Refer now to
Insofar as it is an IQ modulator, the modulator (2) itself is conventional, but it will be noted that we have shown it in a setting 1 that includes algorithmic control and the ability to set as DC bias levels the I and Q inputs. The arrangement 1 includes a CW (Continuous Wave) source, or oscillator, 3 whose output 4 is the carrier signal (cos) to be modulated. Signal 4 is applied to an I channel mixer 5, which may be a double balanced mixer, and also to a 90° phase shifter 6. The output 7 of the phase shifter (sin) is applied to another mixer 8 that is the Q channel mixer.
A variable DC bias signal 13 produced by a programmable DC source or arbitrary waveform generator 14 under algorithmic control (21) is applied as an I modulation input to the I channel mixer 5. Similarly, a variable DC bias signal 15 produced by a programmable DC source or arbitrary waveform generator 16 under algorithmic control (22) is applied as a Q modulation input to the Q channel mixer 8.
The outputs 9 and 10 from mixer 5 and 8, respectively, are summed by summer 11 to form an IQ modulated signal 12 whose amplitude or power level (Atotal, 23) is measured by suitable test equipment 17 (e.g., broadband RF voltmeter or a power meter). The measured Atotal (23) is supplied to the mechanism (not shown—but it is a computer running a suitable program, and interfaced to elements 14, 16, 17 and 19) performing the optimization algorithm to be described.
Note that the phase between the cos and sin signals (4 and 7) and their amplitude (individual or relative) are made available for measurement. These measurements are made in a conventional manner, and the results made available as input parameters to the algorithmic mechanism.
Finally, it will be appreciated that IQ modulators are susceptible of ‘tweaking’ according to one or more applied control parameters (18). Examples include slight adjustments to the phase shifter 6 and the relative amplitude of the sin and cos signals. There might also be ‘local’ biases applied to the individual mixers (5 and 8). These things would depend upon the exact nature of the particular IQ modulator 2 at hand. So, there might be just one control parameter 18, or a collection. In any event, as far as we are concerned, there are just a collection of one or more control parameters, and if more than one, each different combination of values is a different ‘value’ (or state) of the one or more control parameters, and we won't delve into how the algorithmic mechanism might increment or decrement the individual components of the combination.
That said, note that there are (one or more) DACs 19 that, in response to signals 20 from the algorithmic control mechanism, provide the one or more control parameters (18). We shall find an optimum value(s) of the control parameters 18 by monitoring changes in the behavior parameters as the control parameters are varied, as if by trial and error. However, we shall not measure the behavior parameters directly. We shall find them indirectly, through inexpensive means, and it is to that, toward which we now turn our attention.
Ideally, we have two carrier CW (Continuous Wave) signals, one for the I-channel and one for the Q-channel, each with carrier frequency ωc, and that are 90° out of phase. Then the output of the modulator would be:
Ψ=I×COS(ωct)+Q×sin(ωct) (Eq. 1)
If the I modulation input signal I and Q modulation input signal Q are two identical DC voltages V:
I=Q=V
The modulator's output will then be:
On the other hand, if I and Q are also two CW signals that are 90° out of phase:
I=A COS(ωt) and Q=A sin(ωt)
Then we will have as the output:
Ψ=A[ cos(ωt)×cos(ωct)+sin(ωt)×sin(ωct)]=A cos [(ωc−ω)t] (Eq. 3)
In this non-ideal model, we assume that the two CW sine and cosine carrier signals are phase impaired, that the I and Q channel have amplitude errors, that their phase error can be neglected, and also that the I and Q channels also impose DC offset errors. Then the output signal would be:
Ψ=(I×dI+δI)cos(ωct+φc)+(Q×dQ+δQ)sin(ωct+φc+φ) (Eq. 4)
φc is the initial phase of the carrier, dI and dQ the amplitude error factors, δI and δQ the DC offset errors, and φ the phase imbalance error for the non-ideal IQ modulator.
Now the task is to find a way to measure the amplitude errors, the DC offsets and the phase imbalance, and then to adjust the control parameters (e.g. the control DACs 19) of the IQ modulator 2 such that ideally we can finally make dI=dQ, δI=0, δQ=0 and φ=0. In reality the best we can achieve might be dI≈dQ, δI≠0, δQ≈0 and φ≈0.
Suppose we apply known DC levels (biases) to the IQ modulator with I=VI and Q=VQ.
The output from the modulator would be:
Ψ=(VI×dI+δI)cos(ωct+φc)+(VQ×dQ+δQ)sin(ωct+φc+φ) (Eq. 5)
which, by going through some basic trigonometric transforms, can be rearranged as
Ψ=└(VIdI+δI)cos(φc)+(VQdQ+δQ)sin(φc+φ)┘×cos(ωct)−└(VIdI+δI)sin(φc)−(VQdQ+δQ)cos(φc+φ)┘×sin(ωct)
and finally as:
(VIdI+δI)2+(VQdQ+δQ)2+2(VIdI+δI)(VQdQ+δQ)sin φ=Atotal2 (Eq 7)
Now let VI=0. Eq. 7 then simplifies to:
V
Q
2
D
Q+2VQΔQ+2VQΨ+Λ=Atotal2 (Eq. 8)
where
DQ=dQ2 (Eq. 8.1)
ΔQ=dQδQ (Eq. 8.2)
Ψ=dQδI sin φ (Eq. 8.3)
Note that Eq. 8.4 uses Eq. 8.3 by re-writing it as:
Now it is clear from Eq's 8.1 to 8.5 that under the condition VI=0 and by applying at least four VQ values while measuring the corresponding Atotal, a set of linear equations is established that can be solved for the parameters DQ, ΔQ, Ψ and Λ. It is straight forward to either solve the linear equations (when we have only used four VQ values) ore to use any standard linear curve it algorithms (when we have used more than four VQ values) to solve for DQ, ΔQ, Ψ and Λ. Furthermore, the values of dQ, δQ, δI and φ can be calculated directly from Eq's 8.1 to 8.5 as the following:
Now the only thing still unknown is dI, and it can be found by making one more measurement with VW=0 and an non-zero VI and applying Eq. 7. But notice the sign ambiguity in solution (8.4′). The ambiguity for δI means we can successfully find only dQ and δQ from the process above, To resolve the sign ambiguity (and also find dI) more than one measurement needs to be made with VQ=0. We can essentially repeat what we have done so far for deriving equations (8.1) and (8.4) and equations (8.1′) and (8.4′), only this time with VQ=0. Now all the equations from (8.1) to (8.4) and (8.1′) to (8.4′) still stand if we replace all I subscripts with Q and replace all Q subscripts with I. By measuring further values for Atotal at least 4 different non-zero VI values and applying the same linear equation solving algorithm or linear equation curve fitting algorithm as used to find dQ and δQ, we can now find dI and δI without any ambiguity. We can also check the quality of our test by comparing the |δI| value found here with the |δI| value derived from (8.4′) earlier. Ideally they would be the same, but realistically they should be almost the same, i.e., |δI|V
After we get dQ, δQ, dI and δI without any ambiguity, we can solve (8-3′) to find the phase imbalance φ using dQ, δI and Ψ|v
Once these behavior parameters (i.e., the amplitude errors, DC offsets and the phase imbalance) are measured (that is, found as described above), the control parameters for the IQ modulator can be adjusted in a direction that minimizes the errors represented by the behavior parameters. These error measurements and the IQ modulator adjustment process can be iterated multiple times until the behavior parameters finally get close to ideal, i.e. dI=dQ, δI=0, δQ=0 and φ=0.
An FOM (Figure Of Merit) for the behavior parameters might be the sum of the square of the difference between the amplitude error factors plus the square of each DC offset plus the absolute value of the phase imbalance (or its square). This will produce an FOM whose preferred value is zero and that departs rapidly from zero as errors occur. Other rules for an FOM are possible, and in the case where there are more that one control parameter, it may be difficult or impractical to use changes in an FOM to ‘steer’ the selection of a better combination of control parameters. In such a case it would be advisable to try a range of combinations, and see what FOM result.
Refer now to
At step 25 the carrier frequency (from 3) is applied to the IQ modulator 2. Then the I and Q modulation inputs (13, 15) are set to zero at step 26, as is an index counter N0 associated with the number of trials. Then at step 27 the Q modulation input is stepped to a non-zero value. At step 28 the value Atotal is measured (and saved). Than at step 29 the index N0 is incremented for testing at qualifier 30. If N0 is not at least four the answer is ‘NO’ and the loop returns (31) to step 27 to apply a (different) nonzero Q modulation input value. On the other hand, N0 will eventually reach four (after four times through the loop) and the ‘YES’ branch (32) from qualifier 30 will lead to step 33, where the partial set of behavior parameters is found (as described above). Then at step 34 the Q modulation input is made zero, some (one or more) measurements are made with different I modulation input values, and the remaining behavior parameters are found or ambiguities removed.
Now consider