This invention pertains to the field of convective heat transfer.
In the field of convective heat transfer, there is in general a tradeoff between heat transfer and pumping power. Power to operate a pump or fan to move a fluid involved in heat transfer is often an expense associated with achieving heat transfer. This is especially of concern in heat exchangers in which the fluid on at least one side is gas such as atmospheric air. Also this is especially of concern when, as is usually the case, there are limitations on the overall space which can be occupied by the heat exchanger. Designs, tradeoffs and calculational methods for heat exchangers are given in “Compact Heat Exchangers” by Kays and London. There is a continuing need for improvement in regard to the tradeoff between heat transfer and pumping power. Such improvement would increase the efficiency of any of the various devices employing forced convection heat transfer or even natural convection heat transfer.
Issued U.S. Pat. No. 6,669,815 discloses a geometry of fins designed to provide an improved ratio of heat transfer to pressure drop or pumping power, by using fin-to-fin spacings which are different in different regions of a fin array. The fin geometry of that patent is shown in
Accordingly, it is desirable to provide designs of the type disclosed in U.S. Pat. No. 6,668,915 but having improved flow patterns in the transitions between regions, such as to provide for smoother flow and hence smaller pressure losses associated with the expansion or contraction. It also is desirable for the transition region to occupy as little of the overall flow length of the heat exchanger as possible.
The invention includes a heat transfer geometry having a first channel and a second channel which are fluid mechanically in parallel with each other, and with each channel including an upstream region and a downstream region which are of unequal cross-sectional areas. In the first channel, contraction may occur upon going from the upstream region of the channel to the downstream region, and in the second channel expansion may occur upon going from the upstream region of the channel to the downstream region. The channel boundaries may be heat transfer surfaces, and additional heat transfer surface area may be provided in specific regions of specific channels. In this invention, in at least some instances, contraction and expansion may occur as a result of a shift of both the left and right boundaries of the channel. In a cell which is a pairing of a first channel and a second channel sharing a common inter-channel boundary, the overall exiting flow may be offset slightly from the overall entering flow. The invention also includes an array of such cells. An array may be such that the overall array of cells occupies a simple geometric envelope, which may be achieved by providing some cells or structure near the edges of the array, which may be different from the cells in the central portion of the array.
The invention is illustrated in the following Figures, in which:
The invention includes a geometry of surfaces for heat exchange with a flowing fluid. The geometry may define a first channel for flow of a fluid and a second channel for flow of the fluid, with the first channel and the second channel being fluid mechanically in parallel with each other. The first and second channels may have overall flow resistances which are approximately equal to each other, and in the normal conditions of operation the first and second channels may carry flowrates which are approximately equal to each other.
The first channel may be defined at least in part by a first channel boundary 254 and an interchannel boundary 290. The second channel may be defined at least in part by the interchannel boundary 290 and a second channel boundary 274. The interchannel boundary 290 may be located between the first channel boundary 254 and the second channel boundary 274. In the direction into or out of the plane of the paper, the channels may be defined by still other boundaries.
The first channel may comprise a first channel upstream region 250 having a first channel upstream region flow cross-sectional area, in series with a first channel downstream region 260 having a first channel downstream region flow cross-sectional area. In the first channel, between the first channel upstream region 250 and the first channel downstream region 260, there may be a first channel transition region 255. Similarly, the second channel may comprise a second channel upstream region 270 having a second channel upstream region flow cross-sectional area, in series with a second channel downstream region 280 having a second channel downstream region flow cross-sectional area. In the second channel, between the second channel upstream region 270 and the second channel downstream region 280, there may be a second channel transition region 275.
For purposes of discussion, it can be considered that in the first channel the first channel upstream region 250 is of larger flow cross-sectional area and the first channel downstream region 260 is of smaller flow cross-sectional area, i.e., the first channel transition region 255 is converging. Similarly, it can be considered that in the second channel the second channel upstream region 270 is of smaller flow cross-sectional area and the second channel downstream region 280 is of larger flow cross-sectional area, i.e., the second channel transition region 275 is diverging. It is understood, however, that these designations could be interchanged. It is possible, although not required, that the sum of the first channel upstream flow cross-sectional area and the second channel upstream flow cross-sectional area can equal the sum of the first channel downstream flow cross-sectional area and the second channel downstream flow cross-sectional area.
For any of the transition regions 255 and 275, the transition can be formed by a shift of both of the two boundaries which principally define the particular channel (rather than a shift of only one of the two boundaries as was illustrated in U.S. Pat. No. 6,668,915). For example, in the first channel transition region 255, both the first channel boundary 254 and the interchannel boundary 290 can shift so as to decrease the flow cross-sectional area as the fluid proceeds from the first channel upstream region 250 to the first channel downstream region 260. These boundaries can shift in a substantially symmetric manner so that the first channel substantially maintains a symmetry about first channel centerline 292. Similarly, in the second channel transition region 275, both the second channel boundary 274 and the interchannel boundary 290 can shift so as to increase the flow cross-sectional area as the fluid proceeds from the second channel upstream region 270 to the second channel downstream region 280. Again, these boundaries can shift in a substantially symmetric manner so that the second channel substantially maintains a symmetry about its own centerline 294. Alternatively, it is possible for the various boundaries to shift in ways such that the individual channels do not maintain symmetry around their own respective centerlines.
If flow separates from adjacent solid boundaries, this generally creates additional pressure losses and is undesirable. Separation is typically associated with localized recirculating flow patterns. As investigated in the art of fluid mechanics dealing with diffusers, the question of whether or not an expanding flow separates from the walls which define its flowpath, or the extent of such separation, is determined by factors which include the angle of divergence of the walls. Accordingly, the angle of divergence alpha as defined in
The first channel boundary 254, the interchannel boundary 290 and the second channel boundary 274 may all be disposed to engage in heat transfer with the fluid in the respective channels. Other boundaries of the channels (in the plane of the paper, not illustrated) may also be disposed to engage in heat transfer with the fluid in the respective channels, if desired. Any of the described regions can contain additional heat transfer surface area which may, for example, be in the form of fins. Alternatively or in addition, such additional heat transfer surface area can comprise perforated fins, or one or more fins punctured by one or more fluid-carrying tubes, or wire mesh, or a porous material, or pins, or tubes in crossflow, or tubes in other geometries. Although the first channel downstream region and the second channel upstream region are illustrated as not having any additional heat transfer surface area beyond the respective channel boundary and interchannel boundary, those regions could contain additional heat transfer surface area such as fins. Heat transfer for geometries other than simple fins, such as porous material or mesh, may be represented or approximated for calculation purposes as equivalent arrays of parallel-walled channels or tubes, as is known in the art, for example, the D'Arcy theory of flow through porous media. If fins are used for the additional heat transfer surface area in certain regions, the fins do not all have to be of the same length along the flow direction.
Each region may have a heat transfer surface area associated with that region, which may be the sum of the heat transfer surface area of the appropriate channel boundary and the heat transfer surface area of the interchannel boundary and any additional heat transfer surface area which may be present in the particular region. The first channel upstream region total heat transfer surface area and the second channel upstream region total heat transfer surface area define a heat transfer surface area distribution factor which is the larger of those two quantities divided by their sum. The first channel upstream region flow cross-sectional area and the second channel upstream region flow cross-sectional area define a flow cross-sectional area distribution factor which is the larger of those two quantities divided by their sum. In the present invention, the heat transfer surface area distribution factor and the flow area distribution factor may be selected such that the heat transfer surface area distribution factor is greater than the flow cross-sectional area distribution factor. This criterion results in an improved value of heat transfer to pressure drop, as explained in greater detail in U.S. Pat. No. 6,668,915.
It is possible that the various boundaries which define the first channel and the second channel may be arranged as illustrated in the
A cell or apparatus can be considered to be, collectively, the first channel and the second channel, which share a common interchannel boundary. The overall cell can be defined by the first channel boundary and the second channel boundary. The invention also includes an assembly containing a plurality of such cells arranged side by side with each other. The first channel upstream region and the second channel upstream region together define a cell upstream region which is bounded by the first channel wall and the second channel wall in that region. Similarly, the first channel downstream region and the second channel downstream region together define a cell downstream region which is bounded by the first channel wall and the second channel wall in that region. In such an assembly, the first channel boundary of a certain cell can, on the other side of that boundary, be the second channel boundary of another cell. Thus, the first channel boundary and the second channel boundary can be inter-cell boundaries and can engage in heat transfer with fluid on both of their sides. Multiple cells may be used together to make a heat exchanger occupying a substantial frontal area. This illustrated in
For an overall assembly of heat transfer surfaces, it may be desirable that the entire assembly (array of cells) should fit within a simple shape envelope which may be a simple rectangle.
Use of a large number of cells could occur, for example, in a large heat exchanger requiring a large number of fins. If an application involves placement of many such cells side by side, it is possible that the slight offset (which would be less than half of the overall side-to-side dimension of one cell) may be a tiny fraction of to the overall side-to-side dimension of the assembly of cells. In this situation, there might be a fractional cell on the extreme left side and the extreme right side of the overall array which would be geometrically unavailable for flow, but this could be insignificant compared to the overall dimensions of the heat exchanger, and this space could simply be left unused for flow and heat exchange. This is illustrated in
Alternatively, to avoid “wasting” any space in the frontal area of a heat exchanger, it is possible that a number of cells can be manufactured using the design described herein and can be centrally located in an array, and at least one cell of some other configuration can be manufactured near the boundary of the cell array, so as to give the overall array of cells the desired envelope. For example, for such unique cells the flow area distribution factor could be different from what it is in cells in the central region of the heat exchange array. This is illustrated in
Although various embodiments of the invention have been disclosed and described in detail, it should be understood that this invention is in no way limited thereby and its scope is to be determined by that of the appended claims.
This patent application claims the benefit of provisional patent application 60/586,251 filed Jul. 8, 2004, and also is a continuation-in-part of U.S. patent application U.S. Ser. No. 10/748,115 Dec. 30, 2003, now abandoned, which is a continuation of U.S. patent application Ser. No. 09/671,531 Sep. 27, 2000 which is now issued as U.S. Pat. No. 6,668,915, which claims the benefit of provisional 60/156,364 Sep. 28, 1999, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4049051 | Parker | Sep 1977 | A |
4653572 | Bennett et al. | Mar 1987 | A |
4693307 | Scarselletta | Sep 1987 | A |
4730233 | Osterman | Mar 1988 | A |
4765397 | Chrysler et al. | Aug 1988 | A |
4869313 | Fredley | Sep 1989 | A |
4899810 | Fredley | Feb 1990 | A |
4953634 | Nelson | Sep 1990 | A |
5002123 | Nelson | Mar 1991 | A |
5062411 | Karabin | Nov 1991 | A |
5109919 | Sakuma et al. | May 1992 | A |
5437328 | Simons | Aug 1995 | A |
5613552 | Osakabe et al. | Mar 1997 | A |
5709264 | Sweeney et al. | Jan 1998 | A |
5818694 | Daikoku et al. | Oct 1998 | A |
5860472 | Batchelder | Jan 1999 | A |
6116335 | Beamer | Sep 2000 | A |
6118656 | Wang | Sep 2000 | A |
6161613 | Huenniger | Dec 2000 | A |
6234239 | Azar | May 2001 | B1 |
6269002 | Azar | Jul 2001 | B1 |
6308771 | Tavassoli | Oct 2001 | B1 |
6663992 | Lehnert et al. | Dec 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
60156364 | Sep 1999 | US | |
60586251 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09671531 | Sep 2000 | US |
Child | 10748115 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10748115 | Dec 2003 | US |
Child | 11172413 | US |