1. Field of the Disclosure.
The present disclosure relates to optimization of articular geometries of orthopaedic implants.
2. Description of the Related Art
Many prosthetic joints include components having articulating surfaces which articulate with each other or with natural anatomical structures. For example, a prosthetic knee joint may include a femoral component, a tibial component, and a meniscal component, each of which may include articulating surfaces which articulate with each other. The prosthetic knee joint may be formed as a mobile bearing prosthetic knee joint, i.e., the meniscal component may rotate relative to and articulate with the tibial component. In the mobile bearing prosthetic knee joint, the tibial component and the meniscal component may have a flat-on-flat mating engagement, i.e., the surface of the tibial component in articulating engagement with the meniscal component is a flat surface and the surface of the meniscal component in articulating engagement with the tibial component is also a flat surface.
The present disclosure provides various embodiments of orthopaedic implants which optimize the articular geometries of the implants. An exemplary implant may include a plurality of protrusions which provide an articulating surface and which create paths for fluid movement relative to the implant.
In one form thereof, the present disclosure provides an orthopaedic implant including a body; and a plurality of macroscopic protrusions extending from the body, at least some of the protrusions defining articulating surface portions cooperating to define an articulating surface of the implant, wherein the articulating surface portions are substantially coplanar.
In another form thereof, the present disclosure provides an orthopaedic implant including a body; and optimization means associated with the body for providing enhanced lubrication to the implant.
In yet another form thereof, the present disclosure provides an orthopaedic implant including a body; and a plurality of substantially spherical protrusions extending from the body, at least some of the protrusions defining articulating surface portions cooperating to define an articulating surface of the implant.
In still another form thereof, the present disclosure provides an orthopaedic implant including a body; and a plurality of protrusions extending from the body, at least some of the protrusions defining articulating surface portions cooperating to define an articulating surface of the implant, the protrusions defining a path through which fluid can flow.
The above-mentioned and other features of the disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the disclosure and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to
In an exemplary embodiment, surfaces 34 of each protrusion 30 together define an articulating surface of first component 22. As shown in
Channels 36 provide passageways or paths for fluid to move between protrusions 30. Such fluid proximate the articulating surfaces of first component 22 and second component 24 enhances the amount of lubrication provided between first component 22 and second component 24 during articulation therebetween. The enhanced lubrication improves wear characteristics and properties of first component 22 and second component 24 by reducing the amount of wear imposed on each component. Furthermore, the geometry of protrusions 30 allows optimization of the amount of articulating contact area between first component 22 and second component 24 while maintaining channels 36 for flow of fluid lubricant therethrough. For example, the geometry of protrusions 30 provides a sufficient amount of surface contact between first component 22 and second component 24 while simultaneously providing enhanced lubrication therebetween. For example, contact surfaces 34 of protrusions 30 provide a substantial amount of contact between first component 22 and second component 24 such that articulation is not adversely affected during use of system 20. In exemplary embodiments, contact surfaces 34 may define an articulating surface area percentage of surface 28 (where depressed areas 32 define the remainder of surface 28) of as small as approximately 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% or as large as approximately 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, or 55%. The remainder of surface 28 defining depressed areas 32 provides the enhanced lubrication to the interface between first component 22 and second component 24. Moreover, the enhanced lubrication reduces friction between first component 22 and second component 24 while still allowing rotation and movement therebetween with lower forces imposed on first component 22 and second component 24. The reduced friction allows a more natural, i.e., non-prosthetic, movement within the joint, thereby allowing more normal rotations, movements, and kinematics of the components.
As shown in
As shown in
Although shown in
In an exemplary embodiment, system 20 is a prosthetic knee joint and first component 22 is formed as a meniscal or bearing component of the prosthetic knee joint, second component 24 is formed as a tibial component of the prosthetic knee joint, and the third component is formed as a femoral component of the prosthetic knee joint. Although described throughout the present disclosure as pertaining to a prosthetic knee joint, protrusions 30, 30a, 42 may be used on any orthopaedic implant which includes two components articulating against one another to reduce the wear and enhance the lubrication between the two components. Protrusions 30, 30a, 42 may also be used on any orthopaedic implant which includes a component which articulates against a natural anatomical structure to reduce the wear and enhance the lubrication between the component and the natural anatomical structure.
In one embodiment, protrusions 30, 30a, 42 may be formed by a net shape molding process. In another embodiment, protrusions 30, 30a, 42 may be formed by removing a portion of body 23 to define channels 36, 52. In yet another embodiment, protrusions 30, 30a, 42 may be formed by adding material to body 23 to create channels 36, 52.
In an alternative embodiment, protrusions 30 may be formed on second component 24 and first component 22 includes a substantially planar mating surface.
While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.