The present invention relates generally to data storage systems, and specifically to methods and systems for maintaining the integrity of stored data.
Structural integrity schemes are used in data storage applications to protect data from being modified without authorization. Such schemes typically use a structure comprising one or more levels of signatures to protect data integrity.
Various embodiments of a system and method for data integrity protection are possible. An embodiment of a method for data integrity protection may include receiving items of data for storage in a storage medium and grouping the items into multiple groups, such that at least some of the groups include respective pluralities of the items. A respective group signature is computed over each of the groups, thereby generating multiple group signatures, and an upper-level signature is computed over the group signatures. The groups of the items, the group signatures and the upper-level signature are stored in respective locations in the storage medium.
In disclosed embodiments, the storage medium may be configured to be accessed in access units of a predefined size, and grouping the items may include selecting the items to be included in each group responsively to the predefined size. Typically, storing the groups of the items may include aligning the groups with respective access units of the storage medium so that each group occupies an identical number of the access units. In one embodiment, the medium may include a non-volatile electronic memory, and the access units are pages. Storing the group signatures may include grouping the multiple signatures into two or more signature groups responsively to the predefined size, and aligning each of the signature groups with the access units in a respective location in the storage medium.
In some embodiments, computing the upper-level signature may include grouping the group signatures into signature groups for storage in the storage medium, computing respective super-signatures over the signature groups, and calculating the upper-level signature over the super-signatures. Typically, calculating the upper-level signature may include grouping the super-signatures into two or more super-groups, computing respective upper-level signatures over the super-signatures in the two or more super-groups, and the method may include arranging the groups of the items and the super-groups in first and second levels, respectively, of a hierarchy, which may include at least three levels and culminates in a top level containing a top-level signature computed over the hierarchy.
The items of data may be cryptographic secrets.
Another embodiment may provide apparatus for data integrity protection, including a storage medium for storing items of data, and a storage controller, which may be configured to group the items into multiple groups, such that at least some of the groups include respective pluralities of the items. The storage controller may be configured to compute a respective group signature over each of the groups, thereby generating multiple group signatures, to compute an upper-level signature over the group signatures, and to store the groups of the items, the group signatures and the upper-level signature in respective locations in the storage medium.
An additional embodiment may provide a software product, including a machine-readable medium in which program instructions are stored, which instructions, when read by a programmable controller that is coupled to store items of data in a storage medium, may cause the controller to group the items into multiple groups, such that at least some of the groups comprise respective pluralities of the items, to compute a respective group signature over each of the groups, thereby generating multiple group signatures, to compute an upper-level signature over the group signatures, and to store the groups of the items, the group signatures and the upper-level signature in respective locations in the storage medium.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Secure data storage systems often use signatures to provide integrity protection. In the context of the present patent application and in the claims, the term “signature” is used broadly to refer to any code that is calculated over an element of data and may subsequently be used to verify that the data element has not changed since the code was calculated. There are many types of signatures utilized in secure data storage systems. These include, but are not limited to—MAC, hash, CRC, PGP, and PKI:
In some hierarchical data integrity schemes, a digital signature is created for each data item being stored and is updated when any data is added or changed. An upper-level signature is computed over the signatures of the data items to protect the integrity of the signatures, and the upper-level signatures may themselves be protected by one or more levels of super-signatures, in a hierarchical manner, up to the top-level signature, which verifies the integrity of the entire data structure.
This type of secure data storage architecture has a number of drawbacks, especially when utilized in devices that use embedded or flash memory:
Embodiments of the present invention provide methods for enhancing the efficiency and security of data storage systems that use hierarchical integrity schemes. Data items for storage are grouped together, and a group signature is calculated for each group, rather than each data item. Typically, the data items are grouped so that all groups are similar in size and are aligned with respective access units of the storage medium so that each group occupies an identical number of the access units. The signatures may be grouped in like manner. In this scheme, the number of signature levels may be defined statically.
Grouping data items for signature in a hierarchical integrity data structure requires a smaller amount of storage space than signing each data item individually. Furthermore, aligning the groups with equal numbers of access units reduces the security risk for timing attacks, as does the static definition of the number of signature levels, which provides a fixed-length path for calculating the top-level signature. The static number of signature levels and the use of signature grouping together simplify and speed up the top-level signature calculation, leading to better performance when reading and writing data to the secure data store.
Media file 24 and key 26 are stored in memory in device 20. Typically, device 20 stores many different media files, each with its own unique key. In order to prevent unauthorized access to and use of the keys (and hence of the media files), the keys are arranged in a secure hierarchical integrity structure in the memory of device 20. This structure, as described in detail below with reference to
Although the embodiment shown in
Controller 32 is typically a programmable processing device, which operates under the control of program instructions that are stored in a machine-readable medium, such as flash memory 30 or other electronic memory, or in magnetic or optical media. The instructions cause the controller to perform the data integrity-related functions that are described herein. Alternatively or additionally, some or all of the functions of the controller may be performed by dedicated processing logic.
Typically, controller 32 stores the media files and secret keys in different, respective locations in memory 30. The keys are typically small items of data, each occupying considerably less than a full page 36. Therefore, the controller groups certain keys together on the basis of the page size, so that each group of keys fits into the same number of pages. For efficient access, it is advantageous that each group fills a single page, but larger groups may alternatively be used. In some cases, device 20 may receive keys of different sizes, including large keys that require an entire page or even multiple pages for storage. In such cases, each of these large keys may be a group unto itself, while smaller keys are grouped together. It may be advantageous, for resistance against timing attacks, to group the small keys so that each group occupies the same number of pages as one of the large keys.
Controller 32 computes a group signature over each group of keys, as well as upper-level signatures, to form a hierarchical integrity structure as shown below in
Each page 46 of secrets is signed by controller 32 with a single group signature 47. The controller may compute the signatures using any suitable method known in the art, such as the MAC, hash, CRC, PGP, or PKI types of computations mentioned above. These group signatures constitute the lowest signature-level in structure 48. The group signatures themselves are also grouped into signature groups, and each group of signatures is stored by the controller in a respective signature page 44.
Each signature page 44 is itself protected by a super-signature 45 computed by the controller over the group signatures in the signature page. Signature pages 44 are grouped together into super-groups, and the super-signatures of the signature pages in each super-group are recorded on an upper-level signature page 43, which constitutes the next signature level in the integrity hierarchy. The controller typically computes and stores the signatures of all the signature levels in the same way that it treats the secrets themselves. Thus, the controller may advantageously group signature pages 44 into super-groups so that the super-signatures in each upper-level signature page 43 are likewise aligned with an access unit of memory 30.
The integrity hierarchy converges to a top-level signature page 40, which typically contains the upper-level signatures of upper-level signature pages 43. The controller computes a top-level signature 42 over the upper-level signatures of all of pages 43, and thus protects the integrity of the whole data structure, including the secrets and the signatures. For protection against re-flash attacks, the controller may include the value of a counter, which is incremented on each update (in addition to the upper-level signatures of blocks 43) in calculation of the top-level signature. Although the hierarchy in structure 48 is shown, by way of example, as comprising three levels of signature pages 44, 43 and 40, the principles of the present invention may be applied in hierarchies having any practical number of levels of signature pages, two or greater.
Controller 32 stores the data item, together with the other data items in its assigned group, on the appropriate secrets page 46 (
Controller 32 stores the updated signature values in the appropriate pages of data structure 48, at a signature storage step 58. The controller performs the same number of computations and storage operations regardless of which data item or items are modified. Therefore, the time required by the controller to record a data item in hierarchy 48 is constant, thus providing protection against timing attacks.
To verify the integrity of a data item that is stored in a given page 46 of data structure 48, controller 32 reads the data from the page, and computes a new value of the group signature over that data. The controller compares this value to the group signature value that is stored in signature page 44. If the values do not match, the controller may conclude that the data integrity has been compromised and take appropriate action. The controller typically recomputes and compares the appropriate signature values iteratively, upward through the hierarchy to the top-level signature, in a manner analogous to the process described above for recording new data. If all of the signatures match their stored values, the controller verifies that the integrity of the data structure is intact and reads out the data item. In the case of media player device 20 (
It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
Number | Date | Country | Kind |
---|---|---|---|
187041 | Oct 2007 | IL | national |
Number | Name | Date | Kind |
---|---|---|---|
4881264 | Merkle | Nov 1989 | A |
5638447 | Micali | Jun 1997 | A |
6226743 | Naor et al. | May 2001 | B1 |
6467021 | Sinclair | Oct 2002 | B1 |
6701434 | Rohatgi | Mar 2004 | B1 |
6757322 | Schilling | Jun 2004 | B2 |
6795915 | Wang | Sep 2004 | B2 |
6915175 | Ahn | Jul 2005 | B2 |
6948066 | Hind et al. | Sep 2005 | B2 |
7315866 | Wu et al. | Jan 2008 | B2 |
7330980 | Nasu | Feb 2008 | B2 |
7340580 | Kinoshita | Mar 2008 | B2 |
20020194484 | Bolosky et al. | Dec 2002 | A1 |
20050021905 | Kwon | Jan 2005 | A1 |
20050234847 | Damien et al. | Oct 2005 | A1 |
20060107047 | Bar-El | May 2006 | A1 |
20070005935 | Khosravi et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
WO-2006051522 | May 2006 | WO |
Entry |
---|
Schneier, Bruce. Applied Cryptography. 1996. pp. 436-437, Section: 18.5. |
Number | Date | Country | |
---|---|---|---|
20090113219 A1 | Apr 2009 | US |