Embodiments of the present disclosure relate to switching power supplies used in radio frequency (RF) communication systems.
As RF communications protocols evolve, data rates tend to increase, which tends to cause bandwidths of transmitted RF signals to increase to support the higher data rates. However, in comparison to the increased bandwidths of the transmitted RF signals, duplex frequency spacings between transmitted and received RF signals may be relatively small, thereby putting tight constraints on RF communications systems. Such RF communications systems may have certain performance requirements, such as specific out-of-band emissions requirements, linearity requirements, or the like. Further, RF transmitters need to be as efficient as possible to maximize battery life. Therefore, transmitter power amplifiers may be powered from switching converter-based envelope power supplies to maximize efficiency. As such, noise generated by the envelope power supplies may need to be minimized to meet the noise requirements of the RF communications system.
Embodiments of the present disclosure relate to an RF communications system, which includes an RF power amplifier (PA) and an envelope tracking power supply. The RF communications system processes RF signals associated with at least a first RF communications band, which has a first bandwidth. The RF PA receives and amplifies an RF input signal to provide an RF transmit signal using an envelope power supply signal. The envelope tracking power supply provides the envelope power supply signal, which has switching ripple based on a programmable switching frequency. The programmable switching frequency is selected to be greater that the first bandwidth.
In one embodiment of the RF communications systems, noise requirements are stricter inside RF transmit bands and RF receive bands than outside of the RF transmit bands and the RF receive bands. The switching ripple may introduce noise into an RF transmit path, an RF receive path, or both of the RF communications system. The first RF communications band may be an RF transmit band, an RF receive band, or both. As such, since the programmable switching frequency is greater that the first bandwidth, the switching ripple falls outside of the first RF communications band where noise requirements are less strict.
In one embodiment of the RF communications system, the first RF communications band is a time division duplex (TDD) communications band, such that both the RF transmit signal and an RF receive signal are associated with the first RF communications band. In an alternate embodiment of the RF communications system, the RF communications system further processes RF signals associated with the first RF communications band and a second RF communications band. A frequency gap may be between the first RF communications band and the second RF communications band. The programmable switching frequency is selected, such that the switching ripple falls outside of both the first RF communications band and the second RF communications band where noise requirements are less strict.
In one embodiment of the first RF communications band and the second RF communications band, the first RF communications band is a frequency division duplex (FDD) transmit band and the second RF communications band is an FDD receive band. In an alternate embodiment of the first RF communications band and the second RF communications band, the first RF communications band is an FDD receive band and the second RF communications band is an FDD transmit band.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
Embodiments of the present disclosure relate to an RF communications system, which includes an RF power amplifier (PA) and an envelope tracking power supply. The RF communications system processes RF signals associated with at least a first RF communications band, which has a first bandwidth. The RF PA receives and amplifies an RF input signal to provide an RF transmit signal using an envelope power supply signal. The envelope tracking power supply provides the envelope power supply signal, which has switching ripple based on a programmable switching frequency. The programmable switching frequency is selected to be greater that the first bandwidth.
In one embodiment of the RF communications systems, noise requirements are stricter inside RF transmit bands and RF receive bands than outside of the RF transmit bands and RF receive bands. The switching ripple may introduce noise into an RF transmit path, an RF receive path, or both of the RF communications system. The first RF communications band may be an RF transmit band, an RF receive band, or both. As such, since the programmable switching frequency is greater that the first bandwidth, the switching ripple falls outside of the first RF communications band where noise requirements are less strict.
In one embodiment of the RF communications system, the first RF communications band is a time division duplex (TDD) communications band, such that both the RF transmit signal and an RF receive signal are associated with the first RF communications band. In an alternate embodiment of the RF communications system, the RF communications system further processes RF signals associated with the first RF communications band and a second RF communications band. A frequency gap may be between the first RF communications band and the second RF communications band. The programmable switching frequency is selected, such that the switching ripple falls outside of both the first RF communications band and the second RF communications band where noise requirements are less strict.
In one embodiment of the first RF communications band and the second RF communications band, the first RF communications band is a frequency division duplex (FDD) transmit band and the second RF communications band is an FDD receive band. In an alternate embodiment of the first RF communications band and the second RF communications band, the first RF communications band is an FDD receive band and the second RF communications band is an FDD transmit band.
In one embodiment of the RF communications system 10, the RF front-end circuitry 16 receives via the RF antenna 18, processes, and forwards an RF receive signal RFR to the RF system control circuitry 14. In one embodiment of the RF communications system 10, the RF receive signal RFR is associated with the first RF communications band 80 (
The transmitter control circuitry 22 is coupled to the envelope tracking power supply 26 and to the PA bias circuitry 28. The envelope tracking power supply 26 provides an envelope power supply signal EPS to the RF PA 24 based on the envelope power supply control signal VRMP. The DC source signal VDC provides power to the envelope tracking power supply 26. As such, the envelope power supply signal EPS is based on the DC source signal VDC. The envelope power supply control signal VRMP is representative of a setpoint of the envelope power supply signal EPS. The RF PA 24 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the envelope power supply signal EPS. The envelope power supply signal EPS provides power for amplification. The RF front-end circuitry 16 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 18. In one embodiment of the RF transmitter circuitry 12, the transmitter control circuitry 22 configures the RF transmitter circuitry 12 based on the transmitter configuration signal PACS.
The PA bias circuitry 28 provides a PA bias signal PAB to the RF PA 24. In this regard, the PA bias circuitry 28 biases the RF PA 24 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 28, the PA bias circuitry 28 biases the RF PA 24 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 16, the RF front-end circuitry 16 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, at least one RF amplifier, the like, or any combination thereof. In one embodiment of the RF system control circuitry 14, the RF system control circuitry 14 is RF transceiver circuitry, which may include an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof. In one embodiment of the RF transmitter circuitry 12, the envelope tracking power supply 26 provides the envelope power supply signal EPS. In one embodiment of the RF transmitter circuitry 12, the envelope power supply signal EPS provides power for amplification and at least partially envelope tracks the RF transmit signal RFT.
In one embodiment of the RF communications system 10, the transmitter control circuitry 22 selects the programmable switching frequency based on the first RF communications band 80 (
In one embodiment of the RF communications system 10, the RF system control circuitry 14 selects the programmable switching frequency based on the first RF communications band 80 (
In general, control circuitry, which may be the RF system control circuitry 14, the transmitter control circuitry 22, or other circuitry, selects the programmable switching frequency. In one embodiment of the RF communications system 10, the RF communications system 10 includes the control circuitry. In one embodiment of the RF communications system 10, the programmable switching frequency is selected, such that the programmable switching frequency is high enough to allow the envelope power supply signal EPS to at least partially track the RF transmit signal RFT.
In one embodiment of the RF transmitter circuitry 12, the envelope tracking power supply 26 uses active ripple cancellation to reduce a magnitude of the switching ripple 42 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
In one embodiment of the RF communications system 10 (
Any or all of the first guard band 84, the second guard band 94, and the third guard band 98 may be used to compensate for actual error in the programmable switching frequency. Such error may be due to tolerances, adjustment granularity, temperature variations, process variations, voltage variations, the like, or any combination thereof.
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application No. 61/592,900, filed Jan. 31, 2012, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3735289 | Bruene | May 1973 | A |
4523155 | Walczak et al. | Jun 1985 | A |
4638255 | Penney | Jan 1987 | A |
4819081 | Volk et al. | Apr 1989 | A |
5212459 | Ueda et al. | May 1993 | A |
5278994 | Black et al. | Jan 1994 | A |
5307512 | Mitzlaff | Apr 1994 | A |
5343307 | Mizuno et al. | Aug 1994 | A |
5404547 | Diamantstein et al. | Apr 1995 | A |
5432473 | Mattila et al. | Jul 1995 | A |
5603106 | Toda | Feb 1997 | A |
5636114 | Bhagwat et al. | Jun 1997 | A |
5640686 | Norimatsu | Jun 1997 | A |
5642075 | Bell | Jun 1997 | A |
5652547 | Mokhtar et al. | Jul 1997 | A |
5724004 | Reif et al. | Mar 1998 | A |
5832373 | Nakanishi et al. | Nov 1998 | A |
5841319 | Sato | Nov 1998 | A |
5852632 | Capici et al. | Dec 1998 | A |
5860080 | James et al. | Jan 1999 | A |
5872481 | Sevic et al. | Feb 1999 | A |
5874841 | Majid et al. | Feb 1999 | A |
5920808 | Jones et al. | Jul 1999 | A |
5923153 | Liu | Jul 1999 | A |
5923761 | Lodenius | Jul 1999 | A |
5945870 | Chu et al. | Aug 1999 | A |
5956246 | Sequeira et al. | Sep 1999 | A |
6051963 | Eagar | Apr 2000 | A |
6064272 | Rhee | May 2000 | A |
6151509 | Chorey | Nov 2000 | A |
6192225 | Arpaia et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6229366 | Balakirshnan et al. | May 2001 | B1 |
6259901 | Shinomiya et al. | Jul 2001 | B1 |
6304748 | Li et al. | Oct 2001 | B1 |
6425107 | Caldara et al. | Jul 2002 | B1 |
6559492 | Hazucha et al. | May 2003 | B1 |
6606483 | Baker et al. | Aug 2003 | B1 |
6670849 | Damgaard et al. | Dec 2003 | B1 |
6674789 | Fardoun et al. | Jan 2004 | B1 |
6724252 | Ngo et al. | Apr 2004 | B2 |
6774508 | Ballantyne et al. | Aug 2004 | B2 |
6794923 | Burt et al. | Sep 2004 | B2 |
6806768 | Klaren et al. | Oct 2004 | B2 |
6853244 | Robinson et al. | Feb 2005 | B2 |
6888482 | Hertle | May 2005 | B1 |
6900697 | Doyle et al. | May 2005 | B1 |
6906590 | Amano | Jun 2005 | B2 |
6917188 | Kernahan | Jul 2005 | B2 |
6937487 | Bron | Aug 2005 | B1 |
6954623 | Chang et al. | Oct 2005 | B2 |
6969978 | Dening | Nov 2005 | B2 |
6998914 | Robinson | Feb 2006 | B2 |
7035069 | Takikawa et al. | Apr 2006 | B2 |
7043213 | Robinson et al. | May 2006 | B2 |
7058374 | Levesque et al. | Jun 2006 | B2 |
7072626 | Hadjichristos | Jul 2006 | B2 |
7075346 | Hariman et al. | Jul 2006 | B1 |
7098728 | Mei et al. | Aug 2006 | B1 |
7116949 | Irie et al. | Oct 2006 | B2 |
7145385 | Brandt et al. | Dec 2006 | B2 |
7148749 | Rahman et al. | Dec 2006 | B2 |
7154336 | Maeda | Dec 2006 | B2 |
7155251 | Saruwatari et al. | Dec 2006 | B2 |
7177607 | Weiss | Feb 2007 | B2 |
7184731 | Kim | Feb 2007 | B2 |
7184749 | Marsh et al. | Feb 2007 | B2 |
7187910 | Kim et al. | Mar 2007 | B2 |
7202734 | Raab | Apr 2007 | B1 |
7248111 | Xu et al. | Jul 2007 | B1 |
7263337 | Struble | Aug 2007 | B2 |
7276960 | Peschke | Oct 2007 | B2 |
7298600 | Takikawa et al. | Nov 2007 | B2 |
7299015 | Iwamiya et al. | Nov 2007 | B2 |
7324787 | Kurakami et al. | Jan 2008 | B2 |
7333564 | Sugiyama et al. | Feb 2008 | B2 |
7333778 | Pehlke et al. | Feb 2008 | B2 |
7342455 | Behzad et al. | Mar 2008 | B2 |
7358807 | Scuderi et al. | Apr 2008 | B2 |
7368985 | Kusunoki | May 2008 | B2 |
7372333 | Abedinpour et al. | May 2008 | B2 |
7408330 | Zhao | Aug 2008 | B2 |
7477106 | Van Bezooijen et al. | Jan 2009 | B2 |
7483678 | Rozenblit et al. | Jan 2009 | B2 |
7518448 | Blair et al. | Apr 2009 | B1 |
7529523 | Young et al. | May 2009 | B1 |
7539462 | Peckham et al. | May 2009 | B2 |
7551688 | Matero et al. | Jun 2009 | B2 |
7554407 | Hau et al. | Jun 2009 | B2 |
7558539 | Huynh et al. | Jul 2009 | B2 |
7580443 | Uemura et al. | Aug 2009 | B2 |
7622900 | Komiya | Nov 2009 | B2 |
7664520 | Gu | Feb 2010 | B2 |
7667987 | Huynh et al. | Feb 2010 | B2 |
7684220 | Fang et al. | Mar 2010 | B2 |
7689182 | Bosley et al. | Mar 2010 | B1 |
7701290 | Liu | Apr 2010 | B2 |
7702300 | McCune | Apr 2010 | B1 |
7714546 | Kimura et al. | May 2010 | B2 |
7724097 | Carley et al. | May 2010 | B2 |
7768354 | Matsuda et al. | Aug 2010 | B2 |
7782141 | Witmer et al. | Aug 2010 | B2 |
7783272 | Magnusen | Aug 2010 | B2 |
7787570 | Rozenblit et al. | Aug 2010 | B2 |
7796410 | Takayanagi et al. | Sep 2010 | B2 |
7859511 | Shen et al. | Dec 2010 | B2 |
7860466 | Woo et al. | Dec 2010 | B2 |
7876159 | Wang et al. | Jan 2011 | B2 |
7907430 | Kularatna et al. | Mar 2011 | B2 |
7941110 | Gonzalez | May 2011 | B2 |
7999484 | Jurngwirth et al. | Aug 2011 | B2 |
8000117 | Petricek | Aug 2011 | B2 |
8023995 | Kuriyama et al. | Sep 2011 | B2 |
8031003 | Dishop | Oct 2011 | B2 |
8085106 | Huda et al. | Dec 2011 | B2 |
8089323 | Tarng et al. | Jan 2012 | B2 |
8098093 | Li | Jan 2012 | B1 |
8131234 | Liang et al. | Mar 2012 | B2 |
8134410 | Zortea | Mar 2012 | B1 |
8149050 | Cabanillas | Apr 2012 | B2 |
8149061 | Schuurmans | Apr 2012 | B2 |
8213888 | Kuriyama et al. | Jul 2012 | B2 |
8228122 | Yuen et al. | Jul 2012 | B1 |
8258875 | Smith et al. | Sep 2012 | B1 |
8271028 | Rabjohn | Sep 2012 | B2 |
8427120 | Cilio | Apr 2013 | B1 |
8461921 | Pletcher et al. | Jun 2013 | B2 |
8514025 | Lesso | Aug 2013 | B2 |
20020055376 | Norimatsu | May 2002 | A1 |
20020055378 | Imel et al. | May 2002 | A1 |
20030006845 | Lopez et al. | Jan 2003 | A1 |
20030042885 | Zhou et al. | Mar 2003 | A1 |
20030073418 | Dening et al. | Apr 2003 | A1 |
20030087626 | Prikhodko et al. | May 2003 | A1 |
20030201674 | Droppo et al. | Oct 2003 | A1 |
20030201834 | Pehlke | Oct 2003 | A1 |
20030227280 | Vinciarelli | Dec 2003 | A1 |
20040068673 | Espinoza-Ibarra et al. | Apr 2004 | A1 |
20040090802 | Pourseyed et al. | May 2004 | A1 |
20040095118 | Kernahan | May 2004 | A1 |
20040127173 | Leizerovich | Jul 2004 | A1 |
20040183507 | Amei | Sep 2004 | A1 |
20040185805 | Kim et al. | Sep 2004 | A1 |
20040192369 | Nilsson | Sep 2004 | A1 |
20040222848 | Shih et al. | Nov 2004 | A1 |
20040235438 | Quilisch et al. | Nov 2004 | A1 |
20050003855 | Wada et al. | Jan 2005 | A1 |
20050017787 | Kojima | Jan 2005 | A1 |
20050046507 | Dent | Mar 2005 | A1 |
20050064830 | Grigore | Mar 2005 | A1 |
20050088237 | Gamero et al. | Apr 2005 | A1 |
20050110559 | Farkas et al. | May 2005 | A1 |
20050134388 | Jenkins | Jun 2005 | A1 |
20050136854 | Akizuki et al. | Jun 2005 | A1 |
20050136866 | Dupuis | Jun 2005 | A1 |
20050168281 | Nagamori et al. | Aug 2005 | A1 |
20050200407 | Arai et al. | Sep 2005 | A1 |
20050227644 | Maslennikov et al. | Oct 2005 | A1 |
20050245214 | Nakamura et al. | Nov 2005 | A1 |
20050280471 | Matsushita et al. | Dec 2005 | A1 |
20050288052 | Carter et al. | Dec 2005 | A1 |
20050289375 | Ranganathan et al. | Dec 2005 | A1 |
20060006943 | Clifton et al. | Jan 2006 | A1 |
20060017426 | Yang et al. | Jan 2006 | A1 |
20060038710 | Staszewski et al. | Feb 2006 | A1 |
20060046666 | Hara et al. | Mar 2006 | A1 |
20060046668 | Uratani et al. | Mar 2006 | A1 |
20060052065 | Argaman et al. | Mar 2006 | A1 |
20060067425 | Windisch | Mar 2006 | A1 |
20060067426 | Maltsev et al. | Mar 2006 | A1 |
20060084398 | Chmiel et al. | Apr 2006 | A1 |
20060114075 | Janosevic et al. | Jun 2006 | A1 |
20060119331 | Jacobs et al. | Jun 2006 | A1 |
20060128325 | Levesque et al. | Jun 2006 | A1 |
20060146956 | Kim et al. | Jul 2006 | A1 |
20060199553 | Kenington | Sep 2006 | A1 |
20060221646 | Ye et al. | Oct 2006 | A1 |
20060226909 | Abedinpour et al. | Oct 2006 | A1 |
20060290444 | Chen | Dec 2006 | A1 |
20060293005 | Hara et al. | Dec 2006 | A1 |
20070024360 | Markowski | Feb 2007 | A1 |
20070026824 | Ono et al. | Feb 2007 | A1 |
20070032201 | Behzad et al. | Feb 2007 | A1 |
20070069820 | Hayata et al. | Mar 2007 | A1 |
20070096806 | Sorrells et al. | May 2007 | A1 |
20070096810 | Hageman et al. | May 2007 | A1 |
20070129025 | Vasa et al. | Jun 2007 | A1 |
20070146090 | Carey et al. | Jun 2007 | A1 |
20070182490 | Hau et al. | Aug 2007 | A1 |
20070210776 | Oka | Sep 2007 | A1 |
20070222520 | Inamori et al. | Sep 2007 | A1 |
20070249300 | Sorrells et al. | Oct 2007 | A1 |
20070249304 | Snelgrove et al. | Oct 2007 | A1 |
20070281635 | McCallister et al. | Dec 2007 | A1 |
20070291873 | Saito et al. | Dec 2007 | A1 |
20080003950 | Haapoja et al. | Jan 2008 | A1 |
20080008273 | Kim et al. | Jan 2008 | A1 |
20080009248 | Rozenblit et al. | Jan 2008 | A1 |
20080023825 | Hebert et al. | Jan 2008 | A1 |
20080036532 | Pan | Feb 2008 | A1 |
20080051044 | Takehara | Feb 2008 | A1 |
20080057883 | Pan | Mar 2008 | A1 |
20080081572 | Rofougaran | Apr 2008 | A1 |
20080136559 | Takahashi et al. | Jun 2008 | A1 |
20080157732 | Williams | Jul 2008 | A1 |
20080169792 | Orr | Jul 2008 | A1 |
20080205547 | Rofougaran | Aug 2008 | A1 |
20080233913 | Sivasubramaniam | Sep 2008 | A1 |
20080278136 | Murtojarvi | Nov 2008 | A1 |
20080278236 | Seymour | Nov 2008 | A1 |
20090004981 | Eliezer et al. | Jan 2009 | A1 |
20090011787 | Kikuma | Jan 2009 | A1 |
20090021302 | Elia | Jan 2009 | A1 |
20090059630 | Williams | Mar 2009 | A1 |
20090068966 | Drogi et al. | Mar 2009 | A1 |
20090104900 | Lee | Apr 2009 | A1 |
20090115520 | Ripley et al. | May 2009 | A1 |
20090153250 | Rofougaran | Jun 2009 | A1 |
20090163153 | Senda et al. | Jun 2009 | A1 |
20090163157 | Zolfaghari | Jun 2009 | A1 |
20090176464 | Liang et al. | Jul 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20090258611 | Nakamura et al. | Oct 2009 | A1 |
20090264091 | Jensen et al. | Oct 2009 | A1 |
20090274207 | O'Keeffe et al. | Nov 2009 | A1 |
20090285331 | Sugar et al. | Nov 2009 | A1 |
20090289719 | Van Bezooijen et al. | Nov 2009 | A1 |
20090311980 | Sjoland | Dec 2009 | A1 |
20090322304 | Oraw et al. | Dec 2009 | A1 |
20100007412 | Wang et al. | Jan 2010 | A1 |
20100007414 | Searle et al. | Jan 2010 | A1 |
20100007433 | Jensen | Jan 2010 | A1 |
20100013548 | Barrow | Jan 2010 | A1 |
20100020899 | Szopko et al. | Jan 2010 | A1 |
20100027596 | Bellaouar et al. | Feb 2010 | A1 |
20100029224 | Urushihara et al. | Feb 2010 | A1 |
20100052794 | Rofougaran | Mar 2010 | A1 |
20100097104 | Yang et al. | Apr 2010 | A1 |
20100102789 | Randall | Apr 2010 | A1 |
20100109561 | Chen et al. | May 2010 | A1 |
20100120384 | Pennec | May 2010 | A1 |
20100120475 | Taniuchi et al. | May 2010 | A1 |
20100123447 | Vecera et al. | May 2010 | A1 |
20100127781 | Inamori et al. | May 2010 | A1 |
20100128689 | Yoon et al. | May 2010 | A1 |
20100164579 | Acatrinei | Jul 2010 | A1 |
20100176869 | Horie et al. | Jul 2010 | A1 |
20100181980 | Richardson | Jul 2010 | A1 |
20100189042 | Pan | Jul 2010 | A1 |
20100222015 | Shimizu et al. | Sep 2010 | A1 |
20100233977 | Minnis et al. | Sep 2010 | A1 |
20100237944 | Pierdomenico et al. | Sep 2010 | A1 |
20100244788 | Chen | Sep 2010 | A1 |
20100291888 | Hadjichristos et al. | Nov 2010 | A1 |
20100295599 | Uehara et al. | Nov 2010 | A1 |
20100311362 | Lee et al. | Dec 2010 | A1 |
20110018516 | Notman et al. | Jan 2011 | A1 |
20110018632 | Pletcher et al. | Jan 2011 | A1 |
20110018640 | Liang et al. | Jan 2011 | A1 |
20110032030 | Ripley et al. | Feb 2011 | A1 |
20110051842 | van der Heijden et al. | Mar 2011 | A1 |
20110068768 | Chen et al. | Mar 2011 | A1 |
20110068873 | Alidio et al. | Mar 2011 | A1 |
20110075772 | Sethi et al. | Mar 2011 | A1 |
20110080205 | Lee | Apr 2011 | A1 |
20110095735 | Lin | Apr 2011 | A1 |
20110123048 | Wang et al. | May 2011 | A1 |
20110136452 | Pratt et al. | Jun 2011 | A1 |
20110181115 | Ivanov | Jul 2011 | A1 |
20110234187 | Brown et al. | Sep 2011 | A1 |
20110273152 | Weir | Nov 2011 | A1 |
20110298538 | Andrys et al. | Dec 2011 | A1 |
20110309884 | Dishop | Dec 2011 | A1 |
20110312287 | Ramachandran et al. | Dec 2011 | A1 |
20120044022 | Walker et al. | Feb 2012 | A1 |
20120064953 | Dagher et al. | Mar 2012 | A1 |
20120117284 | Southcombe et al. | May 2012 | A1 |
20120170690 | Ngo et al. | Jul 2012 | A1 |
20120223773 | Jones et al. | Sep 2012 | A1 |
20120229210 | Jones et al. | Sep 2012 | A1 |
20120235736 | Levesque et al. | Sep 2012 | A1 |
20120236958 | Deng et al. | Sep 2012 | A1 |
20120242413 | Lesso | Sep 2012 | A1 |
20120252382 | Bashir et al. | Oct 2012 | A1 |
20130005286 | Chan et al. | Jan 2013 | A1 |
20130194979 | Levesque | Aug 2013 | A1 |
20130307616 | Berchtold et al. | Nov 2013 | A1 |
20130342270 | Baxter et al. | Dec 2013 | A1 |
20130344828 | Baxter et al. | Dec 2013 | A1 |
20130344833 | Baxter et al. | Dec 2013 | A1 |
20140119070 | Jeong et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2444984 | Jun 2008 | GB |
Entry |
---|
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 10) dated Apr. 2011. |
Author Unknown , “SKY77344-21 Power Amplifier Module—Evaluation Information,” Skyworks, Version 21, Feb. 16, 2010, 21 pages. |
Author Unknown, “60mA, 5.0V, Buck/Boost Charge Pump in ThinSOT-23 and ThinQFN”, Texas Instruments Incorporated, REG710, SBAS221F, Dec. 2001, revised Mar. 2008, 23 pages. |
Author Unknown, “DC-to-DC Converter Combats EMI,” Maxim Integrated Products, Application Note 1077, May 28, 2002, 4 pages, http://www.maxim-ic.com/an1077/. |
Author Unknown, “MIPI Alliance Specification for RF Front-End Control Interface”, Mobile Industry Processor Interface (MIPI) Alliance, Version 1.00.00, May 3, 2010, approved Jul. 16, 2010, 88 pages. |
Bastida, E.M. et al., “Cascadable Monolithic Balanced Amplifiers at Microwave Frequencies,” 10th European Microwave Conference, Sep. 8-12, 1980, pp. 603-607. |
Berretta, G. et al., “A balanced CDMA2000 SiGe HBT load insensitive power amplifier,” 2006 IEEE Radio and Wireless Symposium, Jan. 17-19, 2006, pp. 523-526. |
Grebennikov, A. et al., “High-Efficiency Balanced Switched-Path Monolithic SiGe HBT Power Amplifiers for Wireless Applications,” Proceedings of the 2nd European Microwave Integrated Circuits Conference, Oct. 8-10, 2007, pp. 391-394. |
Grebennikov, A., “Circuit Design Technique for High Efficiency Class F Amplifiers,” 2000 IEEE International Microwave Symposium Digest, vol. 2, Jun. 11-16, 2000, pp. 771-774. |
Kurokawa, K., “Design Theory of Balanced Transistor Amplifiers,” Bell System Technical Journal, vol. 44, Oct. 1965, pp. 1675-1698, Bell Labs. |
Li, Y. et al., “LTE power amplifier module design: challenges and trends,” IEEE International Conference on Solid-State and Integrated Circuit Technology, Nov. 2010, pp. 192-195. |
Mandeep, J.S. et al., “A Compact, Balanced Low Noise Amplifier for WiMAX Base Station Applications”, Microwave Journal, vol. 53, No. 11, Nov. 2010, p. 84-92. |
Noriega, Fernando et al., “Designing LC Wilkinson power splitters,” RF interconnects/interfaces, Aug. 2002, pp. 18-24, www.rfdesign.com. |
Pampichai, Samphan et al., “A 3-dB Lumped-Distributed Miniaturized Wilkinson Divider,” Electrical Engineering Conference (EECON-23), Nov. 2000, pp. 329-332. |
Podcameni, A.B. et al., “An Amplifier Linearization Method Based on a Quadrature Balanced Structure,” IEEE Transactions on Broadcasting, vol. 48, No. 2, Jun. 2002, p. 158-162. |
Scuderi, A. et al., “Balanced SiGe PA Module for Multi-Band and Multi-Mode Cellular-Phone Applications,” Digest of Technical Papers, 2008 IEEE International Solid-State Circuits Conference, Feb. 3-7, 2008, pp. 572-573, 637. |
Wang, P. et al., “A 2.4-GHz +25dBm P-1dB Linear Power Amplifier with Dynamic Bias Control in a 65-nm CMOS Process,” 2008 European Solid-State Circuits Conference, Sep. 15-19, 2008, pp. 490-493. |
Zhang, G. et al., “A High Performance Balanced Power Amplifier and Its Integration into a Front-end Module at PCS Band,” 2007 IEEE Radio Frequency Integrated Circuits Symposium, Jun. 3-5, 2007, p. 251-254. |
Zhang, G. et al., “Dual Mode Efficiency Enhanced Linear Power Amplifiers Using a New Balanced Structure,” 2009 IEEE Radio Frequency Integrated Circuits Symposium, Jun. 7-9, 2009, pp. 245-248. |
Non-Final Office Action for U.S. Appl. No. 11/756,909, mailed May 15, 2009, 11 pages. |
Final Office Action for U.S. Appl. No. 11/756,909, mailed Nov. 18, 2009, 14 pages. |
Notice of Allowance for U.S. Appl. No. 11/756,909, mailed Dec. 23, 2010, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 12/433,377, mailed Jun. 16, 2011, 7 pages. |
Notice of Allowance for U.S. Appl. No. 12/433,377, mailed Oct. 31, 2011, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/567,318, mailed May 29, 2012, 7 pages. |
Final Office Action for U.S. Appl. No. 12/567,318, mailed Oct. 22, 2012, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 12/567,318, mailed Apr. 2, 2013, 5 pages. |
Final Office Action for U.S. Appl. No. 12/567,318, mailed Jul. 19, 2013, 7 pages. |
Advisory Action for U.S. Appl. No. 12/567,318, mailed Aug. 27, 2013, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 12/567,318, mailed Oct. 24, 2013, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/723,738, mailed Dec. 20, 2012, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 12/774,155, mailed Jun. 21, 2012, 13 pages. |
Final Office Action for U.S. Appl. No. 12/774,155, mailed Jan. 31, 2013, 15 pages. |
Final Office Action for U.S. Appl. No. 12/774,155, mailed Apr. 18, 2013, 15 pages. |
Advisory Action for U.S. Appl. No. 12/774,155, mailed Jun. 4, 2013, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 12/774,155, mailed Aug. 15, 2013, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 12/749,091, mailed Mar. 25, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 12/749,091, mailed May 20, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 12/773,292, mailed Feb. 22, 2012, 11 pages. |
Notice of Allowance for U.S. Appl. No. 12/773,292, mailed Jul. 16, 2012, 12 pages. |
Quayle Action for U.S. Appl. No. 13/198,074, mailed Jan. 22, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/198,074, mailed Apr. 12, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/090,663, mailed Nov. 28, 2012, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/019,777, mailed Feb. 19, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/019,077, mailed May 24, 2013, 9 pages. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee for PCT/US2011/050633, mailed Aug. 22, 2012, 5 pages. |
International Search Report and Written Opinion for PCT/US2011/050633, mailed Mar. 8, 2013, 23 pages. |
International Preliminary Report on Patentability for PCT/US2011/050633, mailed Mar. 28, 2013, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 13/289,134, mailed Feb. 6, 2013, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/289,134, mailed Jun. 6, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 12/774,155, mailed Jun. 20, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/010,617, mailed Jul. 16, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 14/010,643, mailed Jul. 18, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/172,371, mailed Jun. 16, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/287,726, mailed Aug. 4, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/287,672, mailed Jul. 28, 2014, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 13/289,302, mailed Jun. 16, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,762, mailed May 29, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/773,888, mailed Jun. 10, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 12/567,318, mailed Feb. 18, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/723,738, mailed Apr. 28, 2014, 14 pages. |
Advisory Action for U.S. Appl. No. 13/287,713, mailed Feb. 20, 2014, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,517, mailed Apr. 28, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/226,843, mailed Mar. 31, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/288,273, mailed Apr. 25, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/288,373, mailed May 7, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,590, mailed May 8, 2014, 11 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,762, mailed Apr. 16, 2014, 7 pages. |
Final Office Action for U.S. Appl. No. 13/226,777, mailed Mar. 21, 2014, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 13/656,997, mailed Apr. 30, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/774,155, mailed Dec. 4, 2013, 18 pages. |
Final Office Action for U.S. Appl. No. 13/287,713, mailed Dec. 6, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/288,478, mailed Nov. 18, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,517, mailed Oct. 31, 2013, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,373, mailed Nov. 19, 2013, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,590, mailed Dec. 5, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,735, mailed Jan. 2, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,796, mailed Dec. 5, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,943, mailed Dec. 5, 2013, 9 pages. |
Advisory Action for U.S. Appl. No. 13/226,814, mailed Dec. 31, 2013, 3 pages. |
Final Office Action for U.S. Appl. No. 13/479,816, mailed Nov. 1, 2013, 15 pages. |
Advisory Action for U.S. Appl. No. 13/479,816, mailed Jan. 7, 2014, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/656,997, mailed Jan. 13, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/287,726, mailed Jan. 25, 2013, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/287,726, mailed May 16, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/287,726, mailed Oct. 7, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/287,713, mailed Aug. 5, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/287,735, mailed Jan. 25, 2013, 11 pages. |
Notice of Allowance for U.S. Appl. No. 13/287,735, mailed May 28, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,318, mailed Feb. 5, 2013, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,318, mailed Jun. 3, 2013, 14 pages. |
Notice of Allowance for U.S. Appl. No. 13/288,318, mailed Oct. 24, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,478, mailed Dec. 26, 2012, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,478, mailed Jun. 3, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,517, mailed Dec. 11, 2012, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,517, mailed May 16, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/226,843, mailed Mar. 4, 2013, 6 pages. |
Final Office Action for U.S. Appl. No. 13/226,843, mailed Jul. 10, 2013, 7 pages. |
Advisory Action for U.S. Appl. No. 13/226,843, mailed Sep. 17, 2013, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/226,843, mailed Oct. 29, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,273, mailed Feb. 5, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,273, mailed May 30, 2013, 11 pages. |
Notice of Allowance for U.S. Appl. No. 13/288,273 mailed Oct. 24, 2013 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/288,373, mailed Feb. 25, 2013, 6 pages. |
Final Office Action for U.S. Appl. No. 13/288,373, mailed Aug. 2, 2013, 7 pages. |
Advisory Action for U.S. Appl. No. 13/288,373, mailed Oct. 15, 2013, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/289,379, mailed Feb. 25, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/289,379, mailed Jun. 6, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/304,735, mailed Jul. 11, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/304,796, mailed Jul. 17, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/304,744, mailed Jan. 24, 2013, 10 pages. |
Final Office Action for U.S. Appl. No. 13/304,744, mailed May 30, 2013, 12 pages. |
Advisory Action for U.S. Appl. No. 13/304,744, mailed Aug. 2, 2013, 3 pages. |
Advisory Action for U.S. Appl. No. 13/304,744, mailed Sep. 13, 2013, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/304,744, mailed Oct. 21, 2013, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 13/305,763, mailed Mar. 8, 2013, 10 pages. |
Final Office Action for U.S. Appl. No. 13/305,763, mailed Jun. 24, 2013, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/305,763, mailed Sep. 16, 2013, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,762, mailed Nov. 27, 2012, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/304,762, mailed Mar. 5, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/304,943, mailed Jul. 23, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/226,777, mailed May 28, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/226,777, mailed Oct. 18, 2013, 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/226,797, mailed Apr. 26, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/226,814, mailed Jun. 13, 2013, 13 pages. |
Final Office Action for U.S. Appl. No. 13/226,814, mailed Oct. 23, 2013, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 13/479,816, mailed Jul. 5, 2013, 13 pages. |
Li, C.H., “Quadrature Power Amplifier for RF Applications,” Master's Thesis for the University of Twente, Nov. 2009, 102 pages. |
Non-Final Office Action for U.S. Appl. No. 13/226,831, mailed Nov. 3, 2014, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 13/479,816, mailed Nov. 4, 2014, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/845,410, mailed Oct. 2, 2014, 5 pages. |
Final Office Action for U.S. Appl. No. 12/723,738, mailed Aug. 11, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 14/010,630, mailed Aug. 6, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/288,517, mailed Aug. 15, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/656,997, mailed Sep. 2, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/761,500, mailed Sep. 19, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 12/723,738, mailed Dec. 10, 2014, 11 pages. |
Notice of Allowance for U.S. Appl. No. 14/010,617, mailed Dec. 16, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/010,630, mailed Dec. 31, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/010,643, mailed Dec. 9, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/911,526, mailed Dec. 12, 2014, 9 pages. |
Final Office Action for U.S. Appl. No. 13/287,672, mailed Dec. 8, 2014, 14 pages. |
Final Office Action for U.S. Appl. No. 13/773,888, mailed Dec. 26, 2014, 18 pages. |
Final Office Action for U.S. Appl. No. 12/723,738, mailed Mar. 20, 2015, 11 pages. |
Final Office Action for U.S. Appl. No. 14/010,643, mailed May 5, 2015, 8 pages. |
Final Office Action for U.S. Appl. No. 13/226,831, mailed Mar. 6, 2015, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/937,810, mailed Mar. 5, 2015, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 13/287,672, mailed Mar. 23, 2015, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20130194979 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61592900 | Jan 2012 | US |