Not applicable.
This invention is in the field of control systems for electric machines. Embodiments described in this specification are more specifically directed to control of electric motors to recover energy using regenerative braking.
Field-oriented control (“FOC”) has become commonplace in modern control systems for AC electric motors. According to this approach, stator windings of the AC motor are driven, for example by pulse-width-modulation, in such a way as to maximize the torque/ampere performance of the motor. Field-oriented control of AC motors is a complicated task because the rotation of the magnetic field in the stator with respect to the rotating magnetic field of the rotor can be asynchronous, such that characterization of the operation of the AC motor involves a set of differential equations with time varying coefficients. Indeed, the operative set of differential equations is still nonlinear even in those systems in which the magnetic fields of the stator and rotor are synchronous.
Modern high-speed programmable microcontrollers have been widely adopted for carrying out the complex calculations required for accurate field-oriented control. Many AC motor control algorithms are based on the well-known “Park” transform, which transforms the applicable set of differential equations with angle-dependent coefficients into a set of differential equations that are independent of motor angle. In particular, the Park transform considers motor operation according to a rotating two-dimensional (d, q) coordinate system, where the d axis is aligned with the field flux linkage component (i.e., the rotor flux) and the orthogonal q axis is aligned with the torque component. By separating the field flux linkage and torque components, motor torque can be controlled without affecting the field flux. This decoupling enables the use of techniques such as dynamic torque control and speed control, which can employ proportional-and-integral (PI) control algorithms and the like for the actual controller instantiation.
As known in the art, conventional FOC controllers control the operation of AC motors in response to a desired motor speed input signal in combination with feedback signals indicating the current position and velocity of the rotor. In this regard, speed controllers apply a function such as a proportional-integral control function to an error signal between the desired motor speed and an estimate of the current velocity, to produce direct phase and quadrature phase (d, q) control signals that are applied to the inverse Park transform function. Typically, the inverse Park transform generates spatially fixed (α and β phase) control signals from these d and q phase signals and estimates of the current rotor position. The α and β phase control signals are then converted by a space vector generator function to multiphase control signals, based on which pulse-width modulated (PWM) pulses are driven onto the stator windings of the motor to apply the desired torque.
In a general sense, electric motors have two mechanical operations, motoring and braking. Motoring refers to the motor operation in which the applied torque and rotational velocity of the motor are in the same direction, while the braking operation applies a torque in the opposite direction from the rotational velocity of the motor.
Disclosed embodiments provide a system and method for controlling an electric machine, such as an AC electric motor, to perform regenerative braking so as to recover energy.
Disclosed embodiments provide such a system and method in which field-oriented control (FOC) is applied in such a fashion as to perform regenerative braking when possible.
Disclosed embodiments provide such a system and method in which field-oriented control (FOC) is applied in such a fashion as to maximize the charging current during regenerative braking.
Disclosed embodiments provide such a system and method in which FOC is applied to maximize the charging current during regenerative braking for interior permanent magnet (IPM) AC motors.
Disclosed embodiments provide such a system and method that is compatible with external braking mechanisms.
Other objects and advantages of the disclosed embodiments will be apparent to those of ordinary skill in the art having reference to the following specification together with its drawings.
According to certain embodiments, a FOC system and method is provided in which multiphase control signals to be applied to the motor during braking are determined so as to perform regenerative braking when possible, and in some embodiments to optimize the energy recovery from regenerative braking. In these embodiments, a lookup table storing data representative of regenerative braking regions in the torque-speed plane is accessed in the determination of the multiphase control signals. In some embodiments, the lookup table stores data representative of operating points of maximum regenerative braking current.
The one or more embodiments described in this specification are implemented into a field-oriented control (FOC) scheme for a permanent magnet (PM) type of an AC electric motor, as it is contemplated that such implementation is particularly advantageous in that context. However, it is also contemplated that concepts of this invention may be beneficially applied to other applications, for example other types of electric motors such as AC induction motors, and other machines. Accordingly, it is to be understood that the following description is provided by way of example only, and is not intended to limit the true scope of this invention as claimed.
In this embodiment, much of the architecture for controlling the alternating current applied to the stator windings is implemented by programmable microcontroller integrated circuit (MCU) 220, enabling many of the calculations and control loop functions to be carried out in the digital domain. Examples of integrated circuits suitable for use as MCU 220 according to these embodiments include microcontrollers in the C2000 and MSP430 families available from Texas Instruments Incorporated. In the example of
According to these embodiments, processor unit 22 is coupled to regenerative braking lookup table 24r (shown as RB LUT 24r in
The feedback side of the control system of
In this implementation, MCU 220 also includes optional external brake controller 245, which presents a signal that controls the drive applied to an external brake 259 (also optional). As will be described in further detail below, external brake controller 259 generates its output control signal in response to the received input (e.g., the desired motor speed) and feedback signals, specifically in cooperation with energy recovery functions according to these embodiments.
Other functions within controller 220 include an energy storage system (ESS) 265, which in this example is a battery, and battery management circuit 260. In this arrangement, battery management circuit 260 is coupled to an output of three-phase inverter 232, and operates to control a maximum level of regenerative braking current flowing into ESS 265 using a current regulation circuit, with that maximum level based on the maximum charging current that ESS 265 can support.
Reference current generator 256 operates to produce quadrature phase reference current Iq,ref and direct phase reference current Id,ref based on reference torque signal τref from RB controller 240 and an estimate {circumflex over (ω)}[n] of the current rotor velocity. Quadrature phase reference current Iq,ref corresponds to the desired torque component (i.e., the q component in the d, q domain), and a difference between that current and quadrature phase feedback current Iq is applied to q-axis current controller 258. Similarly, a difference between direct phase reference current Idref and direct phase feedback current Id is applied to d-axis current controller 257. Controllers 257, 258 operate according to a conventional control function (e.g., proportional-integral) to produce direct phase and quadrature phase control signals Vd, Vq, respectively, which are applied to inverse Park transform function 253.
Inverse Park transform function 253 transforms the d and q phase control signals Vd, Vq to spatially fixed α and β phase control signals Vαβ. Because the inverse Park transform requires knowledge of the rotor position (more specifically, the rotor flux or field flux linkage angle), rotor position estimate {circumflex over (θ)}[n+1] for the next control cycle [n+1] is supplied, in this embodiment, by estimator function 215. As shown in
On the feedback side of the control loop in this architecture, Clarke transform function 241a receives sampled currents Iabc associated with the three motor phases and acquired for the current sample period n, as produced by ADCs 243a based on the electrical parameters sensed by sense circuits 233. From these inputs, Clarke transform function 241a produces spatially fixed α and β phase feedback signals Iαβ, which in turn are applied to Park transform function 246a to produce d and q phase feedback signals Id, Iq, respectively. Similarly, Clarke transform function 241b receives sampled voltages Vabc from ADCs 243b, and produce α and β phase voltage feedback signals Vαβ, which are applied to Park transform function 246b to produce d and q phase voltage feedback signals Vd, Vq, respectively. Current feedback signals Id, Iq and voltage feedback signals Vd, Vq as well as sensed bus voltage Vbus from ADCs 243c, are forwarded to estimator function 215, which will generate rotor position and rotor velocity estimates for use in the control loop as noted above. Alternatively or in addition, one of sense circuits 233 may receive a signal from a velocity sensor at motor 210, in which case a direct measurement of rotor velocity is obtained and can be used in the control loop.
Examples of speed and position estimator algorithms and methods suitable for use in estimator function 215 in this embodiment are described in copending U.S. applications Ser. No. 14/337,576 and Ser. No. 14/337,595, both filed Jul. 22, 2014, and copending U.S. application Ser. No. 14/880,008 filed Oct. 9, 2015, all such applications commonly assigned herewith and incorporated herein by reference. Copending U.S. application Ser. No. 14/675,196, filed Mar. 31, 2015, commonly assigned herewith and incorporated herein by this reference, describes a motor controller architecture that includes a function for selecting a fractional delay compensation value to be applied in the estimate of rotor position for which pulse-width-modulated drive signals are to be applied to a multi-phase electric motor, which may optionally be included in the functional architecture of control system 250 according to these embodiments.
As mentioned above, the functional architecture of controller 220 includes RB controller 240 in the control loop. As described in copending U.S. application Ser. No. 14/837,810, filed Aug. 27, 2015, commonly assigned herewith and incorporated herein by reference, and in the embodiment shown in
As described in the above-incorporated application Ser. No. 14/837,810, RB controller 240 operates to determine boundaries of the regions in the braking quadrants (quadrants II and IV in the torque-speed plane of
However, it has been observed, according to these embodiments, that this approach may not be practicable for salient-pole PMSMs and interior permanent magnet motors (IPMs), because the nature of these motors makes it prohibitively difficult to derive closed-form expressions for the regenerative braking boundaries and maximum regenerative braking current curves. These embodiments provide regenerative braking control in which closed-form expressions are not necessary, thus allowing a wide range of electric motors to attain maximum charging current during regenerative braking.
According to these embodiments, regenerative braking lookup table (RB LUT) 24r is provided in MCU 220, as shown in
It is contemplated that the braking torques stored in RB LUT 24r may be calculated by a number of approaches. For example, these braking torques may be determined for various rotor speeds experimentally, for example by characterizing a particular make and model of motor 210 and measuring the energy recovery performance over varying rotor speeds. Alternatively, these braking torques may be determined by deriving closed-form expressions as described in the above-incorporated application Ser. No. 14/837,810 and then applying varying rotor speeds to those expressions to arrive at the braking torques corresponding to the regenerative braking boundaries and maximum regenerative braking current curves for each of those rotor speeds.
A technique for numerically determining the braking torques stored in RB LUT 24r according to an embodiment will now be described with reference to
According to this embodiment, determination of the regenerative braking torque levels for a given permanent magnet synchronous machine, such as motor 210 of
An equivalent circuit model for DC storage/power block 30 of a system based on a storage battery (e.g., ESS 265 of
and that also includes an equation for the electromagnetic torque τem:
τem=N(Λ+(Ld−Lq)idm)iqm (2)
where Λ is the magnitude of the permanent magnet flux in the AC machine. The control variables in these system equations are the duty cycle vectors ud and uq in the d and q axes, respectively. As known in the art, for a fixed DC-bus voltage, the maximum lengths of the duty cycle vectors ud and uq depend on the type of pulse-width-modulation (PWM) strategy and the type of stator machine winding. For example, the maximum length [max(Udq)] of the duty cycle vector for a wye-connected machine using PWM without 3rd harmonic injection is:
and for a delta-connected machine using PWM without 3rd harmonic injection is:
In process 22 according to this embodiment, specific motor and power system parameter values are identified and applied to the system equations developed in process 20. These parameter values include those that are relevant or necessary to carry out the calculations involved in determining the applicable braking torques for that particular motor and power system type may include some or all of the following:
Additional or different parameters may be added or substituted, or some of these parameters may be omitted, depending on the numerical approach and optimization equations used to determine the braking torques. For example, in some implementations the core loss resistance Rc of the motor may be included as indicated in the above table, while in other implementations the core loss resistance Rc may be omitted without a significant loss of accuracy in the result. The particular values applied for a given motor and power system may be determined by characterization, by reference to stated specifications for the motor and power system, or by other conventional techniques. It is contemplated that the precision that will typically be required for these parameter values will typically allow the use of one set of parameter values for a given model of motor and a given model of power system (either on a component-by-component basis or for the system as a whole), without requiring entry of different parameter values for each particular instance of the motor or power system. Of course, if a particularly precise installation is contemplated, it may be advantageous to characterize and measure that particular motor instance and power system instance, so that the braking torques and energy recovery can be tuned to obtain the best available optimization.
According to this embodiment, optimization process 24 is then performed to determine, for each rotor speed ω over a desired operating range, the minimum and maximum braking torques at which regenerative energy recovery occurs. By implication, regenerative braking will occur at those braking torques between these two limits at each rotor speed. As mentioned above, many motor types are not well suited for the determination of these braking torque limits by solving closed-form expressions; in addition, even for those motor types that do give rise to closed-form expressions, one or more of the assumptions underlying those expressions may be found to be imprecise for a particular motor or system type. According to this embodiment, therefore, one or more optimization problems are formulated in advance, and numerically solved from the system equations developed in process 20 for the parameter values applied in process 22 to determine the regenerative braking torque levels over the rotor speed range.
In process 24, the minimum and maximum braking torques at selected rotor speeds are determined from respective optimization problems. In this embodiment, these optimization problems are constructed as:
Problem 1: Minimize electromagnetic torque τem, where:
∥udq∥≤max(Udq),∥idq∥≤Imax,τem≤0,is≤0
Problem 2: Maximize electromagnetic torque τem, where:
∥udq∥≤max(Udq),∥idq∥≤Imax,τem≤0,is≤0
Both of these optimization problems are constrained by the system equations (1) and (2) described above. In process 24, these optimization problems are solved at each rotor speed ω over a range of operating speeds to generate the bounds of regenerative braking in the forward braking quadrant IV of the torque-speed plane of
In optimization process 26, the braking torques at which regenerative braking provides the maximum energy recovery are determined, by solving another optimization problem over the range of operating speeds:
Problem 3: Minimize output current is from the power system, where:
∥udq∥≤max(Udq),∥idq∥≤Imax,τem≤0,is≤0
This optimization problem is also constrained by the system equations (1) and (2) described above. In this embodiment, optimization process 26 determines, for each rotor speed ω over the operating range, the braking torque at which the current output by the battery is at its minimum, which conversely corresponds to the torque at which the charging current during regenerative braking is at a maximum.
It is contemplated that the particular optimization problems, and indeed which optimization problems and braking torques derived, may vary from that shown in
Referring back to
Referring now to
As described in the above-incorporated patent applications Ser. No. 14/337,576, Ser. No. 14/337,595, and Ser. No. 14/675,196, the control loop of system 250 operates on a periodic basis, with the rotor speed and position determined at one sample period n being used to determine the appropriate control signals to be applied to the motor in a next sample period n+1. It is contemplated that those skilled in the art having reference to this specification will be able to realize these embodiments in connection with other time-based approaches to feedback control of the motor as appropriate for a particular application, without undue experimentation.
The operation of RB controller 240 in determining the appropriate braking torque for motor 210 begins in process 42 by the receipt of a current rotor velocity estimate {circumflex over (ω)}[n] from estimator function 215. While this description will refer to the functional architecture of
In decision 45, RB controller 240 determines whether torque signal τdesired from speed controller 251 indicates a braking torque, which for the case of forward motion is a negative value. If torque signal τdesired is a forward torque (decision 45 returns a “no” result), RB controller 240 performs no active function and forwards torque value τ1 (which at this point is the torque signal τdesired from speed controller 251) as torque signal τref to reference current generator 256. RB controller 240 communicates a zero value for torque τext to external brake controller 245, so that external brake 259 is not applied to motor 210. Control of motor 210 to continue its rotation in the forward direction is then carried out in the conventional manner, as described above.
If decision 45 determines that torque signal τdesired is a braking torque (decision 45 returns a “yes”), RB controller 240 then accesses RB LUT 24r to obtain a desired braking torque value τ2 in process 46. In this embodiment in which RB LUT 24r store braking torques for each motor speed over the operating range, process 46 involves the access of one or more memory locations of RB LUT 24r that are indicated by the rotor speed estimate {circumflex over (ω)}[n] from estimator function 215 for the current sample period n. The particular manner in which RB LUT 24r is accessed will depend on the architecture of that memory resource, and may involve the translation of the current rotor speed estimate {circumflex over (ω)}[n] into a memory address, or may apply all or part that estimate to RB LUT 24r if realized as a content-addressable memory.
The braking torque data retrieved from RB LUT 24r in process 46 may include one or both of the minimum and maximum braking torques (i.e., the points on curves 40min, 40max of
According to this embodiment, it is contemplated that the braking torque values stored in RB LUT 24r will have been established at discrete rotor speeds over the operating range. As such, the current rotor speed estimate {circumflex over (ω)}[n] from estimator function 215 may not exactly match one of the rotor speeds for which braking torques are stored in RB LUT 24r, so the result of process 46 may be an estimate of the braking torques based on one or more retrieved braking torque values, for example that of a rotor speed closest to the current rotor speed estimate {circumflex over (ω)}[n]. Alternatively, process 46 may retrieve the braking torques for the next higher and next lower rotor speeds relative to the rotor speed estimate {circumflex over (ω)}[n], and performing a linear interpolation between the two corresponding retrieved braking torques to arrive at the appropriate limits for the current rotor speed. It is contemplated that these and other variations on the manner in which RB LUT 24r is accessed to obtain the regenerative braking torque limits and optimum operating point can readily be implemented by those skilled in the art having reference to this specification.
In decision 47, RB controller 240 determines whether the absolute value of the desired braking torque (τ1) is greater than the absolute value of the regenerative braking torque (τ2) corresponding to the maximum charging current determined by the access of RB LUT 24r in process 46. If so (decision 47 is “yes”), then the regenerative braking algorithm proceeds to decision 49, in which RB controller 240 determines whether current rotor speed estimate {circumflex over (ω)}[n] is above some minimum rotor speed ωrb,min for which regenerative braking is to be applied. As the braking operation is carried out over multiple sample periods, the application of a braking torque selected to obtain energy recovery through regenerative braking would asymptotically reduce the rotor speed toward its desired value, but never precisely reach that desired speed because typically the maximum stopping torque would never be applied in lieu of a lesser torque that would provide some energy recovery, even if minimal. Accordingly, it is efficient to effectively disable regenerative braking as rotor speeds become very slow, particularly considering that little energy would be recovered at these speeds even if enabled. Decision 49 thus ensures that regenerative braking is considered if the current rotor speed estimate {circumflex over (ω)}[n] is above some minimum rotor speed ωrb,min, as may be selected by the system designer or integrator.
If the current rotor speed estimate {circumflex over (ω)}[n] indicates that regenerative braking is to be enabled (decision 49 is “yes”), decision 51 is then performed by RB controller 240 to determine whether an external brake is available. This determination may simply be hardwired if external brake 259 is not installed in system 250; alternatively, decision 51 may determine whether such an installed external brake 259 has been selectively enabled for the current mode of operation of motor 210. If external brake 259 is available and enabled (decision 51 is “yes”), then RB controller 240 can derive an external torque τext to ensure or optimize regenerative braking, while using external brake 259 to apply the rest of the desired braking force. This operation is performed by RB controller 240 in process 50, by forwarding a value of torque signal τref corresponding to torque value τ2 to reference current generator 256, according to which the control loop will generate the corresponding multiphase control signals to effect that electromagnetic braking at motor 210. In process 52, RB controller 240 forwards a value of external torque signal τext to external brake controller 245 corresponding to the difference (τ1−τ2) between the desired braking torque τdesired and the applied electromagnetic torque τem. External brake controller 245 in turn will control external brake 259 in response to external torque signal τext to apply the remainder of the braking force.
As mentioned above, RB controller 240 according to this embodiment may operate in the absence of an external brake system (i.e., decision 51 returns a “no” result). In this case, RB controller 240 executes decision 53 to determine whether it is acceptable to compromise braking distance in order to maximize regenerative braking. It is contemplated that this determination will typically be performed in response to an external signal, for example as may be generated by logic within processor unit 22 in response to the motor environment, other user inputs, the rapidity with which braking has been applied such as in the case of an emergency stop, and the like. If so (decision 53 is “yes”), then RB controller 240 will execute process 50 to forward a value of torque signal τref corresponding to torque value τ2 to reference current generator 256, in response to which the control loop will generate the corresponding multiphase control signals to motor 210 for the next sample period n+1 to effect that electromagnetic braking. Of course, since no external brake 259 is available in this case, a longer stopping time will be experienced that would have occurred without regenerative braking according to this embodiment, but at a benefit of additional recovered energy.
If the current situation is such that braking cannot be compromised in favor of energy recovery (decision 53 is “no”), RB controller 240 will carry out process 48 to apply a torque signal τref corresponding to torque value τ1=τdesired as received from speed controller 251 in process 44. Because external brake 259 is not available, no torque signal τref will be generated in this instance of process 48.
If the absolute value of the desired braking torque (τ1) is not greater than the absolute value of the regenerative braking torque (τ2) corresponding to the maximum charging current, as indicated by decision 47 returning a “no” result, the regenerative braking algorithm will be effectively disabled, and in process 48 the reference torque τref is set to torque τ1 and the external braking torque τext for systems including external brake controller 245 is set to zero. Similarly, if the current rotor speed estimate {circumflex over (ω)}[n] is below the minimum rotor speed ωrb,min, as indicated by decision 49 returning a “no” result, process 48 is executed by RB controller to apply torque signal τref corresponding to torque value τ1=τdesired, and also perhaps a torque signal τext to external brake controller 245 to control the application of external brake 259 as indicated by the conventional braking algorithm in system 250.
Following this instance of the braking operation in the generation of multiphase braking control signals, and external braking if desired, this process of
According to these embodiments, regenerative braking may be carried out for a wide range of synchronous machine types, including such machines as IPMs for which the operating regime for regenerative braking cannot be reduced to closed-form expressions. These embodiments thus permit the use of extremely accurate models of the motor and power system involved, specifically so as to take into account parameters that may be specific to the make and model of particular motors. In addition, these embodiments can be operated with or without the assistance of external mechanical braking, while still maximizing the charging current during regenerative braking. In addition, it is contemplated that the storing and access of braking torques in a lookup table, as used in connection with these embodiments, will reduce the computational load of the regenerative braking controller and can thus maximize the performance of the motor control system, facilitating a corresponding increase in the frequency at which the control loop operates.
While one or more embodiments have been described in this specification, it is of course contemplated that modifications of, and alternatives to, these embodiments, such modifications and alternatives capable of obtaining one or more the advantages and benefits of this invention, will be apparent to those of ordinary skill in the art having reference to this specification and its drawings. It is contemplated that such modifications and alternatives are within the scope of this invention as subsequently claimed herein.
This application is a continuation of U.S. patent application Ser. No. 14/938,602, filed Nov. 11, 2015, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5915801 | Taga | Jun 1999 | A |
8567547 | Kulatunga | Oct 2013 | B2 |
9026296 | Johri et al. | May 2015 | B1 |
9548686 | Magee | Jan 2017 | B2 |
9692336 | Magee et al. | Jun 2017 | B2 |
9783063 | Murthy et al. | Oct 2017 | B2 |
20020024306 | Imai | Feb 2002 | A1 |
20090051304 | Muta | Feb 2009 | A1 |
20140210383 | Marcetic et al. | Jul 2014 | A1 |
20150084576 | Magee | Mar 2015 | A1 |
20150232097 | Luther et al. | Aug 2015 | A1 |
20150236632 | Marohl et al. | Aug 2015 | A1 |
20160294314 | Zambada et al. | Oct 2016 | A1 |
20180244157 | Hirakawa et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
101024397 | Aug 2007 | CN |
102166961 | Aug 2011 | CN |
Entry |
---|
Chinese Office Action for Chinese Application No. 2016110029734 dated Nov. 30, 2020. |
Number | Date | Country | |
---|---|---|---|
20210309112 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14938602 | Nov 2015 | US |
Child | 17352436 | US |