Reference is made to commonly-assigned U.S. patent application Ser. No. 12/025,807 (now U.S. Publication No. 2009/0195837), filed Feb. 5, 2008, entitled A METHOD FOR IMAGING FLEXOGRAPHIC PLATES, by Dardikam et al., the disclosure of which is incorporated herein.
The present invention relates to flexography printing and more specifically to methods and apparatus for designing a sleeve for optimal flexographic plate imaging.
Flexographic printing plates are relatively expensive compared to other types of plates such as those used in offset printing; therefore, flexographic printers will only use the appropriate amount of plate material necessary to transfer a graphic image. The graphic image is subsequently transferred from the flexographic plate to a substrate such as film, paper, or board, etc. Printers reduce the cost of printing when using flexographic plate material, by not using flexographic material where no graphic elements exist.
Imaging on plates mounted on sleeves requires two major functions:
During the image wrapping a staggered layout 104 comprising a step and repeat element or image element 124 is positioned in various locations across staggered layout 104. The staggered layout 104 is converted into an imageable rectangle 108 as is shown in
The imaged data comes in a 1-bit TIFF format 112 from a workflow system. It is cropped and sections are rearranged producing “one-up” artwork 120 after wrapping, to output a rectangular image area that has a height equal to the repeat length 116 (circumference) of the media sleeve.
A sleeve can be supplied either as a continuous sleeve, without a seam, in this case imaging on a single and continuous media which has already been mounted on a sleeve. Alternatively, the sleeve can be supplied with a seam, or discontinuous, such that one or more pieces of flat media are mounted on a sleeve prior to imaging. The media can be mounted as a single piece 204, as shown in
A sleeve design software application is useful to design a seam position for a discontinuous sleeve. The seam position defines the shape of the media, which will be cut on a cutting table. The application will also allow a “wrapped view” and a “stitch view” to display the image in various ways to determine the best seam position.
The software application will create:
Packaging jobs may differ in seam paths, depending upon the dimensions of the one-up artwork and the stagger in the step-and-repeat pattern. Separations within a job may have different seam paths, depending on the image content of the separation. Seam path can be a straight line or, as shown
When mounting media to accommodate staggered step and repeat, the seams need to be positioned so that they do not run through an area that will be imaged. One way to do this is to have the seams run along the staggers of the stepped and repeated image, as there is usually no content in the staggered area that would be affected by a seam running through it.
The separations within one job do not all have to be mounted in the same manner. In a six-separation job, for example, it may make sense to use continuous media for two separations, single piece media for three separations, and lanes for one separation.
Decisions about media mounting do not need to be made during file preparation. The operator can make decisions on a separation by separation basis just prior to mounting, based on various factors. See below.
In the case where a single piece of media is the optimal solution, such a configuration is adequate for packaging jobs characterized by imaging content throughout the entire plate. In those configurations it will be still there will be only one seam to describe, but a decision will be required whether the seam will be in a form of castle top 704 or staircase 708 as is depicted in
A suitable software application may allow the user a full control over the cutting line. The user can move the line while having a full view of the data of the file. Additionally the user may be able to define the path of the line according to visual view on screen.
Briefly, according to one aspect of the present invention a method for seam design for a full layout of a packaging printing job the method is adapted to create minimal plate waste includes the following steps, providing a wrapped layout comprised of plurality of step and repeat element elements, and analyzing the wrapped layout to produce seam cut line design for the packaging printing job wherein the cut line is produced by searching for an non-imaged areas inside the images and the borders of the step and repeat elements.
The invention and its objects and advantages will become more apparent in the detailed description of the preferred embodiment presented below.
The present invention describes methods of selecting scenarios for reducing flexographic plate waste. This invention helps reduce material waste in the process of flexographic plate production.
The present invention is adapted to improve deficiencies in the current workflow process. More specifically it suggests an automatic method to create an optimal cut line for the flexographic plate. In one embodiment of the invention the optimal cut line is created automatically, taking into consideration the data content of the various job separations. The cut line design may take into consideration the step and repeat element structure, thus saving cut line calculation processes. Creation of similar cut lines across different separations is preferable. One of the parameters which are considered during a cut line creation is to design similar cut lines across different separations of a printing job. The parameter is also taken into consideration as well during cut line creation.
Layout information such as step and repeat location and gap 804, the position of images in the full layout is received from the workflow system to allow analysis and planning of the cut line design. The cut line 808 (shown in
In another embodiment of the invention the above parameters are used to apply the cut design created for two step and repeat element 904 and depicted in
An important factor in looking for an optimal cut line 1204 is to search for non-imaged data areas inside the step and repeat element 904 and not just at its boarder. The cut line 1204 should be created at a minimal accumulated cut line length wherein each straight segment in the cut line should maintain a minimal length as well.
Once the cut line has been established, cutting information is used to cut an imaging plate. The cut plate is mounted on a cylinder of an imaging device and the wrapped layout is imaged on the imaging plate.
Similarities between separations will be automatically detected and the user will be informed to allow a better and optimized cut file planning. This will be performed automatically by examining the data in each separation and splitting to common groups. The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Number | Date | Country |
---|---|---|
1 292 120 | Mar 2003 | EP |
1 543 966 | Jun 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20110261414 A1 | Oct 2011 | US |