Not applicable.
Not applicable.
The existing operation of pharmacies is inadequate, and as result, pharmacies struggle to meet requirements in respect to: quality of medication, quality of services, safety of raw materials and medications, security of customers sensitive data, etc. These problems are known and documented, including media reports, etc. ADVSP, described in this application, provides ultimate comprehensive cost-effective solutions which solve majority of problems at pharmacies, by providing automation technology which will automate and optimize operations of pharmacies, including: stand-alone pharmacy, or a chain of pharmacies. The application will explain in details essential features of the ADVSP, including:
a) Construction details of the flexible conveyor belt
b) Configurations of carrier conveyors with multi-track synchronized transportation of carriers
c) Configurations of portable vending cartridges with motorized and non-motorized carrier conveyors
d) Designs of automatic vending modules configured to accept variety of portable vending cartridges
e) Variety of item loading and item dispensing methods available for automatic vending modules
f) Process controls inside automatic vending module
g) Environmental controls with automatic dispensing of medications stored at refrigeration temperatures ADVSP objective is to ensure only quality medications, which were maintained within their respective specifications at all times, are dispensed to authorized customers, with practically no need to stay in-line.
My designs of Automatic Distributed Vending System optimizing Pharmacy operations (ADVSP) provide outstanding features in processing prescription medications, allowing the provider to maintain competitive pricing while ensuring only quality medications are dispensed to authorized customers without a need to stay in-line. The entire processing of prescription medications, from the point of product manufacturing at one location to the point of product sale at another location, can be effectively automated using ADVSP. Throughout all processes, ADVSP components, including intelligent devices such as Controllers and Computers, will ensure reliable and safe coordinated effort by respective ADVSP components in executing control algorithm defined by the user as ADVSP Configuration Parameters. ADVSP can be configured to optimize operations of pharmacies as a part of a franchise of pharmacies, as well as stand-alone independent pharmacies. Depending on size of the operations, ADVSP can be configured to support: centralized processing of prescription medications and the follow-up distribution of processed medications to designated dispense locations, such as: pharmacies, stand-alone kiosks, portable kiosks; on-site processing of prescription medications and the follow-up dispensing to authorized customers via automated vending modules; or combination of centralized and on-site processing. ADVSP will allow pharmacies, via stand-alone automatic vending kiosks, to establish un-attended 24-hours dispensing of medications to authorized Customers at designated locations, including: pharmacies, grocery stores, medical facilities, care providing facilities, patient homes. Throughout all process steps, ADVSP controllers monitor status of medications, and ensure that only medications with 100% compliance to respective specifications are made available to Customers.
List of all figures is presented in the Table 1, below.
Drawings with this application are not to scale and are referenced to “X-Y-Z” coordinate system, which is consistent throughout all Drawings, where shown. The “X-Y-Z” coordinate system orientation is as follows:
X points toward Provider side. Elements facing Provider can be labeled with suffix “P”.
−X points toward Customer side. Elements facing Customer side can be labeled with suffix “C”.
Y points toward right side of Module. Elements facing right side can be labeled with suffix “R”.
−Y points toward left side of Module. Elements facing left side can be labeled with suffix “L”.
Z points toward top of Module. Elements facing topside can be labeled with suffix “T”.
−Z points toward bottom of Module. Elements facing bottom side can be labeled with suffix “B”.
Elements on computer-generated drawings have identification numbers inside a circle. For simplicity—not all elements are shown on each drawing. Drawings are for illustration of principals and important details related to unique features of ADVSP. Most of drawings, for simplicity, do not show all details, and are intended for illustration of respective design and configuration principals. Some of the drawings, for simplicity, illustrate components shown as “transparent”. In addition, physical dimensions and/or proportions between various components, are shown for illustration of design and configuration principals. Actual production units will be configured to achieve required design criteria, including: performance, costs and utilization of available space.
My application contains definitions of specific components or processes, which are scripted in “bold italic”, and which are listed below in alphabetical order. Definitions are used and expanded in greater details in later paragraphs of this application, as needed.
Distance between entry into and exit from Process Chamber
Time required for Item(s) to remain within Process Chamber to achieve Process objective(s)
Module configured with Item Processing capabilities
Business, responsible for development, installation, operation and maintenance of ADVSP
FIG. 1—illustrates 3-D view of a pharmacy example configured using Automatic Distributed Vending System, abbreviated as ADVSP. Application describes automation technology of pharmacy operations with number of objectives and features, including: superior quality of products delivered to customers with written reports confirming “100% factory sealed quality”; safety of raw materials and medications; highly efficient service rate of medications to customer; superior privacy of sensitive information related to customers; variety of configurations and layouts indoor and outdoor to enhance pharmacy appearance and expanding service to unattended kiosks. As part of automating pharmacy operations, ADVSP handles prescription and non-prescription medications, and both are dispensed to authorized customers, or provider. ADVSP includes features described in this application, some of which are listed in the description of
6, 15—Station Controller #1 and #2 respectively. Controller can be configured as a local Host Controller, and also for initial verification of Customer identification. As a Host, Station Controller will perform all required functions, including real-time synchronization controls, in support of the safe, reliable and efficient operations of the ADVSP-1200, and respective support components located at other locations, including centralized processing of prescription medications. Operation of all components within Automatic Distributed Vending System for Pharmacy (ADVSP) is synchronized in real-time by local and remote Controllers to achieve the most efficient, safe, reliable and cost-effective operations at all times. The ADVSP can be configured for direct synchronization by Controllers without operator assistance, or combination of direct and operator controls. When configured for direct, the remote or host ADVSP Controller will synchronize with all respective stand-alone Controllers and AVM Controllers to monitor and control in real-time a number of functions, including: status, inventory. Status will include: location, availability, operating condition, environment. Inventory will include: equipment, stored medications inside. Inventory will be monitored via local controllers connected to respective sensors, including: barcode, RFID. Status will be monitored via local controllers connected to respective sensors, including: environment, safety. Synchronization control will include support of: centralized processing of prescription medications, on-site processing of prescription medications, and combination of both. Synchronization control will optimize processing of prescription medications, including: location, date/time, selected PVC, selected available carrier within PVC, distribution to selected AVM—to ensure quality and efficiency of all process and logistics steps at all time. In respect to a specific ADVSP layout, remote or host Controller will monitor and control in real-time: the number, location, status of available equipment (AVM, PVC, support components, etc.); inventory of each AVM (number of PVC installed); inventory of each PVC components (number of carriers, status of carriers); inventory of each PVC content (number of medications, medications ID barcode). Controllers will also monitor and control status of medications within the ADVSP, including: expiration date, environment, weight, location, status (request date/time, location). ADVSP Controllers will synchronize the inventory and status information to ensure: required medications within respective specifications are available for dispensing to authorized Customers at specified locations and time; corrective controls are executed in real-time to ensure that only medications within their specifications are dispensed to authorized Customers. In respect to operation of AVM, Controller will synchronize operation of each PVC inside AVM, to ensure: Carrier Conveyors are synchronized to maintain required alignment and position accuracy; quality of each medication stored inside PVC is maintained within specifications (environment, safety, expiration, weight, size of container). Carrier conveyors inside each PVC can be controlled by PVC and/or AVM controller using the algorithm patented by the applicant under USPTO U.S. Pat. No. 7,844,416. In addition, AVM Controller can be configured to synchronize operation of all PVC's inside AVM, to ensure: safe, reliable and efficient operation of respective Carrier Conveyors. AVM Controller can be configured to start each Conveyor after a short delay from the start time of another Conveyor within AVM, to avoid peak demands in electrical power. Controller will align selected Carriers for loading of medications. Controller will align selected Carriers for unloading of medications, and when unloading Sliding Tunnel is used, Controller will synchronize operation of all Carrier Conveyors inside each PVC installed in the AVM to ensure: only selected Carriers with inspected medications inside are presented for unloading; dispensing rate of several medications to an authorized Customer is completed within shortest time possible. In respect to Customers, Controller can be configured to provide required user interface, including: verification of identification, on-site processing of payments for medications purchased, on-site help/assistance in respect to instructions on how to use medications. Authorized Customers can view available medications per processed Customer's prescriptions, and select the ones they would like to receive. Upon payment, Controller will direct Customer to Automatic Vending Module (AVM) with specific ID sign to receive selected medications. The Station Controller will inform identified AVM Controller, which in turn, if not occupied by another Customer, will have its ID sign (1254) lit to inform the Customer, and signify that an order is being processed. In addition, the AVM Controller will begin advancing Carriers inside to prepare selected medications for dispensing to authorized Customer. The Station Controller will inform the Customer of the time window allocated to pick up medications at the designated AVM.
10—Automatic Vending Module (AVM) configured with user interface and prescription medication pick-up bin. AVM can contain a number of Portable Vending Cartridges (PVC), which contain prescription medications processed at either: Central Pharmacy and delivered to this pharmacy location inside PVC; or processed on-site and loaded into available empty carriers of PVC; or combination of both. Controller at AVM, if not occupied, will lit the ID sign (1254), and advance Carriers inside to prepare medications for dispensing as soon as informed by the Station Controller of a pending transaction to an authorized Customer. AVM Controller via user interface will confirm Customer identification, and selected medications for which the Customer paid at the Station Controller. AVM Controller will allow Customer to specify if consultation is required, and if medications Log Report should be printed. Customer has a choice to select consultation via: on-site Pharmacist at the Service Window (21); or ADVS real-time voice/video on-site via AVM user interface; or remotely via Internet. Customer can also select if medications should be dispensed and packaged inside a box. AVM Controller will then proceed with dispensing medications. Customer will pick-up medications from the pick-up bin, and receive print-outs of instructions and the log history, as selected. The Log Report will contain essential information in respect to medications, including: origination date and location; conformance to specifications—environment, weight, size of container, due date. The AVM Controller will control the ID sign (1254), which can be configured per applicant's patent-pending application No. 12,221,337, to inform Customers of its status, including: idle mode; order pending; order being served; maintenance. The power distribution of the entire ADVSP can be configured per applicant patent-pending application No. 12,148,771.
FIG. 2—ADVSP configuration similar to the one shown on
ADVSP components are described in details in the application. Below is a brief review of key features. Carrier support conveyor inside each Portable Vending Cartridge (PVC) can be configured to support multiple number of tracks, with the number of tracks limited only by available physical size, weight and costs. Also includes carrier conveyors with single and multi-pocket carriers, with each pocket configured to support required item(s), container, bag with item(s). Each pocket of a carrier can be subjected to track-specific process control, including: environmental, loading and unloading methods. Carrier support conveyor can be configured to support horizontal, vertical and combination of horizontal and vertical layouts. Conveyor can be based on flexible belt, including timing belt. Carrier support conveyor can be configured to support required capacity by utilization of single and multiple carrier support conveyors. Carrier support conveyor can be configured to operate with a single drive pulley, or combination of drive and support pulleys.
Automatic Vending Module (AVM) can be configured to accept a number of Portable Vending Cartridges (PVC), with the number of cartridges limited by physical size, weight and costs. The number and indexing of each PVC inside AVM can be configured to include: PVC only with horizontal index; PVC only with vertical index; combination of PVC's, with some having horizontal index, and some having vertical index. Example: Front of AVM can be configured to have insertable PVC with vertical index, while the back side—configured to accept slide-able PVC's with horizontal index. Loading of items into the carriers can be configured to support: remote loading via Portable Vending Cartridges (PVC); on-site local loading; and combination of both. Dispensing of items can be configured to include: multi-item dispensing on Customer side; simultaneous multi-item dispensing on Customer and Provider sides. Depending on number of PVC installed and number of static conveyor assemblies installed, dispensing is configured to provide convenient access to items being dispensed from all carrier conveyors. As needed, the section of AVM designated for provider—can be located and sealed behind the pharmacy walls, or kiosk structure, while the section of AVM designated for customer, specifically—user interfaces and dispensed items pick-up bin—are exposed to customers for convenience. Dispensing via slide-able tunnel is described in the application. ADVSP controllers located inside various components (PVC, AVM, etc.)—are interfaced via LAN with the Host controller, and operation of each component, as needed, can be coordinated in real-time directly by the Host controller with and/or without operator assistance. ADVSP control algorithm includes operation criteria, such as: optimization using available resources; sustaining required quality of operations; sustaining quality of items being processed; providing maximum rate of service to customers. Conveyor timing belt inside Portable Vending Cartridges (PVC) can be configured with: either permanently embedded or removable (pluggable) carrier support bearings; permanently embedded index slots; and permanently embedded rollers to reduce friction. Carrier support conveyor can be configured with multiple number of tracks, with the number of tracks limited only by available physical size, weight and costs. Carrier support conveyor can be configures with a variety of layouts, including: horizontal and vertical track layouts, with single belt, multi-belt, synchronized and non-synchronized configurations. Carriers are configured along the conveyor belt, as needed, including providing required space (“index dead zone”, i.e. no carrier present is allowed) for convenient conveyor mounting of a configuration consisting of a single conveyor belt in the middle and carriers supported from bearing assemblies indexed on each side of the conveyor, forming a single belt dual track configuration. Carrier support conveyor required capacity can be achieved by utilization of multiple carrier support conveyors. Simple closed-loop dual pulley driven carrier conveyors will improve reliability, lower noise. Portable Vending Cartridge (PVC) can be configured with: one conveyor belt and one pulley; one conveyor belt and 2 pulleys; multiple conveyor belts with multiple number of pulleys. In addition, PVC can be configured with motorized conveyor, self-contained; or with conveyor only, while the motor drive located inside the mating slot of an Automatic Vending Module (AVM), which will engage with conveyor upon inserting of PVC into mating slot of AVM. Portable Vending Cartridge can be configured with: horizontal conveyors; or vertical conveyors. Automatic Vending Module can be configured to accept a number of slideably insertable PVC units, each with unique configuration, including: PVC with horizontal conveyors and PVC with vertical conveyors. The carrier conveyor inside PVC can be configured to support and index carriers, empty or loaded with items. Carrier conveyor can be configured as: single conveyor belt with dual track, one track of carriers on each side of the conveyor belt, sharing one carrier support bearing assembly; dual conveyor belt with single track in-between, with carriers supported from each side via respective carrier support bearing assembly; multi-conveyor belt with multi-track of carriers. Carrier conveyor can be aligned horizontally, vertically, or combination of two—sections with horizontal and vertical indexes. In its simplest configuration, a carrier conveyor will consist of: one conveyor belt with embedded or fasten-in carrier support bearing assemblies; drive/support pulley; and support mechanics for pulleys, mechanical couplings. In this case, the conveyor drive mechanics (motor, mechanical couplings) and control electronics will reside inside the mating slot of the Automatic Vending Module (AVM), which will engage with the carrier conveyor when respective PVC containing the conveyor will be inserted into the slot. Carrier conveyor can be configured to support any combination of carriers, including: carriers of different sizes; carriers with single and multiple pockets. Details are presented in the Table below.
Carrier conveyors can be configured with a single drive pulley, or any number of pulleys required to efficiently utilize the space within PVC, as well as accommodate specific functions, such as: item loading, item unloading, item inspection, item process control. As shown, ADVSP in this example is configured as half-star layout, with service entry points on each side, and on-site consultation window in the middle. The illustrated ADVSP is configured to include 6 Automatic Vending Modules (AVM-200), each with capacity of 200 medications. The total capacity of the layout is 1200 items (ADVSP-1200), which can include: prescription medications, non-prescription medications, combination of both. The layout of the ADVSP-1200 provides flexibility. Table 3 below illustrates important functional parameters, based on the following example of configuration: AVM #2, 3, 4, 5 are selected for Centralized processing of prescription medications; AVM unit #1 selected for on-site processing of prescription medications required to be maintained at refrigeration temperatures; AVM unit #6 selected for on-site processing of prescription medications required to be maintained at ambient temperatures.
ADVSP can be configured to match requirements of a specific pharmacy. ADVSP offers:
1) Superior throughput. An automatic vending module (AVM) can be configured to contain: multiple independent portable vending cartridges (PVC), which when installed inside the module, would form a multi-track horizontal and vertical carrier transport system, capable of simultaneous loading and/or unloading of a number of items; static built-in multi-track conveyors, which are installed along the perimeter of the vending module, surrounding portable vending cartridges. For example, a vending module configured with: three (3) independent portable vending cartridges, each configured as a 3-track carrier transport conveyor, and two static conveyors installed along the perimeter—can allow simultaneous loading and/or unloading of 22 items at designated pick-up bins located along the perimeter of the module. As result, the ADVSP will outperform any vending system ever configured.
2) Besides multiple loading/unloading, ADVSP can be configured to allow other operations, such as: simultaneous inspection of carriers and items inside carriers, simultaneous tracking of carriers and items inside carriers; simultaneous item processing, etc. to be conducted simultaneously along multiple tracks, which can be controlled by ADVSP Controllers, including in synch or independent operations.
3) Variety of ADVSP configuration including complete real-time, independent of operator, closed loop control of all process steps by controller. 100% guaranteed quality of prescription medications is accomplished initially by using ADVS Controller and components:
a) Once prescription is entered by Provider, ADVSP Controller will identify: respective container to store the prescription based on medication specifications (solid or liquid, temperature, humidity, unit weight, total weight) (size, weight, capacity); and calculate the expected combined weight of the container with correct amount of medication inside selected container
b) Provider will follow directions from ADVSP Controller and will select appropriate container for storing medications
c) Provider using ADVSP components will measure weight and size of the container with filled prescription medication, and ADVSP Controller will perform initial validation of these parameters to match the respective specification entered by Provider into non-volatile memory under identification record, such as barcode, attached to the container with medication, and will record and store the validated information under prescription barcode label code, attached to the container with medications
d) While within ADVSP, each container with medication inside, will be periodically inspected by Controller for verification of: weight, size of the container to match the barcode label on the container
e) ADVSP components, such as Portable Vending Cartridges (PVC), Automatic Vending Modules (AVM) will have quality inspection devices, such as: barcode readers, configured to be located at required inspection points, including: entry, transfer in-between sub-assemblies, prior-to-dispense (final verification); weight measuring scales, which can be configured to measure the weight of: each container individually, conveyor assembly with carriers, transfer sub-assemblies; size measuring devices (optical, etc.), which can be configured to measure the size of: each container as it passes check points along the conveyor assembly, at transfer points in-between sub-assemblies—with an objective to monitor specifications parameters of the container with medications per information stored by ADVSP Controller based on barcode label attached to the container, and ensure it is maintained within specifications prior to dispensing to authorized Customer. The containers, which failed inspection, will be rejected by ADVSP Controller, and as configured by Provider—will be dispensed directly back to the Provider.
4) The design of ADVSP can be configured with appropriate thermal isolation or insulation of heat generating components (motors, drives) from Carrier section inside Portable Vending Cartridges (PVC), and will support automatic dispensing of medications, which are maintained within respective environmental specifications (temperature, humidity) at all times. In addition, sections of the Automatic Vending Modules (AVM) containing medications inside installed PVC units, can be configured with thermal isolation, or insulation, or combination of both, and can be further configured to be enclosed structurally to allow portable environmental control devices, such as: temperature controllers, humidity controllers—to maintain all medications inside (AVM) within specified environment at all times.
ADVSP supports variety or configurations, which include specific configurations for each individual component, and combination of configurations for any given system to meet specific requirements. In addition, other ADVSP support components provide the following functions: Automated Container loading and unloading; Dispensed Container packing, etc. Operation of all components within Automatic Distributed Vending System for Pharmacy (ADVSP) is synchronized in real-time by local and remote Controllers to achieve the most efficient, safe, reliable and cost-effective operations at all times. The ADVSP can be configured for direct synchronization by Controllers without operator assistance, or combination of direct and operator controls. When configured for direct, the remote or host ADVSP Controller will synchronize with all respective stand-alone Controllers and AVM Controllers to monitor and control in real-time a number of functions, including: status, inventory. Status will include: location, availability, operating condition, environment. Inventory will include: equipment, stored medications inside. Inventory will be monitored via local controllers connected to respective sensors, including: barcode, RFID. Status will be monitored via local controllers connected to respective sensors, including: environment, safety. Synchronization control will include support of: centralized processing of prescription medications, on-site processing of prescription medications, and combination of both. Synchronization control will optimize processing of prescription medications, including: location, date/time, selected PVC, selected available carrier within PVC, distribution to selected AVM—to ensure quality and efficiency of all process and logistics steps at all time. In respect to a specific ADVSP layout, remote or host Controller will monitor and control in real-time: the number, location, status of available equipment (AVM, PVC, support components, etc.); inventory of each AVM (number of PVC installed); inventory of each PVC components (number of carriers, status of carriers); inventory of each PVC content (number of medications, medications ID barcode). Controllers will also monitor and control status of medications within the ADVSP, including: expiration date, environment, weight, location, status (request date/time, location). ADVSP Controllers will synchronize the inventory and status information to ensure: required medications within respective specifications are available for dispensing to authorized Customers at specified locations and time; corrective controls are executed in real-time to ensure that only medications within their specifications are dispensed to authorized Customers. In respect to operation of AVM, Controller will synchronize operation of each PVC inside AVM, to ensure: Carrier Conveyors are synchronized to maintain required alignment and position accuracy; quality of each medication stored inside PVC is maintained within specifications (environment, safety, expiration, weight). In addition, AVM Controller will synchronize operation of all PVC's inside AVM, to ensure: safe, reliable and efficient operation of respective Carrier Conveyors. AVM Controller will start each Conveyor after a short delay from the start time of another Conveyor within AVM, to avoid peak demands in electrical power. Controller will align selected Carriers for loading of medications. Controller will align selected Carriers for unloading of medications, and when unloading Sliding Tunnel is used, Controller will synchronize operation of all Carrier Conveyors inside each PVC installed in the AVM to ensure: only selected Carriers with inspected medications inside are presented for unloading; dispensing rate of several medications to an authorized Customer is completed within shortest time possible.
FIG. 3—illustrates 3-D view of conveyor timing belt (1024) configured with insertable and fastened into the belt (1024) bearing assemblies. Figure elements are labeled as follows:
FIG. 4—illustrates 3-D view of conveyor timing belt assembly (1023) configured with embedded permanently attached bearing assemblies (1028). Figure elements are labeled as follows:
FIG. 5—illustrates 3-D view of construction details of the conveyor timing belt assembly (1024) configured with insertable fastened-in carrier support bearing assemblies (1002). Figure elements are labeled as follows:
FIG. 6—illustrates 3-D view of construction details of the conveyor timing belt assembly (1023) configured with embedded permanently attached bearing assemblies (1029). Figure elements are labeled as follows:
FIG. 7—illustrates 3-D view of construction details of the conveyor timing belt assembly (1040) configured with embedded permanently attached bearing assemblies (1001) and rollers (1039) which can be either embedded or insertable into the belt along its perimeter. Figure elements are labeled as follows:
FIG. 8—illustrates 3-D view of construction details of the conveyor timing belt assembly (1041) with embedded permanently attached bearing assemblies (1001), and a strip (1038) with index slots (1042), which can be either embedded or insertable into the belt (1041) along perimeter. Figure elements labeled as follows:
FIG. 9—illustrates Z-X view of a Portable Vending Cartridge (PVC) configured with non-motorized conveyor timing belt assembly (1023) aligned for horizontal indexing. When PVC with non-motorized conveyor timing belt assembly is installed into a mating Automatic Vending Module (AVM)—the conveyor inside PVC will engage mechanically and electrically with respective conveyor drive components of AVM, which will allow Controller to take full control over the conveyor. Figure elements are labeled as follows:
FIG. 10—illustrates Z-X view of an Automatic Vending Module (AVM) (140) configured with two independent PVC assemblies (1044) each with non-motorized conveyor timing belt assembly (1023) aligned for horizontal indexing. When each PVC with non-motorized conveyor timing belt assembly is installed into a mating slot of the AVM (140)—the conveyor (1023) inside PVC (1044) will engage mechanically and electrically with respective conveyor drive components of AVM (140), which are not shown for simplicity, which will allow Controller to take full control over the conveyor (1023). Figure elements are labeled as follows:
FIG. 11—illustrates X-Y view of (1007) Portable Vending Cartridge (PVC) layout, configured with synchronized dual belt single track motorized conveyor timing belt assembly, each conveyor labeled (1023) and configured with embedded open type carrier support bearing assemblies (1001) aligned for horizontal indexing. Figure elements labeled as follows:
FIG. 12—illustrates Z-Y view of (1007) Portable Vending Cartridge (PVC) configured with synchronized dual belt conveyor single track (1023). The conveyor drive assembly is thermally isolated from the carriers (60), as indicated by insulation layer (1232). The thermal insulation (1232) will assist in maintaining environment surrounding carriers and the items inside carriers at the required specifications. PVC supports variety of configurations. Dimension of PVC (1007) Carriers (60) are configured to accommodate required sizes of Containers with items, or discrete items, or bags with item(s)—to be carried by the Carrier. Inserts into the Carriers (not shown for simplicity) are configured to further match the shape of the Container, and also add such safety features as: protection from vibrations, additional friction to hold Container inside the Carrier, assist in the environmental control. Layout of PVC Carriers is configured to provide required: aerodynamics; place for barcode label(s); necessity to enter Process sections; supporting selected method of loading items into Carriers; supporting selected method of unloading items from Carriers. Pockets inside Carriers are configured with one pocket to carry an item, or configured as multi-pocket, with each pocket configured to support an item, or container with items, or bag with items inside. Each pocket can have unique inner layout, inserts, etc. Pockets are shaped to support selected method of item loading into the pocket, and unloading item out of the pocket. PVC Carriers are configured from materials to meet strength requirements in support of: Containers weight; minimize overall weight of Carriers; longevity requirements; ratings in support of required Processes. Selection includes: plastic, metal, combination of both. Carrier support components are configured for: single shaft (facing Conveyor Timing belt); dual shaft (shaft from each side); shared shaft (with a Carrier in parallel track across the Conveyor Timing belt). PVC Conveyor Belt dimensions are configured to support required capacity of Carriers and the maximum weight of all loaded Carriers. Conveyor Belt layout is configured to provide required: aerodynamics; low friction; durability and reliability required; horizontal index; vertical index; zig-zag index; inserts along the perimeter with position tracking index holes; embedded or inserted rollers to lower the friction during motion. Conveyor Belt materials are configured to meet strength requirements in support of: all loaded Carriers for any given layout; minimize overall weight of the belt; longevity requirements. Selection can include: plastic, metal or combination of both, timing belt or any other suitable belt. The Conveyor Belt Bearing assemblies are configured to provide such options as: number of bearings; distance in-between; size of bearings; shaft of bearings (open; closed); material of bearings; attachment method (insertable; permanently embedded or attached); type of bearing (ball; roller). Configurations include: single, dual (side-by-side), dual with support component in-between the bearings; multiple (side-by-side) with and without support component in-between. PVC Conveyor configurations include: timing belt conveyor with embedded bearing assemblies; timing belt conveyor with insertable bearing assemblies. Conveyor dimensions are configured to support required capacity of Carriers and the maximum weight of all loaded Carriers. Conveyor layout configured to provide required: aerodynamics; low friction; durability and reliability; horizontal index; vertical index; zig-zag index; single pulley or multiple pulleys; process control functions; combination of timing belt assemblies and roller supports in support of variety of configurations of a single and multi-track indexing systems. Conveyor materials are configured to meet strength requirements in support of: all loaded Carriers for any given layout; minimize overall weight of Conveyor Timing Belt assembly; longevity requirements. Selection can include: plastic, metal or combination of both—for all respective components: support brackets; pulleys. Conveyor type is configured for installations inside PVC, or for static installations inside AVM. Static conveyors can be used to carry non-prescription “over the counter” type medications, while the ones installed inside PVC—can be used for prescription medications, or combinations of prescription and non-prescription medication. Conveyor Controls are configured to be executed by controller residing either inside PVC, inside AVM, or remotely. Control parameters include: direction, speed, acceleration, deceleration, position. The controls can be configured based on applicant U.S. Pat. No. 7,844,416. ADVSP PVC dimensions are configured to support required or selected Conveyor Timing Belt assembly, plus all required standard and optional components or features: conveyor drive (including motor, when motorized); controller; sensors; access gates; Item loading and unloading into/from Carriers; Process section; power distribution and control section; environmentally controlled section. PVC layout is configured to support: required or selected Conveyor Timing Belt assembly; mating with respective Outer enclosure of AVM, including alignment features (groves, channels), interface connectors. Handling features (handle bars) to assist with insertion and removal to/from AVM, to/from portable transport rack; round edges for safety. Loading and unloading of Containers in/from selected Conveyor carriers. PVC materials are configured to meet strength requirements in support of: all components mounted inside; minimize overall weight of PVC; longevity requirements. Selection can include: plastic, metal or combination of both. PVC type is configurable, and includes: Motorized (including motor and controls), or non-motorized (providing interface for motor and controls located inside AVM), or combination of. Including such standard and optional components: controller; motor gears; motor controller; controller interface; power supply; battery; user interface; sensors; environmental controls. PVC diagnostics are configurable, and include: status LED, user interface. Diagnostics are non-volatile. Rechargeable battery is provided to monitor critical parameters (sensors) at all times, which include: safety sensors, environmental sensors. Safety sensors—report whether all security panels are installed. Environmental sensors—report environment inside PVC, such as: temperature, humidity. Rechargeable battery will be charged via USB port of the PVC Controller, when the USB port of the PVC Controller is connected to USB port of the ADVS Host Controller or AVM Controller. PVC Controls include: conveyor; sensors monitoring position of safety cover plates; sensors monitoring environment inside; barcode scan devices; actuators for loading/unloading of items; user interface; self-diagnostics; local interface with AVM controller or other controller. PVC Control Algorithm is configurable based on ADVSP Configuration Parameters. Control software residing inside PVC controller will execute and also assist other ADVSP controllers an algorithm which will ensure most optimum utilization of available resources to achieve the highest quality and productivity. Loading of items into carriers will ensure items assigned to specific customer are situated in near proximity (example: single track—next to each other, sequentially; double track—side by side, in-parallel). Unloading steps of items to a customer, when respective AVM is not occupied, can begin as soon as customer is recognized within facility where the AVM is located, and when customer identifications are validated—the respective items will be dispensed at once. Figure elements are labeled as follows:
FIG. 13—illustrates Z-X view of PVC (1007) layout configured with dual motorized conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies (1028) for horizontal indexing. Both pulleys are labeled (130), and supported by bracket (102). Remaining elements labeled same as
FIG. 14—illustrates Z-X view of PVC (1008) layout configured with non-motorized conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies (1023) aligned for horizontal indexing. Remaining elements are labeled same as on
FIG. 15—illustrates Z-X diagram of PVC (1008) with non-motorized conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies (1028) aligned for horizontal indexing. Figure elements are labeled same as on
FIG. 16—illustrates Z-X diagram view of conveyor timing belt assembly (1023) configured with embedded carrier support bearing assemblies (1028) horizontal indexing. Figure elements labeled same as on
FIG. 17—illustrates Z-X diagram of PVC (1007) configured with motorized conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies (1028) aligned for horizontal indexing. Figure elements are labeled same as on
FIG. 18—illustrates Z-X diagram view of Portable Vending Cartridge (PVC) (1007) configured with thermally insulated section (1232) to contain motor assembly (99). Figure elements are labeled as follows:
FIG. 19—illustrates Z-X diagram view of conveyor timing belt assembly (1023) configured with embedded carrier support bearing assemblies for vertical indexing. Figure elements are labeled same as on
FIG. 20—illustrates Z-X diagram view of Portable Vending Cartridge (1010) configured with non-motorized conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies (1028) aligned for vertical indexing. Figure elements are labeled same as on
FIG. 21—illustrates Z-X diagram view of Portable Vending Cartridge (1009) configured with thermally insulated motorized section (1232) from the conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies aligned for vertical indexing. Figure elements are labeled as follows:
FIG. 22—illustrates Z-Y view of dual motorized conveyor timing belt assembly (1158) configured with embedded closed type carrier support bearing assemblies (1030) without side guide rollers aligned for vertical indexing in support of a dual track. Figure elements are labeled as follows:
FIG. 23—illustrates Z-Y view of motorized synchronized dual conveyor single track timing belt assemblies (1158) configured with embedded closed type carrier support bearing assemblies (1030 aligned for vertical indexing in support of single track. Figure elements are labeled as follows:
FIG. 24—illustrates Z-Y view of motorized synchronized dual conveyor timing belt assemblies (1158) configured with embedded carrier support bearing assemblies (1028) with side guide roller assembly (1069) aligned for vertical indexing in support of dual track. Figure elements are labeled as follows:
FIG. 25—illustrates Z-X diagram of conveyor timing belt assembly (1023) configured with embedded carrier support bearing assemblies (1028) aligned for horizontal indexing, and supported by two pulleys (130).
FIG. 26—illustrates Z-X diagram of conveyor timing belt assembly (1024) configured with insertable carrier support bearing assemblies (1029) aligned for horizontal indexing, and supported by two pulleys (130).
FIG. 27—illustrates Z-X diagram of conveyor timing belt assembly (1023) with embedded carrier support bearing assemblies (1001) aligned for horizontal indexing, and supported by one drive pulley (128) and one idle pulley (129). Index between carriers (not shown for simplicity) is indicated by L7.
FIG. 28—illustrates X-Y diagram of conveyor timing belt assembly (1023) shown on
FIG. 29—illustrates Z-Y view of motorized conveyor timing belt assemblies (1023) configured with embedded carrier support bearing assemblies (1028) with side guide rollers (1069) aligned for horizontal indexing in support of a dual track. For simplicity—guiding rails for rollers (1069) are not shown. Figure elements are labeled as follows:
FIG. 30—illustrates Z-Y view of AVM (1106) configured with two sections, each configured with installed PVC (1007). AVM units, such as (1106), can be configured with variety of features described in this application. AVM dimensions are configured to support required or selected number and type of PVC's, plus all required standard and optional components or features: controller interface; loading/unloading of PVC's; power distribution and control section; environmentally controlled section. AVM layout is configured in support of: required or selected PVC modules; mating with respective PVC modules; support of PVC's type (horizontal index, vertical index, combination of both). Supporting PVC layouts: bottom-up; side-by-side; or combination of both. Support of Provider and Customer functions, including: interface electronics; handling of dispensed Containers; single independent or multiple synchronized indexing of conveyor(s) inside each PVC; single independent or multiple synchronized dispensing of Containers from each PVC for required service rate. Exterior panelizing for required functionality and esthetics. Mating with insertion and removal of PVCs; round edges for safety. Support for automated: loading and unloading of Containers in/from selected PVC's; packing dispensed Containers. For portable applications, AVM can be configured to have access only from one side—Customer, for loading/unloading PVC in/out of AVM, as well as for receiving dispensed medications. Example: AVM-80, which can have a swing-door facing the Customer with keyed access, allowing Customer to load/unload PVC when door is open, and then receive dispensed medications when door is closed and locked. AVM materials are configured to meet strength requirements in support of: all components mounted inside; minimize overall weight of AVM; longevity requirements. Selection can include: plastic, metal or combination of both. AVM type is configured for indoor mount or outdoors, and based on capacity requirements. Standard and optional components: central control or distributed controls (multiple controllers); interface electronics within AVM to controllers outside (interface wired, wireless); power supply; battery; user interface; sensors; environmental controls. AVM is configured to provide required interface for PVC, including: support of various PVC inter-lockable slide-able insertion methods from most convenient side of AVM: back, front, top, bottom, left, right. Mechanical and electrical plug-able features: slide, channels, groves, interface connectors. AVM configurations can include any combination of static conveyors and PVC units installed inside. Static conveyors can be configured for vertical index along the perimeter of AVM, while PVC's are loaded inside the sections surrounded by the static conveyors. This significantly improves utilization of space and rate of service, by providing an ability to dispense items from various pick-up pockets at selected sides of AVM to several independent customers ay once. AVM user interface is configured for each application, and can include verification of identification parameters entered directly via controller interface or indirectly via electronic identification devices, which include the one described by the applicant in the provisional application No. 61,404,475 “Apparatus for analyzing and controlling object behavior, item transactions, using a card with embedded mechanical, electronic and barcode identifications” on file with the UPSTO. AVM diagnostics are configured for each application, and include: illuminated signage; status lights such as LED, audio, which are described by the applicant in the non-provisional application No. 12,221,337 “Low-cost Illumination Device” in-progress of being issued a patent by the USPTO; status of safety sensors; environmental sensors. AVM controls are configured to include: operation of each PVC installed; operation of each static conveyor installed; interface to other controllers; user interfaces (provider, customer); self-diagnostics; sensors (action, environment, safety); environment control devices; actuators in support of all operations; interface to LAN wired, wireless, internet. AVM Control Algorithm is based on control software residing inside AVM controller, which is configured per ADVSP Configuration Parameters, and will assist other ADVSP controllers to ensure most optimum utilization of available resources to achieve the highest quality and productivity. Examples: selected PVC's inside AVM can be controlled to execute a specific process control operation over items stored inside PVC's, while other PVC's can be used for dispensing items to authorized customers; start of conveyors inside each PVC will be executed with a small delay to minimize power pick demands; dispensing of items out of any PVC can take place when there is no conveyor motion at any PVC inside AVM—to minimize vibrations. Figure elements are labeled as follows:
FIG. 31—illustrates X-Y-Z view of PVC (1078) such as PVC-40 (total carrier capacity is equal 40) configured with motorized conveyor timing belt assemblies (1023) shown on
FIG. 32—illustrates X-Y-Z view of assembled PVC (1078), such as PVC-40 shown on
FIG. 33—illustrates X-Y-Z Customer view of assembled AVM (1072), such as AVM-200 (total carrier capacity is equal 200). Figure elements are labeled as follows:
FIG. 34—illustrates X-Y-Z Provider view of assembly details of AVM (1072), such as AVM-200, which is configured to accept qty. 5 of PVC's, such as PVC-40. Variety of ADVSP configurations including complete real-time, independent of operator, closed loop control of all process steps by controller. 100% guaranteed quality of prescription medications is accomplished initially by using ADVSP Controller and components:
Then, while within ADVSP, each container with medication inside, will be periodically inspected for verification of: weight, size of the container to match the barcode label on the container. ADVSP components, such as Portable Vending Cartridges (PVC), Automatic Vending Modules (AVM) will have:
The ADVSP Controller objective is to monitor specifications parameters of the container with medications per information stored by ADVSP Controller based on barcode label attached to the container, and ensure it is maintained within specifications prior to dispensing to authorized Customer. The containers, which failed inspection, will be rejected by ADVSP Controller, and as configured by Provider—will be dispensed directly back to the Provider. AVM can be configuration to dispense containers to authorized Customer on one end and in-parallel simultaneously dispense containers to Provider on the opposite end. Loading of items into carriers inside each PVC can be accomplished remotely at a centralized pharmacy location, and then loaded PVC transported to destination pharmacy or kiosk to be inserted into respective AVM. Loading of items into carriers inside each PVC can be also accomplished on-site by an operator from the Provider side when an empty carrier is located in position accessible by Provider. Figure elements are labeled as follows:
FIG. 35—illustrates Z-X view of assembled AVM (1072), such as AVM-200, shown on
FIG. 36—illustrates Z-X diagram view of position of some of carriers inside AVM (1072), such as AVM-200, shown on
FIG. 37—illustrates Z-X diagram view of position of some of carriers inside AVM (1072), such as AVM-200, shown on
FIG. 38—illustrates X-Y-Z Provider view of assembled AVM (1072), such as AVM-200 shown on
FIG. 39—illustrates X-Y-Z example of assembly details of inserting two PVC units, such as PVC (1007) into mating slots of an outer enclosure component (1015) of AVM. Figure elements are labeled as follows:
FIG. 40—illustrates X-Y-Z example of AVM (1053) assembled with slide-able two PVC (1007) units inside, as shown on
FIG. 41—illustrates Z-Y view of PVC (1101) configured with horizontal dual synchronized conveyor assembly (1123), which is configured for indexing carriers (60) in two synchronized parallel tracks with support wheels (1148) on each side of the Carrier, configured to ride along the Guiding Rails (1150). Figure elements are labeled as follows:
FIG. 42—illustrates Z-Y view of PVC (1151) configured with horizontal conveyor assembly (1123) for indexing carriers (60) in a single track. Remaining elements are labeled same as on
FIG. 43—illustrates Z-Y view of AVM (1103) configured with two PVC (1101) described on
FIG. 44—illustrates Z-Y view of AVM (1161) configured with two PVC (1151) described on
FIG. 45—illustrates Z-Y view of AVM (1162) configured with two PVC (1101) described on
FIG. 46—illustrates Z-Y view of an empty AVM (1141) configured with two slots to accept two PVC units. Figure elements are labeled as follows:
FIG. 47—illustrates details of the guiding channels (1142) with embedded or insertable rollers (1143) installed from support base (1146), configured to mate with respective alignment grooves of PVC during installation.
FIG. 48—illustrates Z-X view of assembled AVM (1072), such as AVM-200, shown on
FIG. 49—illustrates Z-X view of assembled AVM (1072), such as AVM-200, shown on
FIG. 50—illustrates Z-X view of assembled AVM (1072), such as AVM-200, shown on
FIG. 51—illustrates X-Y-Z view of section of a carrier (1163) configured as a dual pocket with openings in the bottom of each pocket to allow unloading mechanism to engage with respective item inside a pocket and forced it out, as part of dispensing. Figure elements are labeled as follows:
FIG. 52—illustrates X-Y view section of a carrier (1163) shown on
FIG. 53—illustrates Z-Y view of a PVC (1172) configured to contain dual synchronized conveyors (1123, 1171) with single pocket (60) in one track and dual pocket (1163) carriers in the second track, supported by respective rollers (1148) riding along the guiding rails (1150). Figure elements are labeled as follows:
FIG. 54—illustrates Z-X view of a conveyor configured with 4 embedded bearings (1116) driven and supported by a single pulley (1115). This configuration can be used for small scale implementations, to reduce size and costs of the PVC and AVM units.
FIG. 55—illustrates Z-X view of conveyor (1139) configured with supports by three pulleys (1136, 1137, 1138). Pulleys are configured to achieve: required supports of the conveyor; required path for carriers, including locations where items can be inspected, loaded, and unloaded.
FIG. 56—illustrates Z-Y view of a AVM (1173) configured to contain two PVC (1172), with space (1104) inside AVM (1173) which can be used for installation of components such as: Controllers, PSU, LAN interfaces, USB interfaces, environmental controllers, etc. The AVM (1173) can be configured as a portable version of AVM for applications configured for serving patients or individuals at designated locations, including: residence, patient rooms at medical facility.
FIG. 57—ADVSP configuration (1) as half-star layout, with service on each side. For simplicity, to view details, the half-star partition or wall (20), is shown as transparent. ADVSP can offer Clear-View security from Provider side only, allowing Provider to observe activities taken place from Customers end, and then promptly take appropriate action to assist Customer or correct a problem, as needed. In addition, only front of Module can be exposed to Customer, while side and rear panels of both Inner and Outer Enclosures can be Clear-View type. This configuration can allow Provider to periodically observe and/or inspect in real-time activities within Modules, and promptly correct a potential problem, as needed. Configuration allows Provider to use Automatic Item Feeding assembly (13) and Automatic Item Loading assembly (11) for convenient Item loading and additional Item buffering capacity. The illustrated ADVSP can be configured to handle 1400 items (ADVSP-1400), which can include: prescription medications, non-prescription medications, combination of both. The ADVSP-1400 will provide. Table below illustrates some of the features of ADSP-1400.
Figure elements are labeled as follows:
FIG. 58—ADVSP configuration in-line, one Station layout, which for example can be configured as ADVSP-1600. Automatic Feeding and Automatic Loading of Items, shown on
Figure elements are labeled as follows:
FIG. 59—illustrates X-Y-Z view of assembly details of AVM portable (1119), such as AVM-80, configured with two PVC (1120), such as PVC-40. The AVM (1119) is further configured for installations as a personalized version of AVM dedicated to a patient at a medical facility, or a customer situated at home or care facility. For illustration purposes the front door is not shown, and the side panels are shown as being seeing through. Portable version of AVM, or portable kiosk, configured with ADVSP components for individual use. The AVM can be configured as table mount, or as a floor mount. PVC modules (1120) configured to have carriers with specified amounts of medication. Each carrier cab be configured to contain specific dosage of medication. Controller of AVM (1119) is configured to execute patient specific algorithm, as part of ADVSP configuration parameters, which will include dispensing designated amount of pills or liquid medications at specified events, and required date and time. Pills can be stored in small plastic bags, while liquid medication—in one-time use containers. All medications are retained inside AVM within respective specifications, including environment. AVM portable (1119) can be controlled locally (via PC or Controller), manually (by operator), or remotely, with appropriate authorization via conventional security and safety identification methods. AVM portable can be configured with user interface, including announcement function implemented via visual (LCD. LED, etc.), and/or sound (music, message, etc.), and/or vibration effects. AVM portable can be configured locally and/or remotely for proper date/time distribution/dispensing of required dosage(s). AVM portable can be monitored (status, inventory, history of dispenses, environment, etc.) by local and/or remote controllers. and/or remote controller, such as PC. Interface can be hard-wired, such as serial USB port, or wireless, including Internet. Controller can be configured to connect to external devices and sensors, which are configured to provide the Controller with status information about the patient, including: temperature, blood pressure. Controller can be configured to execute patient specific algorithm specified by an authorized provider, such as patient's physician, which is stored in non-volatile memory, as part of apparatus configuration parameters. The algorithm can instruct the Controller to compare the current status of the patient with the preset range of values, and depending on results of the comparison, direct the Controller to dispense corresponding amount of medication to be administered to the patient by the patient or authorized provider. The carriers inside AVM (1119) portable can be configured to contain single or multiple combination of medications, with single or multiple dosages of each medication. Based on patient specific algorithm, Controller will dispense accurately required dosage of medication, down to a fraction of a pill. The patient algorithm can be configured to direct the Controller to execute calculations and analysis of the patient history, including: recorded statuses of the patient, patient reaction to previously dispensed and administered dosages of medications, date/time of dispensing medications. AVM (1119) portable floor mount can be configured with PVC's with carrier conveyor aligned for vertical indexing. The patient specific algorithm can be configured to direct Controller to execute the algorithm in real-time without operator assistance, and inform the operator or provider when specific conditions are detected by Controller. The Controller will notify the provider or patient when medication is dispensed, and will require the patient or provider to administer the medication, and record the date/time it was completed, including medications type and amount. Figure elements are labeled as follows:
FIG. 60—illustrates X-Y-Z view of assembled AVM (1119) shown on
Figure elements labeled as follows:
FIG. 61—illustrates a portable AVM (1119), described on
1) Every hour measure and record/store patient temperature
2) Calculate average temperature based on last 4 readings, and record/store average
3) If current temperature above pre-defined limit #1—notify authorized person (text message, local alarm), otherwise, if current temperature above pre-defined limit #2, and average temperature calculated in step (2) above pre-defined limit #3, and the time elapsed from the last dispense is over pre-defined time limit #1—dispense medication in dosage amount #1, notify patient of dispensed medication; and record/store transaction.
FIG. 62—illustrates Z-Y view of a PVC (1101) configured to contain dual synchronized conveyors (1123) with single pocket (60), which is supported from one side only. Environmental sensors (1117, 1118) which can be configured to be used by controller to monitor environment inside PVC (1101). Remaining elements are labeled same as on
FIG. 63—illustrates Z-Y view of a PVC (1191) configured to contain dual synchronized conveyors (1123) with single pocket carriers (60) in track #1 and three pocket carriers (1190) in track #2. All carriers are configured to be supported from one side only. Environmental sensors (1117, 1118) which can be configured to be used by controller to monitor and control the environment inside PVC (1190). Carriers (1190) illustrate principal of a multi-pocket configuration, which will allow to configure each pocket within the carrier to hold required dosage of medication down to a smallest amounts, including: single pill or even fraction of the pill which is stored inside packaging, such as a plastic bag, and then dispensed by Controller, as requested, to an authorized Customer. The medications can be dispensed under closed-loop controls, as described under
FIG. 64—illustrates Z-Y view of AVM (1103) configured with two PVC (1101) installed inside, with space (1104) inside AVM (1136) which can be used for installation of components such as: Controllers, PSU, LAN interfaces, USB interfaces, environmental controllers, etc. Configuration will allow AVM to achieve simultaneous dispensing rates of up to 4 items from Provider side and 4 items from Customer side.
FIG. 65—illustrates Z-Y view of AVM (1174) configured with two PVC (1101) and two PVC (1112) installed inside, with space (1104) inside AVM (1136) which can be used for installation of components such as: Controllers, PSU, LAN interfaces, USB interfaces, environmental controllers. Configuration will allow AVM to achieve simultaneous dispensing rates of up to 16 items from Provider side and 16 items from Customer side.
FIG. 66—illustrates X-Y-Z view of section of a carrier (1175) which is configured as a single pocket with the base split in two independent sections (1176) and (1192). The area where each section is engaging with the other section (1240), such as shape and distance in-between, can be configured to provide a reliable exit of item from the pocket when a vertical force is applied to the item. Figure elements are labeled as follows:
FIG. 67—illustrates Z-X view of section of a carrier (1175) shown on
FIG. 68—illustrates Z-X view of section of a carrier (1175) shown on
FIG. 69—illustrates Z-X view of section of a carrier (1175) shown on
FIG. 70—illustrates Z-X view of carrier pocket sections (1194) and (1195) which are configured, including shape and distance (L14) in-between, to assist the item (1178) in exiting the pocket. In this configuration, amount of force required to further separate apart pocket sections (1192) and (1195) to force the item (1178) to fall through the opening, would be significantly lower. Remaining elements are labeled same as on
FIG. 71—illustrates Z-X view of carrier (1175) shown on
FIG. 72—illustrates Z-X view of AVM (1189) configured with five PVC (1078) inside. For simplicity, only 3 carriers with split-bottom pockets (1175) with item (1090) inside are shown for each PVC. Configuration supports unloading of items from carriers at designated index locations using an actuator (not shown), which under direction of Controller, will apply a vertical force (1091) to items inside carriers, forcing the item to move down and split-open the pocket, and then slide through onto the platform (1186), guiding the item under items own weight to roll toward and enter the tunnel (1086). Sensors (not shown) will be configured and placed along the path, and allow Controller to monitor location of items. Figure elements are labeled as follows:
FIG. 73—illustrates X-Y-Z view of a conveyor (1198) configured with embedded or insertable carrier support bearing assemblies (1199). Conveyor (1198) is configured to be driven and supported by four pulleys (1200) guiding conveyor along a predefined path consisting of horizontal and vertical sections. For simplicity—only two carriers (1201) are shown. The side of the carriers (1201) opposite to the carrier conveyor (1198), depending on size and weight of carrier, and depending on item inside carrier, can be configured with or without supports, such as rollers riding along the guiding rails (not shown for simplicity).
FIG. 74—illustrates X-Y-Z view of AVM (1202) configured with installed two conveyors (1198A) and (1198B) described on
FIG. 75—illustrates X-Y-Z detailed view of AVM (1202) configured with installed two conveyors (1198A, 1198B) described on
FIG. 76—illustrates X-Y-Z assembled view of AVM (1202), as described by
FIG. 77—illustrates X-Y-Z assembled view of AVM (1202), as described by
FIG. 78—illustrates Z-Y view of (1007) Portable Vending Cartridge (PVC) configured with synchronized dual belt conveyor single track. Conveyor drive assembly (99, 100) is thermally isolated and/or insulated from the carriers (60), as indicated by insulation layer (1232). In addition, carriers of the conveyor are further insulated by thermal layer (1239). This PVC can operate and maintain medications inside all carriers at refrigerator temperatures. Remaining elements are labeled same as on
FIG. 79—illustrates a diagram of ADVSP configuration consisting of the following major components: ADVSP Central Refill Center (1209), ADVSP Pharmacy locations (1210), ADVSP Stand-alone kiosk (1211), ADVSP portable kiosk at a patient residence (1212), ADVSP portable kiosk at a patient room at a medical facility (1213). The illustrated ADVSP configuration will support a number of processes, including distribution of: raw materials; prescribed medications; non-prescribed medications; support equipment; etc. between various business units located along selected distribution route, as indicated by (1214). This is an example of optimization of pharmacy operations using automatic distributed vending system. ADVSP automation technology, which can be configured to significantly improve efficiency and quality of operations of various business, including—Pharmacy. ADVSP consist of automation friendly intelligent devices, which can be configured into a variety of automation solutions depending on business objectives. In the example—ADVSP is illustrated for applications in the Pharmaceutical industry. As with any business dealing with health matters, QUALITY of service is the key to success. ADVSP not only ensures QUALITY of all process steps, but also proves its compliance by providing detailed logs of information in respect to each processed prescription from point of origination to point of dispensing to CUSTOMER. ADVSP is the only technology that will be able to provide in-writing the routing and the environmental information for each prescription throughout all process steps. These valuable data will assure CUSTOMERS that from the point of origination to the point of dispensing to CUSTOMER, prescribed medication had remained within the required specifications parameters to retain its best QUALITY. ADVSP basic tracking mechanism is based on information contained on barcode labels, which are applied to: containers with prescription medication; ADVSP devices; and selected components inside ADVSP devices. Each device, such as: PVC (Portable Vending Cartridge)—examples illustrated on
FIG. 80—illustrates a diagram of ADVSP LAN configuration of controllers in support of all processes described on
FIG. 81—illustrates a diagram of selected processes of ADVSP described on
Process (1215)—refill prescriptions are received at the REFILL CENTER (1209) by Controller (1215) directly from the company data base stored on HOST (1221) via interface (1222). This process is driven by HOST (1221) and can be based on established schedule. Only at the REFILL CENTER (1209), and only authorized personnel—has access to sensitive CUSTOMER information. At REFILL CENTER (1209)—raw materials are stored in secured, safe and environmentally controlled locations, and their inventory levels maintained by Controllers per current demands.
Process (1223)—at the REFILL CENTER (1209) prescriptions, based on information provided by controller (1215) are filled by experienced pharmacist using latest technology for accuracy and quality control. Each CONTAINER is selected based on Controller optimizing the type and size of CONTAINER for specific medication to be stored inside CONTAINER. CONTAINER with prescription medication is sealed, and its parameters such as: barcode label information, weight, size—are verified by Controller via respective ADVSP components. Containers with processed prescriptions are identified by barcode label, containing important data about the prescription, destination, CUSTOMER, date, etc. Upon completion of (1223)—respective LOG for container with prescription medication is created, and stored in non-volatile memory. The process of updating the LOG is indicated by (1224). The LOG at this point can include the following information: originator of order—name, location, date; recipient of order: name, location expected, date expected; order number; prescription process: location, date, name, medication description, dosage, customer name, expiration date; destination: location, date, time; prescription prepared: date, time, location, operator; medication specifications: weight, temperature min/max, humidity min/max; etc.
Process (1225)—based on destination and CUSTOMER orders at the destination—Containers with prescribed medications are loaded into Portable Vending Cartridges (PVC), such as the one illustrated on
Process step (1226). Delivery trucks (not shown on
Process step (1228)—at the ADVSP pharmacy (1210) inventory of each Automatic Vending Module is monitored by Controllers, and availability of refilled prescriptions at each location is stored in the central data base at (1209). Each PVC can be configured with synchronized dual belt dual track synchronized conveyor system (DSCS), including the configuration capable to present 2 Containers on each side (4 total) for simultaneous unloading or vending out of CONTAINERS stored inside carriers. The designs of the DSCS will ensure that each CONTAINER is maintained in essentially stable condition inside its carrier during the entire time the CONTAINER is present inside PVC, including during DSCS frequent indexing motions and stops, those maintaining the integrity of the prescription, which contains solid pills of a specified dosage based on the pill volume. In the example—Controller of Vending Module can advance Containers inside each PVC independent of other PVC's inside the Vending Module. Vending Module controller will optimize power utilization, and allow parallel operation of each PVC to achieve the highest throughput while minimizing power demands. Each Vending Module can be configured to dispense 2 Containers with prescription medication to a CUSTOMER at a rate of 2 Containers in less than 5 seconds. Environment inside each Automatic Vending Module (AVM), as well as access to content inside—is continuously monitored by Controller non-volatile diagnostics. Any deviation from specified requirements is reported by Controller, and corrective controls, as defined by configuration parameters, can be promptly executed directly by Controller without operator assistance. While inside AVM, each PVC Controller will continuously perform self-diagnostics in respect to security and environment surrounding the CONTAINERS with medication located inside PVC. Security self-diagnostics include monitoring of access to selected gates to the interior of PVC, while environmental diagnostics—include monitoring of the environment surrounding CONTAINERS inside PVC. If any abnormal condition detected, it is recorded, and promptly reported by PVC Controller to AVM Controller. AVM configuration can include temperature control and humidity control of the environment inside AVM, based on information provided by PVC Controllers. Upon completion of process step (1228) the LOG is updated by log update process (1024) to include the following information: security status—ok; environment—ok; location; status: ready for pick-up.
Process step (1229)—CUSTOMER has several options to obtain medication(s). In the example at ADVSP Pharmacy (1210)—a CUSTOMER can be notified by pharmacy personnel or ADVSP controller by phone, and/or email that a prescription(s) is ready at location specified by CUSTOMER. Upon arrival, CUSTOMER will be required to provide security identification information at the Host Terminal, such as the one illustrated on
Process step (1230)—as soon as the first ID of a CUSTOMER has been verified by Computer, if the respective PVC containing prescribed medication for the CUSTOMER is not occupied by servicing another CUSTOMER, then it will be instructed by the Host Terminal to begin to advance respective Containers toward CUSTOMER side of the Vending Module, in preparation for dispensing to CUSTOMER. This is an exceptional feature of technology implemented by ADVSP to sustain parallel processing in order to achieve the most effective service to Customers. Upon completion of all security identifications, the CUSTOMER will be directed by the Host Terminal to proceed to a Vending Module for pick-up of medication(s). At the Vending Module, the CUSTOMER will be required to verify some of the identification at the Controller of the Vending Module. Upon successful verification, the Customer will be instructed to select available prescription medications for pick-up. Once CUSTOMER request is verified and paid for, ADVSP will dispense respective medications to CUSTOMER at once. Upon completion of process step (1230) the LOG is updated by log update process (1024) to include the following information: security status—ok; environment—ok; AVM: number, location; customer verification: ID #1, ID #2, . . . ; medication ID; pick-up—date, time. The log can be formatted to fit within required printer limitations, and at the bottom of the log —phrase “100% Factory Sealed Quality” as assurance. In addition, when requested by CUSTOMER, a log for each prescription will be printed out and deposited into the bag with medication. Instructions on how to use medications can be obtained by CUSTOMER as print-outs at either: the Host Terminal of (1209), the Vending Module terminal, or obtained from the Service Window.
Process Step (1231)—empty PVC units, as available, and other materials, equipment—are picked up from ADVSP pharmacy (1210) and delivered to ADVSP central (1209), as needed. Provider, as needed, can configure ADVSP controllers to direct the process of re-allocation of items between PVC units, so that partially empty PVC can be emptied out completely, by moving its remaining items to other PVC's with available carriers, and emptied PVC returned to Refill center (1209) for re-use. In the example—each Vending Module will contain security bags or packaging for vended medications. CUSTOMER will be instructed before leaving the ADVSP pharmacy or a stand-alone ADVSP pharmacy kiosk—to inspect each vended CONTAINER with prescribed medication to ensure the seal is not tempered with. In summary, the ADVSP technology not only ensured the most pleasant service, but also provides each CUSTOMER with prescribed medications, guaranteeing that each medication retained “100% factory-sealed QUALITY”. The ADVSP layouts are configured to support centralized processing via REFILL CENTER (1209). In addition, ADVSP can be configured to support also local in-store dynamic processing of prescription medications, utilizing state-of-the-art ADVSP technologies. In the example (
FIG. 82—illustrates Z-X view of assembled AVM (1072), such as AVM-200, shown on
FIG. 83—illustrates 3-D view of assembled AVM shown on
FIG. 84—illustrates Z-X view of a carrier conveyor (1023), which is for simplicity is configured as synchronized dual belt single track. For simplicity, other components, such as: PVC outline where the conveyor (1023) is installed, support wheels for the carriers on each side opposite to the conveyor—are also not shown.
FIG. 85—illustrates Z-X view of the conveyor (1023) shown on
FIG. 86—illustrates Z-X view of a top plate (1247) with attached item retaining assembly (1241), described on
FIG. 87—illustrates a cylindrically configured Item or an Item housed inside cylindrical Container. Container shown on
FIG. 88—illustrates a cylindrically shaped Container, which can be configured for housing several Items. The middle section of Container is configured for convenient handling by ADVSP loading and unloading components. The interior of the Container can be configured to have vertical and/or horizontal separator walls/panels, as shown on
FIG. 89—illustrates a cylindrically shaped compartmental Container with the lid removed. As shown, Container is configured with six individual compartments, each of which can house an Item. Figure elements are labeled as follows:
FIG. 90—Item or Container (48) shaped in a form of a bottle with barcode label (38) and lid (49).
FIG. 91—Container (50) similar to (48) shown on
FIG. 92—Item or Container (52) shaped as a rectangular box, with barcode label (367) and lid (365).
FIG. 93—Illustrates Carrier Insert (61) configured for rectangular type Items. The base (54) can be configured to match the outer surface geometry of respective Item or Container it will need to house inside. For more flexibility, an Insert (61) can be configured to have inner surface matching the outer surface geometry of respective Item and used, as shown. The outer surface of Inserts can match the inner surface of Carrier base assembly (54). The Insert (61) can be configured to provide thermal insulation for the Item residing inside. The methods of attaching and securing Inserts (61) inside the Carrier base assembly (54), include: mounting screws, glue, Velcro-type strips, etc. Depending on application, Carrier Inserts can be configured to be made out of plastic (molded), or sheet metal, or aluminum, etc.
FIG. 94—Illustrates rectangular type Item (52) being placed inside Carrier base assembly (54) with attached Insert (61) configured to match Item's shape.
FIG. 95—Illustrates rectangular type Item (52) inside Carrier base assembly (54) configured with Insert (61) inside to match Item's shape. Velcro-type strips (not shown) can be added to the inner surface of (61) to engage with mating Velcro-type strips of (52).
FIG. 98—Top view of the empty Carrier (60). Figure elements are labeled as follows:
FIG. 99—Top view of the Carrier shown on
FIG. 102—Carrier base-plate assembly (63), which can be configured for holding/support of individual tubes or vials, as shown. This configuration of the Carrier base-plate will allow ADVSP to process Items placed inside each tube. Tubes/vials can contain various type of Items in a form of: liquid, powder, solid, etc., and the items can include: medications, patient test samples (blood, urine, tissue, etc.). Figure elements:
FIG. 103—Carrier side support bracket (67) left side (as shown), which can be configured with pins (68) to support removable base plate (63) shown on
FIG. 104—Section of Carrier assembly configured with support bracket (67), removable Item base-plate (63) engaged with alignment pins (68), and the base-plate (63) configured for supporting specific size tubes/vials (69), shown loaded with 24 tubes. Base-plate (63) can be loaded or unloaded from Carrier Conveyor manually by authorized personnel, or automatically by ADVSP support component.
FIG. 105—Item or Container (69) shaped as a tube/vial, with vial body (70) and lid (71). This type of Containers can be configured and used for handling and processing a variety of items, including: medications, patient test samples (blood, urine, tissue, etc.)
FIG. 106—Illustrates Process Chamber configuration layout in relationship to Conveyor Carriers. Process Module can be installed or integrated inside Automatic Vending Module (AVM), and can be configured to contain several Process Chambers. Each chamber can be configured to allow controller to execute chamber-specific or item-specific process control algorithm defined by apparatus configuration parameters. Chamber-specific process can include: temperature, humidity, UV level. For simplicity, only one Chamber is shown. Figure elements are labeled as follows:
FIG. 107—Illustrates example of a single Process graph (303) of a controlled Process parameter within Process Chamber, such as temperature, UV radiation, etc. vs. time. As shown, Process Chamber can be configured under directions from Controller to maintain a required value of Process parameter. Under directions of Controller, each Carrier with its content, such as medications, patient test samples, upon entry into this type of Process Chamber, can be exposed to controlled value of Process parameter, such as: constant (P1) temperature, UV radiation, etc. for a specified by Controller period of time (T1, T2).
FIG. 108—Illustrates example of Process graph (304) of controlled Process parameters, which Controller can execute by utilization of three Process Chambers. As shown, each Process Chamber can be configured to allow Controller to control required values (P1, P2, P3) of Process parameter. Each Carrier with its content such as medications, patient test samples, upon entry into respective Process Chamber, will be exposed to controlled value of respective Process parameter, such as: temperature, UV radiation, etc. for a specified period of time. For simplicity—temperature process control is shown. Figure elements:
FIG. 109—Illustrates configuration of Item Processing inside Carriers (shown empty for simplicity) by exposing each Item to two Process Chambers. Figure elements are labeled as follows:
FIG. 110—Illustrates side view (cross section) of Conveyor configured with a Carrier loaded with Item going through a Processing temperature Chamber. Figure elements are labeled as follows:
FIG. 111—Illustrates side view (cross section) of Conveyor configured with removable Carrier base-plate assembly loaded with Items, such as: medications, patient test samples, inside tubes/vials, going through Processing temperature Chamber. Figure elements:
FIG. 112—illustrates section of a Carrier Conveyor inside a Process Module, which is configured for Item Processing, and which is further configured, as shown, of three Item Processing Chambers. Each Process Chamber can have specific Process. Each Process within each Chamber—can be configured to have the same Processing time or cycle. For simplicity, shown example has each Process Chamber with specific temperature maintained inside—Process chart (374), which will be stored in the non-volatile memory under apparatus configuration parameters. Controller based on algorithm included in the apparatus configuration parameters, will execute controls as described below. Items are Processed within each Chamber for time duration equal to constant Process Time—Tp. Total Processing time, or Process Cycle, of one Carrier loaded with Items is equal to Tp*3 (for simplicity, Conveyor index time is considered<< than Tp). Controller can be configured as a close loop real-time process controller, which will include: monitoring process sensors for actual process parameters and executing controls of respective process devices to sustain the actuals within the required proximity from the set parameters. Controller can be configured to execute process controls in real-time without operator assistance, and further configured to inform Provider if process deviations exceeded pre-defined limits. Example of the Processing sequence executed by Controller:
Step 1. Controller will execute item loading sequence of carriers which will result in the carrier conveyor to include: 3 loaded carriers followed by 3 unloaded carriers followed by 3 loaded carriers, and so on.
Step 2. Controller will advance the carrier conveyor in direction (77) and align 3 empty carriers within Process Chambers.
Step 3. Controller will set the temperature for each Process Chamber according to the Process chart (374).
Step 4. Once each Chamber reached its respective temperature setting, Controller will advance the carrier conveyor along (77) and align the first carrier with item for processing inside Process Chamber #1 (310).
Step 5. Controller will proceed with indexing the Carrier conveyor per timing outlined by Process chart (374), and will maintain each Process Chamber within specifications, which will result in each item being processed according to Process chart (374).
Step 6. Once all Items loaded inside Module have been Processed, Controller will stop Conveyor, with three empty Carriers remaining inside respective three Chambers.
Step 7. Controller can turn off each Chamber.
Step 8. Once temperature inside each Chamber reached near ambient temperature, Controller can index Carriers (empty and loaded), as needed. Processed Items can be unloaded by Controller, as needed, to Provider and/or to authorized Customer.
For simplicity, only loaded carriers are shown. Figure elements are labeled as follows:
FIG. 113—illustrates section of a Carrier Conveyor configured inside a Process Module with Process Chambers same as on
Step 1. Controller will execute item loading sequence of carriers which are spaced apart by distance L9
Step 2. Controller can set the temperature for each Chamber according to the Process chart (374). While the Chambers are in-process of reaching the set process parameter, the carrier conveyor is configured to retain only empty carriers inside the Process Chambers.
Step 3. Once each Chamber reached its respective temperature setting, Controller will advance the carrier conveyor along (77) and align the first carrier with item for processing inside Process Chamber #1 (310).
Step 4. Conveyor, under commands from Controller, can execute required number of index moves equal to ⅓ distance of L9, with rest times starting with Tp1 followed by Tp2, Tp3, Tp1, Tp2, Tp3, Tp1 and so on until all Items inside Module have been Processed. Controller can then stop Conveyor, with one empty Carrier remaining inside Chamber (310), while the other Carriers loaded with Processed Items remain outside the Process Chambers.
Step 5. Controller can turn off each Chamber.
Step 6. Once temperature inside each Chamber reached near ambient temperature, Controller can index Carriers, as needed. Processed Items can be unloaded, as needed, to Provider and/or authorized Customer. Figure elements are labeled as follows:
FIG. 114—Illustrates ADVSP Automatic Item Feeding assembly (13), which can be configured to serve as an intermediate buffer of Items awaiting being loaded into respective Module, expanding capacity of Items within ADVSP. Transfer of Items from Feeding assembly can be configured for unattended direct control from respective Controllers—Module and Feeder. Figure elements:
FIG. 115—Illustrates ADVSP Automatic Item Feeding assembly (329) configured with Automatic Item Inspection device (336). Figure elements are labeled as follows:
FIG. 116—Illustrates configuration of Automatic Item Feeding Conveyor assembly (330). Figure elements:
FIG. 117—illustrates configuration of ADVSP in support of automatic packing of Items being dispensed. Packing materials and type can be configured to provide additional security, safety and privacy. Shown—ADVSP layout with Item Automatic Packing assembly (346) installed along “Y-axis”. Prior to vending an Item, Controller can command Controller of Automatic Packing assembly to advance empty package to Item unloading location. Controller can detect presence of empty package, verify package position and barcode label, as needed. Controller can then unload requested Item into empty package. Empty packages can be loaded onto Automatic Packing assembly manually or by other ADVSP automation components. Rejected by Controller empty package(s) can be dropped into reject bin, located under Item unloading platform. Figure elements are labeled as follows:
FIG. 118—ADVSP configuration layout with Item Automatic Packing assembly (352), which can be installed along “X-axis”. Prior to vending requested Item, Controller can command Controller of Automatic Packing assembly to advance empty package to Item unloading location. Controller can detect presence of empty package, verify package position and barcode label, as needed. Controller can then unload requested Item into empty package. Rejected by Controller empty package(s) can be dropped into reject bin, located under Item unloading platform. Figure elements are labeled as follows:
FIG. 119—Configuration of ADVSP AVM item unloading platform (353) detail. Empty box (348) can be placed by Item Automatic Packing assembly on top of unloading platform (353). Requested Item (not shown), can be unloaded out of its Carrier inside AVM by ADVSP component and then placed inside empty box (348). The platform (353) can be configured to swing about “Y-axis” of the hinge (354) down along “Z-axis” to position indicated by (355), as commanded by Controller. Platform in its upper position (354) can hold box (348) with Item inside. Under direction of Controller, the platform (353) can swing about axis of hinge (354) as indicated by (355), and cause content on top—box with Item inside to fall into Pick-up Bin (157). Figure elements are labeled as follows:
FIG. 120—illustrates 3-D view of ADVSP in-line automation features. As shown, ADVSP configured with Section Computer (358) and five same-type Automatic Vending Module (AVM) (10), and can be mounted on loading platform (357), which can then be rolled to designated automatic feeding location to re-fill content of each AVM. Distance Y5 between AVM (10) located on top of platform (357) along “Y-axis” can match respective distance between Items or Containers (360) located on top of conveyor of Item Feeding assembly (359). This can significantly increase Item loading efficiency. The Item Feeding assembly (359) can be configured to serve required number of AVM at once. The Item Feeding assembly (359) can be configured to handle variety of Items (360) in terms of their packaging size and weight. Items can be loaded onto Automatic Item Feeding conveyor manually or by other ADVSP automatic components. In some applications, Automatic Item Feeding can take place directly at the manufacturer of Items, or at a location where Item(s) are packaged into Container. Position of Automatic Item Feeding conveyor can be referenced in relation to positions of AVM on platform (357). Controller can advance it's conveyor, loaded with Items or Containers with Item(s), a distance equal to Y5*N, where N—number of AVM being loaded. As shown, N=5. Controller can detect presence of Item or Container on Item Feeding conveyor, and after verification of its barcode, can command it's Automatic Item Loading assembly (361) to pick-up respective Item from conveyor and transfer it to an empty carrier inside respective AVM. Rejected Items, one is shown (362), can remain on conveyor, and then removed at appropriate location. Throughout entire operation, Automatic Item Feeding Controller can be configured to communicate via ADVSP Network real-time, with respective Controllers to ensure reliable, secured and safe loading of Items. Once each AVM is loaded with required quantity of Items, the entire Section can be transported back to its designated vending location. Same principal (not shown), as needed, can be used in reverse, for automatic unloading of Items out of AVM onto (359), and transported by (359) to designated location, where they can be removed. Controller of (356) will coordinate and synchronize all activities per apparatus configuration parameters. Figure elements:
FIG. 121—ADVSP configuration example consisting of 7 AVM units, each AVM with capacity of 200 prescription medications. ADVSP components, including Controllers, AVM units, support devices—can be configured to be interfaced via wired or wireless LAN. Figure elements are labeled as follows:
FIG. 122—Illustrates configuration of a support for a carrier (1272) which enables the carrier (1272) to swing in direction (1275) about the primary axis (1278) of the bearing (1261), and independently swing in direction (1276) about the secondary axis (1279) of the carrier support shaft (1263). For simplicity, only one side of the carrier support is illustrated. For small and light items, and respectively small and light carriers, the support for the carriers can be configured from one side only, with the opposite side being suspended in the air. The independent dual axis rotational support (referenced for simplicity as “dual axis support”) illustrated will reduce friction for the carrier to swing about the primary axis (1278), which will in-turn reduce required forces required to be applied to the carrier (1272) in order to swing required angle in respect to the primary axis (1278), or Y-axis, and allow the item originally located inside the carrier (1278) to roll-out for dispensing. The “dual axis support” is applied for dispensing via sliding tunnel, as described on
FIG. 123—Illustrates assembled carrier (1272) supported from the cavity (1264) of the shaft (1263) inserted into inner race of the bearing (1261). For simplicity, the conveyor belt to which the bearing (1261) is attached is not shown. The illustrated mounting will enable carrier (1272) together with support bracket (1266) to swing in direction (1275) about the primary axis (1278) of the bearing (1261), and independently swing in direction (1276) about the secondary axis (1279) of the support shaft (1263). For simplicity, only one side of the carrier support is illustrated. For small and light items, and respectively small and light carriers, the support for the carriers can be configured from one side only, with the opposite side being suspended in the air. The independent dual axis rotational support (referenced for simplicity as “dual axis support”) illustrated will reduce friction for the carrier to swing about the primary axis (1278), which will in-turn reduce required forces required to be applied to the carrier (1272) in order to swing required angle in respect to the primary axis (1278), or Y-axis, and allow the item originally located inside the carrier (1278) to roll-out for dispensing. Additional bracket can be configured to restrict the support bracket (1266) during transportation or as needed, from exiting the slot (1264) of the support shaft (1263). The “dual axis support” illustrated, can be applied for dispensing items from carriers via sliding tunnel, as described on
FIG. 124—Illustrates Automatic Vending Module (AVM) (1072) configured with 5 installed Portable Vending Cartridges (PVC) (1078), shown on
FIG. 125—Illustrates Automatic Vending Module (AVM) (1072) configured with 5 installed Portable Vending Cartridges (PVC) (1078), shown on
FIG. 126—Illustrates Automatic Vending Module (AVM) (1072) configured with 5 installed Portable Vending Cartridges (PVC) (1078), shown on
FIG. 127—Illustrates mounting components of the “Self-adjusting Plate” (1284), which are configured to attach the plate (1284) to Slide-able Unloading Tunnel (SUT) (1248). For simplicity only components for mounting (1284) from one side are shown. Figure elements are labeled as follows:
FIG. 128—Illustrates assembled mounting components of the “Self-adjusting Plate” (1284) configured to attach the plate (1284) from one side to the Slide-able Unloading Tunnel (SUT) (1248). The Roller with embedded bearing (1294) is configured to be inserted into “Y-axis” Guiding Channel (1288), and then retained inside (1288) by the Stop Plate (1316) attached to the Mounting Bracket (1287) via mounting holes (1292). The Spring (1293) inside the Guiding Channel (1288) is configured to apply force along the “Y-axis” to the Roller (1294), and keep the Roller against the Stop Plate (1316). The Shaft (1295) is configured to be inserted into the bearing of the Roller (1294), and serve as the mounting platform for the “Self-adjusting Plate” (1284), as shown on
FIG. 129—Illustrates Z-Y view of assembled “Self-adjusting Plate” (1284), which together with SUT (1248) under direction by Controller, had advanced along (1249), and engaged its Tip (1303) with the Carrier assembly (1272). For simplicity, only limited number of components is shown, and the engagement point illustrated, represents the distance the SUT (1248) had to advance, to demonstrate the principal. As the SUT (1248), under direction of Controller, is advancing toward the Carrier (1272), the Tip (1303) of the Plate (1284) will begin engaging with the Carrier (1272) and force the Carrier (1272) to swing, as indicated by (1276), about the “X” axis of the Carrier (1272) support Shaft (1265). The Tip (1303) is configured from flexing materials, and will self-adjust its position in respect to Plate (1284) under resistance or reaction forces, resulting from the weight P2 of the Carrier (1272), and the Tip (1303) is further configured to provide reliable engagement with the Carrier (1272) at all times during the engagement. In addition, the section of the Carrier (1272) designated for engaging with (1303) can be configured to provide reliable engagement with the Tip (1303) at all times during the engagement. The support components, as described on
I claim the benefits of Provisional Application No. 61/514,014 filed on 08/01/11, title “Optimization of Pharmacy Operations using Automatic Distributed Vending System”.
Number | Date | Country | |
---|---|---|---|
61514014 | Aug 2011 | US |