Optimized gas cell

Information

  • Patent Application
  • 20060073078
  • Publication Number
    20060073078
  • Date Filed
    October 02, 2004
    20 years ago
  • Date Published
    April 06, 2006
    18 years ago
Abstract
An improved method of flow for in gas cells, which are used in analytical instrumentation. The invention directs the flow of the sample gas to the center of the cell that allows the outlets to be place on the ends, very near the windows and or mirrors of the cell. This reduced the contamination by moving the inlet as far from the ends as possible and improves flow by having the outlets close to the ends of the cell.
Description
FEDERALLY SPONSORED RESEARCH

Not Applicable


SEQUENCE LISTING OR PROGRAM

Not Applicable


BACKGROUND OF THE INVENTION—FIELD OF INVENTION

This invention relates to sampling methods used in analytical instrumentation.


BACKGROUND OF THE INVENTION

Gas cells are used in spectroscopy for containing a gas samples during analysis. They consist of a containment vessel with optically transparent windows and may include mirrors. In spectroscopy, the absorption of the analyzing beam is proportional to the distance the beam travels through the sample and inversely proportional to the concentration, so gas cells are built with different lengths depending on the types of samples and concentrations that are being analyzed. The distance the beam travels through the sample can be increased through the use of mirrors to reflect the analyzing beam for multiple passes. The length the analyzing beam travels through the sample is referred to as the path length. Gas cells can be used in a continuous flow mode for monitoring or in stop flow mode for static analysis of a sample. Depending on the type of samples being analyzed, they may be heated above ambient temperature in order to reduce condensation. Keeping the optical elements of the cell, the windows and/or mirrors, clean is of utmost importance in order to achieve accurate results. The goal for the gas flow through the cell is to avoid areas where the sampled gas is not readily exchanged. This insures the total path length being analyzed reflects the actual sample being presented to the cell. FIG. 2 shows a typical cell in which, two ports for flowing the gas are provided, an inlet port 4 and outlet port 5. The TGC-S10 cell, manufactured by Harrick Scientific Corporation, Ossining, N.Y. is one example and similar cells are available from other manufacturers. In current practice the inlet and outlet are placed toward the ends of the cell for proper flow. When being used to sample dirty samples such as from a Thermogravimetric Analyzer or pyrolysis, which can contain a number of gases and particulate mater, the position of the inlet near a window or mirror can lead to contamination. In order to minimize the internal volume of the cell, the cell is sometimes built in the shape of the infrared beam typically in the shape of two cones placed point to point for use with the focused beam typical for many spectrometers. These cells are heated by placing a band heater in the center of the cell or by a blanket heater covering the entire cell. The typical temperature range is from ambient to 250° C. Cells can be composed of a number of materials including Stainless Steel, Coated Aluminum, Hastalloy, glass and others. The windows for the cell are composed of a number of materials depending on the spectroscopic wavelength to be used. For Infrared use common materials are KBr, NaCl, KCl, ZeS, among others, while quartz and glass can be used for visible analysis


BACKGROUND OF THE INVENTION—OBJECTS AND ADVANTAGE

Several problems have been identified with the current designs. 1) In order to have proper flow of gases through the cell the inlet port is place close to a window or mirror on one end of the cell which can lead to contamination or condensation. 2) The practice of heating the center of a cell leads results in the windows and/or mirrors being the lowest temperature parts in the cell, which risk condensation occurring on those parts that can most affect spectroscopic results.


To deal with these issues, several innovations have been devised. To improve the flow characteristics, the Split-flow cell was devised. FIG. 1 shows, the inlet port 4 is placed in the center of the cell and outlet port 5 is connected to the ends of the cell through the internal vent lines 7A and 7B to the internal vent ports 6A and 6B located on the ends of the internal volume 3. The gas sample flows from the inlet port 4 with one half going exiting the internal volume via the internal vent port 6A and the other half via vent port 6B. This helps in keeping the windows and/or mirrors clean by having the inlet port 4 placed as far away as possible from the windows 2A and 2B. Since the output flow of the cell is less likely contaminate, the outlet vents can be placed very close to the windows thus providing better flow. In order to help keep the flow balanced from end to end, the two Internal Vent ports 6A and 6B are connected together at the centrally located Outlet port 5.


The heating of the cell is accomplished by placing heaters on each end as shown parts 8A and 8B of FIG. 1, insuring the ends where the windows and/or mirrors are located are keep at the required temperature. This is in contrast with the common practice of placing a single band heater in the center of the cell, thus insuring the windows are at the lowest temperature in the cell leading to the potential of condensation on the least desirable part


SUMMARY

The present invention through the use of split-flow design for introduction of the sample gas and improved heating alleviates a contamination and condensation of the windows and/or mirrors associated with prior designs.




DRAWINGS—FIGURES


FIG. 1 side, cutaway view of gas cell



FIG. 2 side, cutaway view of current gas cell design



FIG. 3 side, cutaway view of multi path cell with split-flow



FIG. 4 front view of the window holder




DRAWINGS—REFERENCE NUMBERS




  • 1 Cell Body


  • 2A, 2B, windows


  • 3 Internal Volume


  • 4 Inlet port


  • 5, 5A, 5B Outlet port


  • 6A, 6B Internal vent ports


  • 7A, 7B Internal vent lines


  • 8, 8A, AB Band heater


  • 9A, 9B, 9C, 9D Window holder screws


  • 10A, 10B Window holder assembly


  • 11 Temperature sensor


  • 12 Analyzing Beam


  • 13
    a,
    13
    b,
    13
    c Internal Mirrors


  • 14 Analyzing beam hole



DETAILED DESCRIPTION—FIGS. 1 AND FIG.4-PREFERRED EMBODIMENT

The preferred embodiment of the system is illustrated in FIG. 1 and FIG. 4. A 100 mm pathlength version is constructed from a 1.5″×4″ Aluminum round machined in the double cone shape in the center, in this case to match the center focused beam of a FTIR spectrometer such as the Nexus, available from Thermo Electron, Waltham, Mass. The ends are covered by standard windows such as 2×25 mm KBr available from Spectral Systems, Hopewell Junction, N.Y. and a number of other suppliers. The windows are held in place on the ends of the cell by the window holders 10A and 10B as shown in FIG. 1 and FIG. 4. These consist of a round plate of Aluminum with a hole 14 in the center to allow the analyzing beam to pass, held in place with screws 9A, 9B, 9C, 9D, 9E and 9F. The outlet port 5 is connected to the two internal vent ports 6A and 6B via Internal Vent lines 7A and 7B. This is machined in to the Aluminum round by drilling series of holes, and then plugged on the un-needed ends. This method was done to result in a single piece when finish, but it is not necessary for operation. The venting could also be accomplished through tubing external to the cell, but connection of the two Internal vent ports together before connection to a vent is recommend to maintain balanced flow. To provide corrosion resistance, the aluminum is coated by Nickel through an electroless process available from Pioneer Metal Finishing, Green Bay, Wis. and other vendors. To heat the cell, two band heaters such as the model STB1J1A1 available from Watlow Electric Manufacturing Co, St. Louis, Mo., are place on the ends of the cell as shown in FIG. 1 parts 8A and 8B. These band heaters are 120-volt versions, which are connected in parallel for 120-volt operation and in series for use at 240 volts. A K-type thermocouple 11 of FIG. 1 provided temperature feedback to the temperature controller, which powers the band heaters. The cell and heaters are covered in insulation and placed in a box and stand assembly. Sample material is conducted to the cell via heated ⅛″ stainless steel transfer line connected to the Inlet port 4 and the Outlet port 5 is connected to an unheated ⅛″ stainless steel line for connection to a vent. Inlet port 4 and Outlet port 5 are threaded for ⅛ NPT and fitted with compression fittings such as SS-2M0-1-2 from Swagelok, Solon, Ohio.


DESCRIPTION—ADDITIONAL EMBODIMENT

To further improve flow, it is envisioned that addition vent ports could be added on each end of the cell.


The system can also be used with what is referred to as a White cell. Developed by J. White, and described in Long Optical Paths of Large Aperture, 32 J. Optical Society Am. 285 (May 1942). In this type cell FIG. 3, the analyzing beam 12 is directed into the cell via the window 2A and then is reflected a selected number of times to increase the path length, by three mirrored surfaces until directed to the other window 2B. As before, the flow for the sample is directed to the center and the outlets are on the ends, in this case via a tube for the inlet port 4 and the outlet ports 5A and 5B.


The cell can be construction from a variety of materials such as glass, ceramics, stainless steel and other corrosion resistant materials. The method of construction of the cell can be via machining as described, but can also include casting, metal spinning and other common methods of fabrication.


Conclusion Ramifications and Scope


From the preceding discussion, it can be seen that the invention represents a number of advantages over prior versions of gas cells.

    • Reduction in condensation and contamination of the windows and/or mirrors due to Locating the inlet for the cell as far as possible from the optical elements Heating on the ends of the cell vs. the center
    • Improved flow of sample material by placing outlet ports very close to the ends of the cell.


Thus the scope of the invention should be determined by the appended claims and their legal equivalents, rather then by the examples given.

Claims
  • 1. A cell for containment of gaseous samples for use in spectroscopy consisting a body with an internal volume, two windows and an inlet port and outlet port to allow entry of gases into the volume. The inlet port is positioned so as to flow the gas into the center of the volume, while the outlet ports are position near the windows.
  • 2. The cell in claim 1 preferentially heated on each end.
  • 3. A cell for containment of gaseous samples for use in spectroscopy consisting a body with an internal volume, a window on one end a mirror on the other, and an inlet port and outlet port to allow entry of gases into the volume. The inlet port is positioned so as to flow the gas in the center of the volume, while the outlet ports are position near the window on one end and the mirror on the other.
  • 4. The cell in claim 3 preferentially heated on each end.
  • 5. A cell for containment of gaseous samples for use in spectroscopy consisting a body with an internal volume, a two windows on one end a mirrors on each end oriented to provide multiple reflections, and an inlet port and outlet port to allow entry of gases into the volume. The inlet port is position so as to flow the gas in the center of the volume, while the outlet ports are position on each end.
  • 6. The cell in claim 5 preferentially heated on each end.