This disclosure relates generally to database storage and, in particular, to the reformatting of an on-disk page due to a rollover or a change in the bit size of an encoded value identifier in an in-memory array.
Database sizes supported by commercially available database management systems (DBMS) continue to grow as the availability and cost per unit storage of disk-based storage and system memory increases. In general, a database can feature on-disk storage of data, in which data records are stored in one or more tables or other database structures on storage media (e.g. hard disks, optical storage, solid state storage, or the like) and read into main system memory as needed to respond to queries or other database operations. Alternatively, a database can feature in-memory storage of data, in which data records are stored in main system memory. As costs of main system memory continue to decrease, the feasibility of significant use of in-memory features increases. However, data capacity requirements of database systems also continue to increase. As such, hybrid approaches that involve features of both in-memory and on-disk systems are also advantageous.
Methods and apparatus, including computer program products, are provided for reformatting a page due to a rollover.
In one aspect, an in-memory array holding a column of data is maintained. One or more pages are also maintained. Each of the one or more pages has one or more rows for storing the column of data. The column of data in the in-memory array is monitored for a change. A rollover is performed on at least one of the one or more pages based on the change. The rollover reformats the at least one page by rewriting metadata associated with the at least one page.
The above methods, apparatus, and computer program products may, in some implementations, further include one or more of the following features.
The change can be an increase in a number of bits in a plurality of values in the column of data.
The rollover can be performed only on pages that have not materialized. A page can be materialized when a plurality of values in the column of data is copied from the in-memory array to the page.
Whether the rollover requires one or more additional pages to accommodate the reformatting can be determined. The one or more additional pages can be allocated before the rollover is performed.
The performing the rollover can include creating a new set of pages, formatting the new set of pages based on the rollover, materializing data from the in-memory array to the new set of pages, linking a last non-rolled over page to the new set of pages, and deleting the at least one page.
The at least one page can be loaded to the in-memory array during a system restart.
The loading can include adding a new column to the in-memory array. A plurality of values in the new column can be populated with at least one of a null value and a default value.
The loading can also determine whether the column in the in-memory array has been deleted. Data may not be copied from the at least one page based on the determining.
Non-transitory computer program products (i.e., physically embodied computer program products) are also described that store instructions, which when executed by one or more data processors of one or more computing systems, causes at least one data processor to perform operations herein. Similarly, computer systems are also described that may include one or more data processors and memory coupled to the one or more data processors. The memory may temporarily or permanently store instructions that cause at least one processor to perform one or more of the operations described herein. In addition, methods can be implemented by one or more data processors either within a single computing system or distributed among two or more computing systems. Such computing systems can be connected and can exchange data and/or commands or other instructions or the like via one or more connections, including but not limited to a connection over a network (e.g. the Internet, a wireless wide area network, a local area network, a wide area network, a wired network, or the like), via a direct connection between one or more of the multiple computing systems, etc.
The subject matter described herein provides many technical advantages. For example, in some implementations, when the bit size of a value identifier changes (e.g., increases in size), then the corresponding representation of the value identifier in an in-memory array and on one or more pages can also change. This change can, for example, reformat the pages. In some implementations, the reformatting process can be limited to unmaterialized pages. Excluding materialized pages from this process can prevent the rewriting of materialized data already persisted to disk. Other implementations of the instant subject matter provide processes for reloading a system from persisted data. These processes can account for system irregularities including, for example, any mismatch in column data between the in-memory array and a materialized page.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
The accompanying drawings, which are incorporated herein and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the subject matter disclosed herein. In the drawings,
Like reference symbols in the various drawings indicate like elements.
The current subject matter includes a number of aspects that can be applied individually or in combinations of one or more such aspects to support a unified database table approach that integrates the performance advantages of in-memory database approaches with the reduced storage costs of on-disk database approaches. The current subject matter can be implemented in database systems using in-memory OLAP, for example including databases sized at several terabytes (or more), tables with billions (or more) of rows, and the like; systems using in-memory OLTP (e.g. enterprise resource planning or ERP system or the like, for example in databases sized at several terabytes (or more) with high transactional volumes; and systems using on-disk OLAP (e.g. “big data,” analytics servers for advanced analytics, data warehousing, business intelligence environments, or the like), for example databases sized at several petabytes or even more, tables with up to trillions of rows, and the like.
Further, the current subject matter is related and is directed to many aspects as described herein and, in addition, in the following patent application filed concurrently herewith on Nov. 25, 2014 entitled: “In-Memory Database System Providing Lockless Read and Write Operations for OLAP and OLTP Transactions” by inventors Anil Kumar Goel, Ivan Schreter, Juchang Lee, Mihnea Andrei (attorney docket number 54874-063F01US/141088US01), the contents of which are hereby fully incorporated by reference.
The current subject matter can be implemented as a core software platform of an enterprise resource planning (ERP) system, other business software architecture, or other data-intensive computing application or software architecture that runs on one or more processors that are under the control of a specific organization. This arrangement can be very effective for a large-scale organization that has very sophisticated in-house information technology (IT) staff and for whom a sizable capital investment in computing hardware and consulting services required to customize a commercially available business software solution to work with organization-specific business processes and functions is feasible.
A database management agent 160 or other comparable functionality can access a database management system 170 that stores and provides access to data (e.g. definitions of business scenarios, business processes, and one or more business configurations as well as data, metadata, master data, etc. relating to definitions of the business scenarios, business processes, and one or more business configurations, and/or concrete instances of data objects and/or business objects that are relevant to a specific instance of a business scenario or a business process, and the like. The database management system 170 can include at least one table 180 and additionally include parallelization features consistent with those described herein.
To achieve a best possible compression and also to support very large data tables, a main part of the table can be divided into one or more fragments.
Fragments 330 can advantageously be sufficiently large to gain maximum performance due to optimized compression of the fragment and high in-memory performance of aggregations and scans. Conversely, such fragments can be sufficiently small to load a largest column of any given fragment into memory and to sort the fragment in-memory. Fragments can also be sufficiently small to be able to coalesce two or more partially empty fragments into a smaller number of fragments. As an illustrative and non-limiting example of this aspect, a fragment can contain one billion rows with a maximum of 100 GB of data per column. Other fragment sizes are also within the scope of the current subject matter. A fragment can optionally include a chain of pages. In some implementations, a column can also include a chain of pages. Column data can be compressed, for example using a dictionary and/or any other compression method. Table fragments can be materialized in-memory in contiguous address spaces for maximum performance. All fragments of the database can be stored on-disk, and access to these fragments can be made based on an analysis of the data access requirement of a query.
Referring again to
Also as shown in
A single RowID space can be used across pages in a page chain. A RowID, which generally refers to a logical row in the database, can be used to refer to a logical row in an in-memory portion of the database and also to a physical row in an on-disk portion of the database. A row index typically refers to physical 0-based index of rows in the table. A 0-based index can be used to physically address rows in a contiguous array, where logical RowIDs represent logical order, not physical location of the rows. In some in-memory database systems, a physical identifier for a data record position can be referred to as a UDIV or DocID. Distinct from a logical RowID, the UDIV or DocID (or a comparable parameter) can indicate a physical position of a row (e.g. a data record), whereas the RowID indicates a logical position. To allow a partition of a table to have a single RowID and row index space consistent with implementations of the current subject matter, a RowID can be assigned a monotonically increasing ID for newly-inserted records and for new versions of updated records across fragments. In other words, updating a record will change its RowID, for example, because an update is effectively a deletion of an old record (having a RowID) and insertion of a new record (having a new RowID). Using this approach, a delta store of a table can be sorted by RowID, which can be used for optimizations of access paths. Separate physical table entities can be stored per partition, and these separate physical table entities can be joined on a query level into a logical table.
When an optimized compression is performed during a columnar merge operation to add changes recorded in the delta store to the main store, the rows in the table are generally re-sorted. In other words, the rows after a merge operation are typically no longer ordered by their physical row ID. Therefore, stable row identifier can be used consistent with one or more implementations of the current subject matter. The stable row identifiers can optionally be a logical RowID. Use of a stable, logical (as opposed to physical) RowID can allow rows to be addressed in REDO/UNDO entries in a write-ahead log and transaction undo log. Additionally, cursors that are stable across merges without holding references to the old main version of the database can be facilitated in this manner. To enable these features, a mapping of an in-memory logical RowID to a physical row index and vice versa can be stored. In some implementations of the current subject matter, a RowID column can be added to each table. The RowID column can also be amenable to being compressed in some implementations of the current subject matter.
A RowID index 506 can serve as a search structure to allow a page 504 to be found based on a given interval of RowID values. The search time can be on the order of log n, where n is very small. The RowID index can provide fast access to data via RowID values. For optimization, “new” pages can have a 1:1 association between RowID and row index, so that simple math (no lookup) operations are possible. Only pages that are reorganized by a merge process need a RowID index in at least some implementations of the current subject matter.
Functional block diagram 700 also illustrates a read operation 720. Generally, read operations can have access to all fragments (i.e., active fragment 712 and closed fragments 716). Read operations can be optimized by loading only the fragments that contain data from a particular query. Fragments that do not contain such data can be excluded. In order to make this decision, container-level metadata (e.g., a minimum value and/or a maximum value) can be stored for each fragment. This metadata can be compared to the query to determine whether a fragment contains the requested data.
Reading and writing individual pages (or blocks of rows on a given page), however, can be problematic when some of the data is not in the memory array 805. In an in-memory database system, such as HANA, the in-memory array can be persisted to disk in a serial manner using a series of pages. Because this data is serially written to disk by breaking the data up across one or more pages, there may be no correlation between the data and the page that it is on. As such, random access to a particular data value or ValueID may not be supported. If, for example, only a specific ValueID is needed during a read or write operation, the entire sequence of pages may be loaded into the in-memory array which can be time consuming.
In order to overcome this deficiency, implementations of the current subject matter mirror the memory array 805 into a separate page based layout, such as pages 810A, 810B, and 810C, when persisting the memory array to disk. Using pages 810A, 810B, and 810C allows system 800 to take advantage of the disk optimized features associated with a disk/page based system. Pages 810A, 810B, and 810C support a lookup mechanism that can track the location of pages in memory. This lookup mechanism can be helpful because pages 810A, 810B, and 810C may not be sequentially stored in memory. In some implementations, this lookup mechanism can use a hash table that correlates page numbers and the contents of each page to memory addresses. Because individual pages can be easily located via this lookup mechanism, system 800 can load individual pages or blocks of rows on individual pages into the memory array 805. This capability can be useful during a system restore process. If, for example, a specific row of data or a subset of rows needs to be restored to the memory array 805 after the system 800 shuts down, this subset of rows can be copied and loaded from at least one of pages 810A, 810B, and 810C. Unlike an in-memory database system which may require all of the rows on pages 810A, 810B, and 810C to be loaded to the memory array 805, implementations of the instant subject matter support random access of data. As such, only the desired subset of rows may be loaded into the memory array 805. Mirroring the memory array 805 into pages 810A, 810B, and 810C paginates the memory array in a manner that supports random access of individual pages and individual rows on pages without requiring the system 800 to serialize all of the data when loading the data back to the memory array.
The contents of column data blocks 915 can be similar to the contents of memory array 805. As described above with respect to dictionary 600, a dictionary can assign a unique ValueID to each dictionary entry. This unique ValueID is typically a numeric value represented by a string of bits. The number of bits used to represent the ValueID (i.e., the N-bit value ID) can depend on the number of unique values in the dictionary. Like dictionary 600, the data stored in memory array 805 can also include N-bit value IDs. When the data values in memory array 805 are copied to pages 810A, 810B, and 810C, the data can be copied directly using its native N-bit encoded values. By keeping these data values in their native N-bit form at both the memory array 805 and the pages 810A, 810B, and 810C, no additional processing or translation is required to convert these data values between different formats (e.g., expanding and compressing the data values to/from a 32-bit integer format). This configuration can allow system 800 to reduce or minimize the amount of time associated with the copying process.
A bit copy mechanism can be used to copy data from memory array 805 to pages 810A, 810B, and 810C. Memory copies generally start at byte boundaries. During these operations, copying may begin at a source byte and end at a destination byte. Sometimes, however, the data to be copied may be located within the middle of a byte or span multiple bytes. For example, in the implementation of
A dedicated thread can copy the data values from memory array 805 to one or more of pages 810A, 810B, and 810C. Specifically, this thread can flush the data values from memory array 805 to one or more of pages 810A, 810B, and 810C using different materialization techniques. Data materialization refers to the process by which data values are copied from a memory layout (such as memory array 805) to a page layout (such as pages 810A, 810B, and 810C). When a transaction thread is trying to insert a data value into a table, the transaction thread can write this data value directly into memory array 805. In order to later copy this data value to one of pages 810A, 810B, and 810C, the transaction thread may need to reserve one or more rows on these pages to store this data value. Reserving a row on a page allows data values to be copied to the row at a later time and indicates that the row positions on the page are in use. Upon reserving a row on a page, the transaction thread may mark the page as pending materialization. Each page can have a corresponding control structure that is stored in system memory. This control structure can store information representative of the runtime transient status of the page. This status can include whether the page is ready for materialization and can be represented using a pending materialization bit. The value of the pending materialization bit can indicate whether the page needs to be materialized. Upon determining that a page is pending materialization, the flusher thread can materialize the data and clear the pending materialization bit. By delegating data materialization responsibilities to a dedicated flusher thread, the transaction thread does not have to write data values to both the memory array 805 and to one of pages 810A, 810B, and 810C. This configuration allows the transaction thread to perform its transaction quickly which, in turn, can lead to good system transaction throughput.
In some implementations, a rollover may be required if the number of bits used to represent the N-bit value IDs changes (e.g., increases or decreases). During runtime, various transactions threads can insert new data records into the memory array 805. Each new data record can include, for example, a new first name value. As the number of unique first name values increases, the number of bits used to represent each corresponding N-bit value ID can also increase.
For example, a 1-bit value ID (e.g., 0 or 1) can represent two unique first name values (e.g., David and John). During runtime, transaction threads can add two additional unique first name values (e.g., Eric and Nancy), for example. In order to accommodate the increased number of first name values, additional bits may be needed to uniquely encode each N-bit value ID. In this example, a 2-bit value ID (i.e., 00, 01, 10, or 11) can uniquely represent all four first names. Accordingly, the number of bits used to encode the N-bit value ID can increase from 1 bit to 2 bits as the number of first name values grows.
If the number of bits in a ValueID changes due to a rollover, then the encoded values in the memory array and pages can also change. In the implementation of
The core software platform 120 can propagate the increase in ValueID bit size in column 1 to the mirrored pages. Generally, data that has been materialized to a page is guaranteed to remain unchanged. As such, a rollover can only affect pages that have not been materialized (i.e., pages that are still pending materialization). If, for example, pages 1030B and 1035B have already been materialized, then these pages cannot be affected by the rollover. As illustrated in
In some implementations, the rollover of a page can affect already materialized pages.
In order to anticipate this need, the core software platform 120 can be configured to determine the impact of a rollover before it begins reformatting pages. For example, before the core software platform 120 reformats pages 1115, 1120, and 1125, it can first determine whether any additional memory resources (e.g., pages) are needed to accommodate the rollover. The core software platform 120 can make this determination by calculating, for example, the number of rows that may spillover onto a succeeding page, the number of rows on the succeeding page, and whether additional pages are needed to accommodate the spillover rows. Once these additional memory resources are determined and allocated, the core software platform 120 can then reformat pages 1115, 1120, and 1125.
In the implementation of
In
After pages 1117, 1130, 1135, and 1140 are formatted, a flusher thread can materialize data from the memory array 1105 to these pages. The flusher thread can use a native N-bit copy mechanism, as described above. In implementations where memory array 1105 does not exist or is otherwise unavailable, the core software platform 120 or a flusher thread can copy the data from the old pages 1115, 1120, and 1125 to the new pages 1117, 1130, 1135, and 1140. This copy process can include a format conversion for any columns having a new format or encoding. For example, if the ValueIDs in column 1 change from a 2-bit encoding in the old pages 1115, 1120, and 1125 to a 3-bit encoding in the new pages 1117, 1130, 1135, and 1140, then the copy process can append an extra bit to the ValueIDs in the new pages. A native N-bit copy mechanism can be used when there is no change in the number of bits in the ValueIDs.
After data is materialized to the new pages 1117, 1130, 1135, and 1140, the core software platform 120 can sever the link between the last non-rolled over page (i.e., page 1110) and original page 1115, as represented by the “X” over the arrow connecting these pages. In its place, the core software platform 120 can create a new link between the last non-rolled over page (i.e., page 1110) and reformatted page 1117, as represented by the dashed arrow connecting these pages. The core software platform 120 can change these links by redirecting a pointer on page 1110 to point to page 1117 instead of page 1115, for example. Once this new link is established, the core software platform 120 can discard pages 1115, 1120, and 1125.
In some implementations, the data on materialized pages can be used to reload or restore the data in the memory array. Referring to
During a system reload, the core software platform 120 can compare the column IDs in the column information fields 1220 to the columns in memory array 1205. In doing so, the core software platform 120 can determine that column information fields 1220 can be associated with columns A and B. This determination can be made based on the presence of a column identifier in each column information field 1220. Since memory array 1205 has matching columns A and B, the core software platform 120 can copy the encoded ValueIDs from column data blocks 1230 into the memory array 1205 to reload the contents of these columns.
The above comparison can also yield a mismatched column, however. As described above, memory array 1205 can include a third column C that is absent from materialized page 1210. Because page 1210 lacks a column data block 1230 for column C (and, consequently, lacks any ValueIDs for this column), the core software platform 120 can populate memory array 1205 with a null value or a default value for this column.
A similar approach can be used to account for deleted columns.
During a system reload, the core software platform 120 can compare the column identifiers in column information fields 1320 to the columns in memory array 1305. In doing so, system 1300 can determine that page 1310 includes column information fields 1320 for columns A, B, and C. Because memory array 1305 also includes columns A and B, the core software platform 120 can copy the ValueIDs for these columns from column data blocks 1330 to memory array 1305 in order to restore these columns. However, because column C is deleted from memory array 1305, the core software platform 120 can skip over the corresponding column data block 1330 to prevent the copying of any ValueIDs for this column to memory array 1305.
At 1420, one or more pages can be maintained. In the implementation of
At 1430, the column of data in the in-memory array can be monitored for a change. As described above with respect to
At 1440, a rollover can be performed on at least one of the pages based on this change. The rollover can reformat the page by rewriting its metadata. Doing so can reformat the page. In some implementations, this rollover process can be limited to unmaterialized pages.
One or more aspects or features of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof. These various aspects or features can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. The programmable system or computing system may include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
These computer programs, which can also be referred to as programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural language, an object-oriented programming language, a functional programming language, a logical programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid-state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.
To provide for interaction with a user, one or more aspects or features of the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) or a light emitting diode (LED) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user may be received in any form, including, but not limited to, acoustic, speech, or tactile input. Other possible input devices include, but are not limited to, touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.
In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it is used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.” In addition, use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.
The subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described above can be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed above. In addition, the logic flows depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5222235 | Hintz et al. | Jun 1993 | A |
5280612 | Lorie et al. | Jan 1994 | A |
5594898 | Dalal et al. | Jan 1997 | A |
5701480 | Raz | Dec 1997 | A |
5717919 | Kodavalla et al. | Feb 1998 | A |
5758145 | Bhargava et al. | May 1998 | A |
5794229 | French et al. | Aug 1998 | A |
5870758 | Bamford et al. | Feb 1999 | A |
5933833 | Musashi | Aug 1999 | A |
6070165 | Whitmore | May 2000 | A |
6275830 | Muthukkaruppan et al. | Aug 2001 | B1 |
6282605 | Moore | Aug 2001 | B1 |
6397227 | Klein et al. | May 2002 | B1 |
6453313 | Klein et al. | Sep 2002 | B1 |
6490670 | Collins et al. | Dec 2002 | B1 |
6567407 | Mizukoshi | May 2003 | B1 |
6606617 | Bonner et al. | Aug 2003 | B1 |
6668263 | Cranston et al. | Dec 2003 | B1 |
6754653 | Bonner et al. | Jun 2004 | B2 |
6865577 | Sereda | Mar 2005 | B1 |
7698712 | Schreter | Apr 2010 | B2 |
7761434 | Surtani et al. | Jul 2010 | B2 |
8024296 | Gopinathan et al. | Sep 2011 | B1 |
8161024 | Renkes et al. | Apr 2012 | B2 |
8170981 | Tewksbary | May 2012 | B1 |
8224860 | Starkey | Jul 2012 | B2 |
8364648 | Sim-Tang | Jan 2013 | B1 |
8510344 | Briggs et al. | Aug 2013 | B1 |
8650583 | Schreter | Feb 2014 | B2 |
8732139 | Schreter | May 2014 | B2 |
8768891 | Schreter | Jul 2014 | B2 |
8868506 | Bhargava et al. | Oct 2014 | B1 |
9058268 | Ostiguy et al. | Jun 2015 | B1 |
9098522 | Lee et al. | Aug 2015 | B2 |
9141435 | Wein | Sep 2015 | B2 |
9262330 | Muthukumarasamy | Feb 2016 | B2 |
9268810 | Andrei et al. | Feb 2016 | B2 |
9275095 | Bhattacharjee et al. | Mar 2016 | B2 |
9275097 | DeLaFranier et al. | Mar 2016 | B2 |
9305046 | Bhattacharjee et al. | Apr 2016 | B2 |
9372743 | Sethi et al. | Jun 2016 | B1 |
9430274 | Zhang | Aug 2016 | B2 |
9489409 | Sharique | Nov 2016 | B2 |
9645844 | Zhang | May 2017 | B2 |
9665609 | Andrei et al. | May 2017 | B2 |
9811577 | Martin et al. | Nov 2017 | B2 |
20010051944 | Lim et al. | Dec 2001 | A1 |
20020107837 | Osborne et al. | Aug 2002 | A1 |
20020156798 | Larue et al. | Oct 2002 | A1 |
20030028551 | Sutherland | Feb 2003 | A1 |
20030065652 | Spacey | Apr 2003 | A1 |
20030204534 | Hopeman et al. | Oct 2003 | A1 |
20030217075 | Nakano et al. | Nov 2003 | A1 |
20040034616 | Witkowski et al. | Feb 2004 | A1 |
20040054644 | Ganesh et al. | Mar 2004 | A1 |
20040064601 | Swanberg | Apr 2004 | A1 |
20040249838 | Hinshaw et al. | Dec 2004 | A1 |
20050027692 | Shyam et al. | Feb 2005 | A1 |
20050097266 | Factor et al. | May 2005 | A1 |
20050234868 | Terek | Oct 2005 | A1 |
20060004833 | Trivedi et al. | Jan 2006 | A1 |
20060005191 | Boehm | Jan 2006 | A1 |
20060036655 | Lastovica | Feb 2006 | A1 |
20060206489 | Finnie et al. | Sep 2006 | A1 |
20070192360 | Prahlad et al. | Aug 2007 | A1 |
20080046444 | Fachan et al. | Feb 2008 | A1 |
20080183958 | Cheriton | Jul 2008 | A1 |
20080247729 | Park | Oct 2008 | A1 |
20090064160 | Larson et al. | Mar 2009 | A1 |
20090080523 | McDowell | Mar 2009 | A1 |
20090094236 | Renkes et al. | Apr 2009 | A1 |
20090254532 | Yang et al. | Oct 2009 | A1 |
20090287703 | Furuya | Nov 2009 | A1 |
20090287737 | Hammerly | Nov 2009 | A1 |
20100082545 | Bhattacharjee et al. | Apr 2010 | A1 |
20100088309 | Petculescu et al. | Apr 2010 | A1 |
20100241812 | Bekoou | Sep 2010 | A1 |
20100281005 | Carlin et al. | Nov 2010 | A1 |
20100287143 | Di Carlo et al. | Nov 2010 | A1 |
20110010330 | McCline et al. | Jan 2011 | A1 |
20110060726 | Idicula et al. | Mar 2011 | A1 |
20110087854 | Rushworth et al. | Apr 2011 | A1 |
20110145835 | Rodrigues et al. | Jun 2011 | A1 |
20110153566 | Larson et al. | Jun 2011 | A1 |
20110252000 | Diaconu et al. | Oct 2011 | A1 |
20110270809 | Dinkar et al. | Nov 2011 | A1 |
20110276744 | Sengupta et al. | Nov 2011 | A1 |
20110302143 | Lomet | Dec 2011 | A1 |
20120011106 | Reid et al. | Jan 2012 | A1 |
20120047126 | Branscome et al. | Feb 2012 | A1 |
20120102006 | Larson et al. | Apr 2012 | A1 |
20120137081 | Shea | May 2012 | A1 |
20120179877 | Shriraman et al. | Jul 2012 | A1 |
20120191696 | Renkes et al. | Jul 2012 | A1 |
20120221528 | Renkes et al. | Aug 2012 | A1 |
20120233438 | Bak | Sep 2012 | A1 |
20120265728 | Plattner et al. | Oct 2012 | A1 |
20120284228 | Ghosh et al. | Nov 2012 | A1 |
20130054936 | Davis | Feb 2013 | A1 |
20130091162 | Lewak | Apr 2013 | A1 |
20130097135 | Goldberg | Apr 2013 | A1 |
20130103655 | Fanghaenel et al. | Apr 2013 | A1 |
20130117247 | Schreter | May 2013 | A1 |
20130166566 | Lemke et al. | Jun 2013 | A1 |
20130346378 | Tsirogiannis et al. | Dec 2013 | A1 |
20140025651 | Schreter | Jan 2014 | A1 |
20140101093 | Lanphear et al. | Apr 2014 | A1 |
20140136571 | Bonvin et al. | May 2014 | A1 |
20140214334 | Plattner et al. | Jul 2014 | A1 |
20140222418 | Richtarsky et al. | Aug 2014 | A1 |
20140279930 | Gupta et al. | Sep 2014 | A1 |
20140279961 | Schreter et al. | Sep 2014 | A1 |
20150039573 | Bhattacharjee et al. | Feb 2015 | A1 |
20150089125 | Mukherjee et al. | Mar 2015 | A1 |
20150113026 | Sharique | Apr 2015 | A1 |
20150142819 | Florendo et al. | May 2015 | A1 |
20150193264 | Hutton et al. | Jul 2015 | A1 |
20150261805 | Lee et al. | Sep 2015 | A1 |
20150278281 | Zhang | Oct 2015 | A1 |
20160103860 | Bhattacharjee et al. | Apr 2016 | A1 |
20160125022 | Rider et al. | May 2016 | A1 |
20160147445 | Schreter et al. | May 2016 | A1 |
20160147447 | Blanco et al. | May 2016 | A1 |
20160147448 | Schreter et al. | May 2016 | A1 |
20160147449 | Andrei et al. | May 2016 | A1 |
20160147457 | Legler et al. | May 2016 | A1 |
20160147459 | Wein et al. | May 2016 | A1 |
20160147617 | Lee et al. | May 2016 | A1 |
20160147618 | Lee et al. | May 2016 | A1 |
20160147750 | Blanco et al. | May 2016 | A1 |
20160147776 | Florendo et al. | May 2016 | A1 |
20160147778 | Schreter et al. | May 2016 | A1 |
20160147786 | Andrei et al. | May 2016 | A1 |
20160147801 | Wein et al. | May 2016 | A1 |
20160147804 | Wein et al. | May 2016 | A1 |
20160147806 | Blanco et al. | May 2016 | A1 |
20160147808 | Schreter et al. | May 2016 | A1 |
20160147809 | Schreter et al. | May 2016 | A1 |
20160147811 | Eluri et al. | May 2016 | A1 |
20160147812 | Andrei et al. | May 2016 | A1 |
20160147813 | Lee | May 2016 | A1 |
20160147814 | Goel et al. | May 2016 | A1 |
20160147819 | Schreter et al. | May 2016 | A1 |
20160147820 | Schreter | May 2016 | A1 |
20160147821 | Schreter et al. | May 2016 | A1 |
20160147834 | Lee et al. | May 2016 | A1 |
20160147858 | Lee et al. | May 2016 | A1 |
20160147859 | Lee et al. | May 2016 | A1 |
20160147861 | Schreter et al. | May 2016 | A1 |
20160147862 | Schreter et al. | May 2016 | A1 |
20160147904 | Wein et al. | May 2016 | A1 |
20160147906 | Schreter et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2778961 | Sep 2014 | EP |
WO-0129690 | Apr 2001 | WO |
Entry |
---|
“NBit Dictionary Compression,” Sybase, May 23, 2013. Web. Mar. 15, 2017 <http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc1777.1600/doc/html/wil1345808527844.html>. |
“HANA database lectures—Outline Part 1 Motivation—Why main memory processing.” Mar. 2014 (Mar. 2014). XP055197666. Web. Jun. 23, 2015. 81 pages. URL: <http://cse.yeditepe.edu.tr/-odemir/spring2014/cse415/HanaDatabase.pdf>. |
“HANA Persistence: Shadow Pages.” Jun. 2013. Yeditepe Üniversitesi Bilgisayar Mühendisliği Bölülmü. Web. Apr. 21, 2016. 32 pages. <http://cse.yeditepe.edu.tr/˜odemir/spring2014/cse415/Persistency.pptx>. |
“Optimistic concurrency control.” Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc., Jul. 19, 2014. Web. Mar. 3, 2016. pp. 1-3. |
Brown, E. et al. “Fast Incremental Indexing for Full-Text Information Retrieval.” VLDB '94 Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 1994. pp. 1-11. |
Jens Krueger et al. “Main Memory Databases for Enterprise Applications.” Industrial Engineering and Engineering Management (IE&EM), 2011 IEEE 18th International Conference on, IEEE, Sep. 3, 2011 (Sep. 3, 2011), pp. 547-557, XP032056073. |
Lemke, Christian, et al. “Speeding Up Queries in Column Stores.” Data Warehousing and Knowledge Discovery Lecture Notes in Computer Science (2010): 117-29. Web. Apr. 21, 2016. |
Lu, Andy. “SAP HANA Concurrency Control.” SAP Community Network. Oct. 28, 2014. Web. Apr. 22, 2016. 4 pages. <http://scn.sap.com/docs/DOC-57101>. |
Mumy, Mark. “SAP Sybase IQ 16.0 Hardware Sizing Guide,” SAP Community Network. May 12, 2013. Web. Apr. 21, 2016. 25 pages. <http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/c0836b4f-429d-3010-a686-c35c73674180?QuickLink=index&overridelayout=true&58385785468058>. |
Ailamaki, et al., “Weaving Relations for Cache Performance,” Proceedings of the the Twenty-Seventh International Conference on Very Large Data Bases, Sep. 11-14, Orlando, FL, Jan. 1, 2001. |
Hector Garcia-Molina, et al., “Database Systems The Second Complete Book Second Edition—Chapter 13—Secondary Storage Management,” Database Systems the Complete Book, second edition, Jun. 15, 2008. |
Number | Date | Country | |
---|---|---|---|
20160147801 A1 | May 2016 | US |