Mechanical-to-acoustical transducers may have one actuator that may be coupled to a speaker membrane or diaphragm that may then be anchored spaced from the actuator. Such a system may provide a diaphragm-type speaker where a display may be viewed through the speaker. The actuators may be electro-mechanical, such as electromagnetic, piezoelectric or electrostatic. Piezo actuators do not create a magnetic field that may then interfere with a display image and may also be well suited to transform the high efficiency short linear travel of the piezo motor into a high excusion, piston-equivalent diaphragm movement.
In one exemplary embodiment, the present invention relates to an acoustic transducer that coverts a mechanical motion into acoustical energy. The acoustic transducer includes a diaphragm and at least one support on at least a portion of the diaphragm. At least one actuator may then be provided that is operatively coupled to the diaphragm, wherein the diaphragm or the actuator include one or more areas of reduced stiffness relative to other areas on the diaphragm or actuator.
In another exemplary embodiment the present invention relate to an acoustic transducer that coverts a mechanical motion into acoustical energy. The acoustic transducer includes a diaphragm and at least one support on at least a portion of the diaphragm. At least one actuator may then be provided that is operatively coupled to the diaphragm, wherein the actuator and the diaphragm have a stiffness, and wherein the diaphragm and the actuator are joined by a material of reduced stiffness relative to the actuator stiffness or the diaphragm stiffness.
In another exemplary embodiment, the present invention relates to an acoustic transducer that coverts a mechanical motion into acoustical energy, The acoustic transducer includes a diaphragm and at least one support on at least a portion of the diaphragm. At least one actuator may then be provided that is operatively coupled to the diaphragm, wherein the activator comprises a piezo actuator wherein all or a portion of the actuator, not coupled to said diaphragm, may be restricted in its movement.
In another exemplary embodiment, the present invention relates to an acoustic transducer that coverts a mechanical motion into acoustical energy. The acoustic transducer includes a diaphragm and at least one support on at least a portion of the diaphragm. At least one actuator may then be provided that is operatively coupled to the diaphragm, wherein the actuator includes a substrate that extends outward from the actuator and which supplies an attachment area for coupling to the diaphragm.
A mechanical-to-acoustical transducer, coupled to a diaphragm, for the purpose of producing audio sound, is disclosed in U.S. Pat. No. 7,038,356, whose teachings are incorporated herein by reference. In one configuration, the transducer amounts to a piezo motor coupled to a diaphragm so that the excursion of the actuator is translated into a corresponding, mechanically amplified excursions of the diaphragm. The diaphragm may be curved and when optically clear, can be mounted on a frame over a visual display to provide an audio speaker. The diaphragm may therefore be characterized by a relatively large, pistonic-equivalent excursion. A typical amplification or mechanical leveraging of the excursion may be five to fifteen fold.
As illustrated, along one edge of the two diaphragms may be a number of piezo actuators 22 which may be discrete or separate actuators or an array of actuators. An exemplary array of such piezo actuators is shown in
In addition, it may be noted that one method of optimizing the relative stiffness and response of the driving end of the piezo, is to clamp a relatively large section of the piezo, which may then restrict the piezo movement when electrically activated. Such clamping may also be facilitated by use of an adhesive as between the frame and the actuator. As shown in
In addition, it may be appreciated that the piezos herein which include a ceramic layer and at least one conductive (metallic) layer on an opposing side may resemble a capacitor in performance. Accordingly, the larger the surface area of the conductive metallic layer may provide a piezo that may retain more charge and provide greater relative output. In addition, the performance of the piezo may be altered in the event that the conductive electrode layers are selectively applied to the ceramic. For example, if the conductive layer may be applied to the ceramic in a graduated pattern, such would then provide the greatest relative change at the desired location at the piezo tip. It may therefore be appreciated that by way of such design, apart from improving the output at the piezo tip, the ability to clamp on the active area of the piezo is improved with a reduced possibility of piezo failure, and in addition, by use of a graduated or discontinuous electrode layer, one may tune and optimize the performance of the piezo for a given diaphragm requirement.
With attention next directed to
Attention is next directed to
In addition, it can be appreciated that the diaphragm material, being composed of a polymeric type resin, may be prepared such that desired regions of the diaphragm may have different elastic modulus properties (e.g., flexural modulus or “Eflex” as compared to other regions of the diaphragm. For example, upon exposure to irradiation (e.g., UV light), the exposed polymeric material may undergo crosslinking type reactions, thereby increasing the value of Eflex in those areas of exposure, relative to those areas that may remain unexposed. In such manner, as opposed to development of a pivot location in the diaphragm be employing areas of reduced thickness, one may develop areas in the diaphragm that may have reduced stiffness relative to other areas of the diaphragm. It is therefore contemplated herein the diaphragm may also be prepared such that it relies upon different materials at different locations, with varying stiffness characteristics.
The foregoing description is provided to illustrate and explain the present invention. However, the description hereinabove should not be considered to limit the scope of the invention set forth in the claims appended here to.
This application claims the benefit of U.S. Provisional Applications Ser. Nos. 60/685,841 and 60/685,842, both filed May 31, 2005, which are incorporated herein by reference. Reference is also made to U.S. application Ser. No. [TBD] entitled “Diaphragm Membrane And Supporting Structure Responsive To Environmental Conditions”, filed simultaneously herewith, whose teachings are also incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60685841 | May 2005 | US | |
60685842 | May 2005 | US |