1. Field of the Invention
The present invention generally relates to the field of nonlinear optimization and, more particularly, to resource allocation, as for example, buffer pool optimization in computer database software where only the marginal utility is known.
2. Background Description
Conventionally, resource allocation maximizing some utility function using nonlinear optimization requires knowledge of the utility as a function of the allocated resources. For example, the resources could be the memory allocated to a series of computer processors and the utility is the aggregate performance of these processors or the reduction in power consumption of these processors. In prior art methods for solving this problem, knowledge of this utility function is required. Almost all prior art algorithms for solving this problem can be classified into one of the following three classes:
Thus, in prior art algorithms, knowledge of the utility function is required in order to solve the optimization problem. In some applications, knowledge of this utility function is absent, and prior art iterative optimization algorithms cannot be used to solve this problem.
As a specific example, buffer pool optimization in International Business Machines' (IBM's) DB2 computer database software is a problem where only the gradient of the utility function is known, i.e., at each point we know the benefit in terms of saved disk access time due to allocating more memory, but the utility, which in this case is the total saved disk access time due to current buffer pool setting, is unknown.
Therefore, there is a need in the art for a method to allocate resources maximizing such utility using algorithms which do not need to know the utility as a function of the resources.
It is therefore an object of the present invention to provide a way to maximize the utility of an allocation of resources without the need to know the utility as a function of the allocated resources.
In a general form, the problem can be formulated mathematically as follows. The object is to maximize the utility function ƒ (x) subject to constraints on the vector x. Each vector x denotes a particular allocation of resources and the constraints generally describe properties of the resources which must be satisfied, for instance, the total number of resources must be less than a certain number, etc.
The present invention provides a method for allocating resources by specifying an allocation x which maximizes ƒ (x) while satisfying the constraints on x where the steps of the method do not require knowledge of ƒ.
Sometimes the goal is to minimize some function ƒ in which case we refer to f as a cost function rather than a utility function. In the nonlinear programming literature, ƒ is usually called an objective function.
In one embodiment of the present invention, a method for allocating resources (i.e., determining x) may comprise the steps of starting from an initial allocation, calculating the marginal utility of said allocation, calculating the constraint functions of said allocation, and applying this information to obtain a next allocation and these steps are repeated until a stopping criteria is satisfied, in which case a locally optimal allocation is returned.
According to the invention, we provide algorithms which are used to solve the above nonlinear programming problem where
1. only the gradient ∇ƒ is known, or
2. only the gradient ∇ƒ and the Hessian ∇2ƒ are known.
i.e., there is no procedure to evaluate the objective function ƒ. These two cases are optimization problems which have not been considered before. A simple example of this problem is when ƒ=∫g, where g is an explicit function whose integral cannot be written in closed form.
Our algorithms are derived from prior art optimization algorithms, but modified to not need evaluation of the objective functions.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
Referring now to the drawings, and more particularly to
The present invention comprises a method, computer program product and system for resource allocation when the utility function is unknown and the marginal utility is known. The marginal utility with respect to a particular resource is the additional incremental utility obtained by incremental increase of that resource and is equivalent to the gradient of the utility functions(x). Examples of the utility are total time saved, number of transactions processed, power consumption saved, processors utilization, memory utilization, etc.
All prior art iterative nonlinear optimization algorithms assumes knowledge of the utility functions, and if available, the gradient ∇f, and the Hessian ∇2ƒ:
In general, the problem is given as:
By replacing ƒ with −ƒ, the problem is written as a minimization problem which is the standard form in nonlinear programming:
In this case we will call ƒ the cost function rather than the utility function. Some examples of cost are total disk I/O (input/output) time, power consumption and overall system response time. The present invention provides a method for solving the minimization problem above without the need to evaluated This is useful in applications where evaluating ƒ is impossible, very expensive, time-consuming and/or inaccurate. An example of such ƒ is when ƒ=∘g, where g is a function whose integral cannot be written in closed form, e.g., e−x
Good text on nonlinear programming and numerical optimization include: Practical Optimization by P. Gill et al., Academic Press, 1981, Practical Methods of Optimization by R. Fletcher, Wiley & Sons, 1987, and Numerical Optimization by J. Nocedal and S. Wright, Springer, 1999.
We employ modification of line search based algorithms such as steepest descent, conjugate gradient, quasi-Newton or Newton's method. In these line search based algorithms, almost all components of the algorithm do not require evaluation of ƒ. The stopping criteria based on first or second order optimaltality conditions also do not require evaluation of ƒ. The only place where evaluation off is required is in the scalar line search component where a one-dimensional optimization is performed along a particular direction p. Our invention is to use a scalar line search method that does not require evaluation of ƒ. For instance, in prior art backtracking line search along a search direction p, the step size α is decreased until the sufficient decrease or Armijo condition is satisfied:
ƒ(x+αp)≦ƒ(x)+c1α∇ƒ(x)Tp
where AT denotes the transpose of the matrix (or vector) A. This requires evaluation of the function ƒ. The disclosed invention uses a backtracking line search that decreases the step α until the following condition is satisfied:
(∇ƒ(x+αp)−c1∇ƒ(x))Tp≦0 (1)
This results in a line search which uses only gradient information. Using this line search with the rest of the components in a prior art line search type nonlinear programming method results in a nonlinear programming method which uses only gradient information, and if available, Hessian information, to minimize ƒ and does not require evaluation of ƒ itself.
This is illustrated in
In a preferred embodiment, the resources are a series of memory buffers in a computing system running the database software DB2 and the goal is to minimize access time by allocating memory to these buffers appropriately. This is illustrated in
The utility function ƒ(x) is the total disk time avoided by using the allocation vector x, whereas the partial derivative
is the time saved by allocation more resources to xi. This is illustrated in
The gradient ∇ƒ consists of the partial derivatives of ƒ, and corresponds to the benefit in access time saved due to increased memory buffer allocation. The system configuration is such that ∇ƒ is readily available, whereas ƒ is not available (or requires too much effort to compute accurately).
By the Karush-Kuhn-Tucker optimaltality condition, at the optimal point x*=(x1*, . . . , xn*) where ƒ is maximized, the gradient ∇ƒ satisfies
∇ƒ(x*)i=λ, if xi*>di
∇ƒ(x*)i≦λ, if xi*=di
for some real number λ. To solve this problem where the inequality constraints are linear, which is a special case of the general problem, an active set line search algorithm can be used.
A flowchart of such an algorithm is shown in
Most line search based nonlinear optimization algorithms can be modified in the same manner by those skilled in the art to obtain a corresponding algorithm that does not require evaluation of ƒ. For example, for more general constraints, line search based methods such as penalty function methods, augmented Lagrangian methods, and sequential quadratic programming methods can be used, where the scalar line search component in these methods is replaced by the modified line search described above. Furthermore, since the utility function ƒ in
While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 10669722 | Sep 2003 | US |
Child | 12173947 | US |