 | Miekka et al. | Apr 1997 | A |
5627663 | Horan et al. | May 1997 | A |
5629068 | Miekka et al. | May 1997 | A |
5630877 | Kashiwagi et al. | May 1997 | A |
RE35512 | Nowak et al. | May 1997 | E |
5648165 | Phillips et al. | Jul 1997 | A |
5650248 | Miekka et al. | Jul 1997 | A |
5672410 | Miekka et al. | Sep 1997 | A |
5686504 | Ang | Nov 1997 | A |
5700550 | Uyama et al. | Dec 1997 | A |
5742411 | Walters | Apr 1998 | A |
5744223 | Abersfelder et al. | Apr 1998 | A |
5763086 | Schmid et al. | Jun 1998 | A |
5766738 | Phillips et al. | Jun 1998 | A |
5811775 | Lee | Sep 1998 | A |
5815292 | Walters | Sep 1998 | A |
5856048 | Tahara et al. | Jan 1999 | A |
5858078 | Andes et al. | Jan 1999 | A |
5907436 | Perry et al. | May 1999 | A |
5912767 | Lee | Jun 1999 | A |
5913543 | Curiel | Jun 1999 | A |
5989626 | Coombs et al. | Nov 1999 | A |
5991078 | Yoshitake et al. | Nov 1999 | A |
6013370 | Coulter et al. | Jan 2000 | A |
6031457 | Bonkowski et al. | Feb 2000 | A |
6033782 | Hubbard et al. | Mar 2000 | A |
6043936 | Large | Mar 2000 | A |
6045230 | Dreyer et al. | Apr 2000 | A |
6068691 | Miekka et al. | May 2000 | A |
6082778 | Solmsdorf | Jul 2000 | A |
6103361 | Batzar et al. | Aug 2000 | A |
6112388 | Kimoto et al. | Sep 2000 | A |
6114018 | Phillips et al. | Sep 2000 | A |
6150022 | Coulter et al. | Nov 2000 | A |
6157489 | Bradley, Jr. et al. | Dec 2000 | A |
6168100 | Kato et al. | Jan 2001 | B1 |
6241858 | Phillips et al. | Jun 2001 | B1 |
6242510 | Killey | Jun 2001 | B1 |
6243204 | Bradley Jr. et al. | Jun 2001 | B1 |
6403169 | Hardwick et al. | Jun 2002 | B1 |
6549131 | Cote et al. | Apr 2003 | B1 |
6586098 | Coulter et al. | Jul 2003 | B1 |
6589331 | Ostertag et al. | Jul 2003 | B2 |
6616190 | Jotcham | Sep 2003 | B1 |
6643001 | Faris | Nov 2003 | B1 |
6649256 | Buczek et al. | Nov 2003 | B1 |
6686027 | Caporaletti et al. | Feb 2004 | B1 |
6692031 | Mcgrew | Feb 2004 | B2 |
6692830 | Argoitia et al. | Feb 2004 | B2 |
6712399 | Drinkwater et al. | Mar 2004 | B1 |
6749777 | Argoitia et al. | Jun 2004 | B2 |
6749936 | Argoitia et al. | Jun 2004 | B2 |
6751022 | Phillips | Jun 2004 | B2 |
6759097 | Phillips et al. | Jul 2004 | B2 |
6761378 | Souparis | Jul 2004 | B2 |
6761959 | Bonkowski et al. | Jul 2004 | B1 |
6808806 | Phillips et al. | Oct 2004 | B2 |
6815065 | Argoitia et al. | Nov 2004 | B2 |
6818299 | Phillips et al. | Nov 2004 | B2 |
6838166 | Phillips et al. | Jan 2005 | B2 |
6841238 | Argoitia et al. | Jan 2005 | B2 |
6902807 | Argoitia et al. | Jun 2005 | B1 |
6903850 | Kay et al. | Jun 2005 | B2 |
6987590 | Phillips et al. | Jan 2006 | B2 |
7005178 | Bonkowski et al. | Feb 2006 | B2 |
7029525 | Mehta | Apr 2006 | B1 |
7029745 | Bonkowski et al. | Apr 2006 | B2 |
7047883 | Raksha et al. | May 2006 | B2 |
7054042 | Holmes et al. | May 2006 | B2 |
7081819 | Martinez de Velasco Cortina et al. | Jul 2006 | B2 |
7089420 | Durst et al. | Aug 2006 | B1 |
7169472 | Raksha et al. | Jan 2007 | B2 |
7224528 | Phillips et al. | May 2007 | B2 |
7229520 | Huang et al. | Jun 2007 | B2 |
7241489 | Argoitia et al. | Jul 2007 | B2 |
7258900 | Raksha et al. | Aug 2007 | B2 |
7258915 | Argoitia et al. | Aug 2007 | B2 |
7300695 | Argoitia et al. | Nov 2007 | B2 |
20020182383 | Phillips et al. | Dec 2002 | A1 |
20030058491 | Holmes et al. | Mar 2003 | A1 |
20030087070 | Souparis | May 2003 | A1 |
20030190473 | Argoitia et al. | Oct 2003 | A1 |
20040009309 | Raksha et al. | Jan 2004 | A1 |
20040028905 | Phillips et al. | Feb 2004 | A1 |
20040051297 | Raksha et al. | Mar 2004 | A1 |
20040081807 | Bonkowski et al. | Apr 2004 | A1 |
20040094850 | Bonkowski et al. | May 2004 | A1 |
20040100707 | Kay et al. | May 2004 | A1 |
20040101676 | Phillips et al. | May 2004 | A1 |
20040105963 | Bonkowski et al. | Jun 2004 | A1 |
20040151827 | Argoitia et al. | Aug 2004 | A1 |
20040166308 | Raksha et al. | Aug 2004 | A1 |
20040180168 | Rancien et al. | Sep 2004 | A1 |
20050037192 | Argoitia et al. | Feb 2005 | A1 |
20050063067 | Phillips et al. | Mar 2005 | A1 |
20050106367 | Raksha et al. | May 2005 | A1 |
20050123755 | Argoitia et al. | Jun 2005 | A1 |
20050127663 | Heim | Jun 2005 | A1 |
20050128543 | Phillips et al. | Jun 2005 | A1 |
20050181166 | Rancien | Aug 2005 | A1 |
20050189060 | Huang et al. | Sep 2005 | A1 |
20060035080 | Argoitia | Feb 2006 | A1 |
20060077496 | Argoitia et al. | Apr 2006 | A1 |
20060194040 | Raksha et al. | Aug 2006 | A1 |
20060255586 | Lazzerini | Nov 2006 | A1 |
20060263539 | Argoitia | Nov 2006 | A1 |
20060285184 | Phillips et al. | Dec 2006 | A1 |
20070058227 | Raksha et al. | Mar 2007 | A1 |
20080069979 | Raksha et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
488652 | Apr 1976 | AU |
2163528 | Dec 1998 | CA |
1696245 | Jan 1972 | DE |
3932505 | Apr 1991 | DE |
4212290 | May 1993 | DE |
4343387 | Jun 1995 | DE |
19611383 | Sep 1997 | DE |
19731968 | Jan 1999 | DE |
19744953 | Apr 1999 | DE |
19639165 | Oct 2003 | DE |
0138194 | Apr 1985 | EP |
0185396 | Jun 1986 | EP |
0341002 | Nov 1989 | EP |
0420261 | Apr 1991 | EP |
0453131 | Oct 1991 | EP |
0556449 | Aug 1993 | EP |
0406667 | Jan 1995 | EP |
0170439 | Apr 1995 | EP |
0660262 | Jun 1995 | EP |
0710508 | May 1996 | EP |
0756945 | Feb 1997 | EP |
0395410 | Aug 1997 | EP |
0698256 | Oct 1997 | EP |
0741370 | Aug 1998 | EP |
0953937 | Nov 1999 | EP |
0978373 | Feb 2000 | EP |
1174278 | Jan 2002 | EP |
1239307 | Sep 2002 | EP |
1353197 | Oct 2003 | EP |
0914261 | Dec 2004 | EP |
1498545 | Jan 2005 | EP |
1516957 | Mar 2005 | EP |
1529653 | May 2005 | EP |
1719636 | Nov 2006 | EP |
1741757 | Jan 2007 | EP |
1107395 | Mar 1968 | GB |
1127043 | Sep 1968 | GB |
1131038 | Oct 1968 | GB |
63172779 | Jul 1988 | JP |
2011010771 | Jan 2011 | JP |
1988007214 | Sep 1988 | WO |
9323251 | Nov 1993 | WO |
1995013569 | May 1995 | WO |
9517475 | Jun 1995 | WO |
9719820 | Jun 1997 | WO |
1998012583 | Mar 1998 | WO |
9825236 | Jun 1998 | WO |
2000008596 | Feb 2000 | WO |
2001003945 | Jan 2001 | WO |
0107268 | Feb 2001 | WO |
2001053113 | Jul 2001 | WO |
2002000446 | Jan 2002 | WO |
2002004234 | Jan 2002 | WO |
2002040599 | May 2002 | WO |
2002040600 | May 2002 | WO |
2002053677 | Jul 2002 | WO |
2002090002 | Nov 2002 | WO |
03011980 | Feb 2003 | WO |
2003102084 | Dec 2003 | WO |
2004014665 | Feb 2004 | WO |
2004024836 | Mar 2004 | WO |
2005017048 | Feb 2005 | WO |
2005026848 | Mar 2005 | WO |
Entry |
---|
“Diffractive Microstructures for Security Applications: Gale, Scherrer Institute, Zurich, IEEE Conference Publication London 1991, Pgs 205-209, Sept. 16-18, 1991. |
“Optical Thin-Fihn Security Devices”, Dobrowolski, Optical Security Document, Van Renesse, Artech House, 1998, pgs. 289-328. |
“Paper Based Document Security - a Review” Rudolf L. van Renesse, European Conference on Security and Detection, Apr. 28-30, 1997, Conference Publication No,437, pg. 75-80. |
“Research on thin Film anticounterfeiting coatings at the National Research Council of Canada”, Dobrowolski et al., Applied Optics, Vol. 28, No. 14, Jul. 15, 1989, Pgs. 2702-2717. |
“Security Enhancement of Holograms with interference Coatings” by Phillips et al.Optical Security and Counterfeit Deterrence Techniques III Proceedings of SPIE Vol. 3973 pg. 304-316 (2000). |
Argoitia, “Pigments Exhibiting a Combination of Thin Film and DiffractiveLight Interference”, AIMCAL Fall Technical Conference, 16.sup.th International Vacuum Web Coating Conference, Jan. 2002, pp. 1-9. |
Argoitia et al, “Pigments Exhibiting Diffractive Effects”, Soc. Of Vac. Coaters, 45th Annual Tech. Conf. Proceed. (2002), 10 pages. |
Argoitia et al, “The concept of printable holograms through the alignment of diffractive pigments”, SPIE Conference on Document Security, Jan. 2004, 14 pages. |
Coombs et al, “Integration of contracting technologies into advanced optical security devices”, SPIE Conference on Document Security, Jan. 2004. |
Definition of “directly” from Webster’s Third New International Dictionary, 1993, pg. 641. |
Tomkins, Hastings, “Transparent Overlays for Security Printing and Plastic ID Cards”, Nov. 1997, pp. 1-8. |
EP Appln No. 07251793.1 Search Report Dec. 12, 2012. |
Defilet, LGZ Landis & Gyr Zug Corporation, “Kinegrarns ‘Optical Variable Devices’ (OVDs) for Banknotes, Security Documents and Plastic Cards”, San Diego, Apr. 1–3, 1987. |
Halliday et al, “Fundamental of Physics, Sixth Edition”, p. 662, 7/2000. |
Hardin, “Optical tricks designed to foil counterfeiters” OE Reports, No. 191, Nov. 1999, 4 pages. |
Himpsel et al, “Nanowires by Step Decoration”, Mat. Research Soc. Bui., p. 20-24 (Aug. 1999). |
Dobrowolski, Baird, Carman, and Waldorg, “Optical Interference Coatings for Inhibiting of Counterfeiting”, Optica Acta, 1973, Vol. 20, No. 12, pp. 925-937. |
Rolfe, “Optically Variable Devices for Use on Bank Notes”, SPIE, vol. 1210 Optical Security and Anticounterfeiting Systems”, 1990, pp. 14-19. |
Zink et al., “Optical Probes and Properties of Alumninosilicate Glasses Prepared by the Sol-Gel Method”, Polym. Mater Sci. Eng., 1989, pp. 204-208. |
McKiernan et al., “Luminescence and Laser Action of Coumarin Dyes Dopedin Silicate and Aluminosilicate Glasses Prepared by the Sol-Gel Technique”, Journal of organic and Organometallic Polymers, Vol. 1, No. 1, 1991, pp. 87-103. |
Llewellyn, “Dovids: Functional Beauty- discussion about holography”, Paper, Film,and Foil Converter, Aug. 2002, 7 pages. |
Lotz et al., “Optical Layers on Large Area Plastic Films, Precision, Applied Films (Nov. 2001), 3 pages. |
Minolta Manual for “Precise Color Communication, Color Control From Feeling tolnstrumentation, pp. 18, 20, 22, 23, 46, 47, 48 and 49. |
Notification of the First Office Action on Chinese Patent Publication No. 101058285, Nov. 6, 2009, pp 1-2. |
OVD Kinegram Cor, “OVD Kinegram Management of Light to Provide Security”, Internet site www.kiknegram.com/xhome/home.html, Dec. 17, 1999. |
Powell et al, (ED.), Vapor Deposition, John Wiley & Sons, P. 132 (1996). |
Prokes et al (Ed.), “Novel Methods of Nanoscale Wire Formation, Mat. Research Soc. Bui., pp. 13-14 (Aug. 1999). |
Philips, and Bleikolm, “Optical Coatings for Document Security”, Applied Optics, Vol. 35, No. 28, Oct. 1, 1996., pp. 5529-5534. |
Phillips, “Optically Variable Films, Pigments, and Inks”, SPIE vol. 1323, Optical Thin Films III: New Development, 1990, pp. 98-109. |
van Renesse, “Security Design of Valuable Documents and Products”, SPIE,vol. 2659, Jun. 1996, pp. 10-20. |
McGrew, “Hologram Counterfeiting: Problems and Solutions”, SPIE, vol. 1210 Optical Security and Counterfeiting Systems, 1990, pp. 66-76. |
The Mearl Corporation brochure for “Mearl Iridescent Film”, Peeksill, NY. 1 page. |
The R.D. Mathis Company Manual for “Thin Film Evaporation Source Reference”, Long Beach, CA. 10 Pages. |
Van Renesse (Ed.), “Optical Document Security, 2nd Ed., Artech house, 254, 349-369(1997). |
“Influence of N anosized Metal Clusters on the Generation of Strong Colors andControlling of their Properties through Physical Vapor Deposition (PVD)” by Domnick et al., 49th Annual Technical Conference Proceedings (2006), Society of Vacuum Coaters, 4 pages. |
Boswarva et al., “Roll Coater System for the Production of Optically Variable Devices (OVDs) for Security Applications”, Proceedings, 33rd Annual Technical Conference, Society of Vacuum Coaters, 1990, pp. 103-109. |
McGrew, “Countermeasures Against Hologram Counterfeiting”, Internet site www.iea.com/nli/publications/contermeasuers.htm, Jan. 6, 2000, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20230101526 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
60861608 | Nov 2006 | US | |
60861608 | Nov 2006 | US | |
60832826 | Jul 2006 | US | |
60832826 | Jul 2006 | US | |
60747142 | May 2006 | US | |
60744842 | Apr 2006 | US | |
60744842 | Apr 2006 | US | |
60779484 | Mar 2006 | US | |
60779484 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14644556 | Mar 2015 | US |
Child | 16425532 | US | |
Parent | 13250480 | Sep 2011 | US |
Child | 14644556 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16425532 | May 2019 | US |
Child | 17955454 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11738855 | Apr 2007 | US |
Child | 13250480 | US | |
Parent | 11682059 | Mar 2007 | US |
Child | 13250480 | US | |
Parent | 11682059 | Mar 2007 | US |
Child | 11738855 | US |