The electrophotography process used in some imaging devices, such as laser printers and copiers, utilizes electrical potentials between components to control the transfer and placement of toner. These electrical potentials create attractive and repulsive forces that tend to promote the transfer of charged toner to desired areas while ideally preventing transfer of the toner to unwanted areas. For instance, during the process of developing a latent image on a photoconductive surface, charged toner particles may be deposited from a biased developer roller onto latent image features (e.g., corresponding to text or graphics) on the photoconductive surface having a surface potential that is lower in magnitude than the developer roller. At the same time, the charged toner particles may be prevented from transferring or migrating to more highly charged areas (e.g., corresponding to the document background) of the same photoconductive surface. In this manner, imaging devices implementing this process may simultaneously generate images with fine detail while maintaining clean backgrounds.
The precise magnitudes of these electrical potentials vary among devices and manufacturers. In general, however, a laser or imaging source is used to illuminate and selectively discharge portions of a photoconductive surface to create a latent image having a lower surface potential than the remaining, undischarged areas of the photoconductive surface. The developer roller is biased to some intermediate level between the discharge potential of the latent image and the surface potential of the undischarged photoconductive surface. The toner may be charged triboelectrically and/or via biased toner delivery control components, such as a toner adder roll, a doctor blade, and a developer roller. The developer roller supplies toner to develop the latent images on the photoconductive surface. The developed image is ultimately transferred onto a media sheet, typically by employing yet another surface potential that attracts the toner off of the photoconductive surface (or an intermediate transfer surface) and onto the media sheet where it is ultimately fused.
The various surface potentials may be optimized to strike a balance between maintaining clear backgrounds while producing quality images with fine detail. For example, the surface potential of a developer roller may be optimized to develop images with a desired toner density. Another variable termed a “white vector” may be optimized as well. White vector refers to the difference between the surface potential of the developer roller and the surface potential of undischarged portions of a photoconductive surface. An optimal white vector achieves certain desirable characteristics, one of which is to provide a clean media sheet with little or no appreciable background toner in areas other than where printing is desired. Very large white vector values may adversely affect the density of deposited toner and detail of a resulting image. Conversely, as white vector values fall, unwanted background may begin to appear.
Even when these various surface potentials are optimized, image quality may be improved by further optimization of imaging power. Imaging power affects the formation of the latent image on a photoconductive surface. Consequently, incorrect imaging power settings may adversely affect image quality and halftone linearity. In some cases, the discharged latent image may not attract enough toner while in other cases, too much toner is attracted. The effects that are produced by changes in imaging power may vary depending on the surface potentials used in the image formation process. Thus, the imaging power may need to be optimized while taking into consideration the optimization of the various surface potentials. By the same token, optimization of the imaging power may affect the optimization of the various surface potentials. As a result, improved image production may dictate that these various operating points be optimized in consideration of one another.
Embodiments of the present invention are directed to devices and methods for setting optimum operating points in an electrophotographic image forming device. An exemplary image forming device includes a developer, a photoconductive unit, and a charge member for adjustably charging the photoconductive surface. The image forming device also includes an imaging unit forming a latent image on the surface of the photoconductive unit by selectively exposing the charged photoconductive surface by illumination thereof. The imaging unit may have an adjustable imaging power. A sensing unit may detect a reflectivity of solid toner patches, of a toner carrying surface on which the toner is deposited, and of predetermined toner patterns. A controller may selectively adjust the imaging power in response to reflectivity values detected by the sensing unit.
In one embodiment, the controller may manage the creation of a plurality of predetermined latent images on the photoconductive surface where each of the predetermined latent images has a target halftone percentage. Further, each of the predetermined latent images may be generated with a different imaging power. Then, based on the reflectivity of the developed images, the controller may set the imaging power at an imaging power that produces a target reflectivity at the target halftone percentage.
In another embodiment, the controller may manage the creation of multiple sets of predetermined latent images. Each of the predetermined latent images may have a target halftone percentage. Each of the predetermined latent images within a set may be generated with a different imaging power. Further, each set may be generated with a different white vector. Based on the reflectivity of the developed images, the controller may generate a predictive model for setting the imaging power based at least partly on an imaging power that produces a target reflectivity for each set of predetermined latent images. The predictive model may then be used to set an imaging power based on optimization of the electrical potentials applied to the developer member and the photoconductive surface. Various additional embodiments are provided showing techniques for optimizing operating points based on system architecture.
In electrophotographic image development, certain operating points may be varied and optimized to produce high quality images with little or no background noise (i.e., toner particles not intended to be transferred to the media sheet). Optimization of these operating points in a device such as the image forming apparatus 100 generally illustrated in
Within the image forming device housing 102, the image forming device 100 includes one or more removable developer cartridges 116, photoconductive units 12, developer rollers 18 and corresponding transfer rollers 20. The image forming device 100 also includes an intermediate transfer mechanism (ITM) belt 114, a fuser 118, and exit rollers 120, as well as various additional rollers, actuators, sensors, optics, and electronics (not shown) as are conventionally known in the image forming device arts, and which are not further explicated herein. Additionally, the image forming device 100 includes one or more system boards 80 comprising controllers (including controller 40 described below), microprocessors, DSPs, or other stored-program processors (not specifically shown in
Each developer cartridge 116 may include a reservoir containing toner 32 and a developer roller 18, in addition to various rollers, paddles and other elements (not shown). Each developer roller 18 is adjacent to a corresponding photoconductive unit 12, with the developer roller 18 developing a latent image on the surface of the photoconductive unit 12 by supplying toner 32. In various alternative embodiments, the photoconductive unit 12 may be integrated into the developer cartridge 116, may be fixed in the image forming device housing 102, or may be disposed in a removable photoconductor cartridge (not shown). In a typical color image forming device, three or four colors of toner—cyan, yellow, magenta, and optionally black—are applied successively (and not necessarily in that order) to an ITM belt 114 or to a print media sheet 106 to create a color image. Correspondingly,
The operation of the image forming device 100 is conventionally known. Upon command from control electronics, a single media sheet 106 is “picked,” or selected, from either the primary media tray 104 or the multipurpose tray 110 while the ITM belt 114 moves successively past the image forming units 10. The surface of the photoconductive unit 12 is charged to a uniform potential. As described above, at each photoconductive unit 12, a latent image is formed thereon by optical projection from the imaging device 16. The latent image is developed by applying toner to the photoconductive unit 12 from the corresponding developer roller 18. The toner is subsequently deposited on the ITM belt 114 as it is conveyed past the photoconductive unit 12 by operation of a transfer voltage applied by the transfer roller 20. Each color is layered onto the ITM belt 114 to form a composite image, as the ITM belt 114 passes by each successive image forming unit 10. The media sheet 106 is fed to a secondary transfer nip 122 where the image is transferred from the ITM belt 114 to the media sheet 106 with the aid of transfer roller 130. The media sheet proceeds from the secondary transfer nip 122 along media path 38. The toner is thermally fused to the media sheet 106 by the fuser 118, and the sheet 106 then passes through exit rollers 120, to land facedown in the output stack 124 formed on the exterior of the image forming device housing 102. A cleaner unit 128 cleans residual toner from the surface of the ITM belt 114 prior to the next application of a toner image.
The representative image forming device 100 shown in
The latent image thus formed on the photoconductive unit 12 is then developed with toner from the developer roller 18, on which is adhered a thin layer of toner 32. The developer roller 18 is biased to a potential that is intermediate to the surface potential of the discharged latent image areas 28 and the undischarged areas not to be developed 30. In the embodiment depicted, the developer roller 18 is biased to a potential of approximately −600 volts. Negatively charged toner 32 is attracted to the more positive discharged areas 28 on the surface of the photoconductive unit 12 (i.e., −300V vs. −600V). The toner 32 is repelled from the less-positive, non-discharged areas 30, or white image areas, on the surface of the photoconductive unit 12 (i.e., −1000V vs. −600V), and consequently, the toner 32 does not adhere to these areas. As is well known in the art, the photoconductive unit 12, developer roller 18 and toner 32 may be charged alternatively to positive voltages.
In this manner, the latent image on the photoconductive unit 12 is developed by toner 32, which is subsequently transferred to a media sheet 106 by the positive voltage of the transfer device 20, approximately +1000V in the embodiment depicted. Alternatively, the toner 32 developing an image on the photoconductive unit 12 may be transferred to an ITM belt 114 and subsequently transferred to a media sheet 106 at a second transfer location (not shown in
The above description relates to an exemplary image forming unit 10. In any given application, the precise arrangement of components, voltages, power levels and the like may vary as desired or required. As is known in the art, an electrophotographic image forming device may include a single image forming unit 10 (generally developing images with black toner), or may include a plurality of image forming units 10, each developing halftone images on a different color plane with a different color of toner (generally yellow, cyan and magenta, and optionally also black).
The difference in potential between non-discharged areas 30 on the surface of the photoconductive unit 12—that is, white image areas or areas not to be developed by toner—and the surface potential of the developer roller 18 is known as the “white vector.” This potential difference (with the white image areas 30 on the surface of the photoconductive unit 12 being less positive than the surface of the developer roller 18 in the embodiment depicted) provides an electro-static barrier to the development of negatively charged toner 32 on the white image areas 30 of the latent image on the photoconductive unit 12. A sufficiently high white vector is necessary to prevent toner development in white image areas; however, an overly large white vector detrimentally affects the formation of fine image features, such as small dots and lines. In exemplary embodiments of image forming devices, a white vector as low as 200-250V may result in acceptable image quality while preventing toner development in white image areas. Unfortunately, the optimal white vector for each image forming unit 10 within an image forming device may be different, due to environmental conditions, differing toner formulations, component variation, difference in age or past usage levels of various components, and the like. Controller 40, via sensor 126, monitors toner 32 formation on media sheet 106 or belt 114 and adjusts the surface potential of the surface of photoconductive unit 12 (via charging device 14) and the surface potential of developer roller 18. Thus, while exemplary voltages establishing a white vector of 400V (i.e., |−1000V-−600V|) are explicitly shown in
In an exemplary embodiment, controller 40 at least partially manages the formation of a predetermined pattern of toner 32 on a substrate, which may comprise a media sheet 106 or belt 114 (e.g., a transfer or ITM belt). A toner patch sensor 126 detects a reflectivity of the transferred pattern. Controller 40 adjusts the bias voltage of the charging device 14 and/or developer roller 18 and/or imaging power as needed to optimize image formation at least partly based on information provided by the toner patch sensor 126. The toner patch sensor 126 may be configured to sense the developed patterns 32 on a substrate 106, 114. Additionally, or alternatively, the toner patch sensor 126 may be configured to sense the developed patterns 32 on the surface of the photoconductive unit 12. Generally, the toner patch sensor 126 may be disposed adjacent any toner carrying surface to sense reflectivity of toner 32, the underlying toner carrying surface, or both. Further, the term reflectivity as used herein is intended to broadly encompass that measurable electromagnetic (optical or otherwise) energy or frequency sensed by the toner patch sensor 126 and may encompass such terms as luminosity, luminance, or reflectance. In certain instances, it may be desirable to print toner on toner images (e.g., black on yellow or other combinations) to achieve greater contrast between the developed image and the toner carrying surface. Thus, the toner carrying surface may comprise a solid toner patch of a different color disposed on the substrate 106, 114 or the photoconductive unit 12. Controller 40 establishes an operating point that will prevent background noise while creating a developed image with fine detail that approaches a desired standard.
Initially, one or more solid toner patches are developed and transferred to the substrate 106, 114 to determine an appropriate bias level for developer roll 18. The solid toner patches 32 are transported towards toner patch sensor 126, which measures a reflectivity of the solid toner patch. Various quantities may be sensed by the toner patch sensor 126 depending on the choice of color model. In one embodiment where an L-A-B color model is used, the L component (luminance or lightness) may be measured for black, cyan, and magenta toner patches while the B chromatic component may be measured for yellow toner patches. In either case, the detected value provides a measure of the density of the developed toner patch. The process may be repeated over a range of developer bias values with toner patch sensor 126 measurements taken at each value. The controller 40 may then adjust the developer bias accordingly to achieve a target solid color. During this process, the toner patch sensor 126 also determines the reflectivity of the background. In the absence of unwanted toner, the detected value is simply the reflectivity of the toner carrying surface, which may be the underlying substrate 106, 114, or the surface of the photoconductive unit 12.
With the developer roller 18 bias established relative to the discharge bias of latent images 28 on the surface of the photoconductive unit 12, the white vector may now be determined relative to the developer roller 18 bias. That is, in this exemplary embodiment, the white vector is established by adjusting the charging device 14 bias level while maintaining a fixed developer roller 18 bias.
As
In the embodiment shown, the critical point 54 is somewhat easily detectable because of the relatively large difference in reflectivity L* between the media sheet 106 and toner 32. In other situations where the reflectivity L* between the toner 32 and the substrate (be it a media sheet 106 or a belt 114) are similar, it may be more difficult to identify the critical point 54. For example, it may be difficult to identify the critical point 54 where black toner patches are printed on a black ITM belt 114. Accordingly, it may be possible to estimate the critical point 54 for a given color based on critical points of another color. In one embodiment, the same white vector value may be used. In one embodiment, the same white vector value and the same safety margin may be used. Modifications to the white vector estimate and/or the safety margin may be based on perception thresholds, toner formulations, and empirical data.
While it may be possible to set a fixed white vector using these approaches, the exemplary curves 50, 52 change over time and the optimal white vector range may shift up or down depending on factors such as toner and substrate types, environment, imaging device components, and age. Thus, different approaches using toner patch sensing may be implemented to set the white vector operating point.
One method uses the concept of “bloom” to set the white vector. Bloom represents a description of the extent to which a printed detail is wider or narrower than was intended, which results in printed area coverages that are larger or smaller than intended. Bloom may be estimated by sensing reflectance values of fine toner patterns and comparing an expected reflectance to the actual reflectance. The toner patterns may comprise fine dot patterns or fine line patterns where toner features are spaced apart a known amount. For instance, in one embodiment, latent images of horizontal or vertical lines having a width of 1/600th inch and spaced apart by 1/600th inch may be analyzed. Alternatively, a dot pattern comprised of a series of 1/600th inch dots spaced apart by 1/600th inch may be analyzed. In lieu of measuring the width of the toner features in printed patterns, the previously mentioned toner patch sensor 126 may be used to measure the reflectivity of these developed patterns, as well as solid toner patterns, and the underlying surface. Given these reflectance values, bloom may be estimated by:
where L*substrate represents the reflectivity of the toner carrying surface, L*pattern represents a measured reflectivity of an area of the pattern, L*solid represents a reflectivity of a solid toner patch, and %_Ideal_Coverage represents a known percentage of the area that should be covered with toner. As indicated above, the toner carrying surface may be a substrate 106, 114, the photoconductor surface 12, or toner of a different color. Bloom may be calculated over a range of white vector values. Then the white vector operating point may be set at a value that produces a desired bloom. In one embodiment, a bloom of one is sought. A detailed description of this method and other various methods of optimizing white vector in an electrophotographic image forming device is provided in commonly assigned U.S. patent application Ser. No. 11/126,814 entitled “White Vector Feedback Adjustment” filed May 11, 2005, the relevant portions of which are incorporated herein by reference.
The preceding discussion has provided a description of exemplary methods used to adjust the surface potential of different components, including the developer roller 18 and the photoconductive unit 12. Additional improvements in print quality may be obtained through adjustment of imaging power that account for the aforementioned surface potential adjustments. Imaging power adjustments should also consider the effect on the full range of halftones reproduced by a given image forming unit 10.
The straight, dashed line 400 in
By comparison, the exemplary halftone response curve 410 shows typical reflectivity L* values produced by an image forming unit 10 for one set of images comprising a full range of halftone screen percentages. The image forming unit 10 that was used to generate the curve 410 was optimized to produce a white vector that was large enough to prevent background noise on unprinted areas. Further, the developer bias and imaging power were adjusted to provide the desired reflectivity value of 10 for a solid toner patch (100% halftone). In one embodiment, a developer roller 18 bias of about −600 volts and a white vector of about 200 volts may be used. In one embodiment, an imaging power of about 50% for an imaging device 16 capable of producing an exposure level of about 1.1 micro-Joules per square centimeter at 100% power may be used. These values are merely intended to be representative values used in producing the response curve 410 shown in
The exemplary halftone response curve 410 is generated using one fixed imaging power. The graph presented in
Note also that the reflectivity L* of a solid toner patch (100% halftone) revealed by the end point of each curve also varies in response to imaging power. Thus, one simple optimization procedure is to select an imaging power that produces a target reflectivity L*. Another optimization is to select the smallest imaging power that produces a reflectivity L* that falls within a specified range of a target reflectivity L*. Unfortunately, these approaches may not necessarily take into consideration the halftone response at values less than 100%. Consequently, other optimization procedures that are based on the reflectivity L* of a solid toner patch may be used.
Another optimization seeks to match the ideal response 400. Referring to
In light of these issues, an alternative solution may be to select an imaging power that provides better linearity at low halftone percentages. High imaging powers, such as that represented by curves 520 or 530, produce a response that deviates greatly from and is always below the ideal curve 400. Further, above the 50% halftone region, the halftone response is relatively flat. In other words, approximately half of the adjustability range is lost because changes in halftone percentage above about 50% produce negligible changes in reflectivity L*.
One possible compromise is to select an imaging power that produces a reflectivity that is near ideal at a target halftone percentage. For example, a target halftone percentage of between 5% and 40% may be selected. Inherent in this solution is a response curve that crosses the ideal curve 400 at some target halftone percentage. Below this target halftone percentage, the reflectivity L* is above (lighter than) the ideal curve 400. Above this target halftone percentage, the reflectivity L* is below (darker than) the ideal curve 400. Different values for the target halftone percentage may be used. On one hand, a lower target halftone percentage may result in better isolated detail at the expense poor linearity at high halftone percentages. On the other hand, a higher target halftone may result in better overall linearity at the expense of poor isolated detail at low halftone percentages. In one embodiment, a target halftone percentage of about 10% may be selected as a suitable compromise.
An optimal value for the imaging power depends upon white vector. It has been determined that in order to produce a reflectivity L* that is near ideal at the target halftone percentage, the imaging power may need to be changed at different values of the white vector. The white vector used to produce each of the halftone response curves in
In
These and additional operating points that correlate imaging power to white vector values may be used to construct an operating curve 700 such as the one shown in
The procedure outlined in
Next, iterative procedures may be implemented to determine optimum levels for the white vector and imaging power. The controller 40 may determine the critical point 54 by generating toner patterns over a range of photoconductor 12 bias levels. These patterns are analyzed by the controller 40 using the patch sensor 126 as shown in
Next, in step 1108, imaging power may be optimized. The controller 40 sweeps through a series of imaging powers while printing toner patterns. Then, based on readings from toner patch sensor 126 and reflectivity values, the controller 40 sets the imaging power at a level that produces a target reflectivity. This target reflectivity may be an ideal reflectivity L* representative of an ideal halftone linearity as shown in
Having established several approaches to optimize imaging power in relation to white vector, the following description provides various approaches for implementing these optimization procedures. The embodiments discussed below may provide flexibility in applying the teachings provided herein to various system configurations. For example, certain image forming devices 100 may have shared power supplies and shared controllers 40 that limit whether individual operating points may be set at each image forming unit 10. Various configurations are discussed below.
One embodiment illustrated in
Decision step 810 determines whether the second white vector value WV2 is greater than the first white vector value WV1. If it is greater (“Yes” path), the white vector is set at step 812 to the second white vector value WV2. If it is not greater (“No” path), the white vector is set at step 814 to the first white vector value WV1. In essence, these process steps attempt to optimize the white vector operating point at a value that produces an ideal bloom with the constraint that white vector should always be greater than or equal to WV1.
Once the white vector operating point is optimized, the imaging power may be set according to the ideal operating curve 700 shown in
An alternative optimization procedure is shown in
At this point, since the photoconductor 12 charge level is the same for each image forming unit 10, the white vector is not independently adjustable. Further, since it is likely that the developer roller 18 bias has been set at different levels at each image forming unit 10, the white vectors (i.e., difference between photoconductor 12 charge and developer roller 18 bias) will be different at each image forming unit 10. Accordingly, the routine attempts to optimize the photoconductor 12 charge to produce an ideal white vector while preventing background noise. Toner patterns are generated over a range of photoconductor 12 charge levels and are analyzed by the patch sensor 126 as shown in
If PCC2 is greater than PCC1, then the photoconductor 12 charge level is set in step 914 to some optimized ideal bloom charge. As indicated, there may be a different ideal bloom charge for each color. Thus, the optimized ideal bloom charge may comprise an average, weighted or non-weighted, of the ideal bloom charge determined for some or all image forming units 10. Alternatively, the photoconductor 12 charge level may be set to the ideal bloom charge for a predetermined color, such as black. Alternatively, the photoconductor 12 charge level may be set to the minimum or maximum ideal bloom charge. Since the photoconductor 12 charge level is common among all image forming units 10, some image forming units 10 may have a white vector that is larger or smaller than ideal.
Next, in step 916, imaging power may be varied at each image forming unit 10 to at least partly compensate for possible non-ideal white vectors. At each image forming unit 10, the controller 40 sweeps through a series of imaging powers while printing toner patterns. Then, based on readings from toner patch sensor 126 and bloom calculations, the controller 40 sets the imaging power at a level that produces the most ideal bloom. Lastly, at step 918, the developer roller 18 bias is adjusted in an effort to maintain an optimal reflectivity value L*, which may be adversely affected during the process of setting photoconductor 12 charge level and setting a new imaging power. This adjustment may also be executed following step 912 or 914 depending on the path followed in
An alternative optimization procedure is shown in
At this point, since the photoconductor 12 charge level is the same for each image forming unit 10, the white vector is not independently adjustable. In one embodiment, the controller 40 may simply use the initial value for photoconductor 12 charge set in step 1002. Alternatively, the critical points 54 for each image forming unit 10 may be re-verified by generating toner patterns over a range of photoconductor 12 charge levels. These patterns are analyzed by the controller 40 using the patch sensor 126 as shown in
Next, in step 1008, imaging power may be selected using a predictive model such as the ideal operating curve 700 shown in
Those skilled in the art should appreciate that the illustrated controller 40 shown in
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. For example, the predictive model for ideal imaging power shown in