The present inventions relate to optics assemblies for use with high power laser units, systems and high power laser tools, such as for example drilling, decommissioning, plugging and abandonment, perforating, flow assurance, workover and completion units.
As used herein, unless specified otherwise “high power laser energy” means a laser beam having at least about 1 kW (kilowatt) of power. As used herein, unless specified otherwise “great distances” means at least about 500 m (meter). As used herein the term “substantial loss of power,” “substantial power loss” and similar such phrases, mean a loss of power of more than about 3.0 dB/km (decibel/kilometer) for a selected wavelength. As used herein the term “substantial power transmission” means at least about 50% transmittance.
In the use of high power laser tools, and in particular high power laser tools for applications and processes in remote locations, there is a need for high power optics assemblies. In particular, there is a need for such assemblies that can transmit, shape, focus, direct, and combinations thereof, high power laser energy through and adjacent to areas of rotational transition zones with in such tools. Further, and in greater particularity, there is a need for such assemblies to address vibration, temperature, contaminant, particulate and other conditions that arise from the use of high power laser energy, the tool itself, and the environment in which the tool will be used, such as for example, drilling, decommissioning, perforating, plugging and abandonment, flow assurance, workover and completion activities in the oil, natural gas and geothermal industries, as well as, activities in other industries such as the nuclear industry, the chemical industry, the subsea exploration, salvage and construction industry, the pipeline industry, and the military. Further, these tools may be used when the high power laser energy is transmitted over great distances to small and/or difficult to access locations, positions or environments for activities such as monitoring, cleaning, controlling, assembling, drilling, machining, welding and cutting. The present inventions, among other things, solve these and other needs by providing the articles of manufacture, devices and processes taught herein.
There being provided a high power laser optics assembly having: a first section and a second section; the first section having a first opening for receiving a high power laser source for providing a high power laser beam; the second section having an opening for transmitting the high power laser beam; the first opening and the second opening being in optical communication and defining an optical channel; and, a means for sealingly placing the first opening and the second opening in rotational association.
Furthermore, there are provided assemblies and packages that may also include: the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.0066 radians; the optical alignment being maintained over temperature ranges from about −100° C. to about 200° C.; the optical alignment being maintained over forces of about 100 g's; the optical alignment being maintained over forces of about 200 g's; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.018 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.001 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.0005 radians; the optical alignment being maintained in the presence of transmitting at least about a 5 kW laser beam between the first and second openings; the optical alignment being maintained in the presence of transmitting at least about a 10 kW laser beam between the first and second openings; the optical alignment being maintained in the presence of transmitting at least about a 50 kW laser beam between the first and second openings; the optical channel extends through the rotational sealing means, and the rotational sealing means has a bearing assembly and a rotary seal; the rotational sealing means has two bearing assemblies; the rotational sealing means has three bearing assemblies; a means for passive cooling; a means for managing back reflections; a first section and a second section and the member second section has a stepped optical channel for managing back reflections; the optics package being associated with a passive cooling means; the assembly being capable of maintaining optical alignment, as measured by defocus to less than about 0.05 mm over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by decentering to less than about 1.6 mm over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by decentering to less than about 1 mm over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.001 radians over basic operating parameters; and the assembly being capable of maintaining optical alignment, as measured by defocus to less than about 0.05 mm over basic operating parameters.
Moreover, there is provided a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including a first end, a second end, an optic and a window; a housing including a first end and a second end and a first side and a second, thus the housing second end being fixedly associated with the optics package first end; thus the housing and the optics package define a first section of the optics assembly; a member defining an optical channel, the member having a side removed from the optical channel; the member side having two bearing assemblies, the bearing assemblies being rotationally associated with the housing first side; a rotary seal in sealing engagement with the member and the housing; and, the member having an opening in optical association with the optical channel for receiving a high power laser source, thus the member and opening define a second section of the optics assembly; thus the first and second sections of the optics assembly are rotationally associated so that a laser beam may be transmitted from the first opening through the optical channel to the optics package and exit the optics package while the first section or second section being rotating relative to the other.
Yet still further, there is provided a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including an optic; a housing having an opening in optical association with the optics package, the housing defining a first section of the optics assembly; a member defining an optical channel, the member having a side removed from the optical channel; thus the member being fixedly associated with the optics package; thus the member and the optics package define a second section of the optics assembly; a first bearing assembly and a second bearing assembly, having a bearing materials, the first and second bearing assemblies rotationally and axially associating the housing and the member; a rotary seal means in sealing engagement with the member and the housing, thus the first and the second bearing assemblies are isolated from the optical channel and the optics package; and, the member having an opening in optical association with the optical channel for receiving a high power laser source; thus the first and second sections of the optics assembly are rotationally associated so that so that the optics package and the optical channel are maintained substantially free from bearing material during rotation.
Still additionally, there are provided optics assemblies and packages that may also include: an opening for receiving the high power laser source, defines a receptacle for receiving a plurality of high power laser beams having a combined power of at least about 50 kW.
Further still, there is provided a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including an optic; a first housing having an opening in optical association with the optics package, the first housing defining a first section of the optics assembly; a second housing defining an optical channel, the second housing having a surface removed from the optical channel; thus the second housing has the optics package; thus the housing including the optics package defines a second section of the optics assembly; a first bearing assembly and a second bearing assembly, the first and second bearing assemblies rotationally and axially associating the first housing and the second housing; and, a rotary seal means in sealing engagement with the first housing and the second housing; and, the second housing having an opening in optical association with the optical channel for receiving a high power laser source; thus the optical channel and the optics package are isolated from an environment exterior to the first housing or the second housing, during rotation and transmission of a laser beam, thus the optics package and the optical channel are maintained substantially free from contamination.
The present inventions relate to optical assemblies for delivering and utilization of high power laser energy. In particular, the present inventions relate to optical assemblies for use in tools for performing activities such as drilling, working over, completing, cleaning, milling, perforating, monitoring, analyzing, cutting, removing, welding and assembling.
The high power laser optics assemblies of the present invention, in general, address and manage shock, thermal, cleanliness, and laser beam delivery parameters for a high power laser tool, as well as, other environmental and operational conditions. Further, these factors may be addressed and managed by the present high power laser optics assemblies in the area of rotational transition zones of a tool. A rotational transition zone is any area, section, or part of a tool, where rotating components merge with, are jointed to, overlap with, or are otherwise mechanically associated with non-rotating components, components rotating in a different direction, components rotating at a different speed, and combinations and variations of these.
Turning to
Greater or fewer sections for the optics assemblies are contemplated. Although the sections are shown as individual components that are affixed together by a securement means, such as for example a bolt, a screw, a press fit, or a threaded connection, they may also be integral, made from a single piece of material, fused, or welded together, and also include sub-section(s) that are integral or separate or combinations and variations of the foregoing. Greater or fewer cooling fins are contemplated. Thus, there may be two, three or more, five or more, ten or more, and twelve or more fins or cooling members. Additional fins may be needed, or used for, example where there are high heat loads, or where the diameter of the assembly is larger. Active cooling means, such as a water-cooling system, may be utilized, however, and in particular, for remote applications, passive cooling, as shown in the embodiment of
In the embodiment of
Although two sections are shown rotationally associated in the embodiment of
The optics assembly 100 has two optical communication openings, 103 and 104. High power laser energy is transmitted into and out of these openings. In general, either opening may be configured to either receive or transmit the high power laser energy. The openings may be configured to hold or receive a high power optical fiber or cable, to hold or receive an optical coupler, to receive or transmit a high power laser beam that may be collimated (either as received, as transmitted or both), that may be focused (either as received, as transmitted or both), that may be Gaussian (either as received, as transmitted or both), that may have a predetermined power distribution or beam profile (either as received, as transmitted or both), that may be shaped (either as received, as transmitted or both), that may be divergent (either as received, as transmitted or both), that has more than about 1 kW of power, that has more than about 2 kW of power, that has more than about 5 kW of power, that has more than about 10 kW of power, that has more than about 15 kW of power, that has more than about 20 kW of power, that has more than about 40 kW of power, that is a single beam, that is made up of multiple beams, a plurality of separate beams, and combinations and variations of these and other laser beam qualities and parameters.
In the embodiment of
To accommodate the different rotational movements of section 102 and 150, sealing members and bearings members are utilized. These members may be any type of such devices known to the art, they may be separate devices, they may be combined, there may be a single device or there may be several devices distributed or located at certain positions in the assembly. Provided however, that they are configured to meet the vibration, shock, pressure, speed, alignment tolerance, temperature and other operating parameters and conditions that the optics assembly will encounter, or need to meet, during its intended use, e.g., during the intended or specified use for the tool or device in which the optics assembly is employed.
As shown in
Turning again to
Preferably, by way of example, the optics assembly of the embodiment of
The configurations of the optics assemblies of the present inventions provide the ability to, and thus, may meet, and can be further designed and constructed to exceed, the following criteria, operating conditions and performance criteria:
Turning again to the embodiment of
The retaining rings and optics receiving tube may be made from metal, such as Aluminum, Stainless Steel, or Brass or Copper. The inner surfaces of these components, along the beam tube, as well as any non-transmissive inner surface, (e.g., generally all other components except the optics) in the assembly, that directly face the high power laser beam, should be made to reflect the laser beam. Thus, these surfaces may be polished or coated with reflective materials, such as Gold, Silver, Copper, and alloys for the foregoing. However, for the purpose of heat management and to enhance heat transfer from the optics and interior to the fins, inner surfaces, e.g., 157, 158, 159, 160 that are in direct thermal contact with the fins may be made with or have a non-reflective black surface, such as black chrome, laser black, and black anodize.
The optical channels 154, 138 are in optical communication. Each channel as a series of steps, or terraces, with increasing inner diameters. Thus, for example step 140 has a larger diameter than step 141. Each step also has a flat surface, an annulus, that is normal to the axis of the beam path, e.g., 140a, 141a. These surfaces function to prevent back reflections, for example from a laser beam back reflection, e.g., back reflections, entering the optics 113, from entering the fiber and/or coupler that is located in opening 104 and from which the beam is received by the assembly 100. Thus, these surfaces, e.g., 140a, 141a, reflect back toward the optics, and away from receiving opening 104, back reflections that may be traveling toward the opening 104. The optical channels 138, 154 form a continuous optical channel having seven steps of increasing diameter, as the location in the continuous channel moves away from the opening 104. More or fewer steps, steps having larger and smaller diameters, and steps having different shapes may be employed.
Optics tube 153 and section 150 are joined through locking ring 156. In this manner optics tube 153 is fixed to and rotates with section 150. Similarly, ring 137, and 136 are fixed to and rotate with section 130 (also section 102). For a thermal gasketing effect to enhance heat transfer Indium foil is used between the surface of tube 153 and the cooling fins 151 of section 150, where they overlap. Thus, in use or as part of a high power laser tool, the assembly 100 would be located in the area of a rotational transition zone of the tool, with section 102 being associated with a first section of the tool, and section 150 being associated with second section of the tool that has a different rotation movement from the first section, e.g., the first section rotates and the second section does not.
There are further optic 180, optic 181, optic 182, and springs 183, and 184, that are in optical communication with the optical channels 154, 138 and the openings 104 and 103.
As can been seen from the
In
The embodiment of
Turning to
Turning to
Turning to
Section 450 forms an optical communication opening 404 and is configured to receive a connector. Section 450 forms an optics tube 450a that has a stepped configuration 450b to inhibit back reflections from reaching the connector. Section 450 has a collimating lens 452. Section 450 is affixed to inner sleeve 451 by for example bolts, e.g., 451a. Thus, section 450 and inner sleeve 451 rotate or move together as a unit. Between inner sleeve 451 and outer sleeve 430 are bearing and seal members, which in this embodiment are four bearing assemblies 480, 481, 482, 483 and a sealing and locking member 484. The sealing and locking member 484 is affixed (e.g., threads, bolts etc.) to the inner sleeve 451. In this manner, the member 484 engages bearings 483, 482 forcing them into engagement with shoulder 431 on outer sleeve 430. Thus, inner sleeve 451 is held in rotational engagement with outer sleeve 430. It being noted that the laser beam as it passes through the cavity 492 formed by the inner and outer sleeves is a collimated beam. (In other embodiments the laser beam may be focused, divergent and/or shaped)
The embodiment of
There are further provided purge valves, or pressure equalization ports, e.g., 470, 471 in the inner and outer sleeves. Preferably these ports have sintered metal filters, or other devices to prevent debris from entering. The ports enable the pressure between the inner and outer members, annulus 491, and the inner cavity 492 of the inner member 451 to be equalized. In this manner a condition where a high pressure is present outside of the inner cavity 492 then inside the inner cavity, which conditions would tend to drive or force debris past the seal 484, should not exist, or should be substantially avoided. In this manner the pressure equalizing ports form a part of the bearing and sealing member.
The forgoing bearing and sealing components, as set forth in the various embodiments, are configured to protect the optics, the optics package, and the optical channel from contamination during rotation of the various components. Thus, for example, the seals and bearing assemblies are configured and positioned to prevent bearing materials, such as shavings, wear debris, stuffings or grease from entering the optical channel or otherwise contaminating any optical surface that transmits the high power laser beam. In this manner those assemblies are isolated, or substantially isolated for practical purposes from the optical channel and the optics.
Turning to
Turning to
The knife edged configured steps of
The laser assemblies of the present invention may be used with any high power laser tools or systems.
Examples of embodiments and teachings regarding high power optical fiber cable, fibers and the systems and components for delivering high power laser energy over great distances from the laser to a remote location for use by a tool are disclosed and taught in the following US Patent Applications and US Patent Application Publications: US 2010/0044106, US 2010/0044105, Publication No. US 2010/0044104, Publication No. US 2010/0044103, US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, Ser. No. 13/366,882, Ser. No. 61/446,042, Ser. No. 61/493,174, Ser. No. 61/514,391, and Ser. No. 61/446,312, the entire disclosures of each of which are incorporated herein by reference.
In these methods, systems and applications, the laser beam, or beams, may for example have 10 kW, 20 kW, 40 kW, 80 kW or more power; and have a wavelength in the range of from about 445 nm (nanometers) to about 2100 nm, preferably in the range of from about 800 to 1900 nm, and more preferably in the ranges of from about 1530 nm to 1600 nm, from about 1060 nm to 1080 nm, and from about 1800 nm to 1900 nm. Further, the types of laser beams and sources for providing a high power laser beam may be the devices, systems, optical fibers and beam shaping and delivery optics that are disclosed and taught in the following US Patent Applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication No. US 2010/0044102, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, and Ser. No. 61/493,174, the entire disclosures of each of which are incorporated herein by reference. The source for providing rotational movement may be a string of drill pipe rotated by a top drive or rotary table, a down hole mud motor, a down hole turbine, a down hole electric motor, and, in particular, may be the systems and devices disclosed in the following US Patent Applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044104, Publication No. US 2010/0044103, Ser. No. 12/896,021, Ser. No. 61/446,042 and Ser. No. 13/211,729, the entire disclosures of each of which are incorporated herein by reference. The high power lasers for example may be fiber lasers or semiconductor lasers having 10 kW, 20 kW, 50 kW or more power and, which emit laser beams with wavelengths preferably in about the 1064 nm range, about the 1070 nm range, about the 1360 nm range, about the 1455 nm range, about the 1550 nm range, about the 1070 nm range, about the 1083 nm range, or about the 1900 nm range (wavelengths in the range of 1900 nm may be provided by Thulium lasers). Thus, by way of example, there is contemplated the use of four, five, or six, 20 kW lasers to provide a laser beam in a bit having a power greater than about 60 kW, greater than about 70 kW, greater than about 80 kW, greater than about 90 kW and greater than about 100 kW. One laser may also be envisioned to provide these higher laser powers.
The tools that are useful with high power laser systems, and which can incorporate or utilize the optical assemblies described herein, many generally be laser drills, laser bottom hole assemblies, laser cutters, laser cleaners, laser monitors, laser welders, laser perforators, laser PIGs, and laser delivery assemblies that may have been adapted for a special use or uses. Configurations of optical elements for collimating and focusing the laser beam can be employed with these tools to provide the desired beam properties for a particular application or tool configuration.
Such tools for example may be used for cleaning, resurfacing, removal, and clearing away of unwanted materials, e.g., build-ups, deposits, corrosion, or substances, in, on, or around a structure, e.g. the work piece, or work surface area. Such unwanted materials would include by way of example rust, corrosion, corrosion by products, degraded or old paint, degraded or old coatings, paint, coatings, waxes, hydrates, microbes, residual materials, biofilms, tars, sludges, and slimes.
Although a single optical opening is shown in the embodiments of the figures, the optical assemblies may be configured, either through a single opening or multiple openings, to handle one, two, three or more fibers, or optical connectors. They may further have one, two, three or more collimators and collimated beam paths, which paths may be overlapping. Additionally, one, two, three or more of the optical assemblies may be use in, or in conjunction with a particular laser tool or laser system for deploying a laser tool(s).
The invention may be embodied in other forms than those specifically disclosed herein without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.
This application: (i) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,040; (ii) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,312; (iii) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,041; (iv) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,043; (v) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,042; (vi) is a continuation-in-part of U.S. patent application Ser. No. 12/544,038 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; (vii) is a continuation-in-part of U.S. patent application Ser. No. 12/544,136 filed Aug. 19, 2009; (viii) is a continuation-in-part of U.S. patent application Ser. No. 12/543,986 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; (ix) is a continuation-in-part of U.S. patent application Ser. No. 12/544,094 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of US provisional application serial number 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; and, (x) is a continuation-in-part of U.S. patent application Ser. No. 12/896,021 filed Oct. 1, 2010, the entire disclosures of each of which are incorporated herein by reference.
This invention was made with Government support under Award DE-AR0000044 awarded by the Office of ARPA-E U.S. Department of Energy. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
914636 | Case | Mar 1909 | A |
2548463 | Blood | Apr 1951 | A |
2742555 | Murray | Apr 1956 | A |
3122212 | Karlovitz | Feb 1964 | A |
3383491 | Muncheryan | May 1968 | A |
3461964 | Venghiattis | Aug 1969 | A |
3493060 | Van Dyk | Feb 1970 | A |
3503804 | Schneider et al. | Mar 1970 | A |
3539221 | Gladstone | Nov 1970 | A |
3544165 | Snedden | Dec 1970 | A |
3556600 | Shoupp et al. | Jan 1971 | A |
3574357 | Alexandru et al. | Apr 1971 | A |
3586413 | Adams | Jun 1971 | A |
3652447 | Yant | Mar 1972 | A |
3693718 | Stout | Sep 1972 | A |
3699649 | McWilliams | Oct 1972 | A |
3802203 | Ichise et al. | Apr 1974 | A |
3820605 | Barber et al. | Jun 1974 | A |
3821510 | Muncheryan | Jun 1974 | A |
3823788 | Garrison et al. | Jul 1974 | A |
3871485 | Keenan, Jr. | Mar 1975 | A |
3882945 | Keenan, Jr. | May 1975 | A |
3938599 | Horn | Feb 1976 | A |
3960448 | Schmidt et al. | Jun 1976 | A |
3977478 | Shuck | Aug 1976 | A |
3992095 | Jacoby et al. | Nov 1976 | A |
3998281 | Salisbury et al. | Dec 1976 | A |
4019331 | Rom et al. | Apr 1977 | A |
4025091 | Zeile, Jr. | May 1977 | A |
4026356 | Shuck | May 1977 | A |
4047580 | Yahiro et al. | Sep 1977 | A |
4057118 | Ford | Nov 1977 | A |
4061190 | Bloomfield | Dec 1977 | A |
4066138 | Salisbury et al. | Jan 1978 | A |
4090572 | Welch | May 1978 | A |
4113036 | Stout | Sep 1978 | A |
4125757 | Ross | Nov 1978 | A |
4151393 | Fenneman et al. | Apr 1979 | A |
4162400 | Pitts, Jr. | Jul 1979 | A |
4189705 | Pitts, Jr. | Feb 1980 | A |
4194536 | Stine et al. | Mar 1980 | A |
4199034 | Salisbury et al. | Apr 1980 | A |
4227582 | Price | Oct 1980 | A |
4228856 | Reale | Oct 1980 | A |
4243298 | Kao et al. | Jan 1981 | A |
4249925 | Kawashima et al. | Feb 1981 | A |
4252015 | Harbon et al. | Feb 1981 | A |
4256146 | Genini et al. | Mar 1981 | A |
4266609 | Rom et al. | May 1981 | A |
4280535 | Willis | Jul 1981 | A |
4281891 | Shinohara et al. | Aug 1981 | A |
4282940 | Salisbury et al. | Aug 1981 | A |
4332401 | Stephenson et al. | Jun 1982 | A |
4336415 | Walling | Jun 1982 | A |
4340245 | Stalder | Jul 1982 | A |
4367917 | Gray | Jan 1983 | A |
4370886 | Smith, Jr. et al. | Feb 1983 | A |
4374530 | Walling | Feb 1983 | A |
4375164 | Dodge et al. | Mar 1983 | A |
4389645 | Wharton | Jun 1983 | A |
4415184 | Stephenson et al. | Nov 1983 | A |
4417603 | Argy | Nov 1983 | A |
4436177 | Elliston | Mar 1984 | A |
4444420 | McStravick et al. | Apr 1984 | A |
4453570 | Hutchison | Jun 1984 | A |
4459731 | Hutchison | Jul 1984 | A |
4477106 | Hutchison | Oct 1984 | A |
4504112 | Gould et al. | Mar 1985 | A |
4522464 | Thompson et al. | Jun 1985 | A |
4531552 | Kim | Jul 1985 | A |
4565351 | Conti et al. | Jan 1986 | A |
4662437 | Renfro | May 1987 | A |
4694865 | Tauschmann | Sep 1987 | A |
4725116 | Spencer et al. | Feb 1988 | A |
4741405 | Moeny et al. | May 1988 | A |
4744420 | Patterson et al. | May 1988 | A |
4770493 | Ara et al. | Sep 1988 | A |
4793383 | Gyory et al. | Dec 1988 | A |
4830113 | Geyer | May 1989 | A |
4860654 | Chawla et al. | Aug 1989 | A |
4860655 | Chawla | Aug 1989 | A |
4872520 | Nelson | Oct 1989 | A |
4924870 | Wlodarczyk et al. | May 1990 | A |
4952771 | Wrobel | Aug 1990 | A |
4989236 | Myllymäki | Jan 1991 | A |
4997250 | Ortiz, Jr. | Mar 1991 | A |
5003144 | Lindroth et al. | Mar 1991 | A |
5004166 | Sellar | Apr 1991 | A |
5033545 | Sudol | Jul 1991 | A |
5049738 | Gergely et al. | Sep 1991 | A |
5084617 | Gergely | Jan 1992 | A |
5086842 | Cholet | Feb 1992 | A |
5107936 | Foppe | Apr 1992 | A |
5121872 | Legget | Jun 1992 | A |
5125061 | Marlier et al. | Jun 1992 | A |
5125063 | Panuska et al. | Jun 1992 | A |
5128882 | Cooper et al. | Jul 1992 | A |
5140664 | Bosisio et al. | Aug 1992 | A |
5163321 | Perales | Nov 1992 | A |
5168940 | Foppe | Dec 1992 | A |
5172112 | Jennings | Dec 1992 | A |
5212755 | Holmberg | May 1993 | A |
5269377 | Martin | Dec 1993 | A |
5285204 | Sas-Jaworsky | Feb 1994 | A |
5348097 | Giannesini et al. | Sep 1994 | A |
5351533 | Macadam et al. | Oct 1994 | A |
5353875 | Schultz et al. | Oct 1994 | A |
5355967 | Mueller et al. | Oct 1994 | A |
5356081 | Sellar | Oct 1994 | A |
5396805 | Surjaatmadja | Mar 1995 | A |
5411081 | Moore et al. | May 1995 | A |
5411085 | Moore et al. | May 1995 | A |
5411105 | Gray | May 1995 | A |
5413045 | Miszewski | May 1995 | A |
5413170 | Moore | May 1995 | A |
5419188 | Rademaker et al. | May 1995 | A |
5423383 | Pringle | Jun 1995 | A |
5425420 | Pringle | Jun 1995 | A |
5435351 | Head | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5463711 | Chu | Oct 1995 | A |
5465793 | Pringle | Nov 1995 | A |
5469878 | Pringle | Nov 1995 | A |
5479860 | Ellis | Jan 1996 | A |
5483988 | Pringle | Jan 1996 | A |
5488992 | Pringle | Feb 1996 | A |
5500768 | Doggett et al. | Mar 1996 | A |
5503014 | Griffith | Apr 1996 | A |
5503370 | Newman et al. | Apr 1996 | A |
5505259 | Wittrisch et al. | Apr 1996 | A |
5515926 | Boychuk | May 1996 | A |
5526887 | Vestavik | Jun 1996 | A |
5561516 | Noble et al. | Oct 1996 | A |
5566764 | Elliston | Oct 1996 | A |
5573225 | Boyle et al. | Nov 1996 | A |
5577560 | Coronado et al. | Nov 1996 | A |
5586609 | Schuh | Dec 1996 | A |
5599004 | Newman et al. | Feb 1997 | A |
5615052 | Doggett | Mar 1997 | A |
5638904 | Misselbrook et al. | Jun 1997 | A |
5655745 | Morrill | Aug 1997 | A |
5694408 | Bott et al. | Dec 1997 | A |
5707939 | Patel | Jan 1998 | A |
5757484 | Miles et al. | May 1998 | A |
5759859 | Sausa | Jun 1998 | A |
5771984 | Potter et al. | Jun 1998 | A |
5773791 | Kuykendal | Jun 1998 | A |
5794703 | Newman et al. | Aug 1998 | A |
5813465 | Terrell et al. | Sep 1998 | A |
5828003 | Thomeer et al. | Oct 1998 | A |
5832006 | Rice et al. | Nov 1998 | A |
5833003 | Longbottom et al. | Nov 1998 | A |
5847825 | Alexander | Dec 1998 | A |
5862273 | Pelletier | Jan 1999 | A |
5862862 | Terrell | Jan 1999 | A |
5896482 | Blee et al. | Apr 1999 | A |
5896938 | Moeny et al. | Apr 1999 | A |
5902499 | Richerzhagen | May 1999 | A |
5909306 | Goldberg et al. | Jun 1999 | A |
5913337 | Williams et al. | Jun 1999 | A |
5924489 | Hatcher | Jul 1999 | A |
5929986 | Slater et al. | Jul 1999 | A |
5933945 | Thomeer et al. | Aug 1999 | A |
5938954 | Onuma et al. | Aug 1999 | A |
5973783 | Goldner et al. | Oct 1999 | A |
5986756 | Slater et al. | Nov 1999 | A |
RE36525 | Pringle | Jan 2000 | E |
6015015 | Luft et al. | Jan 2000 | A |
6038363 | Slater et al. | Mar 2000 | A |
6059037 | Longbottom et al. | May 2000 | A |
6060662 | Rafie et al. | May 2000 | A |
6065540 | Thomeer et al. | May 2000 | A |
RE36723 | Moore et al. | Jun 2000 | E |
6076602 | Gano et al. | Jun 2000 | A |
6092601 | Gano et al. | Jul 2000 | A |
6104022 | Young et al. | Aug 2000 | A |
RE36880 | Pringle | Sep 2000 | E |
6116344 | Longbottom et al. | Sep 2000 | A |
6135206 | Gano et al. | Oct 2000 | A |
6147754 | Theriault et al. | Nov 2000 | A |
6157893 | Berger et al. | Dec 2000 | A |
6166546 | Scheihing et al. | Dec 2000 | A |
6215734 | Moeny et al. | Apr 2001 | B1 |
6227200 | Crump et al. | May 2001 | B1 |
6250391 | Proudfoot | Jun 2001 | B1 |
6273193 | Hermann et al. | Aug 2001 | B1 |
6275645 | Vereecken et al. | Aug 2001 | B1 |
6281489 | Tubel et al. | Aug 2001 | B1 |
6301423 | Olson | Oct 2001 | B1 |
6309195 | Bottos et al. | Oct 2001 | B1 |
6321839 | Vereecken et al. | Nov 2001 | B1 |
6352114 | Toalson et al. | Mar 2002 | B1 |
6355928 | Skinner et al. | Mar 2002 | B1 |
6356683 | Hu et al. | Mar 2002 | B1 |
6377591 | Hollister et al. | Apr 2002 | B1 |
6384738 | Carstensen et al. | May 2002 | B1 |
6386300 | Curlett et al. | May 2002 | B1 |
6401825 | Woodrow | Jun 2002 | B1 |
6426479 | Bischof | Jul 2002 | B1 |
6437326 | Yamate et al. | Aug 2002 | B1 |
6450257 | Douglas | Sep 2002 | B1 |
6494259 | Surjaatmadja | Dec 2002 | B2 |
6497290 | Misselbrook et al. | Dec 2002 | B1 |
6557249 | Pruett et al. | May 2003 | B1 |
6561289 | Portman et al. | May 2003 | B2 |
6564046 | Chateau | May 2003 | B1 |
6591046 | Stottlemyer | Jul 2003 | B2 |
6615922 | Deul et al. | Sep 2003 | B2 |
6626249 | Rosa | Sep 2003 | B2 |
6644848 | Clayton et al. | Nov 2003 | B1 |
6661815 | Kozlovsky et al. | Dec 2003 | B1 |
6710720 | Carstensen et al. | Mar 2004 | B2 |
6712150 | Misselbrook et al. | Mar 2004 | B1 |
6725924 | Davidson et al. | Apr 2004 | B2 |
6747743 | Skinner et al. | Jun 2004 | B2 |
6755262 | Parker | Jun 2004 | B2 |
6808023 | Smith et al. | Oct 2004 | B2 |
6823124 | Renn | Nov 2004 | B1 |
6832654 | Ravensbergen et al. | Dec 2004 | B2 |
6847034 | Shah et al. | Jan 2005 | B2 |
6851488 | Batarseh | Feb 2005 | B2 |
6867858 | Owen et al. | Mar 2005 | B2 |
6870128 | Kobayashi et al. | Mar 2005 | B2 |
6874361 | Meltz et al. | Apr 2005 | B1 |
6880646 | Batarseh | Apr 2005 | B2 |
6885784 | Bohnert | Apr 2005 | B2 |
6888097 | Batarseh | May 2005 | B2 |
6888127 | Jones et al. | May 2005 | B2 |
6912898 | Jones et al. | Jul 2005 | B2 |
6913079 | Tubel | Jul 2005 | B2 |
6920395 | Brown | Jul 2005 | B2 |
6920946 | Oglesby | Jul 2005 | B2 |
6923273 | Terry et al. | Aug 2005 | B2 |
6957576 | Skinner et al. | Oct 2005 | B2 |
6967322 | Jones et al. | Nov 2005 | B2 |
6977367 | Tubel et al. | Dec 2005 | B2 |
6978832 | Gardner et al. | Dec 2005 | B2 |
6981561 | Krueger et al. | Jan 2006 | B2 |
6994162 | Robison | Feb 2006 | B2 |
7040746 | McCain et al. | May 2006 | B2 |
7055604 | Jee et al. | Jun 2006 | B2 |
7055629 | Oglesby | Jun 2006 | B2 |
7072044 | Kringlebotn et al. | Jul 2006 | B2 |
7072588 | Skinner | Jul 2006 | B2 |
7086484 | Smith, Jr. | Aug 2006 | B2 |
7087865 | Lerner | Aug 2006 | B2 |
7088437 | Blomster et al. | Aug 2006 | B2 |
7126332 | Blanz et al. | Oct 2006 | B2 |
7134488 | Tudor et al. | Nov 2006 | B2 |
7134514 | Riel et al. | Nov 2006 | B2 |
7140435 | Defretin et al. | Nov 2006 | B2 |
7147064 | Batarseh et al. | Dec 2006 | B2 |
7152700 | Church et al. | Dec 2006 | B2 |
7163875 | Richerzhagen | Jan 2007 | B2 |
7172026 | Misselbrook | Feb 2007 | B2 |
7172038 | Terry et al. | Feb 2007 | B2 |
7174067 | Murshid et al. | Feb 2007 | B2 |
7188687 | Rudd et al. | Mar 2007 | B2 |
7195731 | Jones | Mar 2007 | B2 |
7196786 | DiFoggio | Mar 2007 | B2 |
7199869 | MacDougall | Apr 2007 | B2 |
7201222 | Kanady et al. | Apr 2007 | B2 |
7210343 | Shammai et al. | May 2007 | B2 |
7212283 | Hother et al. | May 2007 | B2 |
7249633 | Ravensbergen et al. | Jul 2007 | B2 |
7264057 | Rytlewski et al. | Sep 2007 | B2 |
7270195 | MacGregor et al. | Sep 2007 | B2 |
7273108 | Misselbrook | Sep 2007 | B2 |
7334637 | Smith, Jr. | Feb 2008 | B2 |
7337660 | Ibrahim et al. | Mar 2008 | B2 |
7362422 | DiFoggio et al. | Apr 2008 | B2 |
7372230 | McKay | May 2008 | B2 |
7394064 | Marsh | Jul 2008 | B2 |
7395696 | Bissonnette et al. | Jul 2008 | B2 |
7416032 | Moeny et al. | Aug 2008 | B2 |
7416258 | Reed et al. | Aug 2008 | B2 |
7424190 | Dowd et al. | Sep 2008 | B2 |
7471831 | Bearman et al. | Dec 2008 | B2 |
7487834 | Reed et al. | Feb 2009 | B2 |
7490664 | Skinner et al. | Feb 2009 | B2 |
7503404 | McDaniel et al. | Mar 2009 | B2 |
7515782 | Zhang et al. | Apr 2009 | B2 |
7516802 | Smith, Jr. | Apr 2009 | B2 |
7518722 | Julian et al. | Apr 2009 | B2 |
7527108 | Moeny | May 2009 | B2 |
7530406 | Moeny et al. | May 2009 | B2 |
7559378 | Moeny | Jul 2009 | B2 |
7587111 | de Montmorillon et al. | Sep 2009 | B2 |
7600564 | Shampine et al. | Oct 2009 | B2 |
7603011 | Varkey et al. | Oct 2009 | B2 |
7617873 | Lovell et al. | Nov 2009 | B2 |
7624743 | Sarkar et al. | Dec 2009 | B2 |
7628227 | Marsh | Dec 2009 | B2 |
7646953 | Dowd et al. | Jan 2010 | B2 |
7647948 | Quigley et al. | Jan 2010 | B2 |
7671983 | Shammai et al. | Mar 2010 | B2 |
7715664 | Shou et al. | May 2010 | B1 |
7720323 | Yamate et al. | May 2010 | B2 |
7769260 | Hansen et al. | Aug 2010 | B2 |
7802384 | Kobayashi et al. | Sep 2010 | B2 |
7834777 | Gold | Nov 2010 | B2 |
7848368 | Gapontsev et al. | Dec 2010 | B2 |
7900699 | Ramos et al. | Mar 2011 | B2 |
7938175 | Skinner et al. | May 2011 | B2 |
8011454 | Castillo | Sep 2011 | B2 |
8074332 | Keatch et al. | Dec 2011 | B2 |
8082996 | Kocis et al. | Dec 2011 | B2 |
8091638 | Dusterhoft et al. | Jan 2012 | B2 |
8109345 | Jeffryes | Feb 2012 | B2 |
8175433 | Caldwell et al. | May 2012 | B2 |
20020007945 | Neuroth et al. | Jan 2002 | A1 |
20020039465 | Skinner | Apr 2002 | A1 |
20020189806 | Davidson et al. | Dec 2002 | A1 |
20030000741 | Rosa | Jan 2003 | A1 |
20030053783 | Shirasaki | Mar 2003 | A1 |
20030056990 | Oglesby | Mar 2003 | A1 |
20030085040 | Hemphill et al. | May 2003 | A1 |
20030094281 | Tubel | May 2003 | A1 |
20030132029 | Parker | Jul 2003 | A1 |
20030145991 | Olsen | Aug 2003 | A1 |
20030159283 | White | Aug 2003 | A1 |
20030160164 | Jones et al. | Aug 2003 | A1 |
20030226826 | Kobayashi et al. | Dec 2003 | A1 |
20040006429 | Brown | Jan 2004 | A1 |
20040016295 | Skinner et al. | Jan 2004 | A1 |
20040020643 | Thomeer et al. | Feb 2004 | A1 |
20040026382 | Richerzhagen | Feb 2004 | A1 |
20040033017 | Kringlebotn et al. | Feb 2004 | A1 |
20040074979 | McGuire | Apr 2004 | A1 |
20040093950 | Bohnert | May 2004 | A1 |
20040112642 | Krueger et al. | Jun 2004 | A1 |
20040119471 | Blanz et al. | Jun 2004 | A1 |
20040129418 | Jee et al. | Jul 2004 | A1 |
20040195003 | Batarseh | Oct 2004 | A1 |
20040206505 | Batarseh | Oct 2004 | A1 |
20040207731 | Bearman et al. | Oct 2004 | A1 |
20040211894 | Hother et al. | Oct 2004 | A1 |
20040218176 | Shammal et al. | Nov 2004 | A1 |
20040244970 | Smith, Jr. | Dec 2004 | A1 |
20040252748 | Gleitman | Dec 2004 | A1 |
20040256103 | Batarseh | Dec 2004 | A1 |
20050007583 | DiFoggio | Jan 2005 | A1 |
20050012244 | Jones | Jan 2005 | A1 |
20050034857 | Defretin et al. | Feb 2005 | A1 |
20050094129 | MacDougall | May 2005 | A1 |
20050099618 | DiFoggio et al. | May 2005 | A1 |
20050115741 | Terry et al. | Jun 2005 | A1 |
20050121235 | Larsen et al. | Jun 2005 | A1 |
20050189146 | Oglesby | Sep 2005 | A1 |
20050201652 | Ellwood, Jr. | Sep 2005 | A1 |
20050230107 | McDaniel et al. | Oct 2005 | A1 |
20050252286 | Ibrahim et al. | Nov 2005 | A1 |
20050263281 | Lovell et al. | Dec 2005 | A1 |
20050268704 | Bissonnette et al. | Dec 2005 | A1 |
20050269132 | Batarseh et al. | Dec 2005 | A1 |
20050272512 | Bissonnette et al. | Dec 2005 | A1 |
20050272513 | Bissonnette et al. | Dec 2005 | A1 |
20050272514 | Bissonnette et al. | Dec 2005 | A1 |
20050282645 | Bissonnette et al. | Dec 2005 | A1 |
20060038997 | Julian et al. | Feb 2006 | A1 |
20060049345 | Rao et al. | Mar 2006 | A1 |
20060065815 | Jurca | Mar 2006 | A1 |
20060070770 | Marsh | Apr 2006 | A1 |
20060102343 | Skinner et al. | May 2006 | A1 |
20060118303 | Schultz et al. | Jun 2006 | A1 |
20060137875 | Dusterhoft et al. | Jun 2006 | A1 |
20060185843 | Smith, Jr. | Aug 2006 | A1 |
20060191684 | Smith, Jr. | Aug 2006 | A1 |
20060204188 | Clarkson et al. | Sep 2006 | A1 |
20060207799 | Yu | Sep 2006 | A1 |
20060231257 | Reed et al. | Oct 2006 | A1 |
20060237233 | Reed et al. | Oct 2006 | A1 |
20060260832 | McKay | Nov 2006 | A1 |
20060266522 | Eoff et al. | Nov 2006 | A1 |
20060283592 | Sierra et al. | Dec 2006 | A1 |
20060289724 | Skinner et al. | Dec 2006 | A1 |
20070034409 | Dale et al. | Feb 2007 | A1 |
20070081157 | Csutak et al. | Apr 2007 | A1 |
20070125163 | Dria et al. | Jun 2007 | A1 |
20070193990 | Richerzhagen et al. | Aug 2007 | A1 |
20070217736 | Zhang et al. | Sep 2007 | A1 |
20070227741 | Lovell et al. | Oct 2007 | A1 |
20070242265 | Vessereau et al. | Oct 2007 | A1 |
20070247701 | Akasaka et al. | Oct 2007 | A1 |
20070267220 | Magiawala et al. | Nov 2007 | A1 |
20070278195 | Richerzhagen et al. | Dec 2007 | A1 |
20070280615 | de Montmorillon et al. | Dec 2007 | A1 |
20080023202 | Keatch et al. | Jan 2008 | A1 |
20080053702 | Smith, Jr. | Mar 2008 | A1 |
20080073077 | Tunc et al. | Mar 2008 | A1 |
20080093125 | Potter et al. | Apr 2008 | A1 |
20080112760 | Curlett | May 2008 | A1 |
20080128123 | Gold | Jun 2008 | A1 |
20080138022 | Tassone | Jun 2008 | A1 |
20080165356 | DiFoggio et al. | Jul 2008 | A1 |
20080166132 | Lynde et al. | Jul 2008 | A1 |
20080180787 | DiGiovanni et al. | Jul 2008 | A1 |
20080245568 | Jeffryes | Oct 2008 | A1 |
20080273852 | Parker et al. | Nov 2008 | A1 |
20090020333 | Marsh | Jan 2009 | A1 |
20090031870 | O'Connor | Feb 2009 | A1 |
20090033176 | Huang et al. | Feb 2009 | A1 |
20090049345 | Mock et al. | Feb 2009 | A1 |
20090050371 | Moeny | Feb 2009 | A1 |
20090078467 | Castillo | Mar 2009 | A1 |
20090105955 | Castillo et al. | Apr 2009 | A1 |
20090126235 | Kobayashi et al. | May 2009 | A1 |
20090133871 | Skinner et al. | May 2009 | A1 |
20090133929 | Rodland | May 2009 | A1 |
20090139768 | Castillo | Jun 2009 | A1 |
20090166042 | Skinner | Jul 2009 | A1 |
20090190887 | Freeland et al. | Jul 2009 | A1 |
20090194292 | Oglesby | Aug 2009 | A1 |
20090205675 | Sarkar et al. | Aug 2009 | A1 |
20090260834 | Henson et al. | Oct 2009 | A1 |
20090266552 | Barra et al. | Oct 2009 | A1 |
20090266562 | Greenaway | Oct 2009 | A1 |
20090272424 | Ortabasi | Nov 2009 | A1 |
20090272547 | Dale et al. | Nov 2009 | A1 |
20090279835 | de Montmorillon et al. | Nov 2009 | A1 |
20090294050 | Traggis et al. | Dec 2009 | A1 |
20090308852 | Alpay et al. | Dec 2009 | A1 |
20090324183 | Bringuier et al. | Dec 2009 | A1 |
20100000790 | Moeny | Jan 2010 | A1 |
20100001179 | Kobayashi et al. | Jan 2010 | A1 |
20100008631 | Herbst | Jan 2010 | A1 |
20100013663 | Cavender et al. | Jan 2010 | A1 |
20100018703 | Lovell et al. | Jan 2010 | A1 |
20100025032 | Smith et al. | Feb 2010 | A1 |
20100032207 | Potter et al. | Feb 2010 | A1 |
20100044102 | Rinzler | Feb 2010 | A1 |
20100044103 | Moxley | Feb 2010 | A1 |
20100044104 | Zediker | Feb 2010 | A1 |
20100044105 | Faircloth | Feb 2010 | A1 |
20100044106 | Zediker | Feb 2010 | A1 |
20100071794 | Homan | Mar 2010 | A1 |
20100078414 | Perry et al. | Apr 2010 | A1 |
20100084132 | Noya et al. | Apr 2010 | A1 |
20100089571 | Revellat et al. | Apr 2010 | A1 |
20100089574 | Wideman et al. | Apr 2010 | A1 |
20100089576 | Wideman et al. | Apr 2010 | A1 |
20100089577 | Wideman et al. | Apr 2010 | A1 |
20100155059 | Ullah | Jun 2010 | A1 |
20100170672 | Schwoebel et al. | Jul 2010 | A1 |
20100170680 | McGregor et al. | Jul 2010 | A1 |
20100187010 | Abbasi et al. | Jul 2010 | A1 |
20100197116 | Shah et al. | Aug 2010 | A1 |
20100215326 | Zediker | Aug 2010 | A1 |
20100218993 | Wideman et al. | Sep 2010 | A1 |
20100224408 | Kocis et al. | Sep 2010 | A1 |
20100226135 | Chen | Sep 2010 | A1 |
20100236785 | Collis et al. | Sep 2010 | A1 |
20100326659 | Schultz et al. | Dec 2010 | A1 |
20100326665 | Redlinger et al. | Dec 2010 | A1 |
20110030957 | Constantz et al. | Feb 2011 | A1 |
20110035154 | Kendall et al. | Feb 2011 | A1 |
20110048743 | Stafford et al. | Mar 2011 | A1 |
20110061869 | Abass et al. | Mar 2011 | A1 |
20110079437 | Hopkins et al. | Apr 2011 | A1 |
20110127028 | Strickland | Jun 2011 | A1 |
20110139450 | Vasques et al. | Jun 2011 | A1 |
20110147013 | Kilgore | Jun 2011 | A1 |
20110162854 | Bailey et al. | Jul 2011 | A1 |
20110168443 | Smolka | Jul 2011 | A1 |
20110174537 | Potter et al. | Jul 2011 | A1 |
20110186298 | Clark et al. | Aug 2011 | A1 |
20110198075 | Okada et al. | Aug 2011 | A1 |
20110205652 | Abbasi et al. | Aug 2011 | A1 |
20110220409 | Foppe | Sep 2011 | A1 |
20110240314 | Greenaway | Oct 2011 | A1 |
20110266062 | Shuman, V et al. | Nov 2011 | A1 |
20110278070 | Hopkins et al. | Nov 2011 | A1 |
20110290563 | Kocis et al. | Dec 2011 | A1 |
20110303460 | Von Rohr et al. | Dec 2011 | A1 |
20120000646 | Liotta et al. | Jan 2012 | A1 |
20120012392 | Kumar | Jan 2012 | A1 |
20120012393 | Kumar | Jan 2012 | A1 |
20120020631 | Rinzler | Jan 2012 | A1 |
20120048550 | Dusterhoft et al. | Mar 2012 | A1 |
20120048568 | Li et al. | Mar 2012 | A1 |
20120061091 | Radi | Mar 2012 | A1 |
20120067643 | DeWitt | Mar 2012 | A1 |
20120068086 | DeWitt | Mar 2012 | A1 |
20120068523 | Bowles | Mar 2012 | A1 |
20120074110 | Zediker | Mar 2012 | A1 |
20120103693 | Jeffryes | May 2012 | A1 |
20120111578 | Tverlid | May 2012 | A1 |
20120118568 | Kleefisch et al. | May 2012 | A1 |
20120118578 | Skinner | May 2012 | A1 |
20120217015 | Zediker | Aug 2012 | A1 |
20120217017 | Zediker | Aug 2012 | A1 |
20120217018 | Zediker | Aug 2012 | A1 |
20120217019 | Zediker | Aug 2012 | A1 |
20120248078 | Zediker | Oct 2012 | A1 |
20120255774 | Grubb | Oct 2012 | A1 |
20120255933 | McKay | Oct 2012 | A1 |
20120261188 | Zediker | Oct 2012 | A1 |
20120266803 | Zediker | Oct 2012 | A1 |
20120267168 | Grubb | Oct 2012 | A1 |
20120273269 | Rinzler | Nov 2012 | A1 |
20120273470 | Zediker | Nov 2012 | A1 |
20120275159 | Fraze et al. | Nov 2012 | A1 |
20130011102 | Rinzler | Jan 2013 | A1 |
20130175090 | Zediker | Jul 2013 | A1 |
20130192893 | Zediker | Aug 2013 | A1 |
20130192894 | Zediker | Aug 2013 | A1 |
20130220626 | Zediker | Aug 2013 | A1 |
20130228372 | Linyaev | Sep 2013 | A1 |
20130228557 | Zediker | Sep 2013 | A1 |
20130266031 | Norton | Oct 2013 | A1 |
20130319984 | Linyaev | Dec 2013 | A1 |
20140000902 | Wolfe | Jan 2014 | A1 |
20140060802 | Zediker | Mar 2014 | A1 |
20140060930 | Zediker | Mar 2014 | A1 |
20140069896 | Deutch | Mar 2014 | A1 |
20140090846 | Deutch | Apr 2014 | A1 |
20140190949 | Zediker | Jul 2014 | A1 |
20140231085 | Zediker | Aug 2014 | A1 |
20140231398 | Land | Aug 2014 | A1 |
20140248025 | Rinzler | Sep 2014 | A1 |
20140345872 | Zediker | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
0 295 045 | Dec 1988 | EP |
0 515 983 | Dec 1992 | EP |
0 565 287 | Oct 1993 | EP |
0 950 170 | Sep 2002 | EP |
2 716 924 | Sep 1995 | FR |
1 284 454 | Aug 1972 | GB |
2420358 | May 2006 | GB |
09072738 | Mar 1997 | JP |
09-242453 | Sep 1997 | JP |
2000-334590 | Dec 2000 | JP |
2004-108132 | Apr 2004 | JP |
2006-307481 | Nov 2006 | JP |
2007-120048 | May 2007 | JP |
WO 9532834 | Dec 1995 | WO |
WO 9749893 | Dec 1997 | WO |
WO 9850673 | Nov 1998 | WO |
WO 9856534 | Dec 1998 | WO |
WO 02057805 | Jul 2002 | WO |
WO 03027433 | Apr 2003 | WO |
WO 03060286 | Jul 2003 | WO |
WO 2004009958 | Jan 2004 | WO |
WO 2004094786 | Nov 2004 | WO |
WO 2005001232 | Jan 2005 | WO |
WO 2005001239 | Jan 2005 | WO |
WO 2006008155 | Jan 2006 | WO |
WO 2006041565 | Apr 2006 | WO |
WO 2006054079 | May 2006 | WO |
WO 2007002064 | Jan 2007 | WO |
WO 2007112387 | Oct 2007 | WO |
WO 2007136485 | Nov 2007 | WO |
WO 2008016852 | Feb 2008 | WO |
WO 2008070509 | Jun 2008 | WO |
WO 2008085675 | Jul 2008 | WO |
WO 2009042774 | Apr 2009 | WO |
WO 2009042781 | Apr 2009 | WO |
WO 2009042785 | Apr 2009 | WO |
WO 2009131584 | Oct 2009 | WO |
WO 2010036318 | Apr 2010 | WO |
WO 2010060177 | Jun 2010 | WO |
WO 2010087944 | Aug 2010 | WO |
WO 2011008544 | Jan 2011 | WO |
WO 2011032083 | Mar 2011 | WO |
WO 2011041390 | Apr 2011 | WO |
WO 2011075247 | Jun 2011 | WO |
WO 2011106078 | Sep 2011 | WO |
WO 2012003146 | Jan 2012 | WO |
WO 2012012006 | Jan 2012 | WO |
WO 2012027699 | Mar 2012 | WO |
WO 2012064356 | May 2012 | WO |
WO 2012116189 | Aug 2012 | WO |
Entry |
---|
U.S. Appl. No. 12/806,021, filed Oct. 1, 2010, (Not published). |
U.S. Appl. No. 13/565,345, filed Aug. 2, 2012, (Not Published). |
U.S. Appl. No. 13/768,149, filed Feb. 15, 2013 (Not Published). |
U.S. Appl. No. 13/777,650, filed Feb. 26, 2013, (Not published). |
U.S. Appl. No. 13/782,869, filed Mar. 1, 2013 (Not Published). |
U.S. Appl. No. 13/782,942, filed Mar. 1, 2013 (Not Published). |
U.S. Appl. No. 13/800,559, filed Mar. 13, 2013, (Not Published). |
U.S. Appl. No. 13/800,820, filed Mar. 13, 2013, (Not Published). |
U.S. Appl. No. 13/800,879, filed Mar. 13, 2013, (Not Published). |
U.S. Appl. No. 13/800,933, filed Mar. 13, 2013, (Not Published). |
U.S. Appl. No. 12/543,986, filed Aug. 19, 2013, Moxley et al. |
U.S. Appl. No. 12/544,094, filed Aug. 19, 2009, Faircloth et al. |
U.S. Appl. No. 12/543,968, filed Aug. 19, 2009, Rinzler et al. |
U.S. Appl. No. 12/544,136, filed Aug. 19, 2009, Zediker et al. |
U.S. Appl. No. 12/544,038, filed Aug. 19, 2009, Zediker et al. |
U.S. Appl. No. 12/706,576, filed Feb. 16, 2010, Zediker et al. |
U.S. Appl. No. 12/840,978, filed Jul. 21, 2010, Rinzler et al. |
U.S. Appl. No. 12/896,021, filed Oct. 1, 2010, Underwood et al. |
U.S. Appl. No. 13/034,017, filed Feb. 24, 2011, Zediker et al. |
U.S. Appl. No. 13/034,037, filed Feb. 24, 2011, Zediker et al. |
U.S. Appl. No. 13/034,175, filed Feb. 24, 2011, Zediker et al. |
U.S. Appl. No. 13/034,183, filed Feb. 24, 2011, Zediker et al. |
U.S. Appl. No. 13/210,581, filed Aug. 16, 2011, DeWitt et al. |
U.S. Appl. No. 13/211,729, filed Aug. 17, 2011, DeWitt et al. |
U.S. Appl. No. 13/222,931, filed Aug. 31, 2011, Zediker et al. |
U.S. Appl. No. 13/347,445, filed Jan. 10, 2012, Zediker et al. |
U.S. Appl. No. 13/403,132, filed Feb. 23, 2012, Zediker et al. |
U.S. Appl. No. 13/403,287, filed Feb. 23, 2012, Grubb et al. |
U.S. Appl. No. 13/403,615, filed Feb. 23, 2012, Grubb et al. |
U.S. Appl. No. 13/366,882, filed Feb. 6, 2012, McKay et al. |
U.S. Appl. No. 13/403,692, filed Feb. 23, 2012, Zediker et al. |
U.S. Appl. No. 13/403,723, filed Feb. 23, 2012, Rinzler et al. |
U.S. Appl. No. 13/403,741, filed Feb. 23, 2012, Zediker et al. |
U.S. Appl. No. 13/486,795, filed Feb. 23, 2012, Rinzler et al. |
U.S. Appl. No. 13/565,345, filed Feb. 23, 2012, Zediker et al. |
U.S. Appl. No. 13/768,149, filed Feb. 15, 2013, Zediker et al. |
U.S. Appl. No. 13/777,650, filed Feb. 26, 2013, Zediker et al. |
U.S. Appl. No. 13/782,869, filed Mar. 1, 2013, Schroit et al. |
U.S. Appl. No. 13/782,942, filed Mar. 1, 2013, Norton et al. |
U.S. Appl. No. 13/800,559, filed Mar. 13, 2013, Zediker et al. |
U.S. Appl. No. 13/800,820, filed Mar. 13, 2013, Zediker et al. |
U.S. Appl. No. 13/800,879, filed Mar. 13, 2013, Zediker et al. |
U.S. Appl. No. 13/800,933, filed Mar. 13, 2013, Zediker et al. |
U.S. Appl. No. 13/849,831, filed Mar. 25, 2013, Zediker et al. |
International Search Report and Written Opinion for PCT App. No. PCT/US10/24368, dated Nov. 2, 2010, 16 pgs. |
International Search Report for PCT Application No. PCT/US09/54295, dated Apr. 26, 2010, 16 pgs. |
International Search Report for PCT Application No. PCT/US2011/044548, dated Jan. 24, 2012, 17 pgs. |
International Search Report for PCT Application No. PCT/US2011/047902, dated Jan. 17, 2012, 9 pgs. |
International Search Report for PCT Application No. PCT/US2011/050044 dated Feb. 1, 2012, 26 pgs. |
International Search Report for PCT Application No. PCT/US2012/026277, dated May 30, 2012, 11 pgs. |
International Search Report for PCT Application No. PCT/US2012/026265, dated May 30, 2012, 14 pgs. |
International Search Report for PCT Application No. PCT/US2012/026280, dated May 30, 2012, 12 pgs. |
International Search Report for PCT Application No. PCT/US2012/026337, dated Jun. 7, 2012, 21 pgs. |
International Search Report for PCT Application No. PCT/US2012/026471, dated May 30, 2012, 13 pgs. |
International Search Report for PCT Application No. PCT/US2012/026525, dated May 31, 2012, 8 pgs. |
International Search Report for PCT Application No. PCT/US2012/026526, dated May 31, 2012, 10 pgs. |
International Search Report for PCT Application No. PCT/US2012/026494, dated May 31, 2012, 12 pgs. |
International Search Report for PCT Application No. PCT/US2012/020789, dated Jun. 29, 2012, 9 pgs. |
International Search Report for PCT Application No. PCT/US2012/040490, dated Oct. 22, 2012, 14 pgs. |
Copy of International Search Report for PCT Application No. PCT/US2012/049338, dated Jan. 22, 2013, 14 pgs. |
Abdulagatova, Z. et al., “Effect of Temperature and Pressure on the Thermal Conductivity of Sandstone”, International Journal of Rock Mechanics & Mining Sciences, vol. 46, 2009, pp. 1055-1071. |
Abousleiman, Y. et al., “Poroelastic Solution of an Inclined Borehole in a Transversely Isotropic Medium”, Rock Mechanics, Daemen & Schultz (eds), 1995, pp. 313-318. |
Ackay, H. et al., Paper titled “Orthonormal Basis Functions for Continuous-Time Systems and Lp Convergence”, date unknown but prior to Aug. 19, 2009, pp. 1-12. |
Acosta, A. et al., paper from X Brazilian MRS meeting titled “Drilling Granite With Laser Light”, X Encontro da SBPMat Granado-RS, Sep. 2011, 4 pages including pp. 56 and 59. |
Agrawal Dinesh et al., “Microstructural by TEM of WC/Co composites Prepared by Conventional and Microwave Processes”, Materials Research Lab, The Pennsylvania State University, 15th International Plansee Seminar, vol. 2 2001, pp. 677-684. |
Agrawal Dinesh et al., Report on “Development of Advanced Drill Components for BHA Using Mircowave Technology Incorporating Carbide Diamond Composites and Functionally Graded Materials”, Microwave Processing and Engineering Center, Material Research Institute, The Pennsylvania State University, 2003, 10 pgs. |
Agrawal Dinesh et al., Report on “Graded Steele-Tungsten Cardide/Cobalt-Diamond Systems Using Microwave Heating”, Material Research Institute, Penn State University, Proceedings of the 2002 International Conference on Functionally Graded Materials, 2002, pp. 50-58. |
Agrawal, Govind P., “Nonlinear Fiber Optics”, Chap. 9, Fourth Edition, Academic Press copyright 2007, pp. 334-337. |
Ahmadi, M. et al., “The Effect of Interaction Time and Saturation of Rock on Specific Energy in ND:YAG Laser Perforating”, Optics and Laser Technology, vol. 43, 2011, pp. 226-231. |
Ai, H.A. et al., “Simulation of dynamic response of granite: A numerical approach of shock-induced damage beneath impact craters”, International Journal of Impact Engineering, vol. 33, 2006, pp. 1-10. |
Akhatov, I. et al., “Collapse and Rebound of a Laser-Induced Cavitation Bubble”, Physics of Fluids, vol. 13, No. 10, Oct. 2001, pp. 2805-2819. |
Albertson, M. L. et al., “Diffusion of Submerged Jets”, a paper for the American Society of Civil Engineers, Nov. 5, 1852, pp. 1571-1596. |
Al-Harthi, A. A. et al., “The Porosity and Engineering Properties of Vesicular Basalt in Saudi Arabia”, Engineering Geology, vol. 54, 1999, pp. 313-320. |
Anand, U. et al., “Prevention of Nozzle Wear in Abrasive Water Suspension Jets (AWSJ) Using PoroLubricated Nozzles”, Transactions of the ASME, vol. 125, Jan. 2003, pp. 168-181. |
Andersson, J. C. et al., “The Aspo Pillar Stability Experiment: Part II—Rock Mass Response to Coupled Excavation-Induced and Thermal-Induced Stresses”, International Journal of Rock Mechanics & Mining Sciences, vol. 46, 2009, pp. 879-895. |
Anovitz, L. M. et al., “A New Approach to Quantification of Metamorphism Using Ultra-Small and Small Angle Neutron Scattering”, Geochimica et Cosmochimica Acta, vol. 73, 2009, pp. 7303-7324. |
Anton, Richard J. et al., “Dynamic Vickers indentation of brittle materials”, Wear, vol. 239, 2000, pp. 27-35. |
Antonucci, V. et al., “Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites”, an excerpt from the Proceedings of the COMSOL Conference, 2009, 4 pages. |
Aptukov, V. N., “Two Stages of Spallation”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 6 pages. |
Ashby, M. F. et al., “The Failure of Brittle Solids Containing Small Cracks Under Compressive Stress States”, Acta Metall., vol. 34, No. 3,1986, pp. 497-510. |
ASTM International, “Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique”, Standard under the fixed Designation E1225-09, 2009, pp. 1-9. |
Atkinson, B. K., “Introduction to Fracture Mechanics and Its Geophysical Applications”, Fracture Mechanics of Rock, 1987, pp. 1-26. |
Aubertin, M. et al., “A Multiaxial Stress Criterion for Short- and Long-Term Strength of Isotropic Rock Media”, International Journal of Rock Mechanics & Mining Sciences, vol. 37, 2000, pp. 1169-1193. |
Author unknown, by RIO Technical Services, “Sub-Task 1: Current Capabilities of Hydraulic Motors, Air/Nitrogen Motors, and Electric Downhole Motors”, a final report for Department of Energy National Petroleum Technology Office for the Contract Task 03NT30429, Jan. 30, 2004, 26 pages. |
Aver, B. B. et al., “Porosity Dependence of the Elastic Modulof Lithophysae-rich Tuff: Numerical and Experimental Investigations”, International Journal of Rock Mechanics & Mining Sciences, vol. 40, 2003, pp. 919-928. |
Aydin, A. et al., “The Schmidt hammer in rock material characterization”, Engineering Geology, vol. 81, 2005, pp. 1-14. |
Backers, T. et al., “Tensile Fracture Propagation and Acoustic Emission Activity in Sandstone: The Effect of Loading Rate”, International Journal of Rock Mechanics & Mining Sciences, vol. 42, 2005, pp. 1094-1101. |
Baek, S. Y. et al., “Simulation of the Coupled Thermal/Optical Effects for Liquid Immersion Micro-/Nanolithography”, source unknown, believed to be publically available prior to 2012,13 pages. |
Baflon, Jean-Paul et al., “On the Relationship Between the Parameters of Paris' Law for Fatigue Crack Growth in Aluminium Alloys”, Scripta Metallurgica, vol. 11, No. 12, 1977, pp. 1101-1106. |
Bagatur, T. et al., “Air-entrainment Characteristics in a Plunging Water Jet System Using Rectangular Nozzles with Rounded Ends”, Water SA, vol. 29, No. 1, Jan. 2003, pp. 35-38. |
Bailo, El Tahir et al., “Spectral signatures and optic coefficients of surface and reservoir shales and limestones at COIL, CO2 and Nd:YAG laser wavelengths”, Petroleum Engineering Department, Colorado School of Mines, 2004, 13 pgs. |
Baird, J. A. “GEODYN: A Geological Formation/Drillstring Dynamics Computer Program”, Society of Petroleum Engineers of AIME, 1964, 9 pgs. |
Baird, J. A. et al., “Analyzing the Dynamic Behavior of Downhole Equipment During Drilling”, government Sandia Report, SAND-84-0758C, DE84 008840, 7 pages. |
Baird, Jerold et al., Phase 1 Theoretical Description, A Geological Formation Drill String Dynamic Interaction Finite Element Program (GEODYN), Sandia National Laboratories, Report No. Sand-84-7101, 1984, 196 pgs. |
Batarseh, S. I. et al, “Innovation in Wellbore Perforation Using High-Power Laser”, International Petroleum Technology Conference, IPTC No. 10981, Nov. 2005, 7 pages. |
Batarseh, S. et al. “Well Perforation Using High-Power Lasers”, Society of Petroleum Engineers, SPE 84418, 2003, pp. 1-10. |
Batarseh, S. et al., “Well Perforation Using High-Power Lasers”, a paper prepared for presentation at the SPE (Society of Petroleum Engineers) Annual Technical Conference and Exhibition, SPE No. 84418, Oct. 2003, 10 pages. |
Baykasoglu, A. et al., “Prediction of Compressive and Tensile Strength of Limestone via Genetic Programming”, Expert Systems with Applications, vol. 35, 2008, pp. 111-123. |
BDM Corporation, Geothermal Completion Technology Life-Cycle Cost Model (GEOCOM), Sandia National Laboratories, for the U.S. Dept. of Energy, vols. 1 and 2, 1982, 222 pgs. |
Bechtel SAIC Company LLC, “Heat Capacity Analysis”, a report prepared for Department of Energy, Nov. 2004, 100 pages. |
Belushi, F. et al., “Demonstration of the Power of Inter-Disciplinary Integration to Beat Field Development Challenges in Complex Brown Field-South Oman”, Society of Petroleum Engineers, a paper prepared for presentation at the Abu Dhabi International Petroleum Exhibition & Conference, SPE No. 137154, Nov. 2010, 18 pages. |
Belyaev, V. V., “Spall Damage Modelling and Dynamic Fracture Specificities of Ceramics”, Journal of Materials Processing Technology, vol. 32, 1992, pp. 135-144. |
Benavente, D. et al., “The Combined Influence of Mineralogical, Hygric and Thermal Properties on the Durability of PoroBuilding Stones”, Eur. J. Mineral, vol. 20, Aug. 2008, pp. 673-685. |
Beste, U. et al., “Micro-scratch evaluation of rock types-a means to comprehend rock drill wear”, Tribology International, vol. 37, 2004, pp. 203-210. |
Bieniawski, Z. T., “Mechanism of Brittle Fracture of Rock: Part I—Theory of the Fracture Process”, Int. J. Rock Mech. Min. Sci., vol. 4, 1967, pp. 395-406. |
Bilotsky, Y. et al., “Modelling Multilayers Systems with Time-Depended Heaviside and New Transition Functions”, excerpt from the Proceedings of the 2006 Nordic COMSOL Conference, 2006, 4 pages. |
Birkholzer, J. T. et al., “The Impact of Fracture—Matrix Interaction on Thermal—Hydrological Conditions in Heated Fractured Rock”, an origial research paper published online http://vzy.scijournals.org/cgi/content/full/5/2/657, May 26, 2006, 27 pages. |
Blackwell, B. F., “Temperature Profile in Semi-infinite Body With Exponential Source and Convective Boundary Condition”, Journal of Heat Transfer, Transactions of the ASME, vol. 112, 1990, pp. 567-571. |
Blackwell, D. D. et al., “Geothermal Resources in Sedimentary Basins”, a presentation for the Geothermal Energy Generation in Oil and Gas Settings, Mar. 13, 2006, 28 pages. |
Blair, S. C. et al., “Analysis of Compressive Fracture in Rock Using Statistical Techniques: Part I. A Non-linear Rule-based Model”, Int. J. Rock Mech. Min. Sci., vol. 35 No. 7, 1998, pp. 837-848. |
Blomqvist, M. et al., “All-in-Quartz Optics for Low Focal Shifts”, SPIE Photonics West Conference in San Francisco, Jan. 2011, 12 pages. |
Boechat, A. A. P. et al., “Bend Loss in Large Core Multimode Optical Fiber Beam Delivery Systems”, Applied Optics., vol. 30 No. 3, Jan. 20, 1991, pp. 321-327. |
Bolme, C. A., “Ultrafast Dynamic Ellipsometry of Laser Driven Shock Waves”, a dissertation for the degree of Doctor of Philosophy in Physical Chemistry at Massachusetts Institute of Technology, Sep. 2008, pp. 1-229. |
Britz, Dieter, “Digital Simulation in Electrochemistry”, Lect. Notes Phys., vol. 666, 2005, pp. 103-117. |
Brown, G., “Development, Testing and Track Record of Fiber-Optic, Wet-Mate, Connectors”, IEEE, 2003, pp. 83-88. |
Browning, J. A. et al., “Recent Advances in Flame Jet Working of Minerals”, 7th Symposium on Rock Mechanics, Pennsylvania State Univ., 1965, pp. 281-313. |
Brujan, E. A. et al., “Dynamics of Laser-Induced Cavitation Bubbles Near an Elastic Boundar”, J. Fluid Mech., vol. 433, 2001, pp. 251-281. |
Burdine, N. T., “Rock Failure Under Dynamic Loading Conditions”, Society of Petroleum Engineers Journal, Mar. 1963, pp. 1-8. |
Bybee, K., “Modeling Laser-Spallation Rock Drilling”, JPT, an SPE available at www.spe.org/jpt, Feb. 2006, 2 pp. 62-63. |
Bybee, Karen, highlight of “Drilling a Hole in Granite Submerged in Water by Use of CO2 Laser”, an SPE available at www.spe.org/jpt, JPT, Feb. 2010, pp. 48, 50 and 51. |
Cai, W. et al., “Strength of Glass from Hertzian Line Contact”, Optomechanics 2011: Innovations and Solutions, 2011, 5 pages. |
Capetta, I. S. et al., “Fatigue Damage Evaluation on Mechanical Components Under Multiaxial Loadings”, European Comsol Conference, University of Ferrara, Oct. 16, 2009, 25 pages. |
Cardenas, R., “Protected Polycrystalline Diamond Compact Bits for Hard Rock Drilling”, Report No. DOE-99049-1381, U.S. Department of Energy, 2000, pp. 1-79. |
Carstens, J. P. et al., “Rock Cutting by Laser”, a paper of Society of Petroleum Engineers of AIME, 1971, 11 pages. |
Carstens, Jeffrey et al., “Heat-Assisted Tunnel Boring Machines”, Federal Railroad Administration and Urban Mass Transportation Administration, U.S. Dept. of Transportation, Report No. FRA-RT-71-63, 1970, 340 pgs. |
Caruso, C. et al., “Dynamic Crack Propagation in Fiber Reinforced Composites”, Excerpt from the Proceedings of the COMSOL Conference, 2009, 5 pages. |
Chastain, T. et al., “Deepwater Drilling Riser System”, SPE Drilling Engineering, Aug. 1986, pp. 325-328. |
Chen, H. Y. et al., “Characterization of the Austin Chalk Producing Trend”, SPE, a paper prepared for presentation at the 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, SPE No. 15533, Oct. 1986, pp. 1-12. |
Chen, K., paper titled “Analysis of Oil Film Interferometry Implementation in Non-Ideal Conditions”, source unknown, Jan. 7, 2010, pp. 1-18. |
Chraplyvy, a. R., “Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities”, Journal of Lightwave Technology, vol. 8 No. 10, Oct. 1990, pp. 1548-1557. |
Churcher, P. L. et al., “Rock Properties of Berea Sandstone, Baker Dolomite, and Indiana Limestone”, a paper prepared for presentation at the SPE International Symposium on Oilfield Chemistry), SPE, SPE No. 21044, Feb. 1991, pp. 431-446 and 3 additional pages. |
Cimetiere, A. et al., “A Damage Model for Concrete Beams in Compression”, Mechanics Research Communications, vol. 34, 2007, pp. 91-96. |
Clegg, John et al., “Improved Optimisation of Bit Selection Using Mathematically Modelled Bit-Performance Indices”, IADC/SPE International 102287, 2006, pp. 1-10. |
Close, F. et al., “Successful Drilling of Basalt in a West of Shetland Deepwater Discovery”, a paper prepared for presentation at Offshore Europe 2005 by SPE (Society of Petroleum Engineers) Program Committee, SPE No. 96575, Sep. 2005, pp. 1-10. |
Close, F. et al., “Successful Drilling of Basalt in a West of Shetland Deepwater Discovery”, SPE International 96575, Society of Petroleum Engineers, 2006, pp. 1-10. |
Cobern, Martin E., “Downhole Vibration Monitoring & Control System Quarterly Technical Report #1”, APS Technology, Inc., Quarterly Technical Report #1, DVMCS, 2003, pp. 1-15. |
Cogotsi, G. A. et al., “Use of Nondestructive Testing Methods in Evaluation of Thermal Damage for Ceramics Under Conditions of Nonstationary Thermal Effects”, Institute of Strength Problems, Academy of Sciences of the Ukrainian SSR, 1985, pp. 52-56. |
Cohen, J. H., “High-Power Slim-Hole Drilling System”, a paper presented at the conference entitled Natural Gas RD&D Contractors Review Meeting, Office of Scientific and Technical Information, Apr. 1995, 10 pages. |
Cone, C., “Case History of the University Block 9 (Wolfcamp) Field—Gas-Water Injection Secondary Recovery Project”, Journal of Petroleum Technology, Dec. 1970, pp. 1485-1491. |
Contreras, E. et al., “Effects of Temperature and Stress on the Compressibilities, Thermal Expansivities, and Porosities of Cerro Prieto and Berea Sandstones to 9000 PSI and 208 degrees Celsius”, Proceedings Eighth Workshop Geothermal Reservoir Engineering, Leland Stanford Junior University, Dec. 1982, pp. 197-203. |
Cook, Troy, “Chapter 23, Calculation of Estimated Ultimate Recovery (EUR) for Wells in Continuous-Type Oil and Gas Accumulations”, U.S. Geological Survey Digital Data Series DDS-69-D, Denver, Colorado: Version 1, 2005, pp. 1-9. |
Cooper, R., “Coiled Tubing Deployed ESPs Utilizing Internally Installed Power Cable—A Project Update”, a paper prepared by SPE (Society of Petroleum Engineers) Program Committee for presentation at the 2nd North American Coiled Tubing Roundtable, SPE 38406, Apr. 1997, pp. 1-6. |
Coray, P. S. et al., “Measurements on 5:1 Scale Abrasive Water Jet Cutting Head Models”, source unknown, available prior to 2012, 15 pages. |
Cruden, D. M., “The Static Fatigue of Brittle Rock Under Uniaxial Compression”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 11, 1974, pp. 67-73. |
da Silva, B. M. G., “Modeling of Crack Initiation, Propagation and Coalescence in Rocks”, a thesis for the degree of Master of Science in Civil and Environmental Engineering at the Massachusetts Institute of Technology, Sep. 2009, pp. 1-356. |
Dahl, F. et al., “Development of a New Direct Test Method for Estimating Cutter Life, Based on the Sievers' J Miniature Drill Test”, Tunnelling and Underground Space Technology, vol. 22, 2007, pp. 106-116. |
Dahl, Filip et al., “Development of a new direct test method for estimating cutter life, based on the Sievers J miniature drill test”, Tunnelling and Underground Space Technology, vol. 22, 2007, pp. 106-116. |
Damzen, M. J. et al., “Stimulated Brillion Scattering”, Chapter 8—SBS in Optical Fibres, OP Publishing Ltd, Published by Institute of Physics, London, England, 2003, pp. 137-153. |
Das, A. C. et al., “Acousto-ultrasonic study of thermal shock damage in castable refractory”, Journal of Materials Science Letters, vol. 10, 1991, pp. 173-175. |
de Castro Lima, J. J. et al., “Linear Thermal Expansion of Granitic Rocks: Influence of Apparent Porosity, Grain Size and Quartz Content”, Bull Eng Geol Env., 2004, vol. 63, pp. 215-220. |
De Guire, Mark R., “Thermal Expansion Coefficient (start)”, EMSE 201—Introduction to Materials Science & Engineering, 2003, pp. 15.1-15.15. |
Degallaix, J. et al., “Simulation of Bulk-Absorption Thermal Lensing in Transmissive Optics of Gravitational Waves Detector”, Appl. Phys., B77, 2003, pp. 409-414. |
Dey, T. N. et al., “Some Mechanisms of Microcrack Growth and Interaction in Compressive Rock Failure”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 18, 1981, pp. 199-209. |
Diamond-Cutter Drill Bits, by Geothermal Energy Program, Office of Geothermal and Wind Technologies, 2000, 2 pgs. |
Dimotakis, P. E. et al., “Flow Structure and Optical Beam Propagation in High-Reynolds-Number Gas-Phase Shear Layers and Jets”, J. Fluid Mech., vol. 433, 2001, pp. 105-134. |
Dinçer, Ismail et al., “Correlation between Schmidt hardness, uniaxial compressive strength and Young's modulfor andesites, basalts and tuffs”, Bull Eng Geol Env, vol. 63, 2004, pp. 141-148. |
Dole, L. et al., “Cost-Effective CementitioMaterial Compatible with Yucca Mountain Repository Geochemistry”, a paper prepared by Oak Ridge National Laboratory for the Department of Energy, No. ORNL/TM-2004/296, Dec. 2004, 128 pages. |
Dumans, C. F. F. et al., “PDC Bit Selection Method Through the Analysis of Past Bit Performances”, a paper prepared for presentation at the SPE (Society of Petroleum Engineers—Latin American Petroleum Engineering Conference), Oct. 1990, pp. 1-6. |
Dunn, James C., “Geothermal Technology Development at Sandia”, Geothermal Research Division, Sandia National Laboratories, 1987, pp. 1-6. |
Dutton, S. P. et al., “Evolution of Porosity and Permeability in the Lower CretaceoTravis Peak Formation, East Texas”, The American Association of Petroleum Geologists Bulletin, vol. 76, No. 2, Feb. 1992, pp. 252-269. |
Dyskin, A. V. et al., “Asymptotic Analysis of Crack Interaction with Free Boundary”, International Journal of Solids and Structure, vol. 37, 2000, pp. 857-886. |
Eckel, J. R. et al., “Nozzle Design and its Effect on Drilling Rate and Pump Operation”, a paper presented at the spring meeting of the Southwestern District, Division of Production, Beaumont, Texas, Mar. 1951, pp. 28-46. |
Ehrenberg, S. N. et al., “Porosity-Permeability Relationship in Interlayered LimestoneDolostone Reservoir”, The American Association of Petroleum Geologists Bulletin, vol. 90, No. 1, Jan. 2006, pp. 91-114. |
Eichler, H.J. et al., “Stimulated Brillouin Scattering in Multimode Fibers for Optical Phase Conjugation”, Optics Communications, vol. 208, 2002, pp. 427-431. |
Eighmy, T. T. et al., “Microfracture Surface Charaterizations: Implications for in Situ Remedial Methods in Fractured Rock”, Bedrock Bioremediation Center, Final Report, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, EPA/600/R-05/121, 2006, pp. 1-99. |
Elsayed, M.A. et al., “Measurement and analysis of Chatter in a Compliant Model of a Drillstring Equipped With a Pdc Bit”, Mechanical Engineering Dept., University of Southwestern Louisiana and Sandia National Laboratories, 2000, pp. 1-10. |
Ersoy, A., “Wear Characteristics of PDC Pin and Hybrid Core Bits in Rock Drilling”, Wear, vol. 188, 1995, pp. 150-165. |
Extreme Coil Drilling, by Extreme Drilling Corporation, 2009, 10 pgs. |
Falcao, J. L. et al., “PDC Bit Selection Through Cost Prediction Estimates Using Crossplots and Sonic Log Data”, SPE, a paper prepared for presentation at the 1993 SPE/IADC Drilling Conference, Feb. 1993, pp. 525-535. |
Falconer, I. G. et al., “Separating Bit and Lithology Effects from Drilling Mechanics Data”, SPE, a paper prepared for presentation at the 1988 IADC/SPE Drilling Conference, Feb./Mar. 1988, pp. 123-136. |
Farra, G., “Experimental Observations of Rock Failure Due to Laser Radiation”, a thesis for the degree of Master of Science at Massachusetts Institute of Technology, Jan. 1969, 128 pages. |
Farrow, R. L. et al., “Peak-Power Limits on Fiber Amplifiers Imposed by Self-Focusing”, Optics Letters, vol. 31, No. 23, Dec. 1, 2006, pp. 3423-3425. |
Ferro, D. et al., “Vickers and Knoop hardness of electron beam deposited ZrC and HfC thin films on titanium”, Surface & Coatings Technology, vol. 200, 2006, pp. 4701-4707. |
Fertl, W. H. et al., “Spectral Gamma-Ray Logging in the Texas Austin Chalk Trend”, SPE of AIME, a paper for Journal of Petroleum Technology, Mar. 1980, pp. 481-488. |
Field, F. A., “A Simple Crack-Extension Criterion for Time-Dependent Spallation”, J. Mech. Phys. Solids, vol. 19, 1971, pp. 61-70. |
Figueroa, H. et al., “Rock removal using high power lasers for petroleum exploitation purposes”, Gas Technology Institute, Colorado School of Mines, Halliburton Energy Services, Argonne National Laboratory, 2002, pp. 1-13. |
Finger, J. T. et al., “PDC Bit Research at Sandia National Laboratories”, Sandia Report No. SAND89-0079-UC-253, a report prepared for Department of Energy, Jun. 1989, 88 pages. |
Finger, John T. et al., “PDC Bit Research at Sandia National Laboratories”, Sandia Report, Geothermal Research Division 6252, Sandia National Laboratories, SAND89-0079-UC-253, 1989, pp. 1-88. |
Freeman, T. T. et al., “Thm Modeling for Reservoir Geomechanical Applications”, presented at the COMSOL Conference, Oct. 2008, 22 pages. |
Friant, J. E. et al., “Disc Cutter Technology Applied to Drill Bits”, a paper prepared by Exacavation Engineering Associates, Inc. for the Department of Energy's Natural Gas Conference, Mar. 1997, pp. 1-16. |
Fuerschbach, P. W. et al., “Understanding Metal Vaporization from Laser Welding”, Sandia Report No. SAND-2003-3490, a report prepared for DOE, Sep 2003, pp. 1-70. |
Gahan, B. C. et al., “Analysis of Efficient High-Power Fiber Lasers for Well Perforation”, SPE, No. 90661, a paper prepared for presentation at the SPE Annual Technical Conference and Exhibition, Sep. 2004, 9 pages. |
Gahan, B. C. et al., “Effect of Downhole Pressure Conditions on High-Power Laser Perforation”, SPE, No. 97093, a paper prepared for the 2005 SPE (Society of Petroleum Engineers) Annual Technical Conference and Exhibition, Oct. 12, 2005, 7 pages. |
Gahan, B. C. et al., “Laser Drilling: Drilling with the Power of Light, Phase 1: Feasibility Study”, a Topical Report by the Gas Technology Institute, for the Government under Cooperative Agreement No. DE-FC26-00NT40917, Sep. 30, 2001, 107 pages. |
Gahan, B. C. et al., “Laser Drilling: Determination of Energy Required to Remove Rock”, Society of Petroleum Engineers International, SPE 71466, 2001, pp. 1-11. |
Gahan, B. C., et al., “Laser Drilling—Drilling with the Power of Light: High Energy Laser Perforation and Completion Techniques”, Annual Technical Progress Report by the Gas Technology Institute, to the Department of Energy, Nov. 2006, 94 pages. |
Gahan, Brian C. et al. “Analysis of Efficient High-Power Fiber Lasers for Well Perforation”, Society of Petroleum Engineers, SPE 90661, 2004, pp. 1-9. |
Gahan, Brian C. et al. “Efficient of Downhole Pressure Conditions on High-Power Laser Perforation”, Society of Petroleum Engineers, SPE 97093, 2005, pp. 1-7. |
Gahan, Brian C. et al., “Laser Drilling: Drilling with the Power of Light, Phase 1: Feasibility Study”, Topical Report, Cooperative Agreement No. DE-FC26-00NT40917, 2000-2001, pp. 1-148. |
Gale, J. F. W. et al., “Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments”, The American Assoction of Petroleum Geologists, AAPG Bulletin, vol. 91, No. 4, Apr. 2007, pp. 603-622. |
Gardner, R. D. et al., “Flourescent Dye Penetrants Applied to Rock Fractures”, Int. J. Rock Mech. Min. Sci., vol. 5, 1968, pp. 155-158 with 2 additional pages. |
Gelman, A., “Multi-level (hierarchical) modeling: what it can and can't do”, source unknown, Jun. 1, 2005, pp. 1-6. |
Gerbaud, L. et al., “PDC Bits: All Comes From the Cutter/Rock Interaction”, SPE, No. IADC/SPE 98988, a paper presented at the IADC/SPE Drilling Conference, Feb. 2006, pp. 1-9. |
Glowka, David A. et al., “Program Plan for the Development of Advanced Synthetic-Diamond Drill Bits for Hard-Rock Drilling”, Sandia National Laboratories, SAND 93-1953, 1993, pp. 1-50. |
Glowka, David A. et al., “Progress in the Advanced Synthetic-Diamond Drill Bit Program”, Sandia National Laboratories, SAND95-2617C, 1994, pp. 1-9. |
Glowka, David A., “Design Considerations for a Hard-Rock PDC Drill Bit”, Geothermal Technology Development Division 6241, Sandia National Laboratories, SAND-85-0666C, DE85 008313, 1985, pp. 1-23. |
Glowka, David a., “Development of a Method for Predicting the Performance and Wear of PDC Drill Bits”, Sandia National Laboratories, SAND86-1745-UC-66c, 1987, pp. 1-206. |
Glowka, David A., “The Use of Single—Cutter Data in the Analysis of PDC Bit Designs”, 61st Annual Technical Conference and Exhibition of Society of Petroleum Engineers, 1986, pp. 1-37. |
Gonthier, F. “High-power All-Fiber® components: The missing link for high power fiber fasers”, source unknown, 11 pages. |
Graves, R. M. et al., “Comparison of Specific Energy Between Drilling With High Power Lasers and Other Drilling Methods”, SPE, No. SPE 77627, a paper presented at the SPE (Society of Petroleum Engineers) Annual Technical Conference and Exhibiton, Sep. 2002, pp. 1-8. |
Graves, R. M. et al., “Spectral signatures and optic coeffecients of surface and reservoir rocks at COIL, CO2 and Nd:YAG laser wavelenghts”, source unknown, 13 pages. |
Graves, R. M. et al., “StarWars Laser Technology Applied to Drilling and Completing Gas Wells”, SPE, No. 49259, a paper prepared for presentation at the 1998 SPE Annual Technical Conference and Exhibition, 1998, pp. 761-770. |
Graves, Ramona M. et al., “Application of High Power Laser Technology to Laser/Rock Destruction: Where Have We Been? Where Are We Now?”, SW AAPG Convention, 2002, pp. 213-224. |
Graves, Ramona M. et al., “Laser Parameters That Effect Laser-Rock Interaction: Determining the Benefits of Applying Star Wars Laser Technology for Drilling and Completing Oil and Natural Gas Wells”, Topical Report, Petroleum Engineering Department, Colorado School of Mines, 2001, pp. 1-157. |
Green, D. J. et al., “Crack Arrest and Multiple Crackling in Glass Through the Use of Designed Residual Stress Profiles”, Science, vol. 283, No. 1295, 1999, pp. 1295-1297. |
Grigoryan, V., “InhomogeneoBoundary Value Problems”, a lecture for Math 124B, Jan. 26, 2010, pp. 1-5. |
Grigoryan, V., “Separathion of variables: Neumann Condition”, a lecture for Math 124A, Dec. 1, 2009, pp. 1-3. |
Gunn, D. A. et al., “Laboratory Measurement and Correction of Thermal Properties for Application to the Rock Mass”, Geotechnical and Geological Engineering, vol. 23, 2005, pp. 773-791. |
Guo, B. et al., “Chebyshev Rational Spectral and Pseudospectral Methods on a Semi-infinite Interval”, Int. J. Numer. Meth. Engng, vol. 53, 2002, pp. 65-84. |
Gurarie, V. N., “Stress Resistance Parameters of Brittle Solids Under Laser/Plasma Pulse Heating”, Materials Science and Engineering, vol. A288, 2000, pp. 168-172. |
Habib, P. et al., “The Influence of Residual Stresses on Rock Hardness”, Rock Mechanics, vol. 6, 1974, pp. 15-24. |
Hagan, P. C., “The Cuttability of Rock Using a High Pressure Water Jet”, University of New South Wales, Sydney, Australia, obtained form the Internet on Sep. 7, 2010, at: http://www.mining.unsw.edu.au/Publications/publications—staff/Paper—Hagan—WASM.htm, 16 pages. |
Hall, K. et al., “Rock Albedo and Monitoring of Thermal Conditions in Respect of Weathering: Some Expected and Some Unexpected Results”, Earth Surface Processes and Landforms, vol. 30, 2005, pp. 801-811. |
Hall, Kevin, “The role of thermal stress fatigue in the breakdown of rock in cold regions”, Geomorphology, vol. 31, 1999, pp. 47-63. |
Hammer, D. X. et al., “Shielding Properties of Laser-Induced Breakdown in Water for Pulse Durations from 5 ns. To 125 fs”, Applied Optics, vol. 36, No. 22, Aug. 1, 1997, pp. 5630-5640. |
Han, Wei, “Computational and experimental investigations of laser drilling and welding for microelectronic packaging”, Dorchester Polytechnic Institute, A Dissertation submitted in May 2004, 242 pgs. |
Hancock, M. J., “The 1-D Heat Equation: 18.303 Linear Partial Differential Equations”, source unknown, 2004, pp. 1-41. |
Hareland, G. et al., “Drag—Bit Model Including Wear”, SPE, No. 26957, a paper prepared for presentation at the Latin American/Caribbean Petroleum Engineering Conference, Apr. 1994, pp. 657-667. |
Hareland, G. et al., “Cutting Efficiency of a Single PDC Cutter on Hard Rock”, Journal of Canadian Petroleum Technology, vol. 48, No. 6, 2009, pp. 1-6. |
Hareland, G., et al., “A Drilling Rate Model for Roller Cone Bits and Its Application”, SPE, No. 129592, a paper prepared for presentation at the CPS/SPE International Oil and Gas Conference and Exhibition, Jun. 2010, pp. 1-7. |
Harrison, C. W. III et al., “Reservoir Characterization of the Frontier Tight Gas Sand, Green River Basin, Wyoming”, SPE, No. 21879, a paper prepared for presentation at the Rocky Mountain Regional Meeting and Low-Permeability Reservoirs Symposium, Apr. 1991, pp. 717-725. |
Hashida, T. et al., “Numerical Simulation with Experimental Verification of the Fracture Behavior in Granite Under Confining Pressures based on the Tension-Softening Model”, International Journal of Fracture, vol. 59, 1993, pp. 227-244. |
Nesting, M. A. et al., “Evaluation of the Environmental Impacts of Induced Seismicity at the Naknek Geothermal Energy Project, Naknek, Alaska”, a final report prepared for ASRC Energy Services Alaska Inc., May 2010, pp. 1-33. |
Head, P. et al., “Electric Coiled Tubing Drilling (E-CTD) Project Update”, SPE, No. 68441, a paper prepared for presentation at the SPE/CoTA Coiled Tubing Roundtable, Mar. 2001, pp. 19. |
Healy, Thomas E., “Fatigue Crack Growth in Lithium Hydride”, Lawrence Livermore National Laboratory, 1993, pp. 1-32. |
Hettema, M. H. H. et al., “The Influence of Steam Pressure on Thermal Spelling of Sedimentary Rock: Theory and Experiments”, Int. J. Rock Mech. Min. Sci., vol. 35, No. 1, 1998, pp. 3-15. |
Hibbs, Louis E. et al., “Wear Machanisms for Polycrystalline-Diamond Compacts as Utilized fro Drilling in Geothermal Environments”, Sandia National Laboratories, for the United States Government, Report No. SAND-82-7213, 1983, 287 pgs. |
Hoek, E., “Fracture of Anisotropic Rock”, Journal of the South African Institute of Mining and Metallurgy, vol. 64, No. 10, 1964, pp. 501-523. |
Hood, M., “Waterjet-Assisted Rock Cutting Systems—The Present State of the Art”, International Journal of Mining Engineering, vol. 3, 1985, pp. 91-111. |
Hoover, Ed R. et al., “Failure Mechanisms of Polycrystalline-Diamond Compact Drill Bits in Geothermal Environments”, Sandia Report, Sandia National Laboratories, SAND81-1404, 1981, pp. 1-35. |
Howard, A. D. et al., “VOLAN Interpretation and Application in the Bone Spring Formation (Leonard Series) in Southeastern New Mexico”, SPE, No. 13397, a paper presented at the 1984 SPE Production Technology Symposium, Nov. 1984, 10 pages. |
Howells, G., “Super-Water [R] Jetting Applications from 1974 to 1999”, paper presented st the Proceedings of the 10th American Waterjet Confeence in Houston, Texas, 1999, 25 pages. |
Hu, H. et al., “SimultaneoVelocity and Concentration Measurements of a Turbulent Jet Mixing Flow”, Ann. N.Y. Acad. Sci., vol. 972, 2002, pp. 254-259. |
Huang, C. et al., “A Dynamic Damage Growth Model for Uniaxial Compressive Response of Rock Aggregates”, Mechanics of Materials, vol. 34, 2002, pp. 267-277. |
Huang, H. et al., “Intrinsic Length Scales in Tool-Rock Interaction”, International Journal of Geomechanics, Jan./Feb. 2008, pp. 39-44. |
Huenges, E. et al., “The Stimulation of a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Grob Schonebeck”, Proceedings, Twenty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, Jan. 26-28, 2004, 4 pages. |
Huff, C. F. et al., “Recent Developments in Polycrystalline Diamond-Drill-Bit Design”, Drilling Technology Division—4741, Sandia National Laboratories, 1980, pp. 1-29. |
Hutchinson, J. W., “Mixed Mode Cracking in Layered Materials”, Advances in Applied Mechanics, vol. 29, 1992, pp. 63-191. |
IADC Dull Grading System for Fixed Cutter Bits, by Hughes Christensen, 1996, 14 pgs. |
Imbt, W. C. et al., “Porosity in Limestone and Dolomite Petroleum Reservoirs”, paper presented at the Mid Continent District, Division of Production, Oklahoma City, Oklahoma, Jun. 1946, pp. 364-372. |
Jackson, M. K. et al., “Nozzle Design for Coherent Water Jet Production”, source unknown, believed to be published prior to 2012, pp. 53-89. |
Jadoun, R. S., “Study on Rock-Drilling Using PDC Bits for the Prediction of Torque and Rate of Penetration”, Int. J. Manufacturing Technology and Management, vol. 17, No. 4, 2009, pp. 408-418. |
Jain, R. K. et al., “Development of Underwater Laser Cutting Technique for Steel and Zircaloy for Nuclear Applications”, Journal of Physics for Indian Academy of Sciences, vol. 75 No. 6, Dec. 2010, pp. 1253-1258. |
Jen, C. K. et al., “Leaky Modes in Weakly Guiding Fiber Acoustic Waveguides”, IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, vol. UFFC-33 No. 6, Nov. 1986, pp. 634-643. |
Jimeno, Carlos Lopez et al., Drilling and Blasting of Rocks, a. a. Balkema Publishers, 1995, 30 pgs. |
Judzis, A. et al., “Investigation of Smaller Footprint Drilling System; Ultra-High Rotary Speed Diamond Drilling Has Potential for Reduced Energy Requirements”, IADC/SPE No. 99020, 33 pages. |
Jurewicz, B. R., “Rock Excavation with Laser Assistance”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 13, 1976, pp. 207-219. |
Kahraman, S. et al., “Dominant rock properties affecting the penetration rate of percussive drills”, International Journal of Rock Mechanics and Mining Sciences, 2003, vol. 40, pp. 711-723. |
Karakas, M., “Semianalytical Productivity Models for Perforated Completions”, SPE, No. 18247, a paper for SPE (Society of Petroleum Engineers) Production Engineering, Feb. 1991, pp. 73-82. |
Karasawa, H. et al., “Development of PDC Bits for Downhole Motors”, Proceedings 17th NZ Geothermal Workshop, 1995, pp. 145-150. |
Kelsey, James R., “Drilling Technology/GDO”, Sandia National Laboratories, SAND-85-1866c, DE85 017231, 1985, pp. 1-7. |
Kemeny, J. M., “A Model for Non-linear Rock Deformation Under Compression Due to Sub-critical Crack Growth”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 28 No. 6, 1991, pp. 459-467. |
Kerr, Callin Joe, “PDC Drill Bit Design and Field Application Evolution”, Journal of Petroleum Technology, 1988, pp. 327-332. |
Ketata, C. et al., “Knowledge Selection for Laser Drilling in the Oil and Gas Industry”, Computer Society, 2005, pp. 1-6. |
Khan, Ovais U. et al., “Laser heating of sheet metal and thermal stress development”, Journal of Materials Processing Technology, vol. 155-156, 2004, pp. 2045-2050. |
Khandelwal, M., “Prediction of Thermal Conductivity of Rocks by Soft Computing”, Int. J. Earth Sci. (Geol. Rundsch), May 11, 2010, 7 pages. |
Kim, C. B. et al., “Measurement of the Refractive Index of Liquids at 1.3 and 1.5 Micron Using a Fibre Optic Fresnel Ratio Meter”, Meas. Sci. Technol.,vol. 5, 2004, pp. 1683-1686. |
Kim, K. R. et al., “CO2 laser-plume interaction in materials processing”, Journal of Applied Physics, vol. 89, No. 1, 2001, pp. 681-688. |
Kiwata, T. et al., “Flow Visualization and Characteristics of a Coaxial Jet with a Tabbed Annular Nozzle”, JSME International Journal Series B, vol. 49, No. 4, 2006, pp. 906-913. |
Klotz, K. et al., “Coatings with intrinsic stress profile: Refined creep analysis of (Ti,A1)N and cracking due to cyclic laser heating”, Thin Solid Films, vol. 496, 2006, pp. 469-474. |
Kobayashi, T. et al., “Drilling a 2-inch in Diameter Hole in Granites Submerged in Water by CO2 Lasers”, SPE, No. 119914, a paper prepared for presentation at the SPE/IADC Drilling Conference and Exhibition, Mar. 2009, 6 pages. |
Kobayashi, Toshio et al., “Drilling a 2-inch in Diameter Hole in Granites Submerged in Water by CO2 Lasers”, SPE International, IADC 119914 Drilling Conference and Exhibition, 2009, pp. 1-11. |
Kobyakov, A. et al., “Design Concept for Optical Fibers with Enhanced SBS Threshold”, Optics Express, vol. 13, No. 14, Jul. 11, 2005, pp. 5338-5346. |
Kolari, K., “Damage Mechanics Model for Brittle Failure of Transversely Isotropic Solids (Finite Element Implementation)”, VTT Publications 628, 2007, 210 pages. |
Kollé, J. J., “A Comparison of Water Jet, Abrasive Jet and Rotary Diamond Drilling in Hard Rock”, Tempress Technologies Inc., 1999, pp. 1-8. |
Kolle, J. J., “HydroPulse Drilling”, a Final Report for Department of Energy under Cooperative Development Agreement No. DE-FC26-FT34367, Apr. 2004, 28 pages. |
Kovalev, V. I. et al., “Observation of Hole Burning in Spectrum in SBS in Optical Fibres Under CW Monochromatic Laser Excitation”, IEEE, Jun. 3, 2010, pp. 56-57. |
Koyamada, Y. et al., “Simulating and Designing Brillouin Gain Spectrum in Single-Mode Fibers”, Journal of Lightwave Technology, vol. 22, No. 2, Feb. 2004, pp. 631-639. |
Krajcinovic, D. et al., “A Micromechanical Damage Model for Concrete”, Engineering Fracture Mechanics, vol. 25, No. 5/6, 1986, pp. 585-596. |
Kranz, R. L., “Microcracks in Rocks: A Review”, Tectonophysics, vol. 100, 1983, pp. 449-480. |
Kubacki, Emily et al., “Optics for Fiber Laser Applications”, CVI Laser, LLC, Technical Reference Document #20050415, 2005, 5 pgs. |
Kujawski, Daniel, “A fatigue crack driving force parameter with load ratio effects”, International Journal of Fatigue, vol. 23, 2001, pp. S239-S246. |
Labuz, J. F. et al., “Experiments with Rock: Remarks on Strength and Stability Issues”, International Journal of Rock Mechanics & Mining Science, vol. 44, 2007, pp. 525-537. |
Labuz, J. F. et al., “Size Effects in Fracture of Rock”, Rock Mechanics for Industry, Amadei, Kranz, Scott & Smeallie (eds), 1999, pp. 1137-1143. |
Labuz, J. F. et al., “Microrack-dependent fracture of damaged rock”, International Journal of Fracture, vol. 51, 1991, pp. 231-240. |
Lacy, Lewis L., “Dynamic Rock Mechanics Testing for Optimized Fracture Designs”, Society of Petroleum Engineers International, Annual Technical Conference and Exhibition, 1997, pp. 23-36. |
Lally, Evan M., “A Narrow-Linewidth Laser at 1550 nm Using the Pound-Drever-Hall Stabilization Technique”, Thesis, submitted to Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2006, 92 pgs. |
Langeveld, C. J., “PDC Bit Dynamics”, a paper prepared for presentation at the 1992 IADC/SPE Drilling Conference, Feb. 1992, pp. 227-241. |
Lau, John H., “Thermal Fatigue Life Prediction of Flip Chip Solder Joints by Fracture Mechanics Method”, Engineering Fracture Mechanics, vol. 45, No. 5, 1993, pp. 643-654. |
Lee, S. H. et al., “Themo-Poroelastic Analysis of Injection-Induced Rock Deformation and Damage Evolution”, Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Feb. 2010, 9 pages. |
Lee, Y. W. et al., “High-Power Yb3+ Doped Phosphate Fiber Amplifier”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 1, Jan./Feb. 2009, pp. 93-102. |
Legarth, B. et al., “Hydraulic Fracturing in a Sedimentary Geothermal Reservoir: Results and Implications”, International Journal of Rock Mechanics & Mining Sciences, vol. 42 , 2005, pp. 1028-1041. |
Lehnhoff, T. F. et al., “The Influence of Temperature Dependent Properties on Thermal Rock Fragmentation”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 12, 1975, pp. 255-260. |
Leong, K. H. et al., “Lasers and Beam Delivery for Rock Drilling”, Argonne National Laboratory, ANL/TD/TM03-01, 2003, pp. 1-35. |
Leong, K. H., “Modeling Laser Beam-Rock Interaction”, a report prepared for Department of Energy (http://www.doe.gov/bridge), 8 pages. |
Leung, M. et al., “Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food”, Journal of Physics D: Applied Physics, vol. 38, 2005, pp. 477-482. |
Li, Q. et al., “Experimental Research on Crack Propagation and Failure in Rock-type Materials under Compression”, EJGE, vol. 13, Bund. D, 2008, p. 1-13. |
Li, X. B. et al., “Experimental Investigation in the Breakage of Hard Rock by the PDC Cutters with Combined Action Modes”, Tunnelling and Underground Space Technology, vol. 16., 2001, pp. 107-114. |
Liddle, D. et al., “Cross Sector Decommissioning Workshop”, presentation, Mar. 23, 2011, 14 pages. |
Lima, R. S. et al., “Elastic ModulMeasurements via Laser-Ultrasonic and Knoop Indentation Techniques in Thermally Sprayed Coatings”, Journal of Thermal Spray Technology, vol. 14(1), 2005, pp. 52-60. |
Lin, Y. T., “The Impact of Bit Performance on Geothermal-Well Cost”, Sandia National Laboratories, SAND-81-1470C, 1981, pp. 1-6. |
Lindholm, U. S. et al., “The Dynamic Strength and Fracture Properties of Dresser Basalt”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 11, 1974, pp. 181-191. |
Loland, K. E., “ContinuoDamage Model for Load-Response Estimation of Concrete”, Cement and Concrete Research, vol. 10, 1980, pp. 395-402. |
Lomov, I. N. et al., “Explosion in the Granite Field: Hardening and Softening Behavior in Rocks”, U.S. Department of Energy, Lawrence Livermore National Laboratory, 2001, pp. 1-7. |
Long, S. G. et al., “Thermal fatigue of particle reinforced metal-matrix composite induced by laser heating and mechanical load”, Composites Science and Technology, vol. 65, 2005, pp. 1391-1400. |
Lorenzana, H. E. et al., “Metastability of Molecular Phases of Nitrogen: Implications to the Phase Diagram”, a manuscript submitted to the European Hight Pressure Research Group 39 Conference, Advances on High Pressure, Sep. 21, 2001, 18 pages. |
Lubarda, V. A. et al., “Damage Model for Brittle Elastic Solids with Unequal Tensile and Compressive Strengths”, Engineering Fracture Mechanics, vol. 29, No. 5, 1994, pp. 681-692. |
Lucia, F. J. et al., “Characterization of Diagenetically Altered Carbonate Reservoirs, South Cowden Grayburg Reservoir, West Texas”, a paper prepared for presentation at the 1996 SPE Annual Technical Conference and Exhibition, Oct. 1996, pp. 883-893. |
Luffel, D. L. et al., “Travis Peak Core Permeability and Porosity Relationships at Reservoir Stress”, SPE Formation Evaluation, Sep. 1991, pp. 310-318. |
Luft, H. B. et al., “Development and Operation of a New Insulated Concentric Coiled Tubing String for ContinuoSteam Injection in Heavy Oil Production”, Conference Paper published by Society of Petroleum Engineers on the Internet at: (http://www.onepetro.org/mslib/servlet/onepetropreview?id=00030322), on Aug. 8, 2012, 1 page. |
Lund, M. et al., “Specific Ion Binding to Macromolecules: Effect of Hydrophobicity and Ion Pairing”, Langmuir, 2008 vol. 24, 2008, pp. 3387-3391. |
Lyons, K. David et al., “NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena”, U.S. Department of Energy, National Energy Technology Laboratory, 2007, pp. 1-6. |
Manrique, E. J. et al., “EOR Field Experiences in Carbonate Reservoirs in the United States”, SPE Reservoir Evaluation & Engineering, Dec. 2007, pp. 667-686. |
Maqsood, A. et al., “Thermophysical Properties of PoroSandstones: Measurement and Comparative Study of Some Representative Thermal Conductivity Models”, International Journal of Thermophysics, vol. 26, No. 5, Sep. 2005, pp. 1617-1632. |
Marcuse, D., “Curvature Loss Formula for Optical Fibers”, J. Opt. Soc. Am., vol. 66, No. 3, 1976, pp. 216-220. |
Marshall, David B. et al., “Indentation of Brittle Materials”, Microindentation Techniques in Materials Science and Engineering, ASTM STP 889; American Society for Testing and Materials, 1986, pp. 26-46. |
Martin, C. D., “Seventeenth Canadian Geotechnical Colloquium: The Effect of Cohesion Loss and Stress Path on Brittle Rock Strength”, Canadian Geotechnical Journal, vol. 34, 1997, pp. 698-725. |
Martins, A. et al., “Modeling of Bend Losses in Single-Mode Optical Fibers”, Institutu de Telecomunicacoes, Portugal, 3 pages. |
Maurer, W. C. et al., “Laboratory Testing of High-Pressure, High-Speed PDC Bits”, a paper prepared for presentation at the 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Oct. 1986, pp. 1-8. |
Maurer, William C., “Advanced Drilling Techniques”, published by Petroleum Publishing Co., copyright 1980, 26 pgs. |
Maurer, William C., “Novel Drilling Techniques”, published by Pergamon Press, UK, copyright 1968, pp. 1-64. |
Mazerov, Katie, “Bigger coil sizes, hybrid rigs, rotary steerable advances push coiled tubing drilling to next level”, Drilling Contractor, 2008, pp. 54-60. |
McElhenny, John E. et al., “Unique Characteristic Features of Stimulated Brillouin Scattering in Small-Core Photonic Crystal Fibers”, J. Opt. Soc. Am. B, vol. 25, No. 4, 2008, pgs. 582-593. |
McKenna, T. E. et al., “Thermal Conductivity of Wilcox and Frio Sandstones in South Texas (Gulf of Mexico Basin)”, Aapg Bulletin, vol. 80, No. 8, Aug. 1996, pp. 1203-1215. |
Medvedev, I. F. et al., “Optimum Force Characteristics of Rotary-Percussive Machines for Drilling Blast Holes”, Moscow, Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 1, 1967, pp. 77-80. |
Meister, S. et al., “Glass Fibers for Stimulated Brillouin Scattering and Phase Conjugation”, Laser and Particle Beams, vol. 25, 2007, pp. 15-21. |
Mejia-Rodriguez, G. et al., “Multi-Scale Material Modeling of Fracture and Crack Propagation”, Final Project Report in Multi-Scale Methods in Applied Mathematics, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, pp. 1-9. |
Mensa-Wilmot, G. et al., “New Pdc Bit Technology, Improved Drillability Analysis, and Operational Practices Improve Drilling Performance in Hard and Highly HeterogeneoApplications”, a paper prepared for the 2004 Spe (Society of Petroleum Engineers) Eastern Regional Meeting, Sep 2004, pp. 1-14. |
Mensa-Wilmot, Graham et al., “Advanced Cutting Structure Improves Pdc Bit Performance in Hard and Abrasive Drilling Environments”, Society of Petroleum Engineers International, 2003, pp. 1-13. |
Messaoud, Louafi, “Influence of Fluids on the Essential Parameters of Rotary Percussive Drilling”, Laboratoire d'Environnement (T6bessa), vol. 14, 2009, pp. 1-8. |
Messica, a. et al., “Theory of Fiber-Optic Evanescent-Wave Spectroscopy and Sensor”, Applied Optics, vol. 35, No. 13, 1 May 1996, pp. 2274-2284. |
Mills, W. R. et al., “Pulsed Neutron Porosity Logging”, Spwla Twenty-Ninth Annual Logging Symposium, Jun 1988, pp. 1-21. |
Mirkovich, V. V., “Experimental Study Relating Thermal Conductivity to Thermal Piercing of Rocks”, Int. J. Rock Mech. Min. Sci., vol. 5, 1968, pp. 205-218. |
Mittelstaedt, E. et al., “A Noninvasive Method for Measuring the Velocity of Diffuse Hydrothermal Flow by Tracking Moving Refractive Index Anomalies”, Geochemistry Geophysics Geosystems, vol. 11, No. 10, 8 Oct 2010, pp. 1-18. |
Moavenzadeh, F. et al., “Thin Disk Technique for Analyzing Fock Fractures Induced by Laser Irradiation”, a report prepared for the Department of Transportation under Contract C-85-65, May 1968, 91 pp. |
Mocofanescu, a. et al., “Sbs threshold for single mode and multimode Grin fibers in an all fiber configuration”, Optics Express, vol. 13, No. 6, 2005, pgs. 2019-2024. |
Montross, C. S. et al., “Laser-Induced Shock Wave Generation and Shock Wave Enhancement in Basalt”, International Journal of Rock Mechanics and Mining Sciences, 1999, pp. 849855. |
Moradian, Z. A. et al., “Predicting the Uniaxial Compressive Strength and Static Young's Modulof Intact Sedimentary Rocks Using the Ultrasonic Test”, International Journal of Geomechanics, vol. 9, No. 1, 2009, pp. 14-19. |
Morozumi, Y. et al., “Growth and Structures of Surface Disturbances of a Round Liquid Jet in a Coaxial Airflow”, Fluid Dynamics Research, vol. 34, 2004, pp. 217-231. |
Morse, J. W. et al., “Experimental and Analytic Studies to Model Reaction Kinetics and Mass Transport of Carbon Dioxide Sequestration in Depleted Carbonate Reservoirs”, a Final Scientific/Technical Report for Doe, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 158 pp. |
Moshier, S. 0., “Microporosity in Micritic Limestones: a Review”, Sedimentary Geology, vol. 63, 1989, pp. 191-213. |
Mostafa, M. S. et al., “Investigation of Thermal Properties of Some Basalt Samples in Egypt”, Journal of Thermal Analysis and Calorimetry, vol. 75, 2004, pp. 178-188. |
Mukhin, I. B. et al., “Experimental Study of Kilowatt-Average-Power Faraday Isolators”, Osa/Assp, 2007, 3 pp. |
Multari, R. A. et al., “Effect of Sampling Geometry on Elemental Emissions in Laser-Induced”. |
Munro, R. G., “Effective Medium Theory of the Porosity Dependence of Bulk Moduli”, Communications of American Ceramic Society, vol. 84, No. 5, 2001, pp. 1190-1192. |
Murphy, H. D., “Thermal Stress Cracking and Enhancement of Heat Extraction from Fractured Geothermal Reservoirs”, a paper submitted to the Geothermal Resource Council for its 1978 Annual Meeting, Jul 1978, 7 pp. |
Murrell, S. A. F. et al., “The Effect of Temperature on the Strength at High Confining Pressure of Granodiorite Containing Free and Chemically-Bound Water”, Mineralogy and Petrology, vol. 55, 1976, pp. 317-330. |
Muto, Shigeki et al., “Laser cutting for thick concrete by multi-pass technique”, Chinese Optics Letters, vol. 5 Supplement, 2007, pp. S39-S41. |
Myung, I. J., “Tutorial on Maximum Likelihood Estimation”, Journal of Mathematical Psychology, vol. 47, 2003, pp. 90-100. |
Nakano, a. et al., “Visualization for Heat and Mass Transport Phenomena in Supercritical Artificial Air”, Cryogenics, vol. 45, 2005, pp. 557-565. |
Naqavi, I. Z. et al., “Laser heating of multilayer assembly and stress levels: elasto-plastic consideration”, Heat and Mass Transfer, vol. 40, 2003, pp. 25-32. |
Nara, Y. et al., “Study of Subcritical Crack Growth in Andesite Using the Double Torsion Test”, International Journal of Rock Mechanics & Mining Sciences, vol. 42, 2005, pp. 521-530. |
Nara, Y. et al., “Sub-critical crack growth in anisotropic rock”, International Journal of Rock Mechanics and Mining Sciences, vol. 43, 2006, pp. 437-453. |
Nemat-Nasser, S. et al., “Compression-Induced Nonplanar Crack Extension With Application to Splitting, Exfoliation, and Rockburst”, Journal of Geophysical Research, vol. 87, No. B8, 1982, pp. 6805-6821. |
Nicklaus, K. et al., “Optical Isolator for Unpolarized Laser Radiation at Multi-Kilowatt Average Power”, Optical Society of America, 2005, 3 pp. |
Nikles, M. et al., “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers”, Journal of Lightwave Technology, vol. 15, No. 10, Oct 1997, pp. 1842-1851. |
Nilsen, B. et al., “Recent Developments in Site Investigation and Testing for Hard Rock Tbm Projects”, 1999 Retc Proceedings, 1999, pp. 715-731. |
Nimick, F. B., “Empirical Relationships Between Porosity and the Mechanical Properties of Tuff”, Key Questions in Rock Mechanics, Cundall et al. (eds), 1988, pp. 741-742. |
Nolen-Hoeksema, R., “Fracture Development and Mechnical Stratigraphy of Austin Chalk, Texas: Discussion”, a discussion for the American Association of Petroleum Geologists Bulletin, vol. 73, no. 6, Jun. 1989, pp. 792-793. |
O'Hare, Jim et al., “Design Index: a Systematic Method of Pdc Drill-Bit Selection”, Society of Petroleum Engineers International, Iadc/Spe Drilling Conference, 2000, pp. 1-15. |
Oglesby, K. et al., “Advanced Ultra High Speed Motor for Drilling”, a project update by Impact Technologies Llc for the Department of Energy, 12 Sep 2005, 36 pp. |
Okon, P. et al., “Laser Welding of Aluminium Alloy 5083”, 21st International Congress on Applications of Lasers and Electro-Optics, 2002, pp. 1-9. |
Olsen, F. 0., “Fundamental Mechanisms of Cutting Front Formation in Laser Cutting”, Spie, vol. 2207, pp. 402-413. |
Ortega, Alfonso et al., “Frictional Heating and Convective Cooling of Polycrystalline Diamond Drag Tools During Rock Cutting”, Report No. Sand 82-0675c, Sandia National Laboratories, 1982, 23 pgs. |
Ortega, Alfonso et al., “Studies of the Frictional Heating of Polycrystalline Diamond Compact Drag Tools During Rock Cutting”, Sandia National Laboratories, Sand-80/2677, 1982, pp. 1-151. |
Ortiz, Blas et al., Improved Bit Stability Reduces Downhole Harmonics (Vibrations), International Association of Drilling Contractors/Society of Petroleum Engineers Inc., 1996, pp. 379-389. |
Ouyang, L. B. et al., “General Single Phase Wellbore Flow Model”, a report prepared for the Coe/Petc, 02 May 1997, 51 pp. |
Palashchenko, Yuri a., “Pure Rolling of Bit Cones Doubles Performance”, / & Gas Journal, vol. 106, 2008, 8 pgs. |
Palchaev, D. K. et al., “Thermal Expansion of Silicon Carbide Materials”, Journal of Engineering Physics and Thermophysics, vol. 66, No. 6, 1994, 3 pp. |
Pardoen, T. et al., “An extended model for void growth and Coalescence”, Journal of the Mechanics and Physics of Solids, vol. 48, 2000, pp. 2467-2512. |
Park, Un-Chul et al., “Thermal Analysis of Laser Drilling Processes”, IEEE Journal of Quantum Electronics, 1972, vol. Qk-8, No. 2, 1972, pp. 112-119. |
Parker, R. et al., “Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504)”, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 6 pp. |
Parker, Richard a. et al., “Laser Drilling Effects of Beam Application Methods on Improving Rock Removal”, Society of Petroleum Engineers, Spe 84353, 2003, pp. 1-7. |
Patricio, M. et al., “Crack Propagation Analysis”, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 24 pages. |
Pavlina, E. J. et al., “Correlation of Yield Strength and Tensile Strength with Hardness for Steels”, Journals of Materials Engineering and Performance, vol. 17, No. 6, 2008, pp. 888-893. |
Peebler, R. P. et al., “Formation Evaluation with Logs in the Deep Anadarko Basin”, SPE of AIME, 1972, 15 pages. |
Pepper, D. W. et al., “Benchmarking COMSOL Multiphysics 3.5a—CFD Problems”, a presentation, Oct. 10, 2009, 54 pages. |
Percussion Drilling Manual, by Smith Tools, 2002, 67 pgs. |
Pettitt, R. et al., “Evolution of a Hybrid Roller Cone/PDC Core Bit”, a paper prepared for Geothermal Resources Council 1980 Annual Meeting, Sep. 1980, 7 pages. |
Phani, K. K. et al., “Pororsity Dependence of Ultrasonic Velocity and Elastic Modulin Sintered Uranium Dioxide—a discussion”, Journal of Materials Science Letters, vol. 5, 1986, pp. 427-430. |
Ping, Cao et al., “Testing study of subcritical crack growth rate and fracture toughness in different rocks”, Transactions of NonferroMetals Society of China, vol. 16, 2006, pp. 709-714. |
Plinninger, Dr. Ralf J. et al., “Wear Prediction in Hardrock Excavation Using the CERCHAR Abrasiveness Index (CAI)”, EUROCK 2004 & 53rd Geomechanics Colloquium. Schubert (ed.), VGE, 2004, pp. 1-6. |
Plinninger, R. J. et al., “Wear Prediction in Hardrock Excavation Using the CERCHAR Abrasiveness Index (CAI)”, EUROCK 2004 & 53rd Geomechanics Colloquium, 2004, 6 pages. |
Plinninger, Ralf J. et al., “Predicting Tool Wear in Drill and Blast”, Tunnels & Tunneling International Magazine, 2002, pp. 1-5. |
Plumb, R. A. et al., “Influence of Composition and Texture on Compressive Strength Variations in the Travis Peak Formation”, a paper prepared for presentation at the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Oct. 1992, pp. 985-998. |
Polsky, Yarom et al., “Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report”, Sandia National Laboratories, Sandia Report, SAND2008-7866, 2008, pp. 1-108. |
Pooniwala, S. et al., “Lasers: The Next Bit”, a paper prepared for the presentation at the 2006 SPE (Society of Petroleum Engineers) Eastern Regional Meeting, Oct. 2006, pp. 1-10. |
Pooniwala, Shahvir, “Lasers: The Next Bit”, Society of Petroleum Engineers, No. SPE 104223, 2006, 10 pgs. |
Porter, J. A. et al., “Cutting Thin Sheet Metal with a Water Jet Guided Laser Using VarioCutting Distances, Feed Speeds and Angles of Incidence”, Int. J. Adv. Manuf. Technol., vol. 33, 2007, pp. 961-967. |
Potyondy, D. O. et al., “A Bonded-particle model for rock”, International Journal of Rock Mechanics and Mining Sciences, vol. 41, 2004, pp. 1329-1364. |
Potyondy, D. O., “Simulating Stress Corrosion with a Bonded-Particle Model for Rock”, International Journal of Rock Mechanics & Mining Sciences, vol. 44, 2007, pp. 677-691. |
Potyondy, D., “Internal Technical Memorandum—Molecular Dynamics with PFC”, a Technical Memorandum to PFC Development Files and Itasca Website, Molecular Dynamics with PFC, Jan. 6, 2010, 35 pages. |
Powell, M. et al., “Optimization of UHP Waterjet Cutting Head, the Orifice”, Flow International, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 19 pages. |
Price, R. H. et al., “Analysis of the Elastic and Strength Properties of Yuccs Mountain tuff, Nevada”, 26th Symposium on Rock Mechanics, Jun. 1985, pp. 89-96. |
Qixian, Luo et al., “Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulof elasticity for concrete”, Construction and Building Materials, vol. 10, No. 4, 1996, pp. 237-242. |
Quinn, R. D. et al., “A Method for Calculating Transient Surface Temperatures and Surface Heating Rates for High-Speed Aircraft”, NASA, Dec. 2000, 35 pages. |
Radkte, Robert, “New High Strength and faster Drilling TSP Diamond Cutters”, Report by Technology International, Inc., Doe Award No. DE-FC26-97FT34368, 2006, 97 pgs. |
Ramadan, K. et al., “On the Analysis of Short-Pulse Laser Heating of Metals Using the Dual Phase Lag Heat Conduction Model”, Journal of Heat Transfer, vol. 131, Nov. 2009, pp. 111301-1 to 111301-7. |
Rao, M. V. M. S. et al., “A Study of Progressive Failure of Rock Under Cyclic Loading by Ultrasonic and AE Monitoring Techniques”, Rock Mechanics and Rock Engineering, vol. 25, No. 4, 1992, pp. 237-251. |
Rauenzahn, R. M. et al., “Rock Failure Mechanisms of Flame-Jet Thermal Spallation Drilling—Theory and Experimental Testing”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 26, No. 5, 1989, pp. 381-399. |
Rauenzahn, R. M., “Analysis of Rock Mechanics and Gas Dynamics of Flame-Jet Thermal Spallation Drilling”, a dissertation for the degree of Doctor of Philosophy at Massachusettes Institute of Technology, Sep. 1986, pp. 1-524. |
Rauenzahn, R. M. et al., “Rock Failure Mechanisms of Flame-Jet Thermal Spallation Drilling—Theory and Experimental Testing”, Int. J. Rock Merch. Min. Sci. & Geomech. Abstr., vol. 26, No. 5, 1989, pp. 381-399. |
Rauenzahn, R. M., “Analysis of Rock Mechanics and Gas Dynamics of Flame-Jet Thermal Spallation Drilling”, Massachusetts Institute of Technology, submitted in partial fulfillment of doctorate degree, 1986 583 pgs. |
Ravishankar, M. K., “Some Results on Search Complexity vs Accuracy”, DARPA Spoken Systems Technology Workshop, Feb. 1997, 4 pages. |
Raymond, David W., “PDC Bit Testing At Sandia Reveals Influence of Chatter in Hard-Rock Drilling”, Geothermal Resources Council Monthly Bulletin, SAND99-2655J, 1999, 7 pgs. |
Ream, S. et al., “Zinc Sulfide Optics for High Power Laser Applications”, Paper 1609, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 7 pages. |
Rice, J. R., “On the Stability of Dilatant Hardening for Saturated Rock Masses”, Journal of Geophysical Research, vol. 80, No. 11, Apr. 10, 1975, pp. 1531-1536. |
Richter, D. et al., “Thermal Expansion Behavior of IgneoRocks”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 11, 1974, pp. 403-411. |
Rietman, N. D. et al., “Comparative Economics of Deep Drilling in Anadarka Basin”, a paper presented at the 1979 Society of Petroleum Engineers of AIME Deep Drilling and Production Symposium, Apr. 1979, 5 pages. |
Rijken, P. et al., “Predicting Fracture Attributes in the Travis Peak Formation Using Quantitative Mechanical Modeling and Stractural Diagenesis”, Gulf Coast Association of Geological Societies Transactions vol. 52, 2002, pp. 837-847. |
Rijken, P. et al., “Role of Shale Thickness on Vertical Connectivity of Fractures: Application of Crack-Bridging Theory to the Austin Chalk, Texas”, Tectonophysics, vol. 337 ,2001, pp. 117-133. |
Rosier, M., “Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators”, a paper, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, pp. 1-24. |
Rossmanith, H. P. et al., “Fracture Mechanics Applications to Drilling and Blasting”, Fatigue & Fracture Engineering Materials & Structures, vol. 20, No. 11, 1997, pp. 1617-1636. |
Rossmanith, H. P. et al., “Wave Propagation, Damage Evolution, and Dynamic Fracture Extension. Part I. Percussion Drilling”, Materials Science, vol. 32, No. 3, 1996, pp. 350-358. |
Rubin, A. M. et al., “Dynamic Tensile-Failure-Induced Velocity Deficits in Rock”, Geophysical Research Letters, vol. 18, No. 2, Feb. 1991, pp. 219-222. |
Sachpazis, C. I, M. Sc., Ph. D., “Correlating Schmidt Hardness With Compressive Strength and Young's ModulOf Carbonate Rocks”, International Association of Engineering Geology, Bulletin, No. 42, 1990, pp. 75-83. |
Salehi, I. A. et al., “Laser Drilling—Drilling with the Power Light”, a final report a contract with DOE with award No. DE-FC26-00NT40917, May 2007, in parts 1-4 totaling 318 pages. |
Sandler, I. S. et al., “An Algorithm and a Modular Subroutine for the Cap Model”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 3, 1979, pp. 173-186. |
Sano, Osam et al., “Acoustic Emission During Slow Crack Growth”, Department Mining and Mineral Engineering, NII-Electronic Library Service, 1980, pp. 381-388. |
Santarelli, F. J. et al., “Formation Evaluation From Logging on Cuttings”, SPE Reservoir Evaluation & Engineering, Jun. 1998, pp. 238-244. |
Sattler, A. R., “Core Analysis in a Low Permeability Sandstone Reservoir: Results from the Multiwell Experiment”, a report by Sandia National Laboratories for the Department of Energy, Apr. 1989, 69 pages. |
Scaggs, M. et al., “Thermal Lensing Compensation Objective for High Power Lasers”, published by Haas Lasers Technologies, Inc., while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 7 pages. |
Schaff, D. P. et al., “Waveform Cross-Correlation-Based Differential Travel-Time Measurements at the Northern California Seismic Network”, Bulletin of the Seismological Society of America, vol. 95, No. 6, Dec. 2005, pp. 2446-2461. |
Schaffer, C. B. et al., “Dynamics of Femtosecond Laser-Induced Breakdown in Water from Femtoseconds to Microseconds”, Optics Express, vol. 10, No. 3, Feb. 11, 2002, pp. 196-203. |
Scholz, C. H., “Microfracturing of Rock in Compression”, a dissertation for the degree of Doctor of Philosophy at Massachusettes Instutute of Trechnology, Sep. 1967, 177 pages. |
Schormair, Nik et al., “The influence of anisotropy on hard rock drilling and cutting”, The Geological Society of London, IAEG, Paper No. 491, 2006, pp. 1-11. |
Schroeder, R. J. et al., “High Pressure and Temperature Sensing for the Oil Industry Using Fiber Bragg Gratings Written onto Side Hole Single Mode Fiber”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 4 pages. |
Shannon, G. J. et al., “High power laser welding in hyperbaric gas and water environments”, Journal of Laser Applications, vol. 9, 1997, pp. 129-136. |
Shiraki, K. et al., “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution”, Journal of Lightwave Technology, vol. 14, No. 1, Jan. 1996, pp. 50-57. |
Shuja, S. Z. et al., “Laser heating of semi-infinite solid with consecutive pulses: Influence of materaial properties on temperature field”, Optics & Laser Technology, vol. 40, 2008, pp. 472-480. |
Simple Drilling Methods, WEDC Loughborough University, United Kingdom, 1995, 4 pgs. |
Singh, T. N. et al., “Prediction of Thermal Conductivity of Rock Through Physico-Mechanical Properties”, Building and Environment, vol. 42, 2007, pp. 146-155. |
Sinha, D., “Cantilever Drilling—Ushering a New Genre of Drilling”, a paper prepared for presentation at the SPE/IADC Middle East Drilling Technology Conference and Exhibition, Oct. 2003, 6 pages. |
Sinor, A. et al., “Drag Bit Wear Model”, SPE Drilling Engineering, Jun. 1989, pp. 128-136. |
Smith, D., “Using Coupling Variables to Solve Compressible Flow, Multiphase Flow and Plasma Processing Problems”, COMSOL Users Conference 2006, 38 pages. |
Smith, E., “Crack Propagation at a Constant Crack Tip Stress Intensity Factor”, Int. Journal of Fracture, vol. 16, 1980, pp. R215-R218. |
Sneider, RM et al., “Rock Types, Depositional History, and Diangenetic Effects, Ivishak reservoir Prudhoe Bay Field”, SPE Reservoir Engineering, Feb. 1997, pp. 23-30. |
Soeder, D. J. et al., “Pore Geometry in High- and Low-Permeability Sandstones, Travis Peak Formation, East Texas”, SPE Formation Evaluation, Dec. 1990, pp. 421-430. |
Solomon, A. D. et al., “Moving Boundary Problems in Phase Change Models Current Research Questions”, Engineering Physics and Mathematics Division, ACM Signum Newsletter, vol. 20, Issue 2, 1985, pp. 8-12. |
Somerton, W. H. et al., “Thermal Expansion of Fluid Saturated Rocks Under Stress”, SPWLA Twenty-Second Annual Logging Symposium, Jun. 1981, pp. 1-8. |
Sousa, L. M. O. et al., “Influence of Microfractures and Porosity on the Physico-Mechanical Properties and Weathering of Ornamental Granites”, Engineering Geology, vol. 77, 2005, pp. 153-168. |
Sousa, Luis M. O. et al., “Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites”, Engineering Geology, vol. 77, 2005, pp. 153-168. |
Stone, Charles M. et al., “Qualification of a Computer Program for Drill String Dynamics”, Sandia National Laboratories, SAND-85-0633C, 1985, pp. 1-20. |
Stowell, J. F. W., “Characterization of Opening-Mode Fracture Systems in the Austin Chalk”, Gulf Coast Association of Geological Societies Transactions, vol. L1, 2001, pp. 313-320. |
Straka, W. A. et al., “Cavitation Inception in Quiescent and Co-Flow Nozzle Jets”, 9th International Conference on Hydrodynamics, Oct. 2010, pp. 813-819. |
Suarez, M. C. et al., “COMSOL in a New Tensorial Formulation of Non-Isothermal Poroelasticity”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009,2 pages. |
Summers, D. A., “Water Jet Cutting Related to Jet & Rock Properties”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 13 pages. |
Suwarno, et al., “Dielectric Properties of Mixtures Between Mineral Oil and Natural Ester from Palm Oil”, WSEAS Transactions on Power Systems, vol. 3, Issue 2, Feb. 2008, pp. 37-46. |
Takarli, Mokhfi et al., “Damage in granite under heating/cooling cycles and water freeze-thaw condition”, International Journal of Rock Mechanics and Mining Sciences, vol. 45, 2008, pp. 1164-1175. |
Tanaka, K. et al., “The Generalized Relationship Between the Parameters C and m of Paris' Law for Fatigue Crack Growth”, Scripta Metallurgica, vol. 15, No. 3, 1981, pp. 259-264. |
Tang, C. A. et al., “Numerical Studies of the Influence of Microstructure on Rock Failure in Uniaxial Compression—Park I: Effect of Heterogeneity”, International Journal of Rock Mechanics and Mining Sciences, vol. 37, 2000, pp. 555-569. |
Tang, C. A. et al., “Coupled analysis of flow, stress and damage (FSD) in rock failure”, International Journal of Rock Mechanics and Mining Sciences, vol. 39, 2002, pp. 477-489. |
Tao, Q. et al., “A Chemo-Poro-Thermoelastic Model for Stress/Pore Pressure Analysis around a Wellbore in Shale”, a paper prepared for presentation at the Symposium on Rock Mechanics (USRMS): Rock Mechanics for Energy, Mineral and Infrastracture Development in the Northern Regions, Jun. 2005, 7 pages. |
Terra, O. et al., “Brillouin Amplification in Phase Coherent Transfer of Optical Frequencies over 480 km Fiber”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 9 pages. |
Terzopoulos, D. et al., “Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture”, SIGGRAPH '88, Aug. 1988, pp. 269-278. |
Thomas, R. P., “Heat Flow Mapping at the Geysers Geothermal Field”, published by the California Department of Conservation Division of Oil and Gas, 1986, 56 pages. |
Thompson, G. D., “Effects of Formation Compressive Strength on Perforator Performance”, a paper presented of the Southern District API Division of Production, Mar. 1962, pp. 191-197. |
Thorsteinsson, Hildigunnur et al., “The Impacts of Drilling and Reservoir Technology Advances on EGS Exploitation”, Proceedings, Thirty-Third Workshop on Geothermal Reservoir Engineering, Institute for Sustainable Energy, Environment, and Economy (ISEEE), 2008, pp. 1-14. |
Tovo, R. et al., “Fatigue Damage Evaluation on Mechanical Components Under Multiaxial Loadings”, excerpt from the Proceedings of the COMSOL Conference, 2009, 8 pages. |
Tuler, F. R. et al., “A Criterion for the Time Dependence of Dynamic Fracture”, The International Jopurnal of Fracture Mechanics, vol. 4, No. 4, Dec. 1968, pp. 431-437. |
Turner, D. et al., “New DC Motor for Downhole Drilling and Pumping Applications”, a paper prepared for presentation at the SPE/ICoTA Coiled Tubing Roundtable, Mar. 2001, pp. 1-7. |
Turner, D. R. et al., “The All Electric BHA: Recent Developments Toward an Intelligent Coiled-Tubing Drilling System”, a paper prepared for presentation at the 1999 SPE/ICoTA Coiled Tubing Roundtable, May 1999, pp. 1-10. |
Tutuncu, A. N. et al., “An Experimental Investigation of Factors Influencing Compressional- and Shear-Wave Velocities and Attenuations in Tight Gas Sandstones”, Geophysics, vol. 59, No. 1, Jan. 1994, pp. 77-86. |
U.S. Dept of Energy, “Chapter 6—Drilling Technology and Costs”, from Report for the Future of Geothermal Energy, 2005, 53 pgs. |
U.S. Appl. No. 12/840,978, filed Jul. 21, 2009, 61 pgs. |
Udd, E. et al., “Fiber Optic Distributed Sensing Systems for Harsh Aerospace Environments”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 12 pages. |
Valsangkar, A. J. et al., Stress-Strain Relationship for Empirical Equations of Creep in Rocks, Engineering Geology, Mar. 29, 1971, 5 pages. |
Varnado, S. G. et al., “The Design and Use of Polycrystalline Diamond Compact Drag Bits in the Geothermal Environment”, Society of Petroleum Engineers of AIME, SPE 8378, 1979, pp. 1-11. |
Wagh, A. S. et al., “Dependence of Ceramic Fracture Properties on Porosity”, Journal of Material Sience, vol. 28, 1993, pp. 3589-3593. |
Wagner, F. et al., “The Laser Microjet Technology—10 Years of Development (M401)”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 9 pages. |
Waldron, K. et al., “The Microstructures of Perthitic Alkali Feldspars Revealed by Hydroflouric Acid Etching”, Contributions to Mineralogy and Petrology, vol. 116, 1994, pp. 360-364. |
Walker, B. H. et al., “Roller-Bit Penetration Rate Response as a Function of Rock Properties and Well Depth”, a paper prepared for presentation at the 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Oct. 1986, 12 pages. |
Wandera, C. et al., “Characterization of the Melt Removal Rate in Laser Cutting of Thick-Section Stainless Steel”, Journal of Laser Applications, vol. 22, No. 2, May 2010, pp. 62-70. |
Wandera, C. et al., “Inert Gas Cutting of Thick-Section Stainless Steel and Medium Section Aluminun Using a High Power Fiber Laser”, Journal of Chemical Physics, vol. 116, No. 4, Jan. 22, 2002, pp. 154-161. |
Wandera, C. et al., “Laser Power Requirement for Cutting of Thick-Section Steel and Effects of Processing Parameters on Mild Steel Cut Quality”, a paper accepted for publication in the Proceedings IMechE Part B, Journal of Engineering Manufacture, vol. 225, 2011, 23 pages. |
Wandera, C. et al., “Optimization of Parameters for Fiber Laser Cutting of 10mm Stainless Steel Plate”, a paper for publication in the Proceeding IMechE Part B, Journal of Engineering Manufacture, vol. 225, 2011, 22 pages. |
Wandera, C., “Performance of High Power Fibre Laser Cutting of Thick-Section Steel and Medium-Section Aluminium”, a thesis for the degree of Doctor of Science (Technology) at , Lappeenranta University of Technology, Oct. 2010, 74 pages. |
Wang, C. H., “Introduction to Fractures Mechanics”, published by DSTO Aeronautical and Maritime Research Laboratory, Jul. 1996, 82 pages. |
Wang, G. et al., “Particle Modeling Simulation of Thermal Effects on Ore Breakage”, Computational Materials Science, vol. 43, 2008, pp. 892-901. |
Waples, D. W. et al., “A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and NonporoRocks”, Natural Resources Research, vol. 13, No. 2, Jun. 2004, pp. 97-122. |
Waples, D. W. et al., “A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 2: Fluids and PoroRocks”, Natural Resources Research, vol. 13 No. 2, Jun. 2004, pp. 123-130. |
Warren, T. M. et al., “Laboratory Drilling Performance of PDC Bits”, SPE Drilling Engineering, Jun. 1988, pp. 125-135. |
Wen-gui, Cao et al., “Damage constituitive model for strain-softening rock based on normal distribution and its parameter determination”, J. Cent. South Univ. Technol., vol. 14, No. 5, 2007, pp. 719-724. |
White, E. J. et al., “Reservoir Rock Characteristics of the Madison Limestone in the Williston Basin”, The Log Analyst, Sep.-Oct. 1970, pp. 17-25. |
White, E. J. et al., “Rock Matrix Properties of the Ratcliffe Interval (Madison Limestone) Flat Lake Field, Montana”, SPE of AIME, Jun. 1968, 16 pages. |
Wiercigroch, M., “Dynamics of ultrasonic percussive drilling of hard rocks”, Journal of Sound and Vibration, vol. 280, 2005, pp. 739-757. |
Wilkinson, M. A. et al., “Experimental Measurement of Surface Temperatures During Flame-Jet Induced Thermal Spallation”, Rock Mechanics and Rock Engineering, 1993, pp. 29-62. |
Williams, R. E. et al., “Experiments in Thermal Spallation of VarioRocks”, Transactions of the ASME, vol. 118, 1996, pp. 2-8. |
Willis, David A. et al., “Heat transfer and phase change during picosecond laser ablation of nickel”, International Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 3911-3918. |
Winters, W. J. et al., “Roller Bit Model with Rock Ductility and Cone Offset”, a paper prepared for presentation at 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Sep. 1987, 12 pages. |
Wippich, M. et al., “Tunable Lasers and Fiber-Bragg-Grating Sensors”, Obatined from the at: from the Internet website of the Industrial Physicist at: http://www.aip.org/tip/INPHFA/vol-9/iss-3/p24.html, on May 18, 2010, pp. 1-5. |
Wong, Teng-fong et al., “Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock”, Mechanics of Materials, vol. 38, 2006, pp. 664-681. |
Wood, Tom, “Dual Purpose COTD™ Rigs Establish New Operational Records”, Treme Coil Drilling Corp., Drilling Technology Without Borders, 2009, pp. 1-18. |
Wu, X. Y. et al., “The Effects of Thermal Softening and Heat Conductin on the Dynamic Growth of Voids”, International Journal of Solids and Structures, vol. 40, 2003, pp. 4461-4478,. |
Xia, K. et al., “Effects of microstructures on dynamic compression of Barre granite”, International Journal of Rock Mechanics and Mining Sciences, vol. 45, 2008. pp. 879-887, available at: www.sciencedirect.com. |
Xiao, J. Q. et al., “Inverted S-Shaped Model for Nonlinear Fatigue Damage of Rock”, International Journal of Rock Mechanics & Mining Sciences, vol. 46, 2009, pp. 643-648. |
Xu, Z et al. “Modeling of Laser Spallation Drilling of Rocks fro gas- and Oilwell Drilling”, Society of Petroleum Engineers, SPE 95746, 2005, pp. 1-6. |
Xu, Z. et al., “Application of High Powered Lasers to Perforated Completions”, International Congress on Applications of Laser & Electro-Optics, Oct. 2003, 6 pages. |
Xu, Z. et al., “Laser Rock Drilling by a Super-Pulsed CO2 Laser Beam”, a manuscript created for the Department of Energy, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 9 pages. |
Xu, Z. et al., “Laser Spallation of Rocks for Oil Well Drilling”, Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, 2004, pp. 1-6. |
Xu, Z. et al., “Modeling of Laser Spallation Drilling of Rocks for Gas-and Oilwell Drilling”, a paper prepared for the presentation at the 2005 SPE (Society of Petroleum Engineers) Annual Technical Conference and Exhibition, Oct. 2005, 6 pages. |
Xu, Z. et al., “Rock Perforation by Pulsed Nd: YAG Laser”, Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics 2004, 2004, 5 pages. |
Xu, Z. et al., “Specific Energy of Pulsed Laser Rock Drilling”, Journal of Laser Applications, vol. 15, No. 1, Feb. 2003, pp. 25-30. |
Xu, Z. et al., “Specific Energy for Laser Removal of Rocks”, Proceedings of the 20th International Congress on Applications of Lasers & Electro-Optics, 2001, pp. 1-8. |
Xu, Z. et al., “Specific energy for pulsed laser rock drilling”, Journal of Laser Applications, vol. 15, No. 1, 2003, pp. 25-30. |
Xu, Zhiyue et al., “Laser Spallation of Rocks for Oil Well Drilling”, Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, 2004, pp. 1-6. |
Yabe, T. et al., “The Constrained Interpolation Profile Method for Multiphase Analysis”, Journal of Computational Physics, vol. 169, 2001, pp. 556-593. |
Yamamoto, K. Y. et al., “Detection of Metals in the Environment Using a Portable Laser-Induced Breakdown Spectroscopy Instrument”, Applied Spectroscopy, vol. 50, No. 2, 1996, pp. 222-233. |
Yamashita, Y. et al., “Underwater Laser Welding by 4kW CW YAG Laser”, Journal of Nuclear Science and Technology, vol. 38, No. 10, Oct. 2001, pp. 891-895. |
Yamshchikov, V. S. et al., “An Evaluation of the Microcrack Density of Rocks by Ultrasonic Velocimetric Method”, Moscow Mining Institute. (Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh), 1985, pp. 363-366. |
Yasar, E. et al., “Determination of the Thermal Conductivity from Physico-Mechanical Properties”, Bull Eng. Geol. Environ., vol. 67, 2008, pp. 219-225. |
Yilbas, B. S. et al., “Laser short pulse heating: Influence of pulse intensity on temperature and stress fields”, Applied Surface Science, vol. 252, 2006, pp. 8428-8437. |
Yilbas, B. S. et al., “Laser treatment of aluminum surface: Analysis of thermal stress field in the irradiated región”, Journal of Materials Processing Technology, vol. 209, 2009, pp. 77-88. |
Yilbas, B. S. et al., “Nano-second laser pulse heating and assisting gas jet considerations”, International Journal of Machine Tools & Manufacture, vol. 40, 2000, pp. 1023-1038. |
Yilbas, B. S. et al., “Repetitive laser pulse heating with a convective boundary condition at the surface”, Journal of Physics D: Applied Physics, vol. 34, 2001, pp. 222-231. |
York, J. L. et al., “The Influence of Flashing and Cavitation on Spray Formation”, a progress report for UMRI Project 2815 with Delavan Manufacturing Company, Oct. 1959, 27 pages. |
Yun, Yingwei et al., “Thermal Stress Distribution in Thick Wall Cylinder Under Thermal Shock”, Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, vol. 131, pp. 1-6. |
Zamora, M. et al., “An Empirical Relationship Between Thermal Conductivity and Elastic Wave Velocities in Sandstone”, Geophysical Research Letters, vol. 20, No. 16, Aug. 20, 1993, pp. 1679-1682. |
Zehnder, A. T., “Lecture Notes on Fracture Mechanics”, 2007, 227 pages. |
Zeng, Z. W. et al., “Experimental Determination of Geomechanical and Petrophysical Properties of Jackfork Sandstone—A Tight Gas Formation”, a paper prepared for the presentation at the 6th North American Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, Jun. 2004, 9 pages. |
Zeuch, D. H. et al., “Rock Breakage Mechanisms With a PDC Cutter”, a paper prepared for presentation at the 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Sep. 1985, 12 pages. |
Zeuch, D.H. et al., “Rock Breakage Mechanism Wirt a PDC Cutter”, Society of Petroleum Engineers, 60th Annual Technical Conference, Las Vegas, Sep. 22-25, 1985, 11 pgs. |
Zhai, Yue et al., “Dynamic failure analysis on granite under uniaxial impact compressive load”, Front. Archit. Civ. Eng. China, vol. 2, No. 3, 2008, pp. 253-260. |
Zhang, L. et al., “Energy from Abandoned Oil and Gas Reservoirs”, a paper prepared for presentation at the 2008 SPE (Society of Petroleum Engineers) Asia Pacific Oil & Gas Conference and Exhibition, 2008, pp. 1-10. |
Zheleznov, D. S. et al., “Faraday Rotators With Short Magneto-Optical Elements for 50-kW Laser Power”, IEEE Journal of Quantum Electronics, vol. 43, No. 6, Jun. 2007, pp. 451-457. |
Zhou, T. et al., “Analysis of Stimulated Brillouin Scattering in Multi-Mode Fiber by Numerical Solution”, Journal of Zhejiang University of Science, vol. 4 No. 3, May-Jun. 2003, pp. 254-257. |
Zhou, X.P., “Microcrack Interaction Brittle Rock Subjected to Uniaxial Tensile Loads”, Theoretical and Applied Fracture Mechanics, vol. 47, 2007, pp. 68-76. |
Zhou, Zehua et al., “A New Thermal-Shock-Resistance Model for Ceramics: Establishment and validation”, Materials Science and Engineering, A 405, 2005, pp. 272-276. |
Zhu, Dongming et al., “Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings”, National Aeronautics and Space Administration, Army Research Laboratory, Technical Report ARL-TR-1341, NASA TP-3676, 1997, pp. 1-50. |
Zhu, Dongming et al., “Investigation of thermal fatigue behavior of thermal barrier coating systems”, Surface and Coatings Technology, vol. 94-95, 1997, pp. 94-101. |
Zhu, Dongming et al., “Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings”, National Aeronautics and Space Administration, Lewis Research Center, NASA/TM-1998-206633, 1998, pp. 1-31. |
Zhu, Dongming et al., “Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems”, National Aeronautics and Space Administration, Glenn Research Center, NASA/TM-2000-210237, 2000, pp. 1-22. |
Zhu, X. et al., “High-Power ZBLAN Glass Fiber Lasers: Review and Prospect”, Advances in OptoElectronics, vol. 2010, pp. 1-23. |
Zietz, J. et al., “Determinants of House Prices: A Quantile Regression Approach”, Department of Economics and Finance Working Paper Series, May 2007, 27 pages. |
Zuckerman, N. et al., “Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling”, Advances in Heat Transfer, vol. 39, 2006, pp. 565-631. |
A Built-for-Purpose Coiled Tubing Rig, by Schulumberger Wells, No. DE-PS26-03NT15474, 2006, 1 pg. |
“Chapter I—Laser-Assisted Rock-Cutting Tests”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 64 pages. |
“Chapter 7: Energy Conversion Systems—Options and Issues”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, pp. 7-1 to 7-32 and table of contents page. |
“Cross Process Innovations”, Obtained from the Internet at: http://www.mrl.columbia.edu/ntm/CrossProcess/CrossProcessSect5.htm, on Feb. 2, 2010, 11 pages. |
“Fourier Series, Generalized Functions, Laplace Transform”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 6 pages. |
“Introduction to Optical Liquids”, published by Cargille-Sacher Laboratories Inc., Obtained from the Internet at: http://www.cargille.com/opticalintro.shtml, on Dec. 23, 2008, 5 pages. |
“Laser Drilling”, Oil & Natural Gas Projects (Exploration & Production Technologies) Technical Paper, Dept. of Energy, Jul. 2007, 3 pages. |
“Leaders in Industry Luncheon”, IPAA & TIPRO, Jul. 8, 2009, 19 pages. |
“Measurement and Control of Abrasive Water-Jet Velocity”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 8 pages. |
“NonhomogeneoPDE—Heat Equation with a Forcing Term”, a lecture, 2010, 6 pages. |
“Performance Indicators for Geothermal Power Plants”, prepared by International Geothermal Association for World Energy Council Working Group on Performance of Renewable Energy Plants, author unknown, Mar. 2011, 7 pages. |
“Rock Mechanics and Rock Engineering”, publisher unknown, while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 69 pages. |
“Shock Tube”, Cosmol MultiPhysics 3.5a, 2008, 5 pages. |
“Silicone Fluids: Stable, Inert Media”, Gelest, Inc., while the date of the publication is unknown, it is believed to be prior to Aug. 19, 2009, 27 pages. |
“Stimulated Brillouin Scattering (SBS) in Optical Fibers”, Centro de Pesquisa em Optica e Fotonica, Obtained from the Internet at: http://cepof.ifi.unicamp.br/index.php . . . ), on Jun. 25, 2012, 2 pages. |
“Underwater Laser Cutting”, TWI Ltd, May/Jun. 2011, 2 pages. |
Utility U.S. Appl. No. 13/768,149, filed Feb. 15, 2013, 27 pages. |
Utility U.S. Appl. No. 13/777,650, filed Feb. 26, 2013, 73 pages. |
Utility U.S. Appl. No. 13/782,869, filed Mar. 1, 2013, 80 pages. |
Utility U.S. Appl. No. 13/782,942, filed Mar. 1, 2013, 81 pages. |
Utility U.S. Appl. No. 13/800,559, filed Mar. 13, 2013, 73 pages. |
Utility U.S. Appl. No. 13/800,820, filed Mar. 13, 2013, 73 pages. |
Utility U.S. Appl. No. 13/800,879, filed Mar. 13, 2013, 73 pages. |
Utility U.S. Appl. No. 13/800,933, filed Mar. 13, 2013, 73 pages. |
Utility U.S. Appl. No. 13/849,831, filed Mar. 25, 2013, 83 pages. |
Number | Date | Country | |
---|---|---|---|
20120275159 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61446040 | Feb 2011 | US | |
61446312 | Feb 2011 | US | |
61446041 | Feb 2011 | US | |
61446043 | Feb 2011 | US | |
61446042 | Feb 2011 | US | |
61153271 | Feb 2009 | US | |
61106472 | Oct 2008 | US | |
61102730 | Oct 2008 | US | |
61090384 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12544038 | Aug 2009 | US |
Child | 13403509 | US | |
Parent | 12544136 | Aug 2009 | US |
Child | 12544038 | US | |
Parent | 12543986 | Aug 2009 | US |
Child | 12544136 | US | |
Parent | 13403509 | US | |
Child | 12544136 | US | |
Parent | 12544094 | Aug 2009 | US |
Child | 13403509 | US | |
Parent | 12896021 | Oct 2010 | US |
Child | 12544094 | US |