The present invention relates to a method of determining voltage changes, e.g. in cell membranes, by means of a voltage-sensitive dye.
The recording of neuronal activity is an essential prerequisite to investigate the electric function of nerve cells, neuronal networks and the brain. Such applications basically require dyes exhibiting a great fluorescence change at small voltage changes. Numerous dyes have been developed to this end over the years (Loew, L. M.; Bonneville, G. W.; Surow, J., Biochemistry 1978, 17, 4065; Loew, L. M., Simpson, L. L., Biophys. J. 1981, 34, 353; (9) Fluhler, E., Burnham, V. G., Loew, L. M. Biochemistry 1985, 24, 5749; Grinvald, A., Hildesheim, R., Farber, I. C., Anglister, L. Biophys. J. 1982, 39, 301; Grinvald, A., Fine, A., Farber, I. C., Hildesheim, R. Biophys. J. 1983, 42, 195), especially the dyes di-4-ANEPBS and RH-421. Most popular are styrene-type hemicyanines where aniline as an electron donor is joined to pyridinium as an electron acceptor by one, two or three conjugated CC double bonds.
In conventional methods of determining voltage changes, particularly in the case of nerve cells, however, the problem is that voltage-dependent dyes typically indicate fluorescence changes of only a few percent per 100 mV membrane voltage change. Therefore, the signal-to-noise ratio is often very low due to an excitation in or including a highly efficient absorption range of the dye. Further, due to a strong phototoxicity of most photosensitive dyes only short measurement times are possible for a single cell.
An object of the present invention, therefore, was to provide a new process for an improved measurement of voltage changes overcoming the limitations of the prior art, in particular, low sensitivity and phototoxicity.
According to the invention this object is solved by a process for determining voltage changes by means of a voltage-sensitive dye, characterized in that the voltage-sensitive dye is irradiated with light having a wavelength, at which the dye has an absorption ≦20% of its absorption maximum and the fluorescence caused by irradiation with light is measured.
According to the invention changes in voltage, in particular, in transmembrane voltage, are determined using voltage-dependent dyes, which show a change in fluorescence depending on the voltage they experience. Usually lamps and filters or lasers are used for excitation. However, excitation can be effected by any light source. According to the invention excitation is effected at a wavelength or a wavelength band, at which absorption of the dye is ≦20%, preferably ≦10%, in particular, ≦5%, more preferably ≦3% and most preferably ≦2% of the absorption maximum. According to the invention no light is irradiated to the dye, which has a wavelength, at which the absorption of the dye is ≧20%, preferably ≧10%, in particular, ≧5%, more preferably ≧3% and most preferably ≧2% of its absorption maximum. Earlier it has been found with other dyes, not pure Stark-shift probes, that the sensitivity increases at the spectral wing, especially at the red spectral wing of the excitation spectrum (Loew, L. M., J. Biochem. Meth. 6 (1982) 243-260). We explored the sensitivity beyond that limited spectral range of the earlier study and with the new pure Stark-shift probes and find that we can approach the thermodynamic sensitivity limit of voltage-sensitive dyes. This method of excitation at the very red edge of the excitation spectrum can also be used with dyes that show no pure Stark-shift. The sensitivities are expected to be, higher than all previous sensitivities but lower than those of pure Stark-shift probes due to other spectrum-changing effects.
According to the invention, particularly, an increase or decrease of fluorescence is measured which can be observed in the case of the dyes when radiated with light due to a change in voltage of the environment, e.g. a change of transmembrane voltage.
Specifically, the invention relates to a method of measuring voltage changes in cells such as nerve cells and in cell membranes.
According to the invention, a voltage-sensitive dye is used. Suitable dyes are described in literature (Loew, L. M., Bonneville, G. W., Surow, J. Biochemistry 1978, 17, 4065; Loew, L. M., Simpson, L. L. Biophys. J. 1981, 34, 353; Fluhler, E., Burnham, V. G., Loew, L. M., Biochemistry 1985, 24, 5749; Grinvald, A., Hildesheim, R., Farber, I. C., Anglister, L. Biophys. J. 1982, 39, 301; Grinvald, A., Fine, A., Farber, I. C., Hildesheim, R. Biophys. J. 1983, 42, 195). Suitable fluorescent dyes, for example, are hemicyanines having a hydrophilic head group and a hydrophobic and region. The hydrophilic part usually comprises a sulfate group (negatively charged) and pyridine (positively charged), while the hydrophobic end is composed of aniline and two hydrocarbon groups. Thus, the dyes are amphiphilic and deposit in lipid membranes. In the case of these dyes the chromophore being a coherent electron system is formed by pyridine and aniline which are interconnected by alternating single and double bonds of hydrocarbons. Such dyes show an electrochromic response to membrane voltage changes, a solvatochromic effect, photoisomerism of CC double bonds and photorotamerism of CC single bonds. The electrochromic effect is due to the Stark effect. The solvatochromic effect leads to a movement of the dye in its surrounding solvent due to changes in the electric field, which also results in spectral changes.
According to the invention hemicyanine dyes having linearly anellated benzene rings are preferably used as they do not show solvatochromic effects during voltage changes and as they cannot isomerize or rotate (no CC single or CC double bonds). Preferred are those hemicyanine dyes with at least 3, in particular, at least 4, more preferred at least 5 and most preferred at least 6 and up to 20, more preferred up to 10 and most preferred up to 8 linearly anellated benzene rings. Preferred compounds have the
and more preferred compounds comprise the compounds ANNINE-4, ANNINE-5, ANNINE-6 and ANNINE-7 having the general formula
wherein each R independently is a hydrocarbon residue which can be linear or branched, saturated or mono- or polyunsatured and which has 1-30, preferably 1-10 carbon atoms, and may be substituted with hydroxyl,
n is an integer from 1 to 9 and m is an integer from 0 to 8. Particularly, R1 is an organic residue comprising 1 to 50, in particular, 1 to 30 C atoms and optionally heteroatoms, in particular, selected from N, S, O and P. While R1 can be neutral, it is preferably a negatively or positively charged residue. R1 preferably is a hydrocarbon residue which can be linear or branched, saturated or mono- or polyunsatured and which has 1-30, preferably 1-10 carbon atoms, e.g. methyl, ethyl, propyl, butyl, etc. Especially preferably R1 is a residue R2—SO3−, wherein R2 is a hydrocarbon group which can be linear or branched and either saturated or mono- or polyunsatured and which has 1-30, particularly 1-10 carbon atoms. In a further preferred embodiment R1 is a positively charged residue such as R2—N+(R)3, e.g. (CH2)3N+(CH3)3, forming a dicationic dye. Such dicationic dyes show improved solubility in water up to total water solubility (without any need of additional organic solvents) while retaining voltage sensitivity. It is further preferred that R1 is a C1-C10, in particular, a C1-C5 alkyl residue, for example, methyl, a phosphate residue or a hydroxyalkyl residue, for example, —(CH2)n—OH, whereby n=1-10, for example, 3. Especially preferably R is butyl residue and R1 is a residue (CH2)4SO3−.
Further preferred are compounds of formula (I) or (II), which have one or more substituents at the ring carbon atoms. Preferred substituents which have no influence on the chromophore are C1-C10 alkyl, especially C1-C5 alkyl and, particularly preferred, methyl, C1-C5 haloalkyl, especially CF3 and halogen, in particular, Cl or Br. Preferably, a halogen, in particular, chlorine is introduced as a substituent at position 1 or/and 3 of the pyridine ring.
Preferred substituents having an influence on the chromophore are fluorine, aryl, O-alkyl, S-alkyl, N-alkyl2, O-aryl, S-aryl, N-aryl2, OH, NH2, CO-alkyl, in particular, acetyl, ester (—O—CO— or —CO—O—) or amides, the alkyl groups each preferably having 1-10, in particular 1-5 carbon atoms and the aryl groups each preferably having 5-15, preferably 6-10 carbon atoms.
In particular, the voltage-sensitive dye is selected from ANNINE-4, ANNINE-5, ANNINE-6, ANNINE-7, ANNINE-8 (having formula (I) with n=3) or ANNINE-9 (having formula (II) with m=3) or from derivatives of those chromophores.
In particular, the dyes ANNINE-5, ANNINE-6, ANNINE-7, ANNINE-8 and ANNINE-9 show a pure electrochromic response to membrane voltage changes. This leads to a sensitivity increase at the red edge of the spectrum. Using narrowband excitation (laser) (e.g. <40 nm width) at the very long-wavelength edge of the spectrum, sensitivities of up to 70% for 100 mV can be achieved. The pure spectral shift caused by the Stark effect, which is not overlapped by other effects, e.g. solvatochromism, offers numerous advantages in practice. Sensitivity is increased and the spectra obtained are markedly easier to understand. Further, specifically ANNINE-6 and ANNINE-7 show a very large intramolecular charge shift that leads to a strong spectral shift and so to the extremely high sensitivity.
The pure spectral shift ensures that the sensitivity increases strongly at the spectral edge. This means that the signal decreases much less than the absorption cross section resulting in a high relative fluorescence change and high information obtained per absorption event. By compensation of the decreasing absorption cross section with hither excitation intensity the signal-to-noise ratio can be adapted to the needs of the experiment. Since phototoxicity is dependent on absorption, this also means that either the number of tests which can be carried out on a cell can be increased or the sensitivity of the tests can be enhanced. When increasing the excitation wavelength, a thermodynamical limit is nearly reached, at which no further sensitivity increase is achieved. In the case of ANNINE-6 and an excitation wavelength of 515 nm a sensitivity of −0.37%/mV for 1-photon excitation for dyes incorporated at the outer side of the membrane and 0.37%/mV for 1-photon excitation and 0.52%/mV for 2-photon excitation for dyes incorporated inside the cells (as expected) could be achieved. This sensitivity is four times higher than the highest hitherto published value. Such high sensitivities also enable the detection of small (e.g. ≦10 mV, particularly ≦5 mV) and/or rapid (1 ms time resolution) voltage changes. This sensitivity range is not covered by existing high throughput screening methods. The increased relative changes furthermore reduce the dependency on instrumental shortcomings, e.g. variations of the illumination intensity.
In the case of the dye ANNINE-6 measurement is carried out preferably at wavelengths in the range of from 500 nm to 530 nm.
It has been found that sensitivity (i.e. the relative fluorescence change) at wavelengths which are closer to the absorption maximum (i.e. ranges having an absorption >5%) is not so good as in the range according to the invention.
Another advantage of the ANNINE dyes preferably used according to the invention is their quick reaction, so measurements in the sub-microsecond range are possible.
As the mechanism of voltage sensitivity in ANNINEs is very simple, they show the same voltage sensitivity in cells so different as leech neurons, sea urchin eggs, zebra fish brain and HEK293 cells. Therefore, they can be used for all different cell types. This can also become important for calibration.
Further, surprisingly, the internalization and flipping of the ANNINE dyes is strongly reduced. Internalization and flipping reduces or even annihilates the voltage sensitivity of a dye. So measurement time with the ANNINE dyes is largely increased also with cells that internalize other dyes very fast (e.g. HEK293 cells).
In hemicyanine dyes with anellated benzene rings there is no photorotamerism and no photoisomerism around CC double bonds and CC single bonds. Their solvatochromism in bulk solvents suggests an intramolecular charge shift that is distinctly larger than in homologous styryl type hemicyanines. They are simple and most efficient voltage-sensitive probes of voltage transients in biological membranes. In addition the ANNINE dyes may be used as sensitive probes of polarity and local electrical fields in colloids and polymers. Strong nonlinear optical effects are also expected.
Finally, it is also to be noted that molecules are inefficiently excited by irradiation at the edge of the absorption spectrum (i.e. at ≦5% of the absorption maximum). To achieve higher excitation the intensity of the light irradiation can be increased. In this way the signal-to-noise ratio can be adjusted. In this way a longer measurement time and/or reduced damage to the tested cell can be achieved by exciting few molecules.
In another preferred embodiment of the invention voltage-sensitive dye signals were obtained with two-photon excitation. Thereby the same total energy as in the case of the above-described one-photon method is provided by two photons, i.e. the wavelength of the photons in the case of two-photon excitation is twice as long. Up to 30% higher sensitivities could be achieved at the corresponding excitation wavelengths, which allows to combine the high-voltage sensitivity of the above-described method with the advantages of two-photon excitation. The highest sensitivities that were found with 2-photon excitation are −0.52% per mV membrane-voltage change at an excitation wavelength of 1040 nm, if the dye is in the outer leaflet of the membrane (and expected +0.52%/mV, if the dye stains the inner leaflet of the membrane). The extreme red excitation using two-photon exciation allows the use of the complete emission (fluorescence) spectrum, even if the corresponding excitation wavelength based on one-photon excitation were within the emission (fluorescence) range of the dye. Two-photon excitation especially offers the advantages of deep penetration into the tissue, low phototoxicity because absorption takes place only in the focus as well as low background fluorescence. Due to this the method can be performed even more reliably.
The invention further relates to a voltage-sensitive dye having the formula (I)
or formula (II)
wherein each R independently is a hydrocarbon residue which optionally can be substituted with hydroxyl, R1 is a monovalent residue, n is an integer from 1 to 9 and m is an integer from 0 to 8, which compounds optionally can have one or more substituents at ring carbon atoms. Preferred compounds are as given herein above. In a preferred embodiment, the invention relates to such dyes with the proviso that the compound is not ANNINE-5 or ANNINE-6.
The invention is further illustrated by the enclosed Figures and the Examples given below.
The ANNINE dyes were assembled by combining four different donor moieties (D1-D4) with two different acceptor moieties (A1-A2) as illustrated in
3-N,N-Dibutylaminobutyl benzoate (1)20. 1-Iodobutane (114.3 ml, 1 mol) was added to a mixture of 3-aminobenzoic acid (Fluka, Switzerland, 34.3 g, 250 mmol) in 250 ml DMF and K2CO3 (103.5 g, 750 mmol). The mixture was stirred at 100° C. overnight and distributed between EtOAc and water. The organic layer was washed with brine, dried (Na2SO4) and concentrated in vacuo. Pure 1 (64.9 g, 85% yield, colourless oil) was obtained by distillation (bp 153° C., 0.01 mbar).
3-N,N-Dibutylaminobenzyl alcohol (2). To a magnetically stirred mixture of LiAlH4 (5.3 g, 140 mmol) in 200 ml of anhydrous diethyl ether was added dropwise a solution of 1 (74.1 g, 240 mmol) in 200 ml anhydrous diethyl ether. The mixture was stirred overnight, then quenched by addition of ice cold water, triturated with 40% NaOH and the organic layer separated. The ether extract was washed with brine, dried (Na2SO4) and evaporated. Destillation provided 2 (oil, bp 105-110° C., 0.01 mbar, 91% yield).
3-N,N-Dibutylaminobenzyl chloride (3). PCl5 (46.0 g, 220 mmol) was added in portions to 2 (52.3 g, 220 mmol). The black viscous mixture was stirred at 100° C. for 1 h and then at room temperature overnight. The reaction mixture was quenched with ice and diluted ammonia and extracted with ether. The extract was washed with brine, dried (Na2SO4) and the solvent was evaporated. Chromatography (SiO2, EtOAc:heptane 18:5) provided pure 3 (oil, bp 95° C., 0.01 mbar, yield 79%).
3-N,N-Dibutylaminobenzyltriphenylphosphonium chloride (4). A solution of 3 (19.4 g, 152 mmol) and PPh3 (40 g, 152 mmol) in 120 ml toluene was refluxed for 16 h at 110° C. Upon cooling the white precipitate was collected, washed with Et2O and dried for 24 h at 50° C. in vacuo to yield pure 4 (mp 165° C., yield 63%).
1-Bromo-6-N,N-dibutylaminonaphthalene (5). The synthesis was performed similarly to that previously described for 6-bromo-2-N,N-dibutylaminonaphthalene20. A mixture of 6-amino-1-bromonaphthalene21 (29.15 g, 131.2 mmol, obtained from 2-nitronaphthalene (Lancaster, U.K.), via 1-bromo-6-nitronaphthalene21,22 and subsequent reduction), 1-iodobutane (52.5 ml, 492.2 mmol) and anhydrous K2CO3 (36.0 g, 260 mmol) was heated in 250 ml dry DMF at 130° C. for 48 h. Upon cooling water was added and the mixture extracted with CHCl3 several times. The organic extracts were dried (Na2SO4) and the solvent evaporated. By chromatography (SiO2, EtOAc: heptane 3:7) pure 5 (brown oil, yield 77%) was obtained.
6-N,N-Dibutylamino-1-cyanonaphthalene (6)23. A mixture of 5 (3.3 g, 10 mmol) and CuCN (1.07 g, 12 mmol) and 10 ml dry pyridine were refluxed at 220° C. for 72 h. Upon cooling and evaporation of the solvent the compound 6 (yellow solid, mp 33° C., yield 78%) was isolated by chromatography (SiO2 EtOAc:heptane 3:7).
6-N,N-Dibutylaminonaphthalene-1-carboxylic acid (7). A solution of 6 (1.4 g, 5 mmol) and NaOH (0.3 g, 7.5 mmol) in 20 ml 1-pentanole was stirred at 170° C. for 72 h. Then the solvent was evaporated and the residue distributed between EtOAc and water and acidified with 1 N HCl to pH 6. The organic layer was separated and the water extracted twice. The combined organic layer was dried (Na2SO4) and evaporated to give 7 (yellow solid, mp 78° C., quant.).
6-N,N-Dibutylamino-1-hydroxymethylnaphthalene (8)24. To a stirred and ice-cooled mixture of LiAlH4 (0.6 g, 15.8 mmol) and dry diethylether (50 ml) a solution of 7 (5.6 g, 18.7 mmol) in 70 ml dry diethylether was added dropwise; then the cooling was removed and the mixture stirred overnight. After the addition of water the resulting precipitate was removed by filtration; then the organic layer was washed with brine and dried (Na2SO4) and the solvent was evaporated. The resulting compound 8 (oil, yield 90%) still containing minor impurities was used for the next step. The direct synthesis of 8 starting from 5 via the lithiated intermediate and subsequent reaction with formaldehyde is also possible but less effective.
1-Bromomethyl-6-N,N-dibutylaminonaphthalene (9)24. To a solution of the alcohol 8 (14.5 g, 51 mmol) in 60 ml of toluene PBr3 (2.4 ml, 26 mmol) was added under vigorous stirring. After the reaction mixture was stirred overnight, icy-cold water and then 10% NaHCO3 was added. The product was extracted with EtOAc, the organic layer washed with brine, dried (Na2SO4) and the solvent evaporated. After purification by column chromatography (SiO2, EtOAc:heptane 1:4) 13.2 g 9 (yellow oil, which solidifies in the freezer, yield 75%) were obtained.
6-N,N-Dibutylaminonaphthyl-(10)-methyltriphenylphosphoniumbromide (10). A solution of 9 (12.7 g. 36.6 mmol) and PPh3 (9.6 g, 36.6 mmol) in 40 ml was refluxed for 7 h. Upon cooling 450 ml diethylether were added and the precipitate washed with diethylether twice to give pure 10 (22 g, mp 185-188° C., yield 99%).
2-Methoxymethylbenzaldehyde (11). 1,2-Bis(hydroxymethyl)benzene (Lancaster, U.K.) was reacted to 2-methylmethoxybenzyl alcohol (1 equiv. NaH in THF, then MeI, oil, yield 50%); subsequent oxidation (MnO2 in CHCl3) resulted 11 (oil bp 52° C. (0.012 mbar), yield 82%)25.
7-N,N-Dibutylaminophenanthryl-(1)-methyltriphenylphosphoniumbromnide (12) resp. 8-N,N-dibutylaminochrysenyl-(1)-methyltriphenylphosphoniumbromide (13). 20 mMol of the phosphonium salt 4 resp. 10 and 20 mMol sodiummethoxide were dissolved in dry methanol and stirred at 60° C. for 3 h. Then 20 mMol of the aldehyde 11 in MeOH were added dropwise and the solution was allowed to reflux overnight. After evaporation of the solvent the crude product was purified by chromatography (silicagel; EtOAc:heptane 1:5); the obtained alkenes E/Z-2-(3-N,N-dibutylamino-styryl)benzylmethylether 14a (yield 50%) resp. E/Z-2-(6-N,N-dibutylamino-1-naphthyl)vinylbenzylmethylether 15a (yield 61%) were cyclizysed as described below (20 h, solvent CH2Cl2) to the 7-N,N-dibutylamino-1-methoxy-methylphenanthrene 14 (yield 40%, oil) resp. 2-N,N-dibutylamino-7-methoxymethylchrysene 15 (yield 50%, m.p. 215° C.). 10 mMol of the ethers 14 resp. 15 were stirred with 20 ml 62% HBr at 60° C. for 10 min. After neutralisation (KHCO3) the crude products were extracted with CHCl3 and purified by chromatography (silicagel; EtOAc:heptane 1:5) to receive 7-N,N-dibutylamino-1-bromomethylphenanthrene 16 (yield 53%, oil) resp. 2-N,N-dibutylamino-7-bromomethylchrysene 17 (yield 50%, m.p. 186° C. (dec.)). Treatment of 16 resp. 17 with triphenylphosphine yielded the phosphonium salts 12 (yield 81%, m.p. 213-214° C.) resp. 13 (yield 93%, mp 206° C.).
5-Formylisoquinoline (18) was obtained from 5-bromoisoquinoline26 in analogy to 4-formylisoquinoline27 (mp 116° C.28, yield 55%).
E/Z-3-(3-N,N-Dibutylaminostyryl)-pyridine (19): 3.5 mMol of the phosphonium salt 4 was dissolved in dry MeOH, 190 mg (3.5 mMol) NaOMe was added and the mixture was allowed to reflux for 3 h; then 3.5 mMol of the 3-formylpyridine (Fluka) dissolved in MeOH was added; then the solution was refluxed overnight. The E/Z mixture was isolated by flash chromatography (silicagel, EtOAc:heptane 1:1). Yield 28%, yellow oil; EIMS m/z 308 (M+), 265 (M+-CH7, C21H28N2 requires 308.2).
E/Z-3-(6-N,N-Dibutylamino-1-naphthyl)-vinylpyridine (20): Same procedure as described for 19, but using the phosphonium salt 10. Yield 85%, yellow oil; EIMS m/z 358 (M+), 315 (M+-C3H7, C25H30N2 requires 358.2).
E-5-(6-N,N-Dibutylamino-1-naphthyl)-vinylisoquinoline (21): Same procedure as described for 19, but using the phosphonium salt 10 and aldehyde 18. Yield 73%, yellow solid, mp 128-130° C. (EtOAc); EIMS m/z 408 (M+), 365 (M+-C3H7, C29H28N2 requires 408.3).
E/Z-5-(7-N,N-Dibutylamino-1-phenanthryl)-vinylisoquinoline (22): Same procedure as described for 19, but using the phosphonium salt 12 and aldehyde 18. Yield 82%, yellow solid, EIMS m/z 458 (M+), 415 (M+-CH7, C33H34N2 requires 458.3).
E/Z-5-(8-N,N-Dibutylamino-1-chrysenyl)-vinylisoquinoline (23): Same procedure as described for 19, but using the phosphonium salt 13 and aldehyde 18. Yield 80%, yellow solid; FABMS m/z 509.3 (M+1, C37H36N2 requires 508.3).
Cyclisation of the alkenes 19-2329: A 5-10−3 molar solution of the corresponding E- or E/Z-alkene was irradiated (45 min-40 h, duran glass, room temperature, CH2Cl2, unless stated otherwise) by a Hg high pressure lamp (TQ 150, Heraeus-Noblelight, Germany); after evaporation of the solvent the cyclisation products 24-26 were isolated by flash chromatography (EtOAc:heptane 1:1); crude 27 and 28 were obtained by precipitation from CHCl3/MeOH and used for the final step without further purification.
7-N,N-Dibutylamino-2-azaphenanthrene (24): yield 48%, 45 min irradiation (quartz glass, −30° C., 2-methyltetrahydrofuran), yellow oil; FABMS m/z 307.2 (M+1, C21H26N2 requires 306.2).
8-N,N-Dibutylamino-2-azachrysene (25): yield 22%, 45 min irradiation (quartz glass, 0° C., cyclohexane), pale yellow solid, m.p. 213° C. (EtOAc); EIMS m/z 356 (M+), 313 (M+-C3H7, C25H28N2 requires 356.2).
10-N,N-Dibutylamino-3-azapicene (26): yield 25%, 40 h irradiation (cyclohexane), pale yellow solid (EtOAc), still containing minor impurities; FABMS m/z 407.2 (M+1, C29H30N2 requires 406.2).
11-N,N-Dibutylaminobenzo[m]-3-azapicene (27): yield 40% (crude product), 15 h irradiation; EIMS m/z 456 (M+), 413 (M+-C3H7, C33H32N2 requires 456.3).
12-N,N-Dibutylaminonaphtho[5,6-m]-3-azapicene (28): yield 46% (crude product), 15 h irradiation; EIMS m/z 506 (M+), 463 (M+-C3H7, C37H34N2 requires 506.3).
ANNINES 3-7: A mixture of 2 mMol of 24-28 and 5.4 g (40 mMol) 1,4-butane sultone was stirred at 120° C. for 4 h20. The resulting precipitate is collected, washed with ether and purified by flash chromatography (silica gel, MeOH or CH2Cl2:MeOH:H2O 50:20:4 and Sephadex LH 20 (Pharmacia), MeOH) and recrystallised.
ANNINE-3: yield 24%, yellow solid m.p. >300° C. (MeOH/heptane); FABMS m/z 443.2 (M+1, C25H34N2O3S requires 442.2).
ANNINE-4: yield 35%, yellow solid m.p. >300° C. (MeOH); FABMS m/z 493.5 (M+1, C29H36N2O3S requires 492.2).
ANNINE-5: yield 40%, red-orange solid m.p. >300° C. (MeOH); FABMS m/z 543.3 (M+1, C33H38N2O3S requires 542.3).
ANNINE-6: yield 21%, red-orange solid m.p. >300° C. (MeOH); FABMS m/z 593.4 (M+1, C37H40N2O3S requires 592.3).
ANNINE-7: yield 10%, red solid m.p. >300° C. (MeOH); FABMS m/z 643.5 (M+1, C41H42N2O3S requires 642.3).
The structure of all dyes and intermediates was confirmed by mass spectroscopy and proton NMR.
The triphenylphosphonium salt D1 was obtained in four steps from 3-aminobenzoic acid via 3-N,N-dibutylaminobutyl benzoate (1-iodobutane and K2CO3)20, 3-N,N-dibutylaminobenzyl alcohol (LiAlH4), 3-N,N-butylaminobenzyl chloride (with PCl5) and subsequent treatment with PPh3. This method is superior to the synthesis using 3-aminobenzaldehyde dimethyl acetal as a starting material18. For the synthesis of D2 we brominated 2-nitronaphthalene; the resulting 1-bromo-6-nitronaphthalene21,22 was reduced to 6-amino-1-bromonaphthalene (SnCl2, HCl). Alkylation with 1-iodobutane leads to 1-bromo-6-N,N-dibutylaminonaphthalene20. Via 6-N,N-dibutylamino-1-cyanonaphthalene23 (CuCN) and 6-N,N-dibutylaminonaphthalene-1-carboxylic acid (NaOH) we obtained by reduction (LiAlH4) 6-N,N-dibutylamino-1-hydroxymethylnaphthalene24. (A direct synthesis starting from 1-bromo-6-N,N-dibutylaminonaphthalene via the lithiated intermediate and subsequent reaction with formaldehyde was less effective.) After bromination (PBr3)24 of the alcohol, a treatment with PPh3 resulted in D2.
To obtain D3 we joined D1 to 2-methoxymethylbenzaldehyde25 by a Wittig reaction. Photocyclization of the alkenes E/Z-2-(3-N,N-dibutylamino-styryl) benzylmethylether produced 7-N,N-dibutylamino-1-methoxymethylphenanthrene. By ether cleavage we obtained 7-N,N-dibutylamino-1-bromomethylphenanthrene and with triphenylphosphine the product D3. Starting from D2 the same reaction sequence was performed to obtain D4.
The acceptor moiety A1 was commercially available. A2 was obtained from 5-bromoisoquinoline26 (BuLi, then DMF)27,28. Proper donor and acceptor moieties were chosen for Wittig reactions and subsequent photocyclization29 to build up the scaffold of the ANNINES. So for example D3 and A2 were used for the formation of the six anellated rings of ANNINE-6. The last synthetic step was the reaction with 1,4-butane sultone.
Solutions. We studied the absorption and fluorescence spectra in 17 solvents of increasing polarity: chloroform, decanol, benzyl alcohol, dichloromethane, octanol, cyclohexanol, hexanol, pentanol, cyclopentanol, butanol, propanol, ethylene glycol, dimethylformamide, acetone, ethanol, acetonitrile and methanol. Solvents of highest available purity were used (Merck, Darmstadt and Sigma, Taufkirchen, Germany). Stock solutions were made from methanol and chloroform at a volume ratio of 1:2 at a concentration of 1 mM for ANNINE-3, ANNINE-4 and ANNINE-5, and due to lower solubility 200 μM for ANNINE-6 and ANNINE-7. These stock solutions were diluted by the different solvents to a final concentration 5 μM, with the exception of ANNINE-7 in pentanol, butanol, acetone and acetonitrile where a concentration of 1 μM was used.
Spectra. Absorption spectra were measured with a Varian Cary 3E spectrometer (Varian, Mulgrave, Victoria, Australia) at room temperature. Emission spectra were measured with a SLM Aminco 8100 fluorescence spectrometer that was adapted to the long wavelength region with a Spectra Pro-275 monochromator from Acton Research (Acton, Mass., USA) containing appropriate gratings for the wavelength region up to 1200 nm and an avalanche photodiode as a detector (Polytec, Waldbronn, Germany). The spectrometer was calibrated with a 45 Watt quartz-halogen tungsten coiled filament lamp (OL 245M, Optronic Laboratories, Orlando, USA) as a standard of spectral irradiance. Calibration and measurement of the spectra were performed under magic angle conditions30. For ANNINE-3 the excitation bandwidth was 8 nm and the emission bandwidth was 18 nm. For ANNINE-4, ANNINE-5, ANNINE-6 and ANNINE-7 we used an excitation bandwidth of 16 nm and an emission bandwidth of 18 nm.
Evaluation of maxima: The maxima of the absorption spectra were automatically calculated by the Varian Cary software. For evaluation of the fluorescence maxima we fitted a log normal curve to each spectrum31 according to Eq. 1 with an amplitude F
The maximum was taken from the fit. For those solvents, where the second order Rayleigh scattering peak of the excitation light appeared on the flank of the spectrum, only the region of the maximum was used for evaluation.
Solvatochromism. The wavenumbers
The values of F1(∈,n) with ∈i=2 are for chloroform 0.1120, decanol 0.1623, benzyl alcohol 0.1697, dichloromethane 0.1722, octanol 0.1779, cyclohexanol 0.1915, hexanol 0.1971, pentanol 0.2011, cyclopentanol 0.2016, butanol 0.2136, propanol 0.2223, ethylene glycol 0.2272, dimethylformamide 0.2273, acetone 0.2294, ethanol 0.2342, acetonitrile 0.2479 and methanol 0.2497.
With all dyes there is a common trend for the maxima of absorption and fluorescence: increasing polarity shifts the absorption spectra to the blue and the emission spectra to the red. For each dye that divergent solvatochromism is rather symmetrical over the whole range of accessible polarity. I.e. it seems that the solvatochromism can be assigned to an increasing Stokes shift
Solvatochromism. From the experimental wavenumbers of absorption and emission in
Electrochromism. When a dye with an intramolecular charge displacement δEG is placed in an external electrical field, its absorption and emission band are shifted by a linear molecular Stark effect. In a biological membrane, the change of the electrical field is given by the change of membrane voltage ΔVM and by the membrane thickness dM.
We plot the expected electrochromic shift Δ
The experimental solvatochromic sensitivities Δ
The electrical response in the neuron are in a range predicted by solvatochromism. Yet, the increase of electrochromism from ANNINE-5 to ANNINE-6 is stronger than expected for constant orientation cos θ in the membrane and constant effective radius a in bulk solvents.
The voltage sensitivity of the anellated hemicyanines ANNINE-6 and ANNINE-5 and also of BNBIQ, di-4-ANEPBS and RH-421 was investigated. Two-dimensional fluorescence spectra of excitation and emission are measured in leech neurons at defined membrane voltages. The voltage induced changes of fluorescence are parametrized in terms of changes of spectral parameters. ANNINE dyes are far more voltage sensitive than the classical styryl dyes and their sensitivity can be assigned almost completely to an identical spectral shift of excitation and emission that is caused by a molecular Stark effect.
Dyes. The styryl dye RH-421 [11] was obtained from Molecular Probes (Eugene, Oreg., USA). The styryl dye di-4-ANEPBS [9] and the biaryl dye BNBIQ [23] were synthetized by Gerd Hübener. The synthesis of the dyes ANNINE-5 and ANNINE-6 is described above.
Neurons. Ganglia of the leech Hirudo medicinalis (Moser, Schorndorf, Germany) were dissected and pinned on a Sylgard coated dish in Leibowitz-15 medium (L-5520, Sigma, Deisenhofen) with 5 mg/ml glucose, 0.3 mg/ml glutamine and 3 μg/ml gentamycin sulfate (G-3632, Sigma) [24]. After opening the tissue capsules the ganglia were incubated in dispase/collagenase (Boehringer, Mannheim, 2 mg/ml L-15 medium) for 1 hour at room temperature. Retzius cells (soma diameter 60-90 μm) were dissociated by aspiration into a firepolished micropipette and washed with Leibowitz-15 medium [24]. The cells were seeded on an uncoated glass cover slip in a silicone chamber (Flexiperm-mikro 12, Vivascience AG, Hannover, Germany) with Leibowitz-15 medium and 2.5% fetal bovine serum (10106, Gibco, Eggenstein) and kept for one or two days at 20° C.
Staining. The dyes were solubilized in Leibowitz-15 medium with sodium cholate (Sigma, St. Luise, USA) [25]. We used 4.3 mM RH-421 with 10 mM cholate, 4.3 mM di-4-ANEPBS with 10 mM cholate, 10 mM BNBIQ with 10 mM cholate, 1 mM ANNINE-5 with 23 mM cholate and 1 mM ANNINE-6 with 25 mM cholate. After centrifugation, the staining solutions were added to the culture chambers with the neurons at a volume ratio of 1:1000 30 min before patching. The solubility of the dyes in water decreases in the series RH-421, di4-ANEPBS, BNBIQ, ANNINE-5 and ANNINE-6. In correspondence, the fluorescence intensity of cells stained with RH-421 and di-4-ANEPBS dropped after exchanging the medium by a dye-free solution due to desorption from the cells, whereas the intensity with ANNINE-5 and ANNINE-6 remained constant for at least 1.5 h. With respect to bleaching and phototoxicity, we did not observe significant differences under comparable conditions of staining and illumination.
Electrophysiology. Patch pipettes with a tip diameter of 5-10 μm were made from micro haematocrite tubes (Assistent, Karl Hecht, Sondheim/Rhön, Germany) using an all-purpose puller (DMZ-Universal Puller, Zeitz-Instrumente, Augsburg, Germany). They were filled with 140 mM KCl, 1.5 mM MgCl2, 10 mM Hepes and 10 mM EGTA, pH 7.3. The resistance of the pipettes was around 0.4 MΩ. The pipettes with Ag/AgCl electrodes were connected to a single electrode patch-clamp amplifier (SEC-10L, npi, Tamm, Germany). The patching of Retzius cells lead to a seal resistance of about 500 MΩ. Whole cell contact [26] was achieved by breaking the membrane by suction using a water-jet vacuum pump. The bath was held at ground potential with a Ag/AgCl electrode. We kept the cells at an intracellular voltage of VM=−40 mV. The fluorescence spectra were measured at a hyperpolarized voltage of VM=−70 mV and a depolarized voltage of about VM=10 mV.
Optical setup. The spectrometer is sketched in
Calibrated fluorescence spectra. In order to derive molecular parameters from the experimental data, the two-dimensional spectra of excitation and emission were calibrated. The number of excitations per unit time in a membrane area Amem with ndye molecules per unit area is Amemndye∈(λex)Iλill(λex)Δλex with the molecular cross section of absorption ∈(λex) and the quantum intensity of illumination per wavelength interval Iλill(λex) at a bandwidth Δλex. The number of detected quanta per unit time P(λex,λem) is given by Eq. 1 with the quantum yield Φem, the normalized quantum spectrum of fluorescence per wavelength interval fλ(λem) and the efficiency Trec(λem) and bandwidth Δλem of the recording system.
P(λex,λem)=AmemndyeIλill(λex)Δλex∈(λex)Φemfλ(λem)Trec(λem)Δλem (1)
We obtain a two-dimensional fluorescence spectrum that is defined by molecular parameters when we divide Eq. 1 by the number of dye molecules Amemndye and by the spectra and bandwidths of illumination Iλill(λex)Δλex and recording Trec(λem)Δλem. The resulting fluorescence spectrum of excitation and emission per unit wave number of emission F
Trec(λem)Δλem is obtained up to an arbitrary factor by calibrating the recording system (objective, dichroic mirror, long pass filter, 0.6 mm fibre optics, monochromator and diode array). We place a standard lamp (OL245M, Optronic Laboratories, Orlando, USA) with a known quantum spectrum Iλcal(λ) on the microscope and measure the response Pcal(λ)=Iλcal(λ)Trec(λem)Δλem of the photodiode array. We probe the illumination (Xe lamp, monochromator, optical fibre, broadening optics, dichroic mirror and objective) with a calibrated detector of efficiency Tcal(λ) and bandwidth Δλ. For that purpose we use part of our recording system—the 0.6 nm optical fiber with monochromator and diode array—that is again calibrated by illuminating the fiber end with the standard lamp. With the fiber end on the microscope, we measure Pill(λ)=Iλill(λexnom,λ)Tcal(λ)Δλ for each λexnom set at the monochromator. The resulting illumination spectra Iλill(λexnom,λ) are fitted with Gaussians with a maximum defining the excitation wavelength λex and an integral that represents the intensity Iλill(λex)Δλex up to a constant factor.
Protocol. The measurements were started 30 min after staining. Under voltage clamp, the voltage sensitive fluorescence is investigated with the following protocol: (1) opening of the shutter, (2) selection of an excitation wavelength λex, (3) after a delay of 100 ms hyperpolarization of the cell to VM=−70 mV, (4) recording of a complete emission spectrum in a range of λem=510-833 nm for RH-421, di-4-ANEPBS, BNBIQ and ANNINE-6 and λem=460-833 nm for ANNINE-5 with an integration time of 200 ms, (5) after a delay of 100 ms depolarization to about VM=10 mV, (6) recording of two complete emission spectra, (7) after a delay of 100 ms hyperpolarization to VM=−70 mV, (8) recording of another complete emission spectrum, (9) closing of the shutter. The steps (2)-(8) are repeated for various wavelengths of excitation in the range λex=360-510 nm for RH-421, di-4-ANEPBS, BNBIQ and ANNINE-6 and λex=360-460 nm for ANNINE-5 at a stepwidth of 5 nm. At each excitation wavelength the two spectra of the hyperpolarized cell are averaged as well as the two spectra of the depolarized cell to obtain the spectra P(λex,λem) at the two voltages. The two-dimensional fluorescence spectra F
2D spectra. The relative fluorescence spectra per wave number interval of emission F
1D spectra. In order to study the interdependence of excitation and emission, we consider emission spectra per wave number of emission F
Fit of 2D spectra. In order to attain a well defined parametrization of the fluorescence spectra, we fit the normalized 2D spectra F
Considering F
Voltage sensitivity. The spectrum of voltage sensitivity SV(
We obtain it by subtracting the relative spectrum F
Parametrized voltage sensitivity. A parametrization of voltage sensitivity is achieved by fitting the scaled spectra F
Using the fit parameters from Tables 1 and 2, we reconstruct the sensitivity spectra SV(
To illustrate the quality of the sensitivity spectra SV(
Voltage sensitivity. An electric field across a cell membrane may in principle affect the electronic structure of a bound chromophore, its vibroelectronic coupling and its interaction with the matrix. It may change the electronic 00 transition energy, the Franck-Condon factors of excitation and emission, the transition dipole moments and radiationless deactivation channels. As a result, the two-dimensional fluorescence spectrum F
In fact, when we fit the two-dimensional fluorescence spectra at two voltages by products of log normal functions, we find that the joint amplitude F
Electrochromism of excitation. A typical feature of voltage sensitivity of all hemicyanines considered is a blue shift Δ
We assign the blue shift of excitation to a molecular Stark effect of the membrane bound chromophores [28-31]. Due to their amphiphilic structure, the hemicyanines may be expected to be bound to the surface of the neuron membrane with a distinct orientation [18,19]. In that case, an intramolecular charge displacement ΔμEG by electronic excitation from the pyridinium to the aniline moiety is directed against a change ΔE=ΔVM/dM of the average electrical field in a membrane of thickness dM as induced by a positive change ΔVM of the membrane voltage. The expected blue shift is expressed by Eq. 7 with a projection cos θ of charge displacement on the membrane normal (Planck's constant h, velocity of light c).
hcΔ
From the experimental shifts Δ
Electrochromism and membrane solvatochromism. The assignment of a Stark effect to the electrochromic blue shift is confirmed by a consideration of solvatochromism in the neuron membrane. Due to their orientation, the chromophores at the membrane/water interface are in an extremely inhomogeneous environment that may give rise to specific solvatochromic effects with amphiphilic hemicyanines [33]. We have to distinguish the effect of local polarity and the effect of the local polarity gradient [33]. In homogeneous solvents, a changing polarity gives rise to a symmetric opposite shift of excitation and emission spectra with an invariant average wave number
We may expect that the solvatochromic effect of the polarity gradient is related to the intramolecular charge displacement ΔμEG cos θ across the polarity gradient. Thus we express the blue shift Δ
hcΔ
The effective internal electric field E0 characterizes the strength of the gradient. On the basis of Eq. 8 the increasing solvatochromic blue shifts Δ
Ideal Stark effect probes. A molecular Stark effect may affect not only the excitation but also the emission of a dye. The resulting spectral shift is described by Eq. 9.
hcΔ
In fact, for BNBIQ, ANNINE-5 and ANNINE-6 we observe electrochromic blue shifts of emission that are almost identical to those of excitation (Table 3). We assign that correspondence to an identical molecular Stark effect for excitation and emission with an identical charge shift ΔμEG cos θ due to an identical electronic transition and an similar orientation of the chromophore for excitation and emission.
To test, how far the Stark effect of excitation and emission dominates the voltage sensitivity of BNBIQ, ANNINE-5 and ANNINE-6, we compute the sensitivity spectrum SV(
When we express the voltage sensitivity for a pure Stark effect by Eq. 6, considering a small spectral shift Δ
The voltage sensitivity SV(
Styryl dyes. For the styryl dyes di-4-ANEPBS and RH421 the spectral shifts of excitation and emission are not identical (Table 2). The blue shift of emission for di-4-ANEPBS is about 50% of the blue shift of excitation, and RH-421 even exhibits a red shift of emission. These results do not depend on the fit procedure (Table 3). Apparently, with these dyes the emission is affected by other effects besides a Stark effect. Possibly, the electrical field changes position and orientation of the excited chromophores, resulting in a field induced solvatochromic red shift of emission that is superimposed to a Stark effect.
Optical recording. The sensitivity function SV(
ΔP(
We consider an illumination with a narrow spectral band width at a wave number
An optimal signal is achieved by good staining, high illumination intensity, high detector sensitivity and proper selection of the excitation wave number
Signal-to-noise. The total response expressed by Eq. 12 reflects the signal-to-noise ratio only if the noise is constant, e.g. dominated by the electronic amplifier. If the shot noise of photons dominates [34], we have to consider a noise level N=√{square root over (P/2τD)} that depends on the total photon counts P and the time constant of the detector τD. With
we obtain Eq. 13.
In optimizing the signal-to-noise ratio, we have to take into account the role of photobleaching and phototoxicity of the dyes. These effects impair optical recording because dyes and cells fade away by illumination. Both photochemical processes are determined by the number of excitations per unit time. The signal-to-noise ratio must be optimized with the constraint of a certain number of excitations per unit time that is tolerable for a certain experiment. When we express the fluorescence spectrum by F
Here the signal-to-noise ratio is expressed in terms of (i) the spatiotemporal resolution τDAmem of the setup, (ii) the number of excitations per area and time Iillndye∈(
For the ANNINE dyes, the sensitivity S
These features of the signal-to-noise ratio for Iill∈(
When we choose an excitation wave number in the red where the relative slope of the excitation spectrum is steep, we expect an increasing contribution of the Stark effect of excitation at a rather invariant contribution of the Stark effect of emission. Thus we expect an increasing signal-to-noise ratio for an illumination
The anellated hemicyanine dyes ANNINE-5 and ANNINE-6 exhibit voltage sensitivities in a neuron membrane that are distinctly higher than those of the classical styryl dyes. These novel probes rely on a well defined physical mechanism, the molecular Stark effect. Their excellence for optical recording of neuronal excitation is due to a large intramolecular charge shift in connection with suitable Franck-Condon factors of vibroelectronic transitions and a high quantum yield of fluorescence. Further improvements of the voltage sensitive dyes must be directed towards higher photochemical stability and lower phototoxicity and towards a selective staining of individual cells in a tissue.
ANNINE-6 is a new, completely anellated hemicyanine dye. Two-dimensional sensitivity spectra suggest the use of the extreme red edge of the excitation spectrum to achieve large relative fluorescence changes in response to membrane voltage changes. Several biological preparations were used for testing. First, HEK293 cells were stained by bath application of the dye. Alternating external electric fields generated by applying voltages between two Ag/AgCl-wires in a closed chamber (1). To achieve the high light intensities, which are necessary to excite the dye at the very red edge of the excitation spectrum, we used laser scanning microscopes with Ar-Ion Laser for one-photon excitation (488 nm, 514 nm) and Ti:Sapphire Laser for two-photon excitation (976 nm). The fluorescence changes measured with 1 kHz line scans followed the applied voltage, which was alternated every 10 ms, without discernible delay. We found relative fluorescence increases of more that 60%/100 mV for hyperpolarizing membrane potential changes and decreases of more than 40%/100 mV for depolarizing membrane potential changes at 514 nm excitation wavelength. The asymmetry of the fluorescence change is expected given the spectral shape and a pure electrochromic spectral shift. We found changes of +40%/100 mV and −30%/100 mV both for one-photon excitation at 488 nm and two-photon excitation at 976 nm. Preliminary measurements from cultured hippocampal slices using a soluble variant of ANNINE-6 show fast fluorescence changes of up to 8% upon stimulation of the Schaffer collaterals in CA1.
Sensitivity spectra of Stark-shift voltage sensitive dyes (VSDs), such as ANNINE-6, suggest the use of the extreme red edges of the excitation spectrum to achieve large fractional fluorescence changes with membrane voltage. This was tested in cultured HEK293 cells. Cells were illuminated with light at the very red edge of the dye's excitation spectrum, where the absorption cross section is as much as 100 times smaller than at its peak. The small-signal fractional fluorescence changes were −0.17%/mV, −0.28%/mV, and −0.35%/mV for one-photon excitation at 458 nm, 488 nm, and 514 nm, respectively, and −0.29%/mV, −0.43%/mV, and −0.52%/mV for two-photon excitation at 960 nm, 1000 nm, and 1040 nm, respectively. For large voltage swings the fluorescence changes became nonlinear, reaching 50% and −28% for 100 mV hyper- and depolarization, respectively, at 514 nm and 70% and −40% at 1040 nm. Such fractional sensitivities are about 5 times larger than what is commonly found with other voltage-sensing dyes and approach the theoretical limit given by the spectral Boltzmann tail.
Voltage-sensitive dyes (VSDs) are widely used for probing cellular membrane potentials (Grinvald et al., 1988; London et al., 1987; Meyer et al., 1997; Spors and Grinvald, 2002), but for dyes fast enough to measure neural signals the fractional fluorescence changes are rather small, compared to, for example, Ca2+ indicators. To overcome shot noise and achieve a sufficient signal-to-noise ratio (SNR) high fluorescence intensities are, therefore, needed. This, in turn, leads to photodynamic damage and quick photobleaching. This problem becomes increasingly more serious as spatial and temporal resolutions need to be increased and has prevented the application of VSD recordings to problems such as spike time synchronization (Salinas and Sejnowski, 2001; Singer, 1999), where VSDs would otherwise be the preferred tool. The amount of fluorescence light that is necessary to achieve a particular SNR for a given membrane voltage decreases strongly as the relative fluorescence change per unit of voltage change increases. An increase in that sensitivity will, therefore, reduce photodamage substantially. The voltage sensitivity is a function of the intrinsic properties of the dye, such as the size of the spectral shift, and can be particularly sensitive to the choice of excitation wavelength with the maximal sensitivity at the spectral edge as has been realized early on and demonstrated for a limited wavelength range (Loew, 1982). In this paper we demonstrate that the sensitivity becomes even larger at extreme wavelengths and approaches the thermodynamic voltage-sensitivity limit. There we took advantage of the recent synthesis of a new class of VSDs (Hübener et al., 2003), which shows a spectral change that is entirely due to the molecular Stark effect (Kuhn and Fromherz, 2003). In addition, the charge shift between ground and excited state, on which the spectral shift directly depends, is nearly twice as large for ANNINE-6 compared to the classical styryl dye di-4-ANEPBS (Fluhler et al., 1985; Kuhn and Fromherz, 2003). In this paper we show that the dye's sensitivity can be increased beyond the already high values shown in the initial characterization (Kuhn and Fromherz, 2003) by using excitation wavelengths at the extreme long-wavelength edge of the absorption spectrum by both one- and two-photon excitation (Denk et al., 1990).
HEK293 cells (DSMZ GmbH, Braunschweig, Germany) were cultured using standard methods on glass coverslips (diameter 24 mm, Assistent, Glaswarenfabrik Karl Hecht KG, Sondheim, Germany). The coverslips were coated with fibronectin (No. 68885, Boehringer-Mannheim, Germany) in PBS (140 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 6.5 mM Na2HPO4×2H2O) by incubation for 45 min in a 10 μg/ml fibronectin solution and a single subsequent wash with PBS. The cells were plated at densities of 15000 cells per coverslip and were used for up to three days after plating, while the cell density was still low. All measurements were done in a Ringer solution containing (in mM) 135 NaCl, 5.4 KCl, 1.0 MgCl2, 1.8 CaCl2 and 5.0 Hepes, adjusted to pH 7.2 with NaOH.
ANNINE-6 (
To change the voltage across the cell membrane we applied an extracellular electric field. This method (Gross et al., 1986) has a somewhat reduced voltage calibration accuracy but is much simpler than whole-cell recordings, for example, permitting the transfer of the recording chamber between microscope setups thereby allowing the exploration of a wider parameter range. Our custom-made chamber (
The voltage stimuli were generated by an arbitrary waveform generator (model 395, wavetek, Ismaning, Germany) and amplified by a custom-built push-pull circuit (using two operational amplifiers, OPA547, Texas Instruments Inc., Texas, USA,
Whole-cell tight-seal voltage-clamp recordings on HEK293 cells were preformed using pipettes with a resistance of around 6 MOhm and an epc9 amplifier (HEKA, Göttingen, Germany).
For one-photon excitation we used laser scanning microscopes (Zeiss LSM 510 NLO and Leica TCS SP2) with Ar-ion laser excitation (458 nm, 488 nm, or 514 nm). We used laser illumination instead of, for example, Xe arc-lamps because narrow spectral width and high intensities are needed to obtain sufficient excitation of the dye at the spectral edge. The excitation light at the Zeiss microscope was coupled in via the main dichroic beam splitters (HFT 458/514, reflecting the 458 nm and 514 nm laser lines or HFT KP 700/488, a combined 700 nm short pass and 488 nm reflector). The emitted light was filtered by a long-pass filter (LP560). The Leica microscope uses an acousto-optical main beam splitter and fluorescence was collected in the range of 520 nm to 800 nm. The maximal excitation intensities at the sample were for the Zeiss (Leica) microscope: 1.3 mW (1.5 mW) at 514 nm, 200 μW (250 μW) at 488 nm and 28 μW (35 μW) at 458 nm. The pinhole was completely opened up (8.5 airy units) to collect as much light as possible. A Zeiss IR 40×/0.8 water immersion objective was used at the Zeiss microscope and a Leica HCX PL APO CS 63×/1.32 oil immersion objective at the Leica.
For the two-photon experiments we initially used the Zeiss LSM 510 NLO microscope (beam splitter: HFT KP 700/488; filter: LP545) coupled to a Ti:Sapphire laser (Mira 900, Coherent) and later a custom-built setup that was coupled to a Ti:Sapphire laser (Mira 900F, Coherent) equipped with special cavity mirrors that allowed tuning to wavelengths of up to 1050 nm. In the custom microscope the fluorescence was filtered first with an IR-blocking heat mirror (Calflex-X, Linos AG, Göttingen, Germany) then a long-pass filter LP530 (AHF analysentechnik, Tübingen, Germany). The approximate average powers of the mode-locked laser at the sample were: 7.5 mW for 1040 nm, 5 mW for 1000 nm, and 4 mW for 960 nm. For all 2-photon measurements we used a Zeiss IR 40×/0.8 water immersion objective. In the custom 2PM setup fluorescence light was detected using GaAsP photo-multipliers (H7422P-40mod, Hamamatsu).
Line scans were oriented across (
All line scans were background corrected by subtraction of a value resulting from an averaged time trace outside the cell. We didn't correct for bleaching, which was almost imperceptible. Multiple experiments on the same cell and with the same excitation wavelength were usually averaged before calculating relative changes in fluorescence (□F/F). As resting fluorescence (F) we used the mean of the 20 data points before the beginning of the voltage stimulus. To get □F values we averaged the central 8 data points during the pulse, which is 10 points long, and then subtracted the mean of the values (each calculated correspondingly) for the preceding and following interpulse intervals. We only considered measurements from cells where fluorescence responses were still present after measurements with a complete wavelength set had been performed and the 3-D stack was taken.
To validate the trans-cellular field simulation method, we first performed responsivity measurements using wavelength (458 nm, 488 nm) for which the sensitivity has been published (Kuhn and Fromherz, 2003). We find reasonable agreement (488 nm: −0.28%/mV in HEK293 compared to −0.29%/mV in Leech). We then proceeded to use a wavelength (514 nm) more towards the long edge of the absorption spectrum to test whether the sensitivity increases further towards longer wavelengths. To rule out spurious signals that might be created as the result of movement, for example caused by external electric field-induced ionophoresis or heating, we scanned through cells parallel to the applied field and perpendicular to the cell membrane (
To increase the number of scan-line pixels on the membrane, all further measurements were performed with the scan line tangential to the cell. The laser polarization, of course, was kept parallel to the electric field (
To test our assumption about the extracellular stimulation the sensitivity at 514 nm was tested by controlling the membrane voltage directly using tight-seal whole-cell recordings of HEK293 cells (
We proceeded to measure the voltage sensitivities under 2-photon excitation. Images show very low intracellular background (
We have shown that when excited near the long wavelength edge of the absorption spectrum Stark-shift VSDs can show very large fractional sensitivities. This was specifically tested using ANNINE-6, which is one of a series of improved derivatives of the earlier voltage-sensitive hemicyanine dyes (Ephardt and Fromherz, 1993; Fluhler et al., 1985; Grinvald et al., 1983) that are particularly well suited for this method due to their large charge shift.
Because the voltage sensitivities of many VSDs are strongly cell-type dependent (Loew et al., 1992; Ross and Reichardt, 1979; Spors and Grinvald, 2002) we compared the sensitivities for ANNINE-6 in Retzius cells of the leech, measured by Kuhn and Fromherz, 2003, with those we found in HEK293 cells (
Since fluorescence measurements in living tissue in general and VSD measurements in particular are always limited by photodamage it is crucial to carefully explore the optimization of excitation and detection spectral ranges. Optimization can be performed as described for the general case (Kuhn and Fromherz, 2003). In the absence of background fluorescence and if there are no limits on the excitation (both in terms of spectra and power density) rather straightforward, simplified rules can be established.
Since the generation of fluorescence photons requires molecular excitation, which is also the source of photobleaching and photodamage, it is crucial to maximize the information gained per molecular excitation, i.e. per generated (not detected) fluorescence photon. This distinction between generated and detected photons is important since large fractional intensity changes can sometimes be achieved by detecting only in a small wavelength band, at the expense of discarding a large fraction of the total fluorescence generated. Let us first assume that the excitation is by a collection of wavelengths. The response function is then the sum of response functions for each of the excitation wavelengths and, obviously, shifting excitation energy to wavelengths with better response will in crease the total SNR. An optimal value will be reached when all excitation occurs for the wavelength with the best response. This shows that monochromatic illumination at the appropriate wavelength is optimal, i.e. at least as good as illumination with any collection of wavelengths. To get simpler expressions we henceforth use an energy-proportional scale, i.e. wavenumbers. For a pure Stark-shift probe, for which the wavenumber dependent spectra can be written as ∈(
The dye specific constant κ is given by the ratio of spectral shift d
An important parameter is the number of photons n needed to detect a certain voltage change ΔV. With shot-noise limited detection the voltage-induced fluorescence change SV(
So the number of photons necessary to detect a given fluorescence change can be calculated by
In the case of ANNINE-6 the voltage sensitivity for excitation at, for example, 458 nm is −0.17%/mV which means that a voltage change of 10 mV could be detected with 3500 photons while 350 000 detected photons allow a voltage estimate with a standard deviation of 1 mV. With an excitation wavelength of 514 nm and a sensitivity of −0.35%/mV the number of photons to detect voltage changes of 10 mV and 1 mV are 820 and 82000, respectively.
b shows the sensitivity SV(
A common approximation used for spectral shapes is the log-normal function (Siano and Metzler, 1969), which would imply an ever increasing, in fact, diverging sensitivity toward longer wavelengths and the vanishing of excitation above a wavelength of 591 nm. However, simple considerations predict a tail in the absorption spectrum F that follows a Boltzmann distribution (Hinshelwood, 1940)
because an electronic transition between the ground and the excited state with the energy difference h
for excitation in the Boltzmann tail (Δμ is the intramolecular charge displacement upon electronic excitation, d is the membrane thickness, θ is the angle between charge displacement and membrane normal). This is the maximal relative change possible for a given change in charge shift (change in dipole moment) at a certain temperature. For ANNINE-6 the shift is 1.6 cm−1/mV (Kuhn and Fromherz, 2003), which translates into a Boltzmann-tail sensitivity of −0.77%/mV. For comparison: the highest measured sensitivity value was −0.52±0.05%/mV (with 2-photon excitation at 1040 nm, corresponding to 520 nm). Because this sensitivity limit depends only on the shift of the excitation spectrum the expected sensitivity limit for other dyes should be lower (ANNINE-5: 1.3 cm−1/mV; BNBIQ: 1.0 cm−1/mV; di-4-ANEPBS: 0.9 cm−1/mV; RH-421: 0.5 cm−1/mV; Kuhn and Fromherz, 2003).
A more realistic description of the spectral sensitivity predicts a flattening of the spectral tail compared to the Boltzmann curve as more vibrational modes (m+1) are taken into account (Hinshelwood, 1940)
This approach was, for example, used successfully to describe the long wavelength spectral tail of visual pigments (Lewis, 1955; Voss and Van Norren, 1984).
In practice a major limitation is the availability of sufficiently intense light sources since, as this paper shows, the optimal excitation wavelengths will almost always lie in a low absorption part of the spectrum. Furthermore, the range over which the excitation wavelength is nearly optimal, is typically narrow and does usually not coincide with a strong spectral line. Therefore, one has to resort to using a narrow spectral band and hence only a small fraction of the total light output from a broad spectrum light source such as an arc or an incandescent bulb. The use of lasers, which can provide narrow-band excitation, for wide-field illumination is beset by speckle problems and often a line at the appropriate wavelength is not available. A further problem can be the excitation of tissue auto fluorescence as increasingly intense light is used for excitation.
While we have only tested extreme red excitation on one dye (ANNINE-6) it should be applicable to all spectral shift dyes with a sufficiently steep long-wavelength spectral fall-off.
Number | Date | Country | Kind |
---|---|---|---|
03 014 601.3 | Jun 2003 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/06916 | 6/25/2004 | WO | 00 | 11/28/2007 |