This relates generally to digital assistants and, more specifically, to optimizing dialogue policy decisions for digital assistants using implicit feedback.
Intelligent automated assistants (or digital assistants) can provide a beneficial interface between human users and electronic devices. Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can provide an utterance containing a user request to a digital assistant operating on an electronic device. The digital assistant can interpret the user's intent from the utterance and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more services of the electronic device, and a relevant output responsive to the user request can be returned to the user.
The specific tasks or actions that a digital assistant decides to perform in response to a user's natural language input can be based on the policy models implemented by the digital assistant. In particular, the policy models can apply a policy that determines the appropriate policy action to take given the current dialogue state (also referred to as the belief state). The policy action can include a set of one or more tasks or actions. In some conventional digital assistant systems, the policy that is applied in its policy models can include a set of hand-crafted rules. However, developing such a policy can be time-consuming and inefficient. Moreover, such a policy does not scale well as its size and complexity increases to cover different dialogue scenarios and user applications.
Systems and processes for optimizing dialogue policy decisions for digital assistants using implicit feedback are provided. In an example process, a user utterance is received. Based on a text representation of the user utterance, one or more user intents corresponding to the user utterance are determined. A belief state for the one or more user intents is determined. The belief state corresponds to a plurality of candidate policy actions. Based on the belief state and a policy model, a policy action is selected from the plurality of candidate policy actions. The policy action is performed. Performing the policy action includes outputting results of the policy action for presentation. A success score for the policy action is determined based on whether one of a plurality of types of user input is detected after performing the policy action. The plurality of types of user input are each a type of user input other than a response to a structured device query. A set of parameter values of the policy model is modified using the determined success score.
Determining a belief state for the one or more user intents can provide an internal representation of the one or more user intents that includes past and current observations as well as uncertainties for each of the user intents. The belief state can enable the policy action to be selected using a larger and more comprehensive knowledge base, which can improve the accuracy of the selection process. As a result, the operability of the electronic device can be enhanced by allowing for better interpretation of speech and other forms of natural language inputs. Specifically, the electronic device can be able to operate with greater accuracy and reliability when identifying and performing tasks in response to user requests.
Determining a success score for the policy action based on implicit user feedback (e.g., detecting one of a plurality of types of user input that are each other than a response to a structured device query) can enable the accuracy of the policy model to be evaluated objectively. Specifically, in contrast to explicit user feedback, implicit user feedback can be a more reliable and accurate indicia of whether the performed policy action satisfies the user's actual desired goal for providing the user utterance. Thus, using a success score that is determined based on implicit user feedback to update the policy model can result in the policy model being optimized more accurately, which enables the policy model to select policy actions that better reflect the user's desired goals for subsequently received user utterances. This can enhance the operability of the electronic device by allowing for better interpretation of speech and other forms of natural language inputs. Specifically, the electronic device can operate with greater accuracy and reliability when identifying and performing tasks in response to user requests.
Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer-program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
In the following description of examples, reference is made to the accompanying drawings in which are shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.
As discussed above, policy models of digital assistants can rely on hand-crafted rules that are time-consuming and inefficient to develop. Such policy models do not scale well and can result in policy decisions that are inconsistent and inaccurate. As described in greater detail below, unsupervised machine learning techniques can be applied to optimize the policy models implemented by digital assistants. Specifically, reinforcement learning techniques can be implemented where user feedback indicating the success or failure of a determined policy action is utilized to optimize the policy model. The user feedback can be used to optimize a reward function of the policy model such that for subsequent user utterances, the policy action that maximizes the cumulative reward would be more likely to coincide with the user's actual desired goal. In this way, an optimal policy can be developed for the policy models of the digital assistant.
In some implementations, explicit user feedback is used to optimize the policy model of the digital assistant. Explicit user feedback refers to feedback that expressly specifies whether the user is satisfied or dissatisfied with the determined policy action. For example, after a digital assistant selects and performs a policy action, the digital assistant can prompt the user regarding whether the performed policy action satisfied his/her desired goal. The response that the user provides to such a structured prompt would be explicit user feedback. However, in many cases, explicit user feedback can be unreliable and thus optimizing the policy model of a digital assistant using explicit user feedback can yield inaccurate results. This can be because certain users, when solicited to provide feedback, become unconsciously biased and provide overly positive or negative feedback. For example, some users may have unrealistic expectations of the digital assistant where even though the “correct” policy action was selected by the policy model, the users would still provide negative feedback. In other examples, users may be inclined to be accommodating or agreeable when solicited to provide feedback. In these examples, the users would provide positive feedback even though the performed policy action may not have satisfied their desired goal.
In accordance with some techniques described herein, dialogue policy decisions for digital assistants can be optimized using implicit feedback. Specifically, implicit user feedback (e.g., rather than explicit user feedback) can be used to optimize the policy model of a digital assistant. Implicit user feedback was found to yield more robust and accurate results compared to explicit feedback when used to optimize policy models. This was an unexpected result. In particular, implicit user feedback was found to be more objective, where the feedback more accurately reflected whether a policy action selected by the policy model coincided with the user's desired goal. One example of implicit user feedback includes detecting user interaction with a user interface of the digital assistant system within a predetermined duration after the selected policy action is performed. For example, within a predetermined duration after the selected policy action is performed, the user may press the “home” button on the device or provide user input that invokes the digital assistant. Such implicit user feedback can be interpreted to indicate that the user is not satisfied with the performed policy action. Another example of implicit user feedback includes detecting user input that causes a parameter that was set during the performance of the policy action to change. Specifically, if the performed policy action creates a calendar event at 5 pm, which includes setting the “start time” parameter of the calendar event to “5 pm,” detecting user input that causes the “start time” parameter to change from “5 pm” to “3 pm” can be implicit user feedback indicating that the user is not satisfied with the performed policy action. Such implicit user feedback can be used to optimize the policy models (e.g., using reinforcement learning).
In an example process for optimizing dialogue policy decisions for digital assistants using implicit feedback, a user utterance is received. Based on a text representation of the user utterance, one or more user intents corresponding to the user utterance are determined. A belief state for the one or more user intents is determined. The belief state corresponds to a plurality of candidate policy actions. Based on the belief state and a policy model, a policy action is selected from the plurality of candidate policy actions. The policy action is performed. Performing the policy action includes outputting results of the policy action for presentation. A success score for the policy action is determined based on whether one of a plurality of types of user input is detected after performing the policy action. The plurality of types of user input are each a type of user input other than a response to a structured device query. A set of parameter values of the policy model is modified using the determined success score.
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first input could be termed a second input, and, similarly, a second input could be termed a first input, without departing from the scope of the various described examples. The first input and the second input are both inputs and, in some cases, are separate and different inputs.
The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
1. System and Environment
Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user asks the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant answers, “You are in Central Park near the west gate.” The user also requests the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.
As shown in
In some examples, DA server 106 includes client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106. One or more processing modules 114 utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.
User device 104 can be any suitable electronic device. In some examples, user device is a portable multifunctional device (e.g., device 200, described below with reference to
Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoW), Wi-MAX, or any other suitable communication protocol.
Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.
In some examples, user device 104 communicates with DA server 106 via second user device 122. Second user device 122 is similar or identical to user device 104. For example, second user device 122 is similar to devices 200, 400, or 600 described below with reference to
In some examples, user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in
Although the digital assistant shown in
2. Electronic Devices
Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 202 includes one or more computer-readable storage mediums. The computer-readable storage mediums are, for example, tangible and non-transitory. Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 controls access to memory 202 by other components of device 200.
In some examples, a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) are stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or are divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108.
Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.
RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoW), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312,
I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308,
A quick press of the push button disengages a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) turns power to device 200 on or off. The user is able to customize a functionality of one or more of the buttons. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output correspond to user-interface objects.
Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.
Touch screen 212 uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.
A touch-sensitive display in some embodiments of touch screen 212 is analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 212 is as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 212 has, for example, a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 200 includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.
Device 200 also includes power system 262 for powering the various components. Power system 262 includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 200 also includes one or more optical sensors 264.
Device 200 optionally also includes one or more contact intensity sensors 265.
Device 200 also includes one or more proximity sensors 266.
Device 200 optionally also includes one or more tactile output generators 267.
Device 200 also includes one or more accelerometers 268.
In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 stores data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (
Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.
In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.
Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.
Text input module 234, which is, in some examples, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input).
GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 229, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 communicates with DA server 106 using RF circuitry 208.
User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.
In some examples, digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.
In some examples, the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also includes the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.
In some examples, the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.
A more detailed description of a digital assistant is described below with reference to
Applications 236 include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 236 that are stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 are used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.
In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 are used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that can be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 are used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 are used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions. \
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules can be combined or otherwise rearranged in various embodiments. For example, video player module can be combined with music player module into a single module (e.g., video and music player module 252,
In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.
In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.
In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.
Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is called the hit view, and the set of events that are recognized as proper inputs is determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.
In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.
In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.
A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which include sub-event delivery instructions).
Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.
In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.
In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 200 also includes one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 is used to navigate to any application 236 in a set of applications that is executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.
In one embodiment, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that can be implemented on, for example, portable multifunction device 200.
Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;
It should be noted that the icon labels illustrated in
Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, are physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.
Input mechanism 608 is a microphone, in some examples. Personal electronic device 600 includes, for example, various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are operatively connected to I/O section 614.
Memory 618 of personal electronic device 600 is a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described below. The computer-executable instructions, for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. Personal electronic device 600 is not limited to the components and configuration of
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, for example, displayed on the display screen of devices 200, 400, and/or 600 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
3. Digital Assistant System
Digital assistant system 700 includes memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.
In some examples, memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
In some examples, I/O interface 706 couples input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in
In some examples, the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
In some examples, memory 702, or the computer-readable storage media of memory 702, stores programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, stores instructions for performing the processes described below. One or more processors 704 execute these programs, modules, and instructions, and reads/writes from/to the data structures.
Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.
Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in
User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).
Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.
Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, speech synthesis processing module 740, belief tracker processing module 766, and policy decision processing module 770. Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, ASR systems 758, belief models 768, and policy models 772.
In some examples, using the processing modules, data, system, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.
In some examples, as shown in
STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems can process the speech input (e.g., user utterance) that is received through I/O processing module 728 to produce a recognition result. Each ASR system includes a front-end speech pre-processor. The front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input is processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result is passed to natural language processing module 732 for intent deduction. In some examples, STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input. In some examples, each candidate text representation is associated with a speech recognition confidence score. Based on the speech recognition confidence scores, STT processing module 730 ranks the candidate text representations and provides the n-best (e.g., n highest ranked) candidate text representation(s) to natural language processing module 732 for intent deduction, where n is a predetermined integer greater than zero. For example, in one example, only the highest ranked (n=1) candidate text representation is passed to natural language processing module 732 for intent deduction. In another example, the five highest ranked (n=5) candidate text representations are passed to natural language processing module 732 for intent deduction.
More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.
In some examples, STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary includes the word “tomato” that is associated with the candidate pronunciations of//and//. Further, vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.
In some examples, the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation//is ranked higher than//, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation//is associated with the United States, whereas the candidate pronunciation//is associated with Great Britain. Further, the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation//(associated with the United States) is ranked higher than the candidate pronunciation//(associated with Great Britain). In some examples, one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).
When a speech input is received, STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes//corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”
In some examples, STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes//corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.
Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or “token sequence(s)”) generated by STT processing module 730, and attempts to associate each of the candidate text representations with one or more “actionable intents” recognized by the digital assistant. In some examples, an “actionable intent” (or “user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, also dependents on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.
In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730. The contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.
In some examples, the natural language processing is based on, e.g., ontology 760. Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.
In some examples, ontology 760 is made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in
In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in
An actionable intent node, along with its linked concept nodes, is described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in
While
In some examples, ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.
In some examples, nodes associated with multiple related actionable intents are clustered under a “super domain” in ontology 760. For example, a “travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel includes “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. Other examples of “super-domain” includes “calendar,” “movies,” “music,” and “maps,” which can each include multiple actionable intent nodes (e.g., “search movie show times,” “search movie reviews,” “search calendar events,” or “create calendar event). The actionable intent nodes under the same super domain (e.g., the “travel” super domain) have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”
In some examples, each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node are the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to
Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730, and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase “triggers” or “activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes is selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.
User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.
It should be recognized that in some examples, natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks). In particular, the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanism are configured to determine intent confidence scores over a set of candidate actionable intents. Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores. In some examples, an ontology (e.g., ontology 760) is also used to select the one or more candidate actionable intents from the set of candidate actionable intents.
Other details of searching an ontology based on a token string are described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.
In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 generates a structured query to represent the identified actionable intent. In some examples, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain includes parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} is not specified in the structured query based on the information currently available. In some examples, natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 populates a {location} parameter in the structured query with GPS coordinates from the user device.
In some examples, natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730. Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).
Other details of inferring a user intent based on multiple candidate actionable intents determined from multiple candidate text representations of a speech input are described in U.S. Utility application Ser. No. 14/298,725 for “System and Method for Inferring User Intent From Speech Inputs,” filed Jun. 6, 2014, the entire disclosure of which is incorporated herein by reference.
Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks are provided in task flow models 754. In some examples, task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.
As described above, in order to complete a structured query, task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.
Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=Mar. 12, 2012, time=7 pm, party size=5}, task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.
In some examples, task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756. Service processing module 738 accesses the appropriate service model for a service and generate requests for the service in accordance with the protocols and APIs required by the service according to the service model.
For example, if a restaurant has enabled an online reservation service, the restaurant submits a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.
In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response is a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response is output as a speech output. In these examples, the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response is data content relevant to satisfying a user request in the speech input.
In examples where task flow processing module 736 receives multiple structured queries from natural language processing module 732, task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query. In some examples, the first structured query corresponds to the highest ranked actionable intent. In other examples, the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores. In some examples, if task flow processing module 736 encounters an error during processing of the first structured query (e.g., due to an inability to determine a necessary parameter), the task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent. The second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.
Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response is in the form of a text string. Speech synthesis processing module 740 converts the text string to an audible speech output. Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.
In some examples, instead of (or in addition to) using speech synthesis processing module 740, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.
Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.
Referring back to
In another example, natural language processing module 732 parses the candidate text representation “Reviews for Frozen” for a corresponding user utterance. In this example, the candidate domains determined for this candidate text representation can include the “search movies” domain, the “search restaurants” domain, and the “search music” domain. In addition, the candidate parse interpretations for this candidate text representation can include interpreting “Frozen” as a value for the “movie title” property, the “restaurant name” property, or the “album name” property for the respective candidate domains.
In some examples, natural language processing module 732 provides the semantic interpretations (e.g., the candidate domains and the candidate parse interpretations) for the candidate text representations to belief tracker processing module 766. In addition, natural language processing module 732 provides associated confidence scores for each of the semantic interpretations to belief tracker processing module 766. Using the semantic interpretations and the associated confidence scores, belief tracker processing module 766 determines a current belief state. The belief state is an internal representation of the relevant possible user intents (e.g., the n-best user intents) that correspond to the user utterance. The belief state describes the current state of the dialogue given previous and current observations of the dialogue. The belief state can also be referred to as a dialogue state. The observations include, for example, speech recognition results (e.g., candidate text representations and associated speech recognition confidence scores) and natural language processing results (e.g., candidate user intents, semantic interpretations, and associated intent confidence scores). In some examples, the observations further include contextual information (context data) associated with the current user utterances and/or previous user utterances in the dialogue conversation. Thus, in some examples, belief tracker processing module 766 further utilizes contextual information, information from the dialogue history (e.g., previous utterances in the dialogue conversation), previous belief states, or any combination thereof to determine the current belief state. The previous belief state is the internal representation of the previous state of the dialogue based on one or more user utterances of the dialogue conversation received prior to the current user utterance. The observations can be represented in individual dialogue slots of the belief state. In some examples, some dialogue slots of the belief state represent information that is required to fulfill the respective user intent.
In some examples, belief tracker processing module 766 generates the belief state using belief models 768. In some examples, belief models 768 consider the user intent and other aspects of the environment as partially observable random variables which are inferred from observations. The belief models 768 determine the probability distributions over the random variables using Bayesian networks, for example. In some examples, the belief models 768 include one or more machine learning mechanisms (e.g., neural networks). In some examples, the belief state is implemented using partially observable Markov decision processes (POMDPs), which can track user intents over each turn of the dialogue conversation. The POMDPs can maintain the probability distributions over a set of states based on previous and current observations, and update the probability distribution based on each subsequent observation (e.g., subsequent user utterance).
Belief state 800 further includes probability distributions over the possible values for each variable. The probability distributions represent the uncertainties for each dialogue slot. In some examples, the probability distributions are based on the intent confidence scores obtained from natural language processing module 732. As shown in
It should be appreciated that at least some of the dialogue slots of the belief state can represent similar or identical domains, concepts, or properties of respective nodes in the ontology (e.g., ontology 760). However, the belief state does not include all domains, concepts, and properties represented in the ontology. In particular, policy determination would be intractable if all possible user intents from the ontology were represented in the belief state. Rather, in some examples, belief tracker processing module 766 constructs the belief state based on only a subset of the ontology nodes that represent the most relevant user intents given the text representations of the user utterance. A compact representation for the belief state that embodies only the most relevant domains (e.g., n-best user intents) can enable tractable policy algorithms for policy decision processing module 770.
Belief tracker processing module 766 provides the belief state to policy decision processing module 770. Using policy models 772, policy decision processing module 770 maps the belief state to a plurality of candidate policy actions. Each candidate policy action represents a set of one or more actions to be performed by the device to satisfy one or more possible user intents represented by the belief state. The set of one or more actions includes, for example, the actions of generating and outputting suitable dialogue that is responsive to the user utterance. In some examples, the set of one or more actions represented by a candidate policy action is a predetermined set of one or more actions. Further, in some examples, the plurality of candidate policy actions are a subset of all possible policy actions that can be performed by digital assistant system 700. The plurality of candidate policy actions determined by policy decision processing module 770 can represent policy actions that are most likely to achieve the greatest cumulative reward for the entire dialogue. In this way, policy decision processing module 770 need only select from a small subset of all possible policy actions, which can enable a more efficient and accurate selection process.
As depicted in
Policy models 772 are configured to receive, as input, a belief state and provide a plurality of corresponding candidate policy actions. In some examples, policy models 772 include a set of predefined deterministic rules for determining the plurality of candidate policy actions given the belief state. In some examples, policy models 772 include stochastic models for determining probability distributions over candidate policy actions. In some examples, policy models 772 include one or more machine learning mechanisms (e.g., neural networks). Specifically, in some examples, policy models 772 are constructed using POMDPs.
Policy decision processing module 770 determines which policy action of the plurality of candidate policy actions should be performed. Specifically, based on the belief state, policy decision processing module 770 selects a suitable policy action from the plurality of candidate policy actions to be performed by the device. In some examples, policy decision processing module 770 determines, using policy models 772, a probability distribution over the plurality of candidate policy actions. In some examples, policy decision processing module 770 selects the policy action having the highest probability value among the plurality of candidate policy actions. In some examples, policy decision processing module 770 applies reinforcement learning techniques to select the policy action to perform. In examples where policy decision processing module 770 utilizes POMDPs, a policy action is selected from the set of candidate actions by solving the POMDPs. Specifically, policy decision processing module 770 applies, using policy models 772, a reward function (e.g. Q-function for Q-learning) to each candidate policy action and the policy action that is predicted to maximize the reward function (e.g., the total reward over the entire dialogue) is selected.
In some examples, policy models 772 include a set of parameter values. The parameter values can also be referred to as weights. The parameter values are used to map the belief state to the plurality of candidate policy actions. In addition, the parameter values of policy models 772 are used to select the suitable policy action from the plurality of candidate policy actions.
Policy decision processing module 770 provides the selected policy action to task flow processing module 736 to execute. The selected policy action represents a set of one or more actions and the steps that the digital assistant performs to achieve a predicted user intent. Task flow processing module 736 is configured to receive the selected policy action from policy decision processing module 770 and perform the set of one or more actions represented by the selected policy action. In some examples, the set of one or more actions corresponding to the selected policy action is determined from task flow models 754. In some examples, task flow models 754 include procedures for obtaining additional information from the user and for performing actions represented by the selected policy model. In some examples, the set of one or more actions includes generating and outputting dialogue that is responsive to the user utterance. In these examples, task flow processing module 736 invokes dialogue flow processing module 734 to generate and output the appropriate dialogue.
For example, referring back to
As shown in
In some examples, the user provides feedback to the digital assistant system in response to the performance of the policy action. The user feedback can be explicit or implicit feedback. Feedback processing module 904 receives the user feedback via the digital assistant system. In some examples, feedback processing module 904 additionally receives representations of the belief state and the policy action that correspond to the user feedback. Based on the user feedback (and optionally the belief state and/or policy action), feedback processing module 904 determines a corresponding success score. The success score represents the degree that the performed policy action concurs with the user's actual desired goal for the user utterance. For example, user feedback indicating that the performed policy action satisfied the user's actual desired goal would result in a higher determined success score. Conversely, user feedback indicating that the performed policy action failed to satisfy the user's actual desired goal would result in a lower determined success score. In some examples, the success score is a binary score where one value (e.g., +1) indicates positive user feedback (e.g., policy action corresponds to the user's actual desired goal) and another value (e.g., −1) indicates negative user feedback (e.g., policy action does not correspond to the user's desired goal). In other examples, the success score is a continuous value over a predetermined range (e.g., 0-100) where a higher score indicates more positive user feedback. In some examples, the success score is a reward score for reinforcement learning that defines the reward for being in the respective belief state and selecting a respective policy action.
In some examples, feedback processing module 904 implements deterministic rules to interpret user feedback and label the user feedback with an associated success score. In other examples, feedback processing module 904 implements one or more statistical models or machine learning mechanisms (e.g., neural networks) to determine a success score for user feedback. In some examples, feedback processing module 904 determines whether the received user feedback matches one of a plurality of predetermined types of user input. For instance, in a specific example, feedback processing module 904 determines whether the received user feedback includes either user input that modifies one or more properties (e.g., calendar event time, contact name, message recipient, etc.) of the performed policy action or a second user utterance that matches the current user utterance within a predetermined threshold (e.g., by comparing acoustic or linguistic features). Based on the determination of whether the received user feedback matches one of a plurality of predetermined types of user input, a corresponding success score is determined. The success score can be a reward score that is used in reinforcement learning. In some examples, feedback processing module 904 provides the success score to learning module 902 to optimize one or more models. In addition, feedback processing module 904 provides the corresponding belief state and policy action to learning module 902 to optimize the one or more models.
Learning module 902 receives the success score from feedback processing module 904 and updates the parameter values (weights) of one or more models of the digital assistant module. For example, using the success score, learning module 902 optimizes the current parameter values for the policy model (policy models 772) of the digital assistant module to determine updated parameter values for the policy model. Specifically, learning module 902 modifies the current parameter values for the policy model in accordance with the success score. In some examples, the current parameter values for the policy model are optimized by maximizing the expected accumulated sum of the success score for the dialogue. In some examples, using the success score as a reward score, learning module 902 applies reinforcement learning techniques to optimize the current parameter values for the policy model. In these examples, learning module 902 implements a Q-learning algorithm to determine updated parameter values for the policy model. The updated parameter values can be parameter values of a reward function (Q-function). It should be recognized that learning modules 902 can alternatively apply other supervised or unsupervised machine learning techniques to optimize the current parameter values for the policy model. In addition, one skilled in the art would appreciate that learning module 902 can be configured to optimize the parameter values of other models of the digital assistant module (e.g., the belief model) using the success score.
In a specific example, in accordance with a determination that, after performing the policy action, either one or more properties (e.g., calendar event time, contact name, message recipient, etc.) of the performed policy action are modified by the user or a second user utterance that matches the user utterance within a predetermined threshold is received, the parameter values (weights) of the policy model are modified. Specifically, in this example, the parameter values of the policy model are modified such that the parameter values corresponding to the performed policy action given the belief state are decreased with respect to the parameter values corresponding to the policy actions other than the performed policy action. Thus, given the same belief state, the modified parameter values would be less likely to select the performed policy action relative to one or more other candidate policy actions compared to the parameter values prior to modification.
Returning to the example where the user utterance is “I want a meeting . . . ” (e.g., corresponding to belief state 800) and the selected policy action includes providing the output dialogue “OK, when do you want your meeting?”, the user can provide feedback in response to the output dialogue. In one example, the user can respond to the digital assistant with a second user utterance “3 pm.” In this example, feedback processing module 904 can determine that the user provided positive feedback because the user provided a suitable response to the prompt. Thus, based on the second user utterance, feedback processing module 904 can generate a corresponding success score (e.g., +1) indicating positive user feedback. Based on this success score, learning module 902 can modify the current parameter values for the policy model such that given belief state 800, the policy action of providing the output dialogue “OK, when do you want your meeting?” is more likely to be selected relative to other candidate policy actions. Alternatively, in another example, the user can response to the output dialogue “OK, when do you want your meeting?” by providing user input that invokes the calendar application of the electronic device. The user input can cause a user interface of the calendar application to be displayed and, in some examples, further cause previously scheduled calendar events to be displayed. In this example, feedback processing module 904 can determine that the user provided negative feedback because the user did not respond to the prompt, but instead invoked the calendar application. Thus, based on the user input, feedback processing module 904 can generate a corresponding success score (e.g., −1) indicating negative user feedback. Based on this success score, learning module 902 can modify the current parameter values for the policy model such that given belief state 800, the policy action of providing the output dialogue “OK, when do you want your meeting?” is less likely to be selected relative to other candidate policy actions.
In some examples, feedback processing module 904 collects a plurality of success scores before providing the success scores to learning module 902 for model optimization. In particular, feedback processing module 904 includes a success score log (not shown) for storing a plurality of success scores. Each success score of the collected plurality of success scores corresponds to respective user feedback that was detected by the digital assistant system upon performing a respective policy action for a respective user utterance. Further, each respective policy action is determined using the current set of parameter values of the policy model. The plurality of success scores are stored in the success score log with corresponding belief states and policy actions. In some examples, learning module 902 obtains the plurality of success scores (and corresponding belief states and policy actions) from the success score log of feedback processing module 904 and utilizes the plurality of success scores to update the parameter values of one or more models (e.g., the belief models and/or policy models) of the digital assistant module.
4. Process for Optimizing Dialogue Policy Decisions for Digital Assistants Using Implicit Feedback
At block 1002, a user utterance is received (e.g., at I/O processing module 728 and via microphone 213). In some examples, the user utterance comprises user speech from one turn of a multi-turn dialogue conversation between the user and the digital assistant system (e.g., digital assistant system 700). In some examples, the user utterance represents at least a portion of a user request for the digital assistant device to perform one or more tasks. In some examples, the user utterance is the first turn of a multi-turn dialogue conversation (e.g., “Hey Siri, I'd like to schedule a meeting”). In other examples, the user utterance is responsive to a prompt or query from the digital assistant. For example, the digital assistant system can provide the prompt “OK, when would you like to schedule your meeting?”. In this example, the user utterance can be “3 pm,” which is responsive to the prompt. The user utterance can include speech in unstructured natural language form.
At block 1004, one or more text representations of the user utterance are determined. The one or more text representations are determined by performing speech recognition on the user utterance (e.g., using STT processing module 730). Each text representation is a textual interpretation of the user utterance and has an associated speech recognition confidence score.
At block 1006, one or more user intents corresponding to the user utterance are determined based on one or more text representations of the user utterance. The one or more user intents are determined by performing natural language processing on the one or more text representations (e.g., using natural language processing module 732). Specifically, each text representation is parsed and one or more portions of the text representation are mapped to one or more properties of one or more domains. Based on the mapping, the one or more user intents are determined. Thus, the one or more user intents can represent semantic interpretations of the one or more text representations. In particular, each user intent includes, for example, a determined domain (or super domain) for the respective text representation and related parse interpretations that assign values to relevant concepts and/or properties of the determined domain. The assigned values can correspond to portions of the respective text representation. For example, given one or more text representations for the utterance “I want a meeting at 3 pm,” process 1000 can determines one or more user intents that include the “calendar” domain and a parse interpretation that assigns the value “3 pm” to the “time” property of the “calendar domain.” In another example, given one or more text representations of the utterance “Directions to Fidelity investments,” process 1000 determines one or more user intents that include the “get directions” domain and parse interpretations that assign the value “Fidelity investments” to each of the “contacts” and “business” properties of the “get directions” domain. In some examples, each determined user intent includes an associated intent confidence score. Further, the domains and parse interpretations of the one or more user intents can also include associated confidence scores.
At block 1008, a belief state for the one or more user intents is determined (e.g., using belief tracker processing module 766 and/or belief models 768). The belief state (e.g., belief state 800) is an internal representation of the relevant possible user intents that correspond to the user utterance. In particular, the belief state includes a plurality of dialogue slots and uncertainties (e.g., probability distributions) associated with the plurality of dialogue slots. A subset of the plurality of dialogue slots represents a respective user intent. Process 1000 determines the belief state using the semantic interpretations determined at block 1006. In particular, the belief state is constructed based on the determined domains and parse interpretations for the one or more text representations. In addition, in some examples, context data inferred by the digital assistant system is used to determine the belief state.
As discussed, the belief state includes a plurality of dialogue slots that are connected in a hierarchical arrangement. Some of the dialogue slots represent domains, concepts, or properties of the one or more user intents. Further, some of the dialogue slots include possible values for the one or more domains, concepts, or properties. The possible values are based on, for example, the parse interpretations of block 1006 and can include one or more portions of the text representations. For instance, returning to the example utterance “I want a meeting at 3 pm,” the belief state determined for this utterance can include a dialogue slot representing the “calendar” domain, one or more dialogue slots representing the “create event” actionable intent, and a dialogue slot representing the “time” property for the “calendar” domain. Additionally, the dialogue slot representing the “time” property can include the possible value “3 pm” and a probability for this value.
In some examples, the belief state is determined based on a previous belief state. In particular, the previous belief state describes the previous state of the dialogue prior to receiving the current user utterance of block 1002. The previous belief state can thus be based on one or more previous user utterances of the dialogue and/or one or more previous responses provided by the digital assistant system. In some examples, determining the belief state includes updating the previous belief state with current information and/or observations obtained based on the current user utterance of block 1002.
In some examples, the belief state is determined based on the speech recognition confidence scores of the one or more text representations and/or the intent confidence scores of the one or more user intents. For example, the one or more user intents of block 1006 can be the m-best user intents (e.g., top n user intents with the m-highest confidence scores) selected from all possible user intents. Further, in some examples, the dialogue slots of the belief state include probability distributions over the possible values for each variable represented by the dialogue slots. For example, in the determined belief state for the example utterance “I want a meeting at 3 pm,” a dialogue slot representing the “time” property of the “calendar” domain can include the probability distributions over possible time values (e.g., 2 pm, 3 pm, 4 pm, etc.) for the “time” property. In some examples, the probability distributions are based on the speech recognition confidence scores and/or the intent confidence scores.
Although the dialogue slots of the belief state can represent domains, concepts, and/or properties that correspond to the nodes of an ontology (e.g., ontology 760), it should be recognized that, in some examples, the belief state is separate and distinct from the ontology. Specifically, in these examples, the belief state is not an ontology and the slots of the belief state are not nodes of an ontology. For instance, in some examples, the dialogue slots of the belief state represent domains, concepts, and/or properties of only a relevant subset of the ontology. Moreover, in some examples, certain dialogue slots of the belief state do not correspond to any domain, concept, or property of the ontology. For example, one or more dialogue slots can represent the action of searching for a value for a specific property. Specifically, if the user utterance were “Call my mom,” the determined belief state can include a dialogue slot representing the action of searching the user's contacts for a phone number (property=phone number) corresponding to “mom.”
At block 1010, a plurality of candidate policy actions that correspond to the belief state are determined (e.g., using policy decision processing module 770 and/or policy models 772). For example, a policy model maps the belief state to the plurality of candidate policy actions. In some examples, the plurality of candidate policy actions are selected from a large population of predetermined policy actions based on the belief state. The plurality of candidate policy actions are each policy actions that, when performed, would satisfy a user intent of the one or more user intents represented by the belief state. In some examples, the policy model has a set of current parameter values. The parameter values can be referred to as weights. The set of current parameter values is used to map the belief state to the plurality of candidate policy actions. In some examples, the set of current parameter values is determined using reinforcement learning techniques prior to receiving the user utterance at block 1002.
Determining the plurality of candidate policy actions using the belief state can be advantageous because it enables the plurality of candidate policy actions to be determined using a larger and more comprehensive knowledge base. Specifically, the belief state incorporates information from past and current observations as well as uncertainties for one or more possible user intents. Using the belief state to determine the plurality of candidate policy actions can improve the relevancy and accuracy of the determined candidate policy actions to the user's actual desired goal. As a result, the operability of the electronic device can be enhanced by allowing for better interpretation of speech and other forms of natural language inputs. Specifically, the electronic device can be able to operate with greater accuracy and reliability when identifying and performing tasks in response to user requests.
At block 1012, a policy action is selected from the plurality of candidate policy actions (e.g., using policy decision processing module 770 and/or policy models 772). Specifically, the policy action is selected based on the belief state of block 1008 and a policy model (e.g., policy models 772). The selected policy action corresponds to a user intent of the one or more user intents represented by the belief state. In some examples, a probability distribution over the plurality of candidate policy actions (e.g., from block 1010) for the belief state is determined using the policy model. More specifically, the set of current parameter values of the policy model (including parameter values associated with the selected policy action) is used to determine the probability distribution over the plurality of candidate policy actions for the belief state. For each candidate policy action, the probability distribution includes the probability that the respective candidate policy action is the correct policy action to perform given the belief state. In some examples, selecting the policy action at block 1012 includes selecting the policy action with the highest probability value among the plurality of candidate policy actions.
In some examples, reinforcement learning techniques are applied to select the policy action. In some examples, the belief state and the policy model are implemented using POMDPs. In these examples, the policy action is selected from the plurality of candidate policy actions by solving the POMDPs. Specifically, a reward function (e.g. Q-function for Q-learning) is applied to each candidate policy action and the policy action that is predicted to maximize the reward function (e.g., the total reward over the entire dialogue) based on the belief state is selected. In some examples, the reward function is based on the current set of parameter values of the policy model. Thus, in some examples, the policy action that is selected at block 1012 depends on the current set of parameter values of the policy model.
The selected policy action can be one of several types of policy actions. Several exemplary types of policy actions are described below. It should be recognized that the plurality of candidate policy actions determined at block 1010 can include any combination of the types of exemplary policy actions described below.
In some examples, the selected policy action includes prompting a user to provide a value for a property of the user intent that corresponds to the selected policy action. For example, the selected policy action can be based on the belief state for the user utterance “I want a meeting at 3 pm.” In this example, the selected policy action can include generating and outputting the dialogue “Which day do you want to create your calendar event?” The dialogue thus prompts the user to provide a value for the “day” property of the user intent “create calendar event.”
In some examples, the selected policy action includes proposing a value for a property of the user intent that corresponds to the selected policy action and prompting the user to confirm whether the proposed value for the property is correct. For example, the selected policy action can include generating and outputting the dialogue “Did you mean the 23rd of May?” In this example, the dialogue proposes the value “23” for the “day” property of the user intent “create calendar event” and prompts the user to confirm that this value is correct.
In some examples, the selected policy action includes presenting output that specifies one or more actions to be performed and that prompts a user to confirm whether to perform the one or more specified actions. For example, the selected policy action can include generating and outputting the dialogue “I set up your meeting for 3 pm today, shall I schedule it?” In this example, the dialogue specifies the action of scheduling a meeting for 3 pm today and prompts the user to confirm whether to perform this action.
In some examples, the selected policy action includes performing one or more actions represented in the belief state and outputting dialogue confirming that the one or more actions have been performed. For example, the selected policy action can include creating a meeting calendar event for 3 pm today and generating and outputting the dialogue “OK, I've scheduled your event.”
In some examples, the selected policy action includes obtaining results from executing one or more actions and presenting a summary of the results. For example, the selected policy action can include searching for a calendar event that is scheduled for 3 pm today and displaying a summary of the results from the search. In addition, the selected policy action can include generating and outputting the dialogue “You have only one appointment at 3 pm, here it is.”
In some examples, the selected policy action includes presenting dialogue that instructs a user on how to operate a digital assistant of the electronic device using dialogue input. The dialogue instructions can be based on one or more missing property values in the user utterance. For example, the selected policy action can include generating and outputting the dialogue “When creating a calendar event, you can specify the date, time, and attendees for the event.”
At block 1014, the selected policy action is performed (e.g., using task flow processing module 736 and/or dialogue flow processing module 734). In some examples, performing the selected policy action includes outputting results of the policy action for presentation. The outputted results are responsive to the user utterance. In some examples, performing the selected policy action includes generating a suitable output dialogue and presenting the output dialogue to the user.
At block 1016, a success score for the performed policy action is determined (e.g., using feedback processing module 904). Block 1016 is performed, for example, after block 1014. The success score represents the degree that the performed policy action concurs with the user's actual desired goal or intent for the user utterance. In some examples, the success score is a reward score for reinforcement learning that defines the reward for being in the determined belief state of block 1008 and selecting the policy action of block 1012. Block 1016 includes, for example, determining whether one of a plurality of types of user input is detected after performing the selected policy action. The success score is then determined based on whether one of a plurality of types of user input is detected after performing the policy action.
In some examples, the plurality of types of user input are each implicit types of user feedback received in response to the performed policy action. In these examples, process 1000 determines whether implicit types of user feedback are detected after the selected policy action is performed. A corresponding success score is then determined based on either a detected implicit user feedback or the absence of any detected implicit user feedback. Implicit user feedback refers to user feedback that does not expressly describe whether the user is satisfied or dissatisfied with the performed policy action. Thus, in these examples, the plurality of types of user input do not include user input that explicitly specifies user satisfaction or dissatisfaction with the performed policy action. For example, user dialogue input such as “That's good,” or “No, that's not what I want” would be explicit user feedback rather than implicit user feedback. Additionally, implicit user feedback is user input that is not responsive to a structure device query. For example, if, after performing the selected policy action, the digital assistant system provides the structured prompt “Has your goal been achieved?” or “Are you satisfied with the response provided,” any user feedback that is responsive to such structured prompts would be explicit user feedback rather than implicit user feedback.
In some examples, a type of user input of the plurality of types of user input includes user input received at the device within a predetermined duration after performing the policy action. For example, if user input is detected within a predetermined duration, process 1000 can interpret the user input as indicating that the user is dissatisfied with the performed policy action and thus determine a lower success score (e.g., negative reward). Conversely, if no user input is received at the device within a predetermined duration after performing the policy action, process 1000 can interpret the absence of any user input as indicating that the user is satisfied with the performed policy action and thus determine a higher success score. In some examples, the user input includes any user input detected via a user interface of the device. For example, the user input includes the user selection of graphical user interface elements displayed on a touch screen (e.g., touch screen 212) of the device.
In some examples, a type of user input of the plurality of types of user input includes user input that invokes a digital assistant of the electronic device. User input that invokes the digital assistant refers to user input that causes the digital assistant system to begin receiving audio input via a microphone and automatically performing speech and language processing (e.g., speech recognition and natural language processing) on the audio input to determine one or more user intents and provide a suitable response. For instance, in one example, the performed policy action can include scheduling a calendar event at 3 pm. After performing this policy action, user input that invokes the digital assistant is detected (e.g., within a predetermined duration after performing the policy action). In this example, process 1000 can interpret the user input as indicating that the user is dissatisfied with the performed policy action and thus determine a lower success score (e.g., negative reward).
In some examples, performing the selected policy action at block 1014 includes displaying results on a first user interface of a first application of the electronic device. In these examples, a type of user input of the plurality of types of user input can include user input that causes the electronic device to switch from displaying the first user interface of the first application to displaying a second user interface of a second application of the electronic device. In some examples, the performed policy action corresponds to a user intent that relates to the second application of the device. Specifically, the user intent can represent tasks that the second application of the device is capable of performing. To illustrate, in a specific example, performing the selected policy action can include displaying a digital assistant interface with a confirmation message that a calendar event was created for 5 pm today. After displaying the digital assistant interface with the confirmation message, user input that causes the electronic device to switch from displaying the digital assistant interface to displaying a user interface of the calendar application is detected. Notably, the user intent (e.g., creating a calendar event) corresponding to the performed policy action relates to the calendar application. In this example, process 1000 can interpret the user input as indicating that the user is dissatisfied with the performed policy action and thus determine a lower success score (e.g., negative reward).
In some examples, a type of user input of the plurality of types of user input includes user input that enters a value into an input field of a user interface. The input field can correspond to a property of the user intent for the performed policy action. For instance, in a specific example, the performed policy action includes creating a calendar event at 5 pm today. In this example, after the policy action is performed, user input that causes the device to navigate to the created event in the calendar application and that causes the value “meeting” to be entered into the “subject” input field can be received. Notably, the performed policy action corresponds to the “create calendar event” user intent and thus, the “subject” input field corresponds to a respective property (e.g., the “subject” property) of this user intent. In this example, process 1000 can interpret the user input as indicating that the user is dissatisfied with the performed policy action and thus determine a lower success score (e.g., negative reward).
In some examples, the results of the policy action include a value for a property of a corresponding user intent. In these examples, a type of user input of the plurality of types of user input includes user input that provides a second value for the property of the one or more user intents. For instance, in a specific example, the performed policy action includes creating a calendar event at 5 pm today and outputting dialogue confirming the creation of the calendar event. Notably, “5 pm” is a value for the “start time” property of the “create calendar event” user intent. In this example, after the policy action is performed, user input that causes the value of the “start time” property to be modified from “5 pm” to “3 pm” can be detected. In this example, process 1000 can interpret this user input as indicating that the user is dissatisfied with the performed policy action and thus determine a lower success score (e.g., negative reward).
The success score of block 1016 can be determined in accordance with detecting, after performing the selected policy action, one or more of the exemplary types of user input, described above. It should be recognized that the success score can be determined in accordance with not detecting any of the plurality of types of user input after performing the selected policy action. For example, process 1000 can interpret the absence of any of the plurality of types of user input being detected as indicating that the user is satisfied with the performed policy action. In these examples, a higher success score (e.g., positive reward) is determined.
In a specific example, block 1016 includes determining whether, after performing the selected policy action, one or more properties of the performed action (e.g., day of calendar event) are modified by a user, or a second user utterance that matches the user utterance of block 1002 within a predetermined threshold is received. The predetermined threshold can be based on comparing acoustic or linguistic properties of the second user utterance and the user utterance of block 1002. In accordance with a determination that, after performing the selected policy action, one or more properties of the performed action are modified by a user, or a second user utterance that matches the user utterance of block 1002 within a predetermined threshold is received, a corresponding success score is determined. In this example, the determined success score can be a lower score (e.g., negative reward) indicating that the user is dissatisfied with the performed policy action.
Determining a success score for the policy action using implicit user feedback can be advantageous because it can enable the success score to be determined more objectively, which in turn can enable a more accurate and robust policy model to be produced. Specifically, it was found to be unexpectedly counterintuitive that implicit user feedback more accurately reflects whether the performed policy action coincides with the user's actual desired goal compared to explicit user feedback. Relying on implicit user feedback can thus improve the accuracy and reliability of the determined success score. Optimizing the policy model using a more accurate and reliable success score can result in a more accurate and robust policy model. This can enhance the operability of the digital assistant system by allowing for better interpretation of speech and other forms of natural language inputs. Specifically, the digital assistant system can utilize the more accurate and robust policy model to select policy actions that better reflect the user's desired goals. As a result, the digital assistant system can operate with greater accuracy and reliability when identifying and performing tasks in response to user requests.
At block 1018, the current set of parameter values of the policy model is modified (e.g., using the learning module 902) in accordance with the determined success score. For example, modifying the current set of parameter values of the policy model includes determining an updated set of parameter values for the policy model. In some examples, the current set of parameter values of the policy model are modified in accordance with the determined success score using unsupervised machine learning techniques rather than supervised machine learning techniques. In a specific example, the current set of parameter values of the policy model is modified using reinforcement learning techniques in accordance with the determined success score. In this example, the success score for the performed policy action is used as a reward for the reinforcement learning. Additional details on reinforcement learning can be found in R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” MIT Press, 1999, the contents of which are hereby incorporated by reference in their entirety.
In some examples, the success score is indicative of a negative reward. In these examples, modifying the current set of parameter values to determine an updated set of parameter values can be performed such that parameter values associated with the performed policy action are de-emphasized (e.g., weights decreased) with respect to parameter values associated with one or more other candidate policy actions that were not selected. More specifically, given the same belief state, process 1000 is less likely to select the performed policy action (relative to one or more other candidate policy actions) using the updated set of parameter values compared to using the current set of parameter values.
In some examples, the success score is indicative of a positive reward. In these examples, modifying the current set of parameter values to determine an updated set of parameter values can be performed such that parameter values associated with the performed policy action are increased in significance (e.g., weights increased) with respect to parameter values associated with one or more other candidate policy actions that were not selected. More specifically, given the same belief state, process 1000 is more likely to select the performed policy action (relative to one or more other candidate policy actions) using the updated set of parameter values compared to using the current set of parameter values.
It should be recognized that the operations of process 1000 can be repeated one or more times in an iterative manner to optimize the set of parameter values of the policy model. For example, after modifying the current set of parameter values of the policy model to determine an updated set of parameter values at block 1018, a subsequent user utterance is received (block 1002). One or more second text representations of the subsequent user utterances are determined (block 1004). Based on the one or more second text representations of the subsequent user utterance, one or more second user intents corresponding to the subsequent user utterance are determined (block 1006). A second belief state for the one or more second user intents is determined (block 1008). In particular, the second belief state is determined from the first belief state and the one or more second user intents. A second plurality of candidate policy actions is determined (block 1010) for the second belief state. Based on the second belief state and the updated set of parameter values of the policy model, a second policy action is selected from the second plurality of candidate policy actions (block 1012). The second policy action is performed (block 1014). In some examples, the second policy action includes outputting results of the second policy action for presentation. It should be appreciated that if the second user utterance is identical to (or substantially similar to) the previous user utterance, the selected second policy action can be different from the previously selected policy action for the previous user utterance. Specifically, the outputted results of the second policy action can be different from the outputted results of the previous policy action. This result can occur because the second policy action and the previous policy action are selected using different sets of parameter values of the policy model. In particular, the second policy action is selected using the updated set of parameter values of the model. In some examples, a second success score for the performed second policy action is determined (block 1016). The previously updated set of parameter values of the policy model is modified in accordance with the second success score to determine a second updated set of parameter values. The policy model is thus further optimized based on the subsequent user utterance and the corresponding second success score.
In some examples, the operations of blocks 1002 through 1016 are performed multiple times to obtain a plurality of success scores. Each success score is for a respective previously performed policy action of a plurality of previously performed policy actions. Each previously performed policy action of the plurality of previously performed policy actions is determined (blocks 1010 and 1012) using a first set of parameter values of a policy model and performed (block 1014) to satisfy a respective predicted goal for a respective previous user utterance (block 1002) of a plurality of previous user utterances. Each success score of the plurality of success scores is determined (block 1016) based on whether one of a plurality of predetermined types of user input is detected after performing the respective previous policy action. The plurality of predetermined types of user input are each a type of user input other than a response to a structured device query. The plurality of success scores are collected and stored in the memory of the device. The plurality of success scores are then used to optimize the policy model. Specifically, using the plurality of success scores, the first set of parameter values of the policy model is updated to determine a second set of parameter values for the policy model. Subsequent policy actions can thus be determined and selected for subsequent user utterances using the second set of parameter values for the policy model.
The operations described above with reference to
In accordance with some implementations, a computer-readable storage medium (e.g., a non-transitory computer-readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.
In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises means for performing any of the methods or processes described herein.
In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises a processing unit configured to perform any of the methods or processes described herein.
In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods or processes described herein.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
This application claims priority from U.S. Provisional Ser. No. 62/506,465, filed on May 15, 2017, entitled “OPTIMIZING DIALOGUE POLICY DECISIONS FOR DIGITAL ASSISTANTS USING IMPLICIT FEEDBACK,” which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1559320 | Hirsh | Oct 1925 | A |
2180522 | Henne | Nov 1939 | A |
2495222 | Bierig | Jan 1950 | A |
3704345 | Coker et al. | Nov 1972 | A |
3710321 | Rubenstein | Jan 1973 | A |
3787542 | Gallagher et al. | Jan 1974 | A |
3828132 | Flanagan et al. | Aug 1974 | A |
3979557 | Schulman et al. | Sep 1976 | A |
4013085 | Wright | Mar 1977 | A |
4081631 | Feder | Mar 1978 | A |
4090216 | Constable | May 1978 | A |
4107784 | Van Bemmelen | Aug 1978 | A |
4108211 | Tanaka | Aug 1978 | A |
4159536 | Kehoe et al. | Jun 1979 | A |
4181821 | Pirz et al. | Jan 1980 | A |
4204089 | Key et al. | May 1980 | A |
4241286 | Gordon | Dec 1980 | A |
4253477 | Eichman | Mar 1981 | A |
4278838 | Antonov | Jul 1981 | A |
4282405 | Taguchi | Aug 1981 | A |
4310721 | Manley et al. | Jan 1982 | A |
4332464 | Bartulis et al. | Jun 1982 | A |
4348553 | Baker et al. | Sep 1982 | A |
4384169 | Mozer et al. | May 1983 | A |
4386345 | Narveson et al. | May 1983 | A |
4433377 | Eustis et al. | Feb 1984 | A |
4451849 | Fuhrer | May 1984 | A |
4485439 | Rothstein | Nov 1984 | A |
4495644 | Parks et al. | Jan 1985 | A |
4513379 | Wilson et al. | Apr 1985 | A |
4513435 | Sakoe et al. | Apr 1985 | A |
4555775 | Pike | Nov 1985 | A |
4577343 | Oura | Mar 1986 | A |
4586158 | Brandle | Apr 1986 | A |
4587670 | Levinson et al. | May 1986 | A |
4589022 | Prince et al. | May 1986 | A |
4611346 | Bednar et al. | Sep 1986 | A |
4615081 | Lindahl | Oct 1986 | A |
4618984 | Das et al. | Oct 1986 | A |
4642790 | Minshull et al. | Feb 1987 | A |
4653021 | Takagi | Mar 1987 | A |
4654875 | Srihari et al. | Mar 1987 | A |
4655233 | Laughlin | Apr 1987 | A |
4658425 | Julstrom | Apr 1987 | A |
4670848 | Schramm | Jun 1987 | A |
4677570 | Taki | Jun 1987 | A |
4680429 | Murdock et al. | Jul 1987 | A |
4680805 | Scott | Jul 1987 | A |
4686522 | Hernandez et al. | Aug 1987 | A |
4688195 | Thompson et al. | Aug 1987 | A |
4692941 | Jacks et al. | Sep 1987 | A |
4698625 | McCaskill et al. | Oct 1987 | A |
4709390 | Atal et al. | Nov 1987 | A |
4713775 | Scott et al. | Dec 1987 | A |
4718094 | Bahl et al. | Jan 1988 | A |
4724542 | Williford | Feb 1988 | A |
4726065 | Froessl | Feb 1988 | A |
4727354 | Lindsay | Feb 1988 | A |
RE32632 | William | Mar 1988 | E |
4736296 | Katayama et al. | Apr 1988 | A |
4750122 | Kaji et al. | Jun 1988 | A |
4754489 | Bokser | Jun 1988 | A |
4755811 | Slavin et al. | Jul 1988 | A |
4759070 | Voroba et al. | Jul 1988 | A |
4776016 | Hansen | Oct 1988 | A |
4783804 | Juang et al. | Nov 1988 | A |
4783807 | Marley | Nov 1988 | A |
4785413 | Atsumi | Nov 1988 | A |
4790028 | Ramage | Dec 1988 | A |
4797930 | Goudie | Jan 1989 | A |
4802223 | Lin et al. | Jan 1989 | A |
4803729 | Baker | Feb 1989 | A |
4807752 | Chodorow | Feb 1989 | A |
4811243 | Racine | Mar 1989 | A |
4813074 | Marcus | Mar 1989 | A |
4819271 | Bahl et al. | Apr 1989 | A |
4827518 | Feustel et al. | May 1989 | A |
4827520 | Zeinstra | May 1989 | A |
4829576 | Porter | May 1989 | A |
4829583 | Monroe et al. | May 1989 | A |
4831551 | Schalk et al. | May 1989 | A |
4833712 | Bahl et al. | May 1989 | A |
4833718 | Sprague | May 1989 | A |
4837798 | Cohen et al. | Jun 1989 | A |
4837831 | Gillick et al. | Jun 1989 | A |
4839853 | Deerwester et al. | Jun 1989 | A |
4852168 | Sprague | Jul 1989 | A |
4862504 | Nomura | Aug 1989 | A |
4875187 | Smith | Oct 1989 | A |
4878230 | Murakami et al. | Oct 1989 | A |
4887212 | Zamora et al. | Dec 1989 | A |
4896359 | Yamamoto et al. | Jan 1990 | A |
4903305 | Gillick et al. | Feb 1990 | A |
4905163 | Garber et al. | Feb 1990 | A |
4908867 | Silverman | Mar 1990 | A |
4914586 | Swinehart et al. | Apr 1990 | A |
4914590 | Loatman et al. | Apr 1990 | A |
4914704 | Cole et al. | Apr 1990 | A |
4918723 | Iggulden et al. | Apr 1990 | A |
4926491 | Maeda et al. | May 1990 | A |
4928307 | Lynn | May 1990 | A |
4931783 | Atkinson | Jun 1990 | A |
4935954 | Thompson et al. | Jun 1990 | A |
4939639 | Lee et al. | Jul 1990 | A |
4941488 | Marxer et al. | Jul 1990 | A |
4944013 | Gouvianakis et al. | Jul 1990 | A |
4945504 | Nakama et al. | Jul 1990 | A |
4953106 | Gansner et al. | Aug 1990 | A |
4955047 | Morganstein et al. | Sep 1990 | A |
4965763 | Zamora | Oct 1990 | A |
4972462 | Shibata | Nov 1990 | A |
4974191 | Amirghodsi et al. | Nov 1990 | A |
4975975 | Filipski | Dec 1990 | A |
4977598 | Doddington et al. | Dec 1990 | A |
4980916 | Zinser | Dec 1990 | A |
4985924 | Matsuura | Jan 1991 | A |
4992972 | Brooks et al. | Feb 1991 | A |
4994966 | Hutchins | Feb 1991 | A |
4994983 | Landell et al. | Feb 1991 | A |
5001774 | Lee | Mar 1991 | A |
5003577 | Ertz et al. | Mar 1991 | A |
5007095 | Nara et al. | Apr 1991 | A |
5007098 | Kumagai | Apr 1991 | A |
5010574 | Wang | Apr 1991 | A |
5016002 | Levanto | May 1991 | A |
5020112 | Chou | May 1991 | A |
5021971 | Lindsay | Jun 1991 | A |
5022081 | Hirose et al. | Jun 1991 | A |
5027110 | Chang et al. | Jun 1991 | A |
5027406 | Roberts et al. | Jun 1991 | A |
5027408 | Kroeker et al. | Jun 1991 | A |
5029211 | Ozawa | Jul 1991 | A |
5031217 | Nishimura | Jul 1991 | A |
5032989 | Tornetta | Jul 1991 | A |
5033087 | Bahl et al. | Jul 1991 | A |
5040218 | Vitale et al. | Aug 1991 | A |
5046099 | Nishimura | Sep 1991 | A |
5047614 | Bianco | Sep 1991 | A |
5047617 | Shepard et al. | Sep 1991 | A |
5050215 | Nishimura | Sep 1991 | A |
5053758 | Cornett et al. | Oct 1991 | A |
5054074 | Bakis | Oct 1991 | A |
5054084 | Tanaka et al. | Oct 1991 | A |
5057915 | Von Kohorn | Oct 1991 | A |
5062143 | Schmitt | Oct 1991 | A |
5067158 | Arjmand | Nov 1991 | A |
5067503 | Stile | Nov 1991 | A |
5072452 | Brown et al. | Dec 1991 | A |
5075896 | Wilcox et al. | Dec 1991 | A |
5079723 | Herceg et al. | Jan 1992 | A |
5083119 | Trevett et al. | Jan 1992 | A |
5083268 | Hemphill et al. | Jan 1992 | A |
5086792 | Chodorow | Feb 1992 | A |
5090012 | Kajiyama et al. | Feb 1992 | A |
5091790 | Silverberg | Feb 1992 | A |
5091945 | Kleijn | Feb 1992 | A |
5103498 | Lanier et al. | Apr 1992 | A |
5109509 | Katayama et al. | Apr 1992 | A |
5111423 | Kopec, Jr. et al. | May 1992 | A |
5119079 | Hube et al. | Jun 1992 | A |
5122951 | Kamiya | Jun 1992 | A |
5123103 | Ohtaki et al. | Jun 1992 | A |
5125022 | Hunt et al. | Jun 1992 | A |
5125030 | Nomura et al. | Jun 1992 | A |
5127043 | Hunt et al. | Jun 1992 | A |
5127053 | Koch | Jun 1992 | A |
5127055 | Larkey | Jun 1992 | A |
5128672 | Kaehler | Jul 1992 | A |
5133011 | McKiel, Jr. | Jul 1992 | A |
5133023 | Bokser | Jul 1992 | A |
5142584 | Ozawa | Aug 1992 | A |
5144875 | Nakada | Sep 1992 | A |
5148541 | Lee et al. | Sep 1992 | A |
5153913 | Kandefer et al. | Oct 1992 | A |
5157610 | Asano et al. | Oct 1992 | A |
5157779 | Washburn et al. | Oct 1992 | A |
5161102 | Griffin et al. | Nov 1992 | A |
5163809 | Akgun et al. | Nov 1992 | A |
5164900 | Bernath | Nov 1992 | A |
5164982 | Davis | Nov 1992 | A |
5165007 | Bahl et al. | Nov 1992 | A |
5167004 | Netsch et al. | Nov 1992 | A |
5175536 | Aschliman et al. | Dec 1992 | A |
5175803 | Yeh | Dec 1992 | A |
5175814 | Anick et al. | Dec 1992 | A |
5179627 | Sweet et al. | Jan 1993 | A |
5179652 | Rozmanith et al. | Jan 1993 | A |
5194950 | Murakami et al. | Mar 1993 | A |
5195034 | Garneau et al. | Mar 1993 | A |
5195167 | Bahl et al. | Mar 1993 | A |
5197005 | Shwartz et al. | Mar 1993 | A |
5199077 | Wilcox et al. | Mar 1993 | A |
5201034 | Matsuura et al. | Apr 1993 | A |
5202952 | Gillick et al. | Apr 1993 | A |
5208862 | Ozawa | May 1993 | A |
5210689 | Baker et al. | May 1993 | A |
5212638 | Bernath | May 1993 | A |
5212821 | Gorin et al. | May 1993 | A |
5216747 | Hardwick et al. | Jun 1993 | A |
5218700 | Beechick | Jun 1993 | A |
5220629 | Kosaka et al. | Jun 1993 | A |
5220639 | Lee | Jun 1993 | A |
5220657 | Bly et al. | Jun 1993 | A |
5222146 | Bahl et al. | Jun 1993 | A |
5230036 | Akamine et al. | Jul 1993 | A |
5231670 | Goldhor et al. | Jul 1993 | A |
5235680 | Bijnagte | Aug 1993 | A |
5237502 | White et al. | Aug 1993 | A |
5241619 | Schwartz et al. | Aug 1993 | A |
5252951 | Tannenbaum et al. | Oct 1993 | A |
5253325 | Clark | Oct 1993 | A |
5255386 | Prager | Oct 1993 | A |
5257387 | Richek et al. | Oct 1993 | A |
5260697 | Barrett et al. | Nov 1993 | A |
5266931 | Tanaka | Nov 1993 | A |
5266949 | Rossi | Nov 1993 | A |
5267345 | Brown et al. | Nov 1993 | A |
5268990 | Cohen et al. | Dec 1993 | A |
5274771 | Hamilton et al. | Dec 1993 | A |
5274818 | Vasilevsky et al. | Dec 1993 | A |
5276616 | Kuga et al. | Jan 1994 | A |
5276794 | Lamb, Jr. | Jan 1994 | A |
5278980 | Pedersen et al. | Jan 1994 | A |
5282265 | Rohra Suda et al. | Jan 1994 | A |
5283818 | Klausner et al. | Feb 1994 | A |
5287448 | Nicol et al. | Feb 1994 | A |
5289562 | Mizuta et al. | Feb 1994 | A |
RE34562 | Murakami et al. | Mar 1994 | E |
5291286 | Murakami et al. | Mar 1994 | A |
5293254 | Eschbach | Mar 1994 | A |
5293448 | Honda | Mar 1994 | A |
5293452 | Picone et al. | Mar 1994 | A |
5296642 | Konishi | Mar 1994 | A |
5297170 | Eyuboglu et al. | Mar 1994 | A |
5297194 | Hunt et al. | Mar 1994 | A |
5299125 | Baker et al. | Mar 1994 | A |
5299284 | Roy | Mar 1994 | A |
5301109 | Landauer et al. | Apr 1994 | A |
5303406 | Hansen et al. | Apr 1994 | A |
5305205 | Weber et al. | Apr 1994 | A |
5305421 | Li et al. | Apr 1994 | A |
5305768 | Gross et al. | Apr 1994 | A |
5309359 | Katz et al. | May 1994 | A |
5315689 | Kanazawa et al. | May 1994 | A |
5317507 | Gallant | May 1994 | A |
5317647 | Pagallo | May 1994 | A |
5325297 | Bird et al. | Jun 1994 | A |
5325298 | Gallant | Jun 1994 | A |
5325462 | Farrett | Jun 1994 | A |
5326270 | Ostby et al. | Jul 1994 | A |
5327342 | Roy | Jul 1994 | A |
5327498 | Hamon | Jul 1994 | A |
5329608 | Bocchieri et al. | Jul 1994 | A |
5333236 | Bahl et al. | Jul 1994 | A |
5333266 | Boaz et al. | Jul 1994 | A |
5333275 | Wheatley et al. | Jul 1994 | A |
5335011 | Addeo et al. | Aug 1994 | A |
5335276 | Thompson et al. | Aug 1994 | A |
5341293 | Vertelney et al. | Aug 1994 | A |
5341466 | Perlin et al. | Aug 1994 | A |
5345536 | Hoshinni et al. | Sep 1994 | A |
5349645 | Zhao | Sep 1994 | A |
5353374 | Wilson et al. | Oct 1994 | A |
5353376 | Oh et al. | Oct 1994 | A |
5353377 | Kuroda et al. | Oct 1994 | A |
5353408 | Kato et al. | Oct 1994 | A |
5353432 | Richek et al. | Oct 1994 | A |
5357431 | Nakada et al. | Oct 1994 | A |
5367640 | Hamilton et al. | Nov 1994 | A |
5369575 | Lamberti et al. | Nov 1994 | A |
5369577 | Kadashevich et al. | Nov 1994 | A |
5371853 | Kao et al. | Dec 1994 | A |
5371901 | Reed et al. | Dec 1994 | A |
5373566 | Murdock | Dec 1994 | A |
5377103 | Lamberti et al. | Dec 1994 | A |
5377301 | Rosenberg et al. | Dec 1994 | A |
5377303 | Firman | Dec 1994 | A |
5384671 | Fisher | Jan 1995 | A |
5384892 | Strong | Jan 1995 | A |
5384893 | Hutchins | Jan 1995 | A |
5386494 | White | Jan 1995 | A |
5386556 | Hedin et al. | Jan 1995 | A |
5390236 | Klausner et al. | Feb 1995 | A |
5390279 | Strong | Feb 1995 | A |
5390281 | Luciw et al. | Feb 1995 | A |
5392419 | Walton | Feb 1995 | A |
5396625 | Parkes | Mar 1995 | A |
5400434 | Pearson | Mar 1995 | A |
5404295 | Katz et al. | Apr 1995 | A |
5406305 | Shimomura et al. | Apr 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5412756 | Bauman et al. | May 1995 | A |
5412804 | Krishna | May 1995 | A |
5412806 | Du et al. | May 1995 | A |
5418951 | Damashek | May 1995 | A |
5422656 | Allard et al. | Jun 1995 | A |
5424947 | Nagao et al. | Jun 1995 | A |
5425108 | Hwang et al. | Jun 1995 | A |
5428731 | Powers, III | Jun 1995 | A |
5434777 | Luciw | Jul 1995 | A |
5440615 | Caccuro et al. | Aug 1995 | A |
5442598 | Haikawa et al. | Aug 1995 | A |
5442780 | Takanashi et al. | Aug 1995 | A |
5444823 | Nguyen | Aug 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5450523 | Zhao | Sep 1995 | A |
5455888 | Iyengar et al. | Oct 1995 | A |
5457768 | Tsuboi et al. | Oct 1995 | A |
5459488 | Geiser | Oct 1995 | A |
5463696 | Beernink et al. | Oct 1995 | A |
5463725 | Henckel et al. | Oct 1995 | A |
5465401 | Thompson | Nov 1995 | A |
5469529 | Bimbot et al. | Nov 1995 | A |
5471611 | McGregor | Nov 1995 | A |
5473728 | Luginbuhl et al. | Dec 1995 | A |
5475587 | Anick et al. | Dec 1995 | A |
5475796 | Iwata | Dec 1995 | A |
5477447 | Luciw et al. | Dec 1995 | A |
5477448 | Golding et al. | Dec 1995 | A |
5477451 | Brown et al. | Dec 1995 | A |
5479488 | Lennig et al. | Dec 1995 | A |
5481739 | Staats | Jan 1996 | A |
5483261 | Yasutake | Jan 1996 | A |
5485372 | Golding et al. | Jan 1996 | A |
5485543 | Aso | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5488727 | Agrawal et al. | Jan 1996 | A |
5490234 | Narayan | Feb 1996 | A |
5491758 | Bellegarda et al. | Feb 1996 | A |
5491772 | Hardwick et al. | Feb 1996 | A |
5493677 | Balogh et al. | Feb 1996 | A |
5495604 | Harding et al. | Feb 1996 | A |
5497319 | Chong et al. | Mar 1996 | A |
5500903 | Gulli | Mar 1996 | A |
5500905 | Martin et al. | Mar 1996 | A |
5500937 | Thompson-Rohrlich | Mar 1996 | A |
5502774 | Bellegarda et al. | Mar 1996 | A |
5502790 | Yi | Mar 1996 | A |
5502791 | Nishimura et al. | Mar 1996 | A |
5515475 | Gupta et al. | May 1996 | A |
5521816 | Roche et al. | May 1996 | A |
5524140 | Klausner et al. | Jun 1996 | A |
5530861 | Diannant et al. | Jun 1996 | A |
5530950 | Medan et al. | Jun 1996 | A |
5533182 | Bates et al. | Jul 1996 | A |
5535121 | Roche et al. | Jul 1996 | A |
5536902 | Serra et al. | Jul 1996 | A |
5537317 | Schabes et al. | Jul 1996 | A |
5537618 | Boulton et al. | Jul 1996 | A |
5537647 | Hermansky et al. | Jul 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5543897 | Altrieth, III | Aug 1996 | A |
5544264 | Bellegarda et al. | Aug 1996 | A |
5548507 | Martino et al. | Aug 1996 | A |
5551049 | Kaplan et al. | Aug 1996 | A |
5555343 | Luther | Sep 1996 | A |
5555344 | Zunkler | Sep 1996 | A |
5559301 | Bryan, Jr. et al. | Sep 1996 | A |
5559945 | Beaudet et al. | Sep 1996 | A |
5564446 | Wiltshire | Oct 1996 | A |
5565888 | Selker | Oct 1996 | A |
5568536 | Tiller et al. | Oct 1996 | A |
5568540 | Greco et al. | Oct 1996 | A |
5570324 | Geil | Oct 1996 | A |
5572576 | Klausner et al. | Nov 1996 | A |
5574823 | Hassanein et al. | Nov 1996 | A |
5574824 | Slyh et al. | Nov 1996 | A |
5577135 | Grajski et al. | Nov 1996 | A |
5577164 | Kaneko et al. | Nov 1996 | A |
5577241 | Spencer | Nov 1996 | A |
5578808 | Taylor | Nov 1996 | A |
5579037 | Tahara et al. | Nov 1996 | A |
5579436 | Chou et al. | Nov 1996 | A |
5581484 | Prince | Dec 1996 | A |
5581652 | Abe et al. | Dec 1996 | A |
5581655 | Cohen et al. | Dec 1996 | A |
5583993 | Foster et al. | Dec 1996 | A |
5584024 | Shwartz | Dec 1996 | A |
5586540 | Marzec et al. | Dec 1996 | A |
5594641 | Kaplan et al. | Jan 1997 | A |
5596260 | Moravec et al. | Jan 1997 | A |
5596676 | Swaminathan et al. | Jan 1997 | A |
5596994 | Bro | Jan 1997 | A |
5608624 | Luciw | Mar 1997 | A |
5608698 | Yamanoi et al. | Mar 1997 | A |
5608841 | Tsuboka | Mar 1997 | A |
5610812 | Schabes et al. | Mar 1997 | A |
5613036 | Strong | Mar 1997 | A |
5613122 | Burnard et al. | Mar 1997 | A |
5615378 | Nishino et al. | Mar 1997 | A |
5615384 | Allard et al. | Mar 1997 | A |
5616876 | Cluts | Apr 1997 | A |
5617386 | Choi | Apr 1997 | A |
5617507 | Lee et al. | Apr 1997 | A |
5617539 | Ludwig et al. | Apr 1997 | A |
5619583 | Page et al. | Apr 1997 | A |
5619694 | Shimazu | Apr 1997 | A |
5621859 | Schwartz et al. | Apr 1997 | A |
5621903 | Luciw et al. | Apr 1997 | A |
5627939 | Huang et al. | May 1997 | A |
5634084 | Malsheen et al. | May 1997 | A |
5636325 | Farrett | Jun 1997 | A |
5638425 | Meador, III et al. | Jun 1997 | A |
5638489 | Tsuboka | Jun 1997 | A |
5638523 | Mullet et al. | Jun 1997 | A |
5640487 | Lau et al. | Jun 1997 | A |
5642464 | Yue et al. | Jun 1997 | A |
5642466 | Narayan | Jun 1997 | A |
5642519 | Martin | Jun 1997 | A |
5644656 | Akra et al. | Jul 1997 | A |
5644727 | Atkins | Jul 1997 | A |
5644735 | Luciw et al. | Jul 1997 | A |
5649060 | Ellozy et al. | Jul 1997 | A |
5652828 | Silverman | Jul 1997 | A |
5652884 | Palevich | Jul 1997 | A |
5652897 | Linebarger et al. | Jul 1997 | A |
5661787 | Pocock | Aug 1997 | A |
5664055 | Kroon | Sep 1997 | A |
5664206 | Murow et al. | Sep 1997 | A |
5670985 | Cappels, Sr. et al. | Sep 1997 | A |
5675704 | Juang et al. | Oct 1997 | A |
5675819 | Schuetze | Oct 1997 | A |
5678039 | Hinks et al. | Oct 1997 | A |
5678053 | Anderson | Oct 1997 | A |
5680511 | Baker et al. | Oct 1997 | A |
5682475 | Johnson et al. | Oct 1997 | A |
5682539 | Conrad et al. | Oct 1997 | A |
5684513 | Decker | Nov 1997 | A |
5687077 | Gough, Jr. | Nov 1997 | A |
5689287 | Mackinlay et al. | Nov 1997 | A |
5689616 | Li | Nov 1997 | A |
5689618 | Gasper et al. | Nov 1997 | A |
5692205 | Berry et al. | Nov 1997 | A |
5696962 | Kupiec | Dec 1997 | A |
5697793 | Huffman et al. | Dec 1997 | A |
5699082 | Marks et al. | Dec 1997 | A |
5701400 | Amado | Dec 1997 | A |
5706442 | Anderson et al. | Jan 1998 | A |
5708659 | Rostoker et al. | Jan 1998 | A |
5708822 | Wical | Jan 1998 | A |
5710886 | Christensen et al. | Jan 1998 | A |
5710922 | Alley et al. | Jan 1998 | A |
5712949 | Kato et al. | Jan 1998 | A |
5712957 | Waibel et al. | Jan 1998 | A |
5715468 | Budzinski | Feb 1998 | A |
5717877 | Orton et al. | Feb 1998 | A |
5721827 | Logan et al. | Feb 1998 | A |
5721949 | Smith et al. | Feb 1998 | A |
5724406 | Juster | Mar 1998 | A |
5724985 | Snell et al. | Mar 1998 | A |
5726672 | Hernandez et al. | Mar 1998 | A |
5727950 | Cook et al. | Mar 1998 | A |
5729694 | Holzrichter et al. | Mar 1998 | A |
5729704 | Stone et al. | Mar 1998 | A |
5732216 | Logan et al. | Mar 1998 | A |
5732390 | Katayanagi et al. | Mar 1998 | A |
5732395 | Silverman | Mar 1998 | A |
5734750 | Arai et al. | Mar 1998 | A |
5734791 | Acero et al. | Mar 1998 | A |
5736974 | Selker | Apr 1998 | A |
5737487 | Bellegarda et al. | Apr 1998 | A |
5737609 | Reed et al. | Apr 1998 | A |
5737734 | Schultz | Apr 1998 | A |
5739451 | Winksy et al. | Apr 1998 | A |
5740143 | Suetomi | Apr 1998 | A |
5742705 | Parthasarathy | Apr 1998 | A |
5742736 | Haddock | Apr 1998 | A |
5745116 | Pisutha-Arnond | Apr 1998 | A |
5745843 | Wetters et al. | Apr 1998 | A |
5745873 | Braida et al. | Apr 1998 | A |
5748512 | Vargas | May 1998 | A |
5748974 | Johnson | May 1998 | A |
5749071 | Silverman | May 1998 | A |
5749081 | Whiteis | May 1998 | A |
5751906 | Silverman | May 1998 | A |
5757358 | Osga | May 1998 | A |
5757979 | Hongo et al. | May 1998 | A |
5758024 | Alleva | May 1998 | A |
5758079 | Ludwig et al. | May 1998 | A |
5758083 | Singh et al. | May 1998 | A |
5758314 | McKenna | May 1998 | A |
5758318 | Kojima et al. | May 1998 | A |
5759101 | Von Kohorn | Jun 1998 | A |
5761640 | Kalyanswamy et al. | Jun 1998 | A |
5761687 | Hon et al. | Jun 1998 | A |
5764852 | Williams | Jun 1998 | A |
5765131 | Stentiford et al. | Jun 1998 | A |
5765168 | Burrows | Jun 1998 | A |
5771276 | Wolf | Jun 1998 | A |
5774834 | Visser | Jun 1998 | A |
5774855 | Foti et al. | Jun 1998 | A |
5774859 | Houser et al. | Jun 1998 | A |
5777614 | Ando et al. | Jul 1998 | A |
5778405 | Ogawa | Jul 1998 | A |
5790978 | Olive et al. | Aug 1998 | A |
5794050 | Dahlgren et al. | Aug 1998 | A |
5794182 | Manduchi et al. | Aug 1998 | A |
5794189 | Gould | Aug 1998 | A |
5794207 | Walker et al. | Aug 1998 | A |
5794237 | Gore, Jr. | Aug 1998 | A |
5797008 | Burrows | Aug 1998 | A |
5799268 | Boguraev | Aug 1998 | A |
5799269 | Schabes et al. | Aug 1998 | A |
5799276 | Komissarchik et al. | Aug 1998 | A |
5799279 | Gould et al. | Aug 1998 | A |
5801692 | Muzio et al. | Sep 1998 | A |
5802466 | Gallant et al. | Sep 1998 | A |
5802526 | Fawcett et al. | Sep 1998 | A |
5806021 | Chen et al. | Sep 1998 | A |
5812697 | Sakai et al. | Sep 1998 | A |
5812698 | Platt et al. | Sep 1998 | A |
5815142 | Allard et al. | Sep 1998 | A |
5815225 | Nelson | Sep 1998 | A |
5818142 | Edleblute et al. | Oct 1998 | A |
5818451 | Bertram et al. | Oct 1998 | A |
5818924 | King et al. | Oct 1998 | A |
5822288 | Shinada | Oct 1998 | A |
5822720 | Bookman et al. | Oct 1998 | A |
5822730 | Roth et al. | Oct 1998 | A |
5822743 | Gupta et al. | Oct 1998 | A |
5825349 | Meier et al. | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5825881 | Colvin, Sr. | Oct 1998 | A |
5826261 | Spencer | Oct 1998 | A |
5828768 | Eatwell et al. | Oct 1998 | A |
5828999 | Bellegarda et al. | Oct 1998 | A |
5832428 | Chow et al. | Nov 1998 | A |
5832433 | Yashchin et al. | Nov 1998 | A |
5832435 | Silverman | Nov 1998 | A |
5833134 | Ho et al. | Nov 1998 | A |
5835077 | Dao et al. | Nov 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5835721 | Donahue et al. | Nov 1998 | A |
5835732 | Kikinis et al. | Nov 1998 | A |
5835888 | Kanevsky et al. | Nov 1998 | A |
5835893 | Ushioda | Nov 1998 | A |
5839106 | Bellegarda | Nov 1998 | A |
5841902 | Tu | Nov 1998 | A |
5842165 | Raman et al. | Nov 1998 | A |
5845255 | Mayaud | Dec 1998 | A |
5848410 | Walls et al. | Dec 1998 | A |
5850480 | Scanlon | Dec 1998 | A |
5850629 | Holm et al. | Dec 1998 | A |
5852801 | Hon et al. | Dec 1998 | A |
5854893 | Ludwig et al. | Dec 1998 | A |
5855000 | Waibel et al. | Dec 1998 | A |
5857184 | Lynch | Jan 1999 | A |
5859636 | Pandit | Jan 1999 | A |
5860063 | Gorin et al. | Jan 1999 | A |
5860064 | Henton | Jan 1999 | A |
5860075 | Hashizume et al. | Jan 1999 | A |
5862223 | Walker et al. | Jan 1999 | A |
5862233 | Poletti | Jan 1999 | A |
5864806 | Mokbel et al. | Jan 1999 | A |
5864808 | Ando et al. | Jan 1999 | A |
5864815 | Rozak et al. | Jan 1999 | A |
5864844 | James et al. | Jan 1999 | A |
5864855 | Ruocco et al. | Jan 1999 | A |
5864868 | Contois | Jan 1999 | A |
5867799 | Lang et al. | Feb 1999 | A |
5870710 | Ozawa et al. | Feb 1999 | A |
5873056 | Liddy et al. | Feb 1999 | A |
5873064 | De Armas et al. | Feb 1999 | A |
5875427 | Yamazaki | Feb 1999 | A |
5875429 | Douglas | Feb 1999 | A |
5875437 | Atkins | Feb 1999 | A |
5875448 | Boys et al. | Feb 1999 | A |
5876396 | Lo et al. | Mar 1999 | A |
5877751 | Kanemitsu et al. | Mar 1999 | A |
5877757 | Baldwin et al. | Mar 1999 | A |
5878393 | Hata et al. | Mar 1999 | A |
5878394 | Muhling | Mar 1999 | A |
5878396 | Henton | Mar 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5880731 | Liles et al. | Mar 1999 | A |
5884039 | Ludwig et al. | Mar 1999 | A |
5884262 | Wise et al. | Mar 1999 | A |
5884323 | Hawkins et al. | Mar 1999 | A |
5890117 | Silverman | Mar 1999 | A |
5890122 | Van et al. | Mar 1999 | A |
5891180 | Greeninger et al. | Apr 1999 | A |
5893058 | Kosaka | Apr 1999 | A |
5893126 | Drews et al. | Apr 1999 | A |
5893132 | Huffman et al. | Apr 1999 | A |
5895448 | Vysotsky et al. | Apr 1999 | A |
5895464 | Bhandari et al. | Apr 1999 | A |
5895466 | Goldberg et al. | Apr 1999 | A |
5896321 | Miller et al. | Apr 1999 | A |
5896500 | Ludwig et al. | Apr 1999 | A |
5898933 | Kaschke | Apr 1999 | A |
5899972 | Miyazawa et al. | May 1999 | A |
5905498 | Diament et al. | May 1999 | A |
5907597 | Mark | May 1999 | A |
5909666 | Gould et al. | Jun 1999 | A |
5909667 | Leontiades et al. | Jun 1999 | A |
5912951 | Checchio et al. | Jun 1999 | A |
5912952 | Brendzel | Jun 1999 | A |
5913185 | Martino et al. | Jun 1999 | A |
5913193 | Huang et al. | Jun 1999 | A |
5915001 | Uppaluru et al. | Jun 1999 | A |
5915236 | Gould et al. | Jun 1999 | A |
5915238 | Tjaden | Jun 1999 | A |
5915249 | Spencer | Jun 1999 | A |
5917487 | Ulrich | Jun 1999 | A |
5918303 | Yamaura et al. | Jun 1999 | A |
5920327 | Seidensticker, Jr. | Jul 1999 | A |
5920836 | Gould et al. | Jul 1999 | A |
5920837 | Gould et al. | Jul 1999 | A |
5923757 | Hocker et al. | Jul 1999 | A |
5924068 | Richard et al. | Jul 1999 | A |
5926769 | Valimaa et al. | Jul 1999 | A |
5926789 | Barbara et al. | Jul 1999 | A |
5930408 | Seto | Jul 1999 | A |
5930751 | Cohrs et al. | Jul 1999 | A |
5930754 | Karaali et al. | Jul 1999 | A |
5930769 | Rose | Jul 1999 | A |
5930783 | Li et al. | Jul 1999 | A |
5933477 | Wu | Aug 1999 | A |
5933806 | Beyerlein et al. | Aug 1999 | A |
5933822 | Braden-Harder et al. | Aug 1999 | A |
5936926 | Yokouchi et al. | Aug 1999 | A |
5937163 | Lee et al. | Aug 1999 | A |
5940811 | Norris | Aug 1999 | A |
5940841 | Schmuck et al. | Aug 1999 | A |
5941944 | Messerly | Aug 1999 | A |
5943043 | Furuhata et al. | Aug 1999 | A |
5943049 | Matsubara et al. | Aug 1999 | A |
5943052 | Allen et al. | Aug 1999 | A |
5943429 | Haendel et al. | Aug 1999 | A |
5943443 | Itonori et al. | Aug 1999 | A |
5943670 | Prager | Aug 1999 | A |
5946647 | Miller et al. | Aug 1999 | A |
5946648 | Halstead et al. | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5949961 | Sharman | Sep 1999 | A |
5950123 | Schwelb et al. | Sep 1999 | A |
5952992 | Helms | Sep 1999 | A |
5953541 | King et al. | Sep 1999 | A |
5956021 | Kubota et al. | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
5960385 | Skiena et al. | Sep 1999 | A |
5960394 | Gould et al. | Sep 1999 | A |
5960422 | Prasad | Sep 1999 | A |
5963208 | Dolan et al. | Oct 1999 | A |
5963924 | Williams et al. | Oct 1999 | A |
5963964 | Nielsen | Oct 1999 | A |
5966126 | Szabo | Oct 1999 | A |
5970446 | Goldberg et al. | Oct 1999 | A |
5970451 | Lewis et al. | Oct 1999 | A |
5970460 | Bunce et al. | Oct 1999 | A |
5970474 | LeRoy et al. | Oct 1999 | A |
5973612 | Deo et al. | Oct 1999 | A |
5973676 | Kawakura | Oct 1999 | A |
5974146 | Randle et al. | Oct 1999 | A |
5977950 | Rhyne | Nov 1999 | A |
5982352 | Pryor | Nov 1999 | A |
5982370 | Kamper | Nov 1999 | A |
5982891 | Ginter et al. | Nov 1999 | A |
5982902 | Terano | Nov 1999 | A |
5983179 | Gould et al. | Nov 1999 | A |
5983184 | Noguchi | Nov 1999 | A |
5983216 | Kirsch et al. | Nov 1999 | A |
5987132 | Rowney | Nov 1999 | A |
5987140 | Rowney et al. | Nov 1999 | A |
5987401 | Trudeau | Nov 1999 | A |
5987404 | Della Pietra et al. | Nov 1999 | A |
5987440 | O'Neil et al. | Nov 1999 | A |
5990887 | Redpath et al. | Nov 1999 | A |
5991441 | Jourjine | Nov 1999 | A |
5995460 | Takagi et al. | Nov 1999 | A |
5995590 | Brunet et al. | Nov 1999 | A |
5995918 | Kendall et al. | Nov 1999 | A |
5995928 | Nguyen et al. | Nov 1999 | A |
5998972 | Gong | Dec 1999 | A |
5999169 | Lee | Dec 1999 | A |
5999895 | Forest | Dec 1999 | A |
5999908 | Abelow | Dec 1999 | A |
5999927 | Tukey et al. | Dec 1999 | A |
5999950 | Krueger et al. | Dec 1999 | A |
6005495 | Connolly et al. | Dec 1999 | A |
6006274 | Hawkins et al. | Dec 1999 | A |
6009237 | Hirabayashi et al. | Dec 1999 | A |
6011585 | Anderson | Jan 2000 | A |
6014428 | Wolf | Jan 2000 | A |
6016471 | Kuhn et al. | Jan 2000 | A |
6017219 | Adams, Jr. et al. | Jan 2000 | A |
6018705 | Gaudet | Jan 2000 | A |
6018711 | French-St. George et al. | Jan 2000 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6023536 | Visser | Feb 2000 | A |
6023676 | Erell | Feb 2000 | A |
6023684 | Pearson | Feb 2000 | A |
6024288 | Gottlich et al. | Feb 2000 | A |
6026345 | Shah et al. | Feb 2000 | A |
6026375 | Hall et al. | Feb 2000 | A |
6026388 | Liddy et al. | Feb 2000 | A |
6026393 | Gupta et al. | Feb 2000 | A |
6029132 | Kuhn et al. | Feb 2000 | A |
6029135 | Krasle | Feb 2000 | A |
6035267 | Watanabe et al. | Mar 2000 | A |
6035303 | Baer et al. | Mar 2000 | A |
6035336 | Lu et al. | Mar 2000 | A |
6038533 | Buchsbaum et al. | Mar 2000 | A |
6040824 | Maekawa et al. | Mar 2000 | A |
6041023 | Lakhansingh | Mar 2000 | A |
6047255 | Williamson | Apr 2000 | A |
6047300 | Walfish et al. | Apr 2000 | A |
6052654 | Gaudet et al. | Apr 2000 | A |
6052656 | Suda et al. | Apr 2000 | A |
6054990 | Tran | Apr 2000 | A |
6055514 | Wren | Apr 2000 | A |
6055531 | Bennett et al. | Apr 2000 | A |
6061646 | Martino et al. | May 2000 | A |
6064767 | Muir et al. | May 2000 | A |
6064951 | Park et al. | May 2000 | A |
6064959 | Young et al. | May 2000 | A |
6064960 | Bellegarda et al. | May 2000 | A |
6064963 | Gainsboro | May 2000 | A |
6067519 | Lowry | May 2000 | A |
6067520 | Lee | May 2000 | A |
6069648 | Suso et al. | May 2000 | A |
6070138 | Iwata | May 2000 | A |
6070139 | Miyazawa et al. | May 2000 | A |
6070140 | Tran | May 2000 | A |
6070147 | Harms et al. | May 2000 | A |
6073033 | Campo | Jun 2000 | A |
6073036 | Heikkinen et al. | Jun 2000 | A |
6073091 | Kanevsky et al. | Jun 2000 | A |
6073097 | Gould et al. | Jun 2000 | A |
6076051 | Messerly et al. | Jun 2000 | A |
6076060 | Lin et al. | Jun 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6078885 | Beutnagel | Jun 2000 | A |
6078914 | Redfern | Jun 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6081774 | de Hita et al. | Jun 2000 | A |
6081780 | Lumelsky | Jun 2000 | A |
6081782 | Rabin | Jun 2000 | A |
6085204 | Chijiwa et al. | Jul 2000 | A |
6088671 | Gould et al. | Jul 2000 | A |
6088731 | Kiraly et al. | Jul 2000 | A |
6092036 | Hamann et al. | Jul 2000 | A |
6092038 | Kanevsky et al. | Jul 2000 | A |
6092043 | Squires et al. | Jul 2000 | A |
6094649 | Bowen et al. | Jul 2000 | A |
6097391 | Wilcox | Aug 2000 | A |
6101468 | Gould et al. | Aug 2000 | A |
6101470 | Eide et al. | Aug 2000 | A |
6105865 | Hardesty | Aug 2000 | A |
6108627 | Sabourin | Aug 2000 | A |
6108640 | Slotznick | Aug 2000 | A |
6111562 | Downs et al. | Aug 2000 | A |
6111572 | Blair et al. | Aug 2000 | A |
6115686 | Chung et al. | Sep 2000 | A |
6116907 | Baker et al. | Sep 2000 | A |
6119101 | Peckover | Sep 2000 | A |
6121960 | Carroll et al. | Sep 2000 | A |
6122340 | Darley et al. | Sep 2000 | A |
6122614 | Kahn et al. | Sep 2000 | A |
6122616 | Henton | Sep 2000 | A |
6122647 | Horowitz et al. | Sep 2000 | A |
6125284 | Moore et al. | Sep 2000 | A |
6125346 | Nishimura et al. | Sep 2000 | A |
6125356 | Brockman et al. | Sep 2000 | A |
6129582 | Wilhite et al. | Oct 2000 | A |
6138098 | Shieber et al. | Oct 2000 | A |
6138158 | Boyle et al. | Oct 2000 | A |
6141642 | Oh | Oct 2000 | A |
6141644 | Kuhn et al. | Oct 2000 | A |
6144377 | Oppermann et al. | Nov 2000 | A |
6144380 | Shwarts et al. | Nov 2000 | A |
6144938 | Surace et al. | Nov 2000 | A |
6144939 | Pearson et al. | Nov 2000 | A |
6151401 | Annaratone | Nov 2000 | A |
6151574 | Lee et al. | Nov 2000 | A |
6154551 | Frenkel | Nov 2000 | A |
6154720 | Onishi et al. | Nov 2000 | A |
6157935 | Tran et al. | Dec 2000 | A |
6161084 | Messerly et al. | Dec 2000 | A |
6161087 | Wightman et al. | Dec 2000 | A |
6161944 | Leman | Dec 2000 | A |
6163769 | Acero et al. | Dec 2000 | A |
6163809 | Buckley | Dec 2000 | A |
6167369 | Schulze | Dec 2000 | A |
6169538 | Nowlan et al. | Jan 2001 | B1 |
6172948 | Keller et al. | Jan 2001 | B1 |
6173194 | Vanttila | Jan 2001 | B1 |
6173251 | Ito et al. | Jan 2001 | B1 |
6173261 | Arai et al. | Jan 2001 | B1 |
6173263 | Conkie | Jan 2001 | B1 |
6173279 | Levin et al. | Jan 2001 | B1 |
6177905 | Welch | Jan 2001 | B1 |
6177931 | Alexander et al. | Jan 2001 | B1 |
6179432 | Zhang et al. | Jan 2001 | B1 |
6182028 | Karaali et al. | Jan 2001 | B1 |
6182099 | Nakasato | Jan 2001 | B1 |
6185533 | Holm et al. | Feb 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6188967 | Kurtzberg et al. | Feb 2001 | B1 |
6188999 | Moody | Feb 2001 | B1 |
6191939 | Burnett | Feb 2001 | B1 |
6192253 | Charlier et al. | Feb 2001 | B1 |
6192340 | Abecassis | Feb 2001 | B1 |
6195641 | Loring et al. | Feb 2001 | B1 |
6199076 | Logan et al. | Mar 2001 | B1 |
6205456 | Nakao | Mar 2001 | B1 |
6208044 | Viswanadham et al. | Mar 2001 | B1 |
6208932 | Ohmura et al. | Mar 2001 | B1 |
6208956 | Motoyama | Mar 2001 | B1 |
6208964 | Sabourin | Mar 2001 | B1 |
6208967 | Pauws et al. | Mar 2001 | B1 |
6208971 | Bellegarda et al. | Mar 2001 | B1 |
6212564 | Harter et al. | Apr 2001 | B1 |
6216102 | Martino et al. | Apr 2001 | B1 |
6216131 | Liu et al. | Apr 2001 | B1 |
6217183 | Shipman | Apr 2001 | B1 |
6219641 | Socaciu | Apr 2001 | B1 |
6222347 | Gong | Apr 2001 | B1 |
6226403 | Parthasarathy | May 2001 | B1 |
6226533 | Akahane | May 2001 | B1 |
6226614 | Mizuno et al. | May 2001 | B1 |
6226655 | Borman et al. | May 2001 | B1 |
6230322 | Saib et al. | May 2001 | B1 |
6232539 | Looney et al. | May 2001 | B1 |
6232966 | Kurlander | May 2001 | B1 |
6233545 | Datig | May 2001 | B1 |
6233547 | Denber et al. | May 2001 | B1 |
6233559 | Balakrishnan | May 2001 | B1 |
6233578 | Machihara et al. | May 2001 | B1 |
6237025 | Ludwig et al. | May 2001 | B1 |
6240303 | Katzur | May 2001 | B1 |
6243681 | Guji et al. | Jun 2001 | B1 |
6246981 | Papineni et al. | Jun 2001 | B1 |
6248946 | Dwek | Jun 2001 | B1 |
6249606 | Kiraly et al. | Jun 2001 | B1 |
6259436 | Moon et al. | Jul 2001 | B1 |
6259826 | Pollard et al. | Jul 2001 | B1 |
6260011 | Heckerman et al. | Jul 2001 | B1 |
6260013 | Sejnoha | Jul 2001 | B1 |
6260016 | Holm et al. | Jul 2001 | B1 |
6260024 | Shkedy | Jul 2001 | B1 |
6266098 | Cove et al. | Jul 2001 | B1 |
6266637 | Donovan et al. | Jul 2001 | B1 |
6268859 | Andresen et al. | Jul 2001 | B1 |
6269712 | Zentmyer | Aug 2001 | B1 |
6271835 | Hoeksma | Aug 2001 | B1 |
6272456 | De Campos | Aug 2001 | B1 |
6272464 | Kiraz et al. | Aug 2001 | B1 |
6275795 | Tzirkel-Hancock | Aug 2001 | B1 |
6275824 | O'Flaherty et al. | Aug 2001 | B1 |
6278443 | Amro et al. | Aug 2001 | B1 |
6278970 | Milner | Aug 2001 | B1 |
6282507 | Horiguchi et al. | Aug 2001 | B1 |
6282511 | Mayer | Aug 2001 | B1 |
6285785 | Bellegarda et al. | Sep 2001 | B1 |
6285786 | Seni et al. | Sep 2001 | B1 |
6289085 | Miyashita et al. | Sep 2001 | B1 |
6289124 | Okamoto | Sep 2001 | B1 |
6289301 | Higginbotham et al. | Sep 2001 | B1 |
6289353 | Hazlehurst et al. | Sep 2001 | B1 |
6292772 | Kantrowitz | Sep 2001 | B1 |
6292778 | Sukkar | Sep 2001 | B1 |
6295390 | Kobayashi et al. | Sep 2001 | B1 |
6295391 | Rudd et al. | Sep 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6297818 | Ulrich et al. | Oct 2001 | B1 |
6298314 | Blackadar et al. | Oct 2001 | B1 |
6298321 | Karlov et al. | Oct 2001 | B1 |
6300947 | Kanevsky | Oct 2001 | B1 |
6304844 | Pan et al. | Oct 2001 | B1 |
6304846 | George et al. | Oct 2001 | B1 |
6307548 | Flinchem et al. | Oct 2001 | B1 |
6308149 | Gaussier et al. | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6311152 | Bai et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6311189 | deVries et al. | Oct 2001 | B1 |
6314397 | Lewis et al. | Nov 2001 | B1 |
6317237 | Nakao et al. | Nov 2001 | B1 |
6317594 | Gossman et al. | Nov 2001 | B1 |
6317707 | Bangalore et al. | Nov 2001 | B1 |
6317831 | King | Nov 2001 | B1 |
6321092 | Fitch et al. | Nov 2001 | B1 |
6321179 | Glance et al. | Nov 2001 | B1 |
6321196 | Franceschi | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6324499 | Lewis et al. | Nov 2001 | B1 |
6324502 | Handel et al. | Nov 2001 | B1 |
6324512 | Junqua et al. | Nov 2001 | B1 |
6324514 | Matulich et al. | Nov 2001 | B2 |
6330538 | Breen | Dec 2001 | B1 |
6330539 | Takayama et al. | Dec 2001 | B1 |
6331867 | Eberhard et al. | Dec 2001 | B1 |
6332175 | Birrell et al. | Dec 2001 | B1 |
6334103 | Surace et al. | Dec 2001 | B1 |
6335722 | Tani et al. | Jan 2002 | B1 |
6336365 | Blackadar et al. | Jan 2002 | B1 |
6336727 | Kim | Jan 2002 | B1 |
6340937 | Stepita-Klauco | Jan 2002 | B1 |
6341316 | Kloba et al. | Jan 2002 | B1 |
6343267 | Kuhn et al. | Jan 2002 | B1 |
6345240 | Havens | Feb 2002 | B1 |
6345250 | Martin | Feb 2002 | B1 |
6347296 | Friedland | Feb 2002 | B1 |
6351522 | Vitikainen | Feb 2002 | B1 |
6351762 | Ludwig et al. | Feb 2002 | B1 |
6353442 | Masui | Mar 2002 | B1 |
6353794 | Davis et al. | Mar 2002 | B1 |
6356287 | Ruberry et al. | Mar 2002 | B1 |
6356854 | Schubert et al. | Mar 2002 | B1 |
6356864 | Foltz et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6357147 | Darley et al. | Mar 2002 | B1 |
6359572 | Vale | Mar 2002 | B1 |
6359970 | Burgess | Mar 2002 | B1 |
6360227 | Aggarwal et al. | Mar 2002 | B1 |
6360237 | Schulz et al. | Mar 2002 | B1 |
6363347 | Rozak | Mar 2002 | B1 |
6363348 | Besting et al. | Mar 2002 | B1 |
6366883 | Campbell et al. | Apr 2002 | B1 |
6366884 | Bellegarda et al. | Apr 2002 | B1 |
6374217 | Bellegarda | Apr 2002 | B1 |
6374226 | Hunt et al. | Apr 2002 | B1 |
6377530 | Burrows | Apr 2002 | B1 |
6377925 | Greene, Jr. et al. | Apr 2002 | B1 |
6377928 | Saxena et al. | Apr 2002 | B1 |
6381593 | Yano et al. | Apr 2002 | B1 |
6385586 | Dietz | May 2002 | B1 |
6385662 | Moon et al. | May 2002 | B1 |
6389114 | Dowens et al. | May 2002 | B1 |
6397183 | Baba et al. | May 2002 | B1 |
6397186 | Bush et al. | May 2002 | B1 |
6400806 | Uppaluru | Jun 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6401065 | Kanevsky et al. | Jun 2002 | B1 |
6401085 | Gershman et al. | Jun 2002 | B1 |
6405169 | Kondo et al. | Jun 2002 | B1 |
6405238 | Votipka | Jun 2002 | B1 |
6408272 | White et al. | Jun 2002 | B1 |
6411924 | De Hita et al. | Jun 2002 | B1 |
6411932 | Molnar et al. | Jun 2002 | B1 |
6415250 | Van Den Akker | Jul 2002 | B1 |
6417873 | Fletcher et al. | Jul 2002 | B1 |
6418431 | Mahajan et al. | Jul 2002 | B1 |
6421305 | Gioscia et al. | Jul 2002 | B1 |
6421672 | McAllister et al. | Jul 2002 | B1 |
6421707 | Miller et al. | Jul 2002 | B1 |
6424944 | Hikawa | Jul 2002 | B1 |
6430531 | Polish | Aug 2002 | B1 |
6430551 | Thelen et al. | Aug 2002 | B1 |
6434522 | Tsuboka | Aug 2002 | B1 |
6434524 | Weber | Aug 2002 | B1 |
6434529 | Walker et al. | Aug 2002 | B1 |
6434604 | Harada et al. | Aug 2002 | B1 |
6437818 | Ludwig et al. | Aug 2002 | B1 |
6438523 | Oberteuffer et al. | Aug 2002 | B1 |
6442518 | Van Thong et al. | Aug 2002 | B1 |
6442523 | Siegel | Aug 2002 | B1 |
6446076 | Burkey et al. | Sep 2002 | B1 |
6448485 | Barile | Sep 2002 | B1 |
6448986 | Smith | Sep 2002 | B1 |
6449620 | Draper et al. | Sep 2002 | B1 |
6453281 | Walters et al. | Sep 2002 | B1 |
6453292 | Ramaswamy et al. | Sep 2002 | B2 |
6453312 | Goiffon et al. | Sep 2002 | B1 |
6453315 | Weissman et al. | Sep 2002 | B1 |
6456616 | Rantanen | Sep 2002 | B1 |
6456972 | Gladstein et al. | Sep 2002 | B1 |
6460015 | Hetherington et al. | Oct 2002 | B1 |
6460029 | Fries et al. | Oct 2002 | B1 |
6462778 | Abram et al. | Oct 2002 | B1 |
6463128 | Elwin | Oct 2002 | B1 |
6463413 | Applebaum et al. | Oct 2002 | B1 |
6466654 | Cooper et al. | Oct 2002 | B1 |
6467924 | Shipman | Oct 2002 | B2 |
6469712 | Hilpert, Jr. et al. | Oct 2002 | B1 |
6469722 | Kinoe et al. | Oct 2002 | B1 |
6469732 | Chang et al. | Oct 2002 | B1 |
6470347 | Gillam | Oct 2002 | B1 |
6473630 | Baranowski et al. | Oct 2002 | B1 |
6473754 | Matsubayashi et al. | Oct 2002 | B1 |
6477488 | Bellegarda | Nov 2002 | B1 |
6477494 | Hyde-Thomson et al. | Nov 2002 | B2 |
6487533 | Hyde-Thomson et al. | Nov 2002 | B2 |
6487534 | Thelen et al. | Nov 2002 | B1 |
6487663 | Jaisimha et al. | Nov 2002 | B1 |
6489951 | Wong et al. | Dec 2002 | B1 |
6490547 | Atkin et al. | Dec 2002 | B1 |
6490560 | Ramaswamy et al. | Dec 2002 | B1 |
6493006 | Gourdol et al. | Dec 2002 | B1 |
6493428 | Hillier | Dec 2002 | B1 |
6493652 | Ohlenbusch et al. | Dec 2002 | B1 |
6493667 | De Souza et al. | Dec 2002 | B1 |
6499013 | Weber | Dec 2002 | B1 |
6499014 | Chihara | Dec 2002 | B1 |
6499016 | Anderson et al. | Dec 2002 | B1 |
6501937 | Ho et al. | Dec 2002 | B1 |
6502022 | Chastain et al. | Dec 2002 | B1 |
6502194 | Berman et al. | Dec 2002 | B1 |
6504990 | Abecassis | Jan 2003 | B1 |
6505155 | Vanbuskirk et al. | Jan 2003 | B1 |
6505158 | Conkie | Jan 2003 | B1 |
6505175 | Silverman et al. | Jan 2003 | B1 |
6505183 | Loofbourrow et al. | Jan 2003 | B1 |
6507829 | Richards et al. | Jan 2003 | B1 |
6510406 | Marchisio | Jan 2003 | B1 |
6510412 | Sasai et al. | Jan 2003 | B1 |
6510417 | Woods et al. | Jan 2003 | B1 |
6513006 | Howard et al. | Jan 2003 | B2 |
6513008 | Pearson et al. | Jan 2003 | B2 |
6513063 | Julia et al. | Jan 2003 | B1 |
6519565 | Clements et al. | Feb 2003 | B1 |
6519566 | Boyer et al. | Feb 2003 | B1 |
6523026 | Gillis | Feb 2003 | B1 |
6523061 | Halverson et al. | Feb 2003 | B1 |
6523172 | Martinez-Guerra et al. | Feb 2003 | B1 |
6526351 | Whitham | Feb 2003 | B2 |
6526382 | Yuschik | Feb 2003 | B1 |
6526395 | Morris | Feb 2003 | B1 |
6529592 | Khan | Mar 2003 | B1 |
6529608 | Gersabeck et al. | Mar 2003 | B2 |
6532444 | Weber | Mar 2003 | B1 |
6532446 | King | Mar 2003 | B1 |
6535610 | Stewart | Mar 2003 | B1 |
6535852 | Eide | Mar 2003 | B2 |
6535983 | McCormack et al. | Mar 2003 | B1 |
6536139 | Darley et al. | Mar 2003 | B2 |
6538665 | Crow et al. | Mar 2003 | B2 |
6542171 | Satou et al. | Apr 2003 | B1 |
6542584 | Sherwood et al. | Apr 2003 | B1 |
6542868 | Badt et al. | Apr 2003 | B1 |
6546262 | Freadman | Apr 2003 | B1 |
6546367 | Otsuka | Apr 2003 | B2 |
6546388 | Edlund et al. | Apr 2003 | B1 |
6549497 | Miyamoto et al. | Apr 2003 | B2 |
6553343 | Kagoshima et al. | Apr 2003 | B1 |
6553344 | Bellegarda et al. | Apr 2003 | B2 |
6556971 | Rigsby et al. | Apr 2003 | B1 |
6556983 | Altschuler et al. | Apr 2003 | B1 |
6560903 | Darley | May 2003 | B1 |
6563769 | Van Der Meulen | May 2003 | B1 |
6564186 | Kiraly et al. | May 2003 | B1 |
6567549 | Marianetti et al. | May 2003 | B1 |
6570557 | Westerman et al. | May 2003 | B1 |
6570596 | Frederiksen | May 2003 | B2 |
6582342 | Kaufman | Jun 2003 | B2 |
6583806 | Ludwig et al. | Jun 2003 | B2 |
6584464 | Warthen | Jun 2003 | B1 |
6587403 | Keller et al. | Jul 2003 | B1 |
6587404 | Keller et al. | Jul 2003 | B1 |
6590303 | Austin et al. | Jul 2003 | B1 |
6591379 | LeVine et al. | Jul 2003 | B1 |
6594673 | Smith et al. | Jul 2003 | B1 |
6594688 | Ludwig et al. | Jul 2003 | B2 |
6597345 | Hirshberg | Jul 2003 | B2 |
6598021 | Shambaugh et al. | Jul 2003 | B1 |
6598022 | Yuschik | Jul 2003 | B2 |
6598039 | Livowsky | Jul 2003 | B1 |
6598054 | Schuetze et al. | Jul 2003 | B2 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6601234 | Bowman-Amuah | Jul 2003 | B1 |
6603837 | Kesanupalli et al. | Aug 2003 | B1 |
6604059 | Strubbe et al. | Aug 2003 | B2 |
6606101 | Malamud et al. | Aug 2003 | B1 |
6606388 | Townsend et al. | Aug 2003 | B1 |
6606632 | Saulpaugh et al. | Aug 2003 | B1 |
6611789 | Darley | Aug 2003 | B1 |
6615172 | Bennett et al. | Sep 2003 | B1 |
6615175 | Gazdzinski | Sep 2003 | B1 |
6615176 | Lewis et al. | Sep 2003 | B2 |
6615220 | Austin et al. | Sep 2003 | B1 |
6621768 | Keller et al. | Sep 2003 | B1 |
6621892 | Banister et al. | Sep 2003 | B1 |
6622121 | Crepy et al. | Sep 2003 | B1 |
6622136 | Russell | Sep 2003 | B2 |
6622148 | Noble et al. | Sep 2003 | B1 |
6623529 | Lakritz | Sep 2003 | B1 |
6625583 | Silverman et al. | Sep 2003 | B1 |
6628808 | Bach et al. | Sep 2003 | B1 |
6631186 | Adams et al. | Oct 2003 | B1 |
6631346 | Karaorman et al. | Oct 2003 | B1 |
6633741 | Posa et al. | Oct 2003 | B1 |
6633846 | Bennett et al. | Oct 2003 | B1 |
6633932 | Bork et al. | Oct 2003 | B1 |
6642940 | Dakss et al. | Nov 2003 | B1 |
6643401 | Kashioka et al. | Nov 2003 | B1 |
6643824 | Bates et al. | Nov 2003 | B1 |
6647260 | Dusse et al. | Nov 2003 | B2 |
6650735 | Burton et al. | Nov 2003 | B2 |
6651042 | Field et al. | Nov 2003 | B1 |
6651218 | Adler et al. | Nov 2003 | B1 |
6654740 | Tokuda et al. | Nov 2003 | B2 |
6658389 | Alpdemir | Dec 2003 | B1 |
6658408 | Yano et al. | Dec 2003 | B2 |
6658577 | Huppi et al. | Dec 2003 | B2 |
6661438 | Shiraishi et al. | Dec 2003 | B1 |
6662023 | Helle | Dec 2003 | B1 |
6665639 | Mozer et al. | Dec 2003 | B2 |
6665640 | Bennett et al. | Dec 2003 | B1 |
6665641 | Coorman et al. | Dec 2003 | B1 |
6671672 | Heck | Dec 2003 | B1 |
6671683 | Kanno | Dec 2003 | B2 |
6671856 | Gillam | Dec 2003 | B1 |
6675169 | Bennett et al. | Jan 2004 | B1 |
6675233 | Du et al. | Jan 2004 | B1 |
6677932 | Westerman | Jan 2004 | B1 |
6680675 | Suzuki | Jan 2004 | B1 |
6684187 | Conkie | Jan 2004 | B1 |
6684376 | Kerzman et al. | Jan 2004 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6690800 | Resnick | Feb 2004 | B2 |
6690828 | Meyers | Feb 2004 | B2 |
6690956 | Chua et al. | Feb 2004 | B2 |
6691064 | Vroman | Feb 2004 | B2 |
6691090 | Laurila et al. | Feb 2004 | B1 |
6691111 | Lazaridis et al. | Feb 2004 | B2 |
6691151 | Cheyer et al. | Feb 2004 | B1 |
6694295 | Lindholm et al. | Feb 2004 | B2 |
6694297 | Sato | Feb 2004 | B2 |
6697780 | Beutnagel et al. | Feb 2004 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6701294 | Ball et al. | Mar 2004 | B1 |
6701305 | Holt et al. | Mar 2004 | B1 |
6701318 | Fox et al. | Mar 2004 | B2 |
6704015 | Bovarnick et al. | Mar 2004 | B1 |
6704034 | Rodriguez et al. | Mar 2004 | B1 |
6704698 | Paulsen, Jr. et al. | Mar 2004 | B1 |
6704710 | Strong | Mar 2004 | B2 |
6708153 | Brittan et al. | Mar 2004 | B2 |
6711585 | Copperman et al. | Mar 2004 | B1 |
6714221 | Christie et al. | Mar 2004 | B1 |
6716139 | Hosseinzadeh-Dolkhani et al. | Apr 2004 | B1 |
6718324 | Edlund et al. | Apr 2004 | B2 |
6718331 | Davis et al. | Apr 2004 | B2 |
6720980 | Lui et al. | Apr 2004 | B1 |
6721728 | McGreevy | Apr 2004 | B2 |
6721734 | Subasic et al. | Apr 2004 | B1 |
6724370 | Dutta et al. | Apr 2004 | B2 |
6725197 | Wuppermann et al. | Apr 2004 | B1 |
6728675 | Maddalozzo, Jr. et al. | Apr 2004 | B1 |
6728681 | Whitham | Apr 2004 | B2 |
6728729 | Jawa et al. | Apr 2004 | B1 |
6731312 | Robbin | May 2004 | B2 |
6732142 | Bates et al. | May 2004 | B1 |
6735562 | Zhang et al. | May 2004 | B1 |
6735632 | Kiraly et al. | May 2004 | B1 |
6738738 | Henton | May 2004 | B2 |
6738742 | Badt et al. | May 2004 | B2 |
6741264 | Lesser | May 2004 | B1 |
6742021 | Halverson et al. | May 2004 | B1 |
6751592 | Shiga | Jun 2004 | B1 |
6751595 | Busayapongchai et al. | Jun 2004 | B2 |
6751621 | Calistri-Yeh et al. | Jun 2004 | B1 |
6754504 | Reed | Jun 2004 | B1 |
6757362 | Cooper et al. | Jun 2004 | B1 |
6757365 | Bogard | Jun 2004 | B1 |
6757646 | Marchisio | Jun 2004 | B2 |
6757653 | Buth et al. | Jun 2004 | B2 |
6757718 | Halverson et al. | Jun 2004 | B1 |
6760412 | Loucks | Jul 2004 | B1 |
6760700 | Lewis et al. | Jul 2004 | B2 |
6760754 | Isaacs et al. | Jul 2004 | B1 |
6762741 | Weindorf | Jul 2004 | B2 |
6762777 | Carroll | Jul 2004 | B2 |
6763089 | Feigenbaum | Jul 2004 | B2 |
6766294 | MacGinite et al. | Jul 2004 | B2 |
6766295 | Murveit et al. | Jul 2004 | B1 |
6766320 | Wang et al. | Jul 2004 | B1 |
6766324 | Carlson et al. | Jul 2004 | B2 |
6768979 | Menendez-Pidal et al. | Jul 2004 | B1 |
6771982 | Toupin | Aug 2004 | B1 |
6772123 | Cooklev et al. | Aug 2004 | B2 |
6772195 | Hatlelid et al. | Aug 2004 | B1 |
6772394 | Kamada | Aug 2004 | B1 |
6775358 | Breitenbach et al. | Aug 2004 | B1 |
6778951 | Contractor | Aug 2004 | B1 |
6778952 | Bellegarda | Aug 2004 | B2 |
6778962 | Kasai et al. | Aug 2004 | B1 |
6778970 | Au | Aug 2004 | B2 |
6778979 | Grefenstette et al. | Aug 2004 | B2 |
6782510 | Gross et al. | Aug 2004 | B1 |
6784901 | Harvey et al. | Aug 2004 | B1 |
6785869 | Berstis | Aug 2004 | B1 |
6789094 | Rudoff et al. | Sep 2004 | B2 |
6789231 | Reynar et al. | Sep 2004 | B1 |
6790704 | Doyle et al. | Sep 2004 | B2 |
6792082 | Levine | Sep 2004 | B1 |
6792083 | Dams et al. | Sep 2004 | B2 |
6792086 | Saylor et al. | Sep 2004 | B1 |
6792407 | Kibre et al. | Sep 2004 | B2 |
6794566 | Pachet | Sep 2004 | B2 |
6795059 | Endo | Sep 2004 | B2 |
6799162 | Goronzy et al. | Sep 2004 | B1 |
6799226 | Robbin et al. | Sep 2004 | B1 |
6801604 | Maes et al. | Oct 2004 | B2 |
6801964 | Mahdavi | Oct 2004 | B1 |
6803905 | Capps et al. | Oct 2004 | B1 |
6804649 | Miranda | Oct 2004 | B2 |
6804677 | Shadmon et al. | Oct 2004 | B2 |
6807536 | Achlioptas et al. | Oct 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6809724 | Shiraishi et al. | Oct 2004 | B1 |
6810379 | Vermeulen et al. | Oct 2004 | B1 |
6813218 | Antonelli et al. | Nov 2004 | B1 |
6813491 | McKinney | Nov 2004 | B1 |
6813607 | Faruquie et al. | Nov 2004 | B1 |
6816578 | Kredo et al. | Nov 2004 | B1 |
6820055 | Saindon et al. | Nov 2004 | B2 |
6829018 | Lin et al. | Dec 2004 | B2 |
6829603 | Chai et al. | Dec 2004 | B1 |
6832194 | Mozer et al. | Dec 2004 | B1 |
6832381 | Mathur et al. | Dec 2004 | B1 |
6836537 | Zirngibl et al. | Dec 2004 | B1 |
6836651 | Segal et al. | Dec 2004 | B2 |
6836760 | Bellegarda et al. | Dec 2004 | B1 |
6839464 | Hawkins et al. | Jan 2005 | B2 |
6839667 | Reich | Jan 2005 | B2 |
6839669 | Gould et al. | Jan 2005 | B1 |
6839670 | Stammler et al. | Jan 2005 | B1 |
6839742 | Dyer et al. | Jan 2005 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6847966 | Sommer et al. | Jan 2005 | B1 |
6847979 | Allemang et al. | Jan 2005 | B2 |
6850775 | Berg | Feb 2005 | B1 |
6850887 | Epstein et al. | Feb 2005 | B2 |
6851115 | Cheyer et al. | Feb 2005 | B1 |
6856259 | Sharp | Feb 2005 | B1 |
6857800 | Zhang et al. | Feb 2005 | B2 |
6859931 | Cheyer et al. | Feb 2005 | B1 |
6862568 | Case | Mar 2005 | B2 |
6862710 | Marchisio | Mar 2005 | B1 |
6862713 | Kraft et al. | Mar 2005 | B1 |
6865533 | Addison et al. | Mar 2005 | B2 |
6868045 | Schroder | Mar 2005 | B1 |
6868385 | Gerson | Mar 2005 | B1 |
6870529 | Davis | Mar 2005 | B1 |
6871346 | Kumbalimutt et al. | Mar 2005 | B1 |
6873953 | Lennig | Mar 2005 | B1 |
6873986 | McConnell et al. | Mar 2005 | B2 |
6876947 | Darley et al. | Apr 2005 | B1 |
6877003 | Ho et al. | Apr 2005 | B2 |
6879957 | Pechter et al. | Apr 2005 | B1 |
6882335 | Saarinen | Apr 2005 | B2 |
6882337 | Shetter | Apr 2005 | B2 |
6882747 | Thawonmas et al. | Apr 2005 | B2 |
6882955 | Ohlenbusch et al. | Apr 2005 | B1 |
6882971 | Craner | Apr 2005 | B2 |
6885734 | Eberle et al. | Apr 2005 | B1 |
6889361 | Bates et al. | May 2005 | B1 |
6895084 | Saylor et al. | May 2005 | B1 |
6895257 | Boman et al. | May 2005 | B2 |
6895380 | Sepe, Jr. | May 2005 | B2 |
6895558 | Loveland | May 2005 | B1 |
6898550 | Blackadar et al. | May 2005 | B1 |
6901364 | Nguyen et al. | May 2005 | B2 |
6901399 | Corston et al. | May 2005 | B1 |
6904405 | Suominen | Jun 2005 | B2 |
6907112 | Guedalia et al. | Jun 2005 | B1 |
6907140 | Matsugu et al. | Jun 2005 | B2 |
6910004 | Tarbouriech et al. | Jun 2005 | B2 |
6910007 | Stylianou et al. | Jun 2005 | B2 |
6910012 | Hartley et al. | Jun 2005 | B2 |
6910186 | Kim | Jun 2005 | B2 |
6911971 | Suzuki et al. | Jun 2005 | B2 |
6912407 | Clarke et al. | Jun 2005 | B1 |
6912498 | Stevens et al. | Jun 2005 | B2 |
6912499 | Sabourin et al. | Jun 2005 | B1 |
6915138 | Kraft | Jul 2005 | B2 |
6915246 | Gusler et al. | Jul 2005 | B2 |
6915294 | Singh et al. | Jul 2005 | B1 |
6917373 | Vong et al. | Jul 2005 | B2 |
6918677 | Shipman | Jul 2005 | B2 |
6924828 | Hirsch | Aug 2005 | B1 |
6925438 | Mohamed et al. | Aug 2005 | B2 |
6928149 | Panjwani et al. | Aug 2005 | B1 |
6928614 | Everhart | Aug 2005 | B1 |
6931255 | Mekuria | Aug 2005 | B2 |
6931384 | Horvitz et al. | Aug 2005 | B1 |
6932708 | Yamashita et al. | Aug 2005 | B2 |
6933928 | Lilienthal et al. | Aug 2005 | B1 |
6934394 | Anderson | Aug 2005 | B1 |
6934684 | Alpdemir et al. | Aug 2005 | B2 |
6934756 | Maes | Aug 2005 | B2 |
6934812 | Robbin et al. | Aug 2005 | B1 |
6937975 | Elworthy | Aug 2005 | B1 |
6937986 | Denenberg et al. | Aug 2005 | B2 |
6944593 | Kuzunuki et al. | Sep 2005 | B2 |
6944846 | Ryzhov | Sep 2005 | B2 |
6948094 | Schultz et al. | Sep 2005 | B2 |
6950087 | Knox et al. | Sep 2005 | B2 |
6950502 | Jenkins | Sep 2005 | B1 |
6952799 | Edwards et al. | Oct 2005 | B2 |
6954755 | Reisman | Oct 2005 | B2 |
6954899 | Anderson | Oct 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6957076 | Hunzinger | Oct 2005 | B2 |
6957183 | Malayath et al. | Oct 2005 | B2 |
6960734 | Park | Nov 2005 | B1 |
6961699 | Kahn et al. | Nov 2005 | B1 |
6961912 | Aoki et al. | Nov 2005 | B2 |
6963759 | Gerson | Nov 2005 | B1 |
6963841 | Handal et al. | Nov 2005 | B2 |
6964023 | Maes et al. | Nov 2005 | B2 |
6965376 | Tani et al. | Nov 2005 | B2 |
6965863 | Zuberec et al. | Nov 2005 | B1 |
6968311 | Knockeart et al. | Nov 2005 | B2 |
6970820 | Junqua et al. | Nov 2005 | B2 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6970915 | Partovi et al. | Nov 2005 | B1 |
6970935 | Maes | Nov 2005 | B1 |
6975986 | Hartley et al. | Dec 2005 | B2 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6978127 | Bulthuis et al. | Dec 2005 | B1 |
6978239 | Chu et al. | Dec 2005 | B2 |
6980949 | Ford | Dec 2005 | B2 |
6980953 | Kanevsky et al. | Dec 2005 | B1 |
6980955 | Okutani et al. | Dec 2005 | B2 |
6983251 | Umemoto et al. | Jan 2006 | B1 |
6985858 | Frey et al. | Jan 2006 | B2 |
6985865 | Packingham et al. | Jan 2006 | B1 |
6985958 | Zwiegincew et al. | Jan 2006 | B2 |
6988063 | Tokuda et al. | Jan 2006 | B2 |
6988071 | Gazdzinski | Jan 2006 | B1 |
6990450 | Case et al. | Jan 2006 | B2 |
6996520 | Levin | Feb 2006 | B2 |
6996531 | Korall et al. | Feb 2006 | B2 |
6996575 | Cox et al. | Feb 2006 | B2 |
6999066 | Litwiller | Feb 2006 | B2 |
6999914 | Boerner et al. | Feb 2006 | B1 |
6999925 | Fischer et al. | Feb 2006 | B2 |
6999927 | Mozer et al. | Feb 2006 | B2 |
7000189 | Dutta et al. | Feb 2006 | B2 |
7002556 | Tsukada et al. | Feb 2006 | B2 |
7003099 | Zhang et al. | Feb 2006 | B1 |
7003457 | Halonen et al. | Feb 2006 | B2 |
7003463 | Maes et al. | Feb 2006 | B1 |
7003522 | Reynar et al. | Feb 2006 | B1 |
7006969 | Atal | Feb 2006 | B2 |
7006973 | Genly et al. | Feb 2006 | B1 |
7007026 | Wilkinson et al. | Feb 2006 | B2 |
7007239 | Hawkins et al. | Feb 2006 | B1 |
7010581 | Brown et al. | Mar 2006 | B2 |
7013289 | Horn et al. | Mar 2006 | B2 |
7013308 | Tunstall-Pedoe | Mar 2006 | B1 |
7013429 | Fujimoto et al. | Mar 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7020685 | Chen et al. | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7024363 | Comerford et al. | Apr 2006 | B1 |
7024364 | Guerra et al. | Apr 2006 | B2 |
7024366 | Deyoe et al. | Apr 2006 | B1 |
7024460 | Koopmas et al. | Apr 2006 | B2 |
7027568 | Simpson et al. | Apr 2006 | B1 |
7027974 | Busch et al. | Apr 2006 | B1 |
7027990 | Sussman | Apr 2006 | B2 |
7028252 | Baru et al. | Apr 2006 | B1 |
7030861 | Westerman et al. | Apr 2006 | B1 |
7031530 | Driggs et al. | Apr 2006 | B2 |
7031909 | Mao et al. | Apr 2006 | B2 |
7035794 | Sirivara | Apr 2006 | B2 |
7035801 | Jimenez-Feltstrom | Apr 2006 | B2 |
7035807 | Brittain et al. | Apr 2006 | B1 |
7036128 | Julia et al. | Apr 2006 | B1 |
7036681 | Suda et al. | May 2006 | B2 |
7038659 | Rajkowski | May 2006 | B2 |
7039588 | Okutani et al. | May 2006 | B2 |
7043420 | Ratnaparkhi | May 2006 | B2 |
7043422 | Gao et al. | May 2006 | B2 |
7046230 | Zadesky et al. | May 2006 | B2 |
7046850 | Braspenning et al. | May 2006 | B2 |
7047193 | Bellegarda | May 2006 | B1 |
7050550 | Steinbiss et al. | May 2006 | B2 |
7050796 | Humphrey et al. | May 2006 | B2 |
7050976 | Packingham | May 2006 | B1 |
7050977 | Bennett | May 2006 | B1 |
7051096 | Krawiec et al. | May 2006 | B1 |
7054419 | Culliss | May 2006 | B2 |
7054888 | LaChapelle et al. | May 2006 | B2 |
7057607 | Mayoraz et al. | Jun 2006 | B2 |
7058569 | Coorman et al. | Jun 2006 | B2 |
7058888 | Gjerstad et al. | Jun 2006 | B1 |
7058889 | Trovato et al. | Jun 2006 | B2 |
7062223 | Gerber et al. | Jun 2006 | B2 |
7062225 | White | Jun 2006 | B2 |
7062428 | Hogenhout et al. | Jun 2006 | B2 |
7062438 | Kobayashi et al. | Jun 2006 | B2 |
7065185 | Koch | Jun 2006 | B1 |
7065485 | Chong-White et al. | Jun 2006 | B1 |
7069213 | Thompson | Jun 2006 | B2 |
7069220 | Coffman et al. | Jun 2006 | B2 |
7069560 | Cheyer et al. | Jun 2006 | B1 |
7072686 | Schrager | Jul 2006 | B1 |
7072941 | Griffin et al. | Jul 2006 | B2 |
7076527 | Bellegarda et al. | Jul 2006 | B2 |
7079713 | Simmons | Jul 2006 | B2 |
7082322 | Harano | Jul 2006 | B2 |
7084758 | Cole | Aug 2006 | B1 |
7084856 | Huppi | Aug 2006 | B2 |
7085716 | Even et al. | Aug 2006 | B1 |
7085723 | Ross et al. | Aug 2006 | B2 |
7085960 | Bouat et al. | Aug 2006 | B2 |
7088345 | Robinson et al. | Aug 2006 | B2 |
7088853 | Hiroe et al. | Aug 2006 | B2 |
7089292 | Roderick et al. | Aug 2006 | B1 |
7092370 | Jiang et al. | Aug 2006 | B2 |
7092887 | Mozer et al. | Aug 2006 | B2 |
7092928 | Elad et al. | Aug 2006 | B1 |
7092950 | Wong et al. | Aug 2006 | B2 |
7093693 | Gazdzinski | Aug 2006 | B1 |
7095733 | Yarlagadda et al. | Aug 2006 | B1 |
7096183 | Junqua | Aug 2006 | B2 |
7100117 | Chwa et al. | Aug 2006 | B1 |
7103548 | Squibbs et al. | Sep 2006 | B2 |
7107204 | Liu et al. | Sep 2006 | B1 |
7110938 | Cheng et al. | Sep 2006 | B1 |
7110998 | Bhandari et al. | Sep 2006 | B1 |
7111248 | Mulvey et al. | Sep 2006 | B2 |
7111774 | Song | Sep 2006 | B2 |
7112827 | Hayakawa et al. | Sep 2006 | B2 |
7113803 | Dehlin | Sep 2006 | B2 |
7113943 | Bradford et al. | Sep 2006 | B2 |
7115035 | Tanaka | Oct 2006 | B2 |
7117231 | Fischer et al. | Oct 2006 | B2 |
7120586 | Loui et al. | Oct 2006 | B2 |
7120865 | Horvitz et al. | Oct 2006 | B1 |
7123696 | Lowe | Oct 2006 | B2 |
7124081 | Bellegarda | Oct 2006 | B1 |
7124082 | Freedman | Oct 2006 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7124300 | Lemke | Oct 2006 | B1 |
7127046 | Smith et al. | Oct 2006 | B1 |
7127394 | Strong et al. | Oct 2006 | B2 |
7127396 | Chu et al. | Oct 2006 | B2 |
7127403 | Saylor et al. | Oct 2006 | B1 |
7129932 | Klarlund et al. | Oct 2006 | B1 |
7133900 | Szeto | Nov 2006 | B1 |
7136710 | Hoffberg et al. | Nov 2006 | B1 |
7136818 | Cosatto et al. | Nov 2006 | B1 |
7137126 | Coffman et al. | Nov 2006 | B1 |
7139697 | Häkkinen et al. | Nov 2006 | B2 |
7139714 | Bennett et al. | Nov 2006 | B2 |
7139722 | Perrella et al. | Nov 2006 | B2 |
7143028 | Hillis et al. | Nov 2006 | B2 |
7143037 | Chestnut | Nov 2006 | B1 |
7143038 | Katae | Nov 2006 | B2 |
7143040 | Durston et al. | Nov 2006 | B2 |
7146319 | Hunt | Dec 2006 | B2 |
7146437 | Robbin et al. | Dec 2006 | B2 |
7149319 | Roeck | Dec 2006 | B2 |
7149695 | Bellegarda | Dec 2006 | B1 |
7149964 | Cottrille et al. | Dec 2006 | B1 |
7152070 | Musick et al. | Dec 2006 | B1 |
7152093 | Ludwig et al. | Dec 2006 | B2 |
7154526 | Foote et al. | Dec 2006 | B2 |
7155668 | Holland et al. | Dec 2006 | B2 |
7158647 | Azima et al. | Jan 2007 | B2 |
7159174 | Johnson et al. | Jan 2007 | B2 |
7162412 | Yamada et al. | Jan 2007 | B2 |
7162482 | Dunning | Jan 2007 | B1 |
7165073 | Vandersluis | Jan 2007 | B2 |
7166791 | Robbin et al. | Jan 2007 | B2 |
7171350 | Lin et al. | Jan 2007 | B2 |
7171360 | Huang et al. | Jan 2007 | B2 |
7174042 | Simmons et al. | Feb 2007 | B1 |
7174295 | Kivimaki | Feb 2007 | B1 |
7174297 | Guerra et al. | Feb 2007 | B2 |
7174298 | Sharma | Feb 2007 | B2 |
7177794 | Mani et al. | Feb 2007 | B2 |
7177798 | Hsu et al. | Feb 2007 | B2 |
7177817 | Khosla et al. | Feb 2007 | B1 |
7181386 | Mohri et al. | Feb 2007 | B2 |
7181388 | Tian | Feb 2007 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7185276 | Keswa | Feb 2007 | B2 |
7188085 | Pelletier | Mar 2007 | B2 |
7190351 | Goren | Mar 2007 | B1 |
7190794 | Hinde | Mar 2007 | B2 |
7191118 | Bellegarda | Mar 2007 | B2 |
7191131 | Nagao | Mar 2007 | B1 |
7193615 | Kim et al. | Mar 2007 | B2 |
7194186 | Strub et al. | Mar 2007 | B1 |
7194413 | Mahoney et al. | Mar 2007 | B2 |
7194471 | Nagatsuka et al. | Mar 2007 | B1 |
7194611 | Bear et al. | Mar 2007 | B2 |
7194699 | Thomson et al. | Mar 2007 | B2 |
7197120 | Luehrig et al. | Mar 2007 | B2 |
7197460 | Gupta et al. | Mar 2007 | B1 |
7200550 | Menezes et al. | Apr 2007 | B2 |
7200558 | Kato et al. | Apr 2007 | B2 |
7200559 | Wang | Apr 2007 | B2 |
7203297 | Vitikainen et al. | Apr 2007 | B2 |
7203646 | Bennett | Apr 2007 | B2 |
7206809 | Ludwig et al. | Apr 2007 | B2 |
7212827 | Veschi | May 2007 | B1 |
7216008 | Sakata | May 2007 | B2 |
7216066 | Di et al. | May 2007 | B2 |
7216073 | Lavi et al. | May 2007 | B2 |
7216079 | Barnard et al. | May 2007 | B1 |
7216080 | Tsiao et al. | May 2007 | B2 |
7218920 | Hyon | May 2007 | B2 |
7218943 | Klassen et al. | May 2007 | B2 |
7219063 | Schalk et al. | May 2007 | B2 |
7219123 | Fiechter et al. | May 2007 | B1 |
7225125 | Bennett et al. | May 2007 | B2 |
7228278 | Nguyen et al. | Jun 2007 | B2 |
7231343 | Treadgold et al. | Jun 2007 | B1 |
7231597 | Braun et al. | Jun 2007 | B1 |
7233790 | Kjellberg et al. | Jun 2007 | B2 |
7233904 | Luisi | Jun 2007 | B2 |
7234026 | Robbin et al. | Jun 2007 | B2 |
7236932 | Grajski | Jun 2007 | B1 |
7240002 | Minamino et al. | Jul 2007 | B2 |
7243130 | Horvitz et al. | Jul 2007 | B2 |
7243305 | Schabes et al. | Jul 2007 | B2 |
7246118 | Chastain et al. | Jul 2007 | B2 |
7246151 | Isaacs et al. | Jul 2007 | B2 |
7248900 | Deeds et al. | Jul 2007 | B2 |
7251313 | Miller et al. | Jul 2007 | B1 |
7251454 | White | Jul 2007 | B2 |
7254773 | Bates et al. | Aug 2007 | B2 |
7257537 | Ross et al. | Aug 2007 | B2 |
7259752 | Simmons | Aug 2007 | B1 |
7260529 | Lengen | Aug 2007 | B1 |
7260567 | Parikh et al. | Aug 2007 | B2 |
7263373 | Mattisson | Aug 2007 | B2 |
7266189 | Day | Sep 2007 | B1 |
7266495 | Beaufays et al. | Sep 2007 | B1 |
7266496 | Wang et al. | Sep 2007 | B2 |
7266499 | Surace et al. | Sep 2007 | B2 |
7269544 | Simske | Sep 2007 | B2 |
7269556 | Kiss et al. | Sep 2007 | B2 |
7272224 | Normile et al. | Sep 2007 | B1 |
7275063 | Horn | Sep 2007 | B2 |
7277088 | Robinson et al. | Oct 2007 | B2 |
7277854 | Bennett et al. | Oct 2007 | B2 |
7277855 | Acker et al. | Oct 2007 | B1 |
7280958 | Pavlov et al. | Oct 2007 | B2 |
7283072 | Plachta et al. | Oct 2007 | B1 |
7283992 | Liu et al. | Oct 2007 | B2 |
7289102 | Hinckley et al. | Oct 2007 | B2 |
7290039 | Lisitsa et al. | Oct 2007 | B1 |
7292579 | Morris | Nov 2007 | B2 |
7292979 | Karas et al. | Nov 2007 | B2 |
7292980 | August et al. | Nov 2007 | B1 |
7296019 | Chandrasekar et al. | Nov 2007 | B1 |
7296230 | Fukatsu et al. | Nov 2007 | B2 |
7299033 | Kjellberg et al. | Nov 2007 | B2 |
7302392 | Thenthiruperai et al. | Nov 2007 | B1 |
7302394 | Baray et al. | Nov 2007 | B1 |
7302686 | Togawa | Nov 2007 | B2 |
7308404 | Venkataraman et al. | Dec 2007 | B2 |
7308408 | Stifelman et al. | Dec 2007 | B1 |
7310329 | Vieri et al. | Dec 2007 | B2 |
7310600 | Garner et al. | Dec 2007 | B1 |
7310605 | Janakiraman et al. | Dec 2007 | B2 |
7313514 | Rose et al. | Dec 2007 | B2 |
7313523 | Bellegarda et al. | Dec 2007 | B1 |
7315809 | Xun | Jan 2008 | B2 |
7315818 | Stevens et al. | Jan 2008 | B2 |
7318020 | Kim | Jan 2008 | B1 |
7319957 | Robinson et al. | Jan 2008 | B2 |
7321783 | Kim | Jan 2008 | B2 |
7322023 | Shulman et al. | Jan 2008 | B2 |
7324833 | White et al. | Jan 2008 | B2 |
7324947 | Jordan et al. | Jan 2008 | B2 |
7328155 | Endo et al. | Feb 2008 | B2 |
7328250 | Wang et al. | Feb 2008 | B2 |
7333998 | Heckerman et al. | Feb 2008 | B2 |
7345670 | Armstrong | Mar 2008 | B2 |
7345671 | Robbin et al. | Mar 2008 | B2 |
7349953 | Lisitsa et al. | Mar 2008 | B2 |
7353139 | Burrell et al. | Apr 2008 | B1 |
7359493 | Wang et al. | Apr 2008 | B1 |
7359671 | Richenstein et al. | Apr 2008 | B2 |
7359851 | Tong et al. | Apr 2008 | B2 |
7360158 | Beeman | Apr 2008 | B1 |
7362738 | Taube et al. | Apr 2008 | B2 |
7363227 | Mapes-Riordan et al. | Apr 2008 | B2 |
7363586 | Briggs et al. | Apr 2008 | B1 |
7365260 | Kawashima | Apr 2008 | B2 |
7366461 | Brown | Apr 2008 | B1 |
7369984 | Fairweather | May 2008 | B2 |
7373291 | Garst | May 2008 | B2 |
7373612 | Risch et al. | May 2008 | B2 |
7376556 | Bennett | May 2008 | B2 |
7376632 | Sadek et al. | May 2008 | B1 |
7376645 | Bernard | May 2008 | B2 |
7378963 | Begault et al. | May 2008 | B1 |
7379874 | Schmid et al. | May 2008 | B2 |
7380203 | Keely et al. | May 2008 | B2 |
7383170 | Mills et al. | Jun 2008 | B2 |
7386438 | Franz et al. | Jun 2008 | B1 |
7386449 | Sun et al. | Jun 2008 | B2 |
7386799 | Clanton et al. | Jun 2008 | B1 |
7389224 | Elworthy | Jun 2008 | B1 |
7389225 | Jensen et al. | Jun 2008 | B1 |
7392185 | Bennett | Jun 2008 | B2 |
7394947 | Li et al. | Jul 2008 | B2 |
7398209 | Kennewick et al. | Jul 2008 | B2 |
7401300 | Nurmi | Jul 2008 | B2 |
7403938 | Harrison et al. | Jul 2008 | B2 |
7403941 | Bedworth et al. | Jul 2008 | B2 |
7404143 | Freelander et al. | Jul 2008 | B2 |
7409337 | Potter et al. | Aug 2008 | B1 |
7409347 | Bellegarda | Aug 2008 | B1 |
7412389 | Yang | Aug 2008 | B2 |
7412470 | Masuno et al. | Aug 2008 | B2 |
7415100 | Cooper et al. | Aug 2008 | B2 |
7415469 | Singh et al. | Aug 2008 | B2 |
7418382 | Maes | Aug 2008 | B1 |
7418389 | Chu et al. | Aug 2008 | B2 |
7418392 | Mozer et al. | Aug 2008 | B1 |
7426467 | Nashida et al. | Sep 2008 | B2 |
7426468 | Coifman et al. | Sep 2008 | B2 |
7427024 | Gazdzinski et al. | Sep 2008 | B1 |
7428541 | Houle | Sep 2008 | B2 |
7430508 | Williamson et al. | Sep 2008 | B2 |
7433869 | Gollapudi | Oct 2008 | B2 |
7433921 | Ludwig et al. | Oct 2008 | B2 |
7436947 | Wadler et al. | Oct 2008 | B2 |
7441184 | Frerebeau et al. | Oct 2008 | B2 |
7443316 | Lim | Oct 2008 | B2 |
7444589 | Zellner | Oct 2008 | B2 |
7447360 | Li et al. | Nov 2008 | B2 |
7447624 | Fuhrmann et al. | Nov 2008 | B2 |
7447635 | Konopka et al. | Nov 2008 | B1 |
7447637 | Grant et al. | Nov 2008 | B1 |
7451081 | Gajic et al. | Nov 2008 | B1 |
7454351 | Jeschke et al. | Nov 2008 | B2 |
7460652 | Chang | Dec 2008 | B2 |
7461043 | Hess | Dec 2008 | B2 |
7467087 | Gillick et al. | Dec 2008 | B1 |
7467164 | Marsh | Dec 2008 | B2 |
7472061 | Alewine et al. | Dec 2008 | B1 |
7472065 | Aaron et al. | Dec 2008 | B2 |
7475010 | Chao | Jan 2009 | B2 |
7475015 | Epstein et al. | Jan 2009 | B2 |
7475063 | Datta et al. | Jan 2009 | B2 |
7477238 | Fux et al. | Jan 2009 | B2 |
7477240 | Yanagisawa | Jan 2009 | B2 |
7478037 | Strong | Jan 2009 | B2 |
7478091 | Mojsilovic et al. | Jan 2009 | B2 |
7478129 | Chemtob | Jan 2009 | B1 |
7479948 | Kim et al. | Jan 2009 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7483832 | Tischer | Jan 2009 | B2 |
7483894 | Cao | Jan 2009 | B2 |
7487089 | Mozer | Feb 2009 | B2 |
7487093 | Mutsuno et al. | Feb 2009 | B2 |
7490034 | Finnigan et al. | Feb 2009 | B2 |
7490039 | Shaffer et al. | Feb 2009 | B1 |
7493251 | Gao et al. | Feb 2009 | B2 |
7493560 | Kipnes et al. | Feb 2009 | B1 |
7496498 | Chu et al. | Feb 2009 | B2 |
7496512 | Zhao et al. | Feb 2009 | B2 |
7499923 | Kawatani | Mar 2009 | B2 |
7502738 | Kennewick et al. | Mar 2009 | B2 |
7505795 | Lim et al. | Mar 2009 | B1 |
7508324 | Suraqui | Mar 2009 | B2 |
7508373 | Lin et al. | Mar 2009 | B2 |
7516123 | Betz et al. | Apr 2009 | B2 |
7519327 | White | Apr 2009 | B2 |
7519398 | Hirose | Apr 2009 | B2 |
7522927 | Fitch et al. | Apr 2009 | B2 |
7523036 | Akabane et al. | Apr 2009 | B2 |
7523108 | Cao | Apr 2009 | B2 |
7526466 | Au | Apr 2009 | B2 |
7526738 | Ording et al. | Apr 2009 | B2 |
7528713 | Singh et al. | May 2009 | B2 |
7529671 | Rockenbeck et al. | May 2009 | B2 |
7529676 | Koyama | May 2009 | B2 |
7535997 | McQuaide, Jr. et al. | May 2009 | B1 |
7536029 | Choi et al. | May 2009 | B2 |
7536565 | Girish et al. | May 2009 | B2 |
7538685 | Cooper et al. | May 2009 | B1 |
7539619 | Seligman et al. | May 2009 | B1 |
7539656 | Fratkina et al. | May 2009 | B2 |
7541940 | Upton | Jun 2009 | B2 |
7542967 | Hurst-Hiller et al. | Jun 2009 | B2 |
7542971 | Thione et al. | Jun 2009 | B2 |
7543232 | Easton, Jr. et al. | Jun 2009 | B2 |
7546382 | Healey et al. | Jun 2009 | B2 |
7546529 | Reynar et al. | Jun 2009 | B2 |
7548895 | Pulsipher | Jun 2009 | B2 |
7552045 | Barliga et al. | Jun 2009 | B2 |
7552055 | Lecoeuche | Jun 2009 | B2 |
7555431 | Bennett | Jun 2009 | B2 |
7555496 | Lantrip et al. | Jun 2009 | B1 |
7558381 | Ali et al. | Jul 2009 | B1 |
7558730 | Davis et al. | Jul 2009 | B2 |
7559026 | Girish et al. | Jul 2009 | B2 |
7561069 | Horstemeyer | Jul 2009 | B2 |
7562007 | Hwang | Jul 2009 | B2 |
7562032 | Abbosh et al. | Jul 2009 | B2 |
7565104 | Brown et al. | Jul 2009 | B1 |
7565380 | Venkatachary | Jul 2009 | B1 |
7568151 | Bargeron et al. | Jul 2009 | B2 |
7571092 | Nieh | Aug 2009 | B1 |
7571106 | Cao et al. | Aug 2009 | B2 |
7577522 | Rosenberg | Aug 2009 | B2 |
7580551 | Srihari et al. | Aug 2009 | B1 |
7580576 | Wang et al. | Aug 2009 | B2 |
7580839 | Tamura et al. | Aug 2009 | B2 |
7584093 | Potter et al. | Sep 2009 | B2 |
7584278 | Rajarajan et al. | Sep 2009 | B2 |
7584429 | Fabritius | Sep 2009 | B2 |
7593868 | Margiloff et al. | Sep 2009 | B2 |
7596269 | King et al. | Sep 2009 | B2 |
7596499 | Anguera et al. | Sep 2009 | B2 |
7596606 | Codignotto | Sep 2009 | B2 |
7596765 | Almas | Sep 2009 | B2 |
7599918 | Shen et al. | Oct 2009 | B2 |
7603349 | Kraft et al. | Oct 2009 | B1 |
7603381 | Burke et al. | Oct 2009 | B2 |
7606444 | Erol et al. | Oct 2009 | B1 |
7609179 | Diaz-Gutierrez et al. | Oct 2009 | B2 |
7610258 | Yuknewicz et al. | Oct 2009 | B2 |
7613264 | Wells et al. | Nov 2009 | B2 |
7614008 | Ording | Nov 2009 | B2 |
7617094 | Aoki et al. | Nov 2009 | B2 |
7620407 | Donald et al. | Nov 2009 | B1 |
7620549 | Di Cristo et al. | Nov 2009 | B2 |
7620894 | Kahn | Nov 2009 | B1 |
7623119 | Autio et al. | Nov 2009 | B2 |
7624007 | Bennett | Nov 2009 | B2 |
7627481 | Kuo et al. | Dec 2009 | B1 |
7630900 | Strom | Dec 2009 | B1 |
7630901 | Omi | Dec 2009 | B2 |
7633076 | Huppi et al. | Dec 2009 | B2 |
7634409 | Kennewick et al. | Dec 2009 | B2 |
7634413 | Kuo et al. | Dec 2009 | B1 |
7634718 | Nakajima | Dec 2009 | B2 |
7634732 | Blagsvedt et al. | Dec 2009 | B1 |
7636657 | Ju et al. | Dec 2009 | B2 |
7640158 | Detlef et al. | Dec 2009 | B2 |
7640160 | Di Cristo et al. | Dec 2009 | B2 |
7643990 | Bellegarda | Jan 2010 | B1 |
7647225 | Bennett et al. | Jan 2010 | B2 |
7649454 | Singh et al. | Jan 2010 | B2 |
7649877 | Vieri et al. | Jan 2010 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7657424 | Bennett | Feb 2010 | B2 |
7657828 | Lucas et al. | Feb 2010 | B2 |
7657844 | Gibson et al. | Feb 2010 | B2 |
7657849 | Chaudhri et al. | Feb 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7664558 | Lindahl et al. | Feb 2010 | B2 |
7664638 | Cooper et al. | Feb 2010 | B2 |
7669134 | Christie et al. | Feb 2010 | B1 |
7672841 | Bennett | Mar 2010 | B2 |
7672952 | Isaacson et al. | Mar 2010 | B2 |
7673238 | Girish et al. | Mar 2010 | B2 |
7673251 | Wibisono | Mar 2010 | B1 |
7673340 | Cohen et al. | Mar 2010 | B1 |
7676026 | Baxter, Jr. | Mar 2010 | B1 |
7676365 | Hwang et al. | Mar 2010 | B2 |
7676463 | Thompson et al. | Mar 2010 | B2 |
7679534 | Kay et al. | Mar 2010 | B2 |
7680649 | Park | Mar 2010 | B2 |
7681126 | Roose | Mar 2010 | B2 |
7683886 | Willey | Mar 2010 | B2 |
7683893 | Kim | Mar 2010 | B2 |
7684985 | Dominach et al. | Mar 2010 | B2 |
7684990 | Caskey et al. | Mar 2010 | B2 |
7684991 | Stohr et al. | Mar 2010 | B2 |
7689245 | Cox et al. | Mar 2010 | B2 |
7689408 | Chen et al. | Mar 2010 | B2 |
7689409 | Heinecke | Mar 2010 | B2 |
7689412 | Wu et al. | Mar 2010 | B2 |
7689421 | Li et al. | Mar 2010 | B2 |
7693715 | Hwang et al. | Apr 2010 | B2 |
7693717 | Kahn et al. | Apr 2010 | B2 |
7693719 | Chu et al. | Apr 2010 | B2 |
7693720 | Kennewick et al. | Apr 2010 | B2 |
7698131 | Bennett | Apr 2010 | B2 |
7702500 | Blaedow | Apr 2010 | B2 |
7702508 | Bennett | Apr 2010 | B2 |
7703091 | Martin et al. | Apr 2010 | B1 |
7706510 | Ng | Apr 2010 | B2 |
7707026 | Liu | Apr 2010 | B2 |
7707027 | Balchandran et al. | Apr 2010 | B2 |
7707032 | Wang et al. | Apr 2010 | B2 |
7707221 | Dunning et al. | Apr 2010 | B1 |
7707226 | Tonse | Apr 2010 | B1 |
7707267 | Lisitsa et al. | Apr 2010 | B2 |
7710262 | Ruha | May 2010 | B2 |
7711129 | Lindahl et al. | May 2010 | B2 |
7711550 | Feinberg et al. | May 2010 | B1 |
7711565 | Gazdzinski | May 2010 | B1 |
7711672 | Au | May 2010 | B2 |
7712053 | Bradford et al. | May 2010 | B2 |
7716056 | Weng et al. | May 2010 | B2 |
7716216 | Harik et al. | May 2010 | B1 |
7720674 | Kaiser et al. | May 2010 | B2 |
7720683 | Vermeulen et al. | May 2010 | B1 |
7721226 | Barabe et al. | May 2010 | B2 |
7721301 | Wong et al. | May 2010 | B2 |
7724242 | Hillis et al. | May 2010 | B2 |
7724696 | Parekh | May 2010 | B1 |
7725307 | Bennett | May 2010 | B2 |
7725318 | Gavalda et al. | May 2010 | B2 |
7725320 | Bennett | May 2010 | B2 |
7725321 | Bennett | May 2010 | B2 |
7725838 | Williams | May 2010 | B2 |
7729904 | Bennett | Jun 2010 | B2 |
7729916 | Coffman et al. | Jun 2010 | B2 |
7734461 | Kwak et al. | Jun 2010 | B2 |
7735012 | Naik | Jun 2010 | B2 |
7739588 | Reynar et al. | Jun 2010 | B2 |
7742953 | King et al. | Jun 2010 | B2 |
7743188 | Haitani et al. | Jun 2010 | B2 |
7747616 | Yamada et al. | Jun 2010 | B2 |
7752152 | Paek et al. | Jul 2010 | B2 |
7756708 | Cohen et al. | Jul 2010 | B2 |
7756868 | Lee | Jul 2010 | B2 |
7756871 | Yacoub et al. | Jul 2010 | B2 |
7757173 | Beaman | Jul 2010 | B2 |
7757182 | Elliott et al. | Jul 2010 | B2 |
7761296 | Bakis et al. | Jul 2010 | B1 |
7763842 | Hsu et al. | Jul 2010 | B2 |
7774202 | Spengler et al. | Aug 2010 | B2 |
7774204 | Mozer et al. | Aug 2010 | B2 |
7774388 | Runchey | Aug 2010 | B1 |
7777717 | Fux et al. | Aug 2010 | B2 |
7778432 | Larsen | Aug 2010 | B2 |
7778595 | White et al. | Aug 2010 | B2 |
7778632 | Kurlander et al. | Aug 2010 | B2 |
7778830 | Davis et al. | Aug 2010 | B2 |
7779353 | Grigoriu et al. | Aug 2010 | B2 |
7779356 | Griesmer | Aug 2010 | B2 |
7779357 | Naik | Aug 2010 | B2 |
7783283 | Kuusinen et al. | Aug 2010 | B2 |
7783486 | Rosser et al. | Aug 2010 | B2 |
7788590 | Taboada et al. | Aug 2010 | B2 |
7788663 | Illowsky et al. | Aug 2010 | B2 |
7796980 | McKinney et al. | Sep 2010 | B1 |
7797265 | Brinker et al. | Sep 2010 | B2 |
7797269 | Rieman et al. | Sep 2010 | B2 |
7797331 | Theimer et al. | Sep 2010 | B2 |
7797629 | Fux et al. | Sep 2010 | B2 |
7801721 | Rosart et al. | Sep 2010 | B2 |
7801728 | Ben-David et al. | Sep 2010 | B2 |
7801729 | Mozer | Sep 2010 | B2 |
7805299 | Coifman | Sep 2010 | B2 |
7809550 | Barrows | Oct 2010 | B1 |
7809565 | Coifman | Oct 2010 | B2 |
7809569 | Attwater et al. | Oct 2010 | B2 |
7809570 | Kennewick et al. | Oct 2010 | B2 |
7809610 | Cao | Oct 2010 | B2 |
7809744 | Nevidomski et al. | Oct 2010 | B2 |
7818165 | Carlgren et al. | Oct 2010 | B2 |
7818176 | Freeman et al. | Oct 2010 | B2 |
7818215 | King et al. | Oct 2010 | B2 |
7818291 | Ferguson et al. | Oct 2010 | B2 |
7818672 | Mccormack et al. | Oct 2010 | B2 |
7822608 | Cross, Jr. et al. | Oct 2010 | B2 |
7823123 | Sabbouh | Oct 2010 | B2 |
7826945 | Zhang et al. | Nov 2010 | B2 |
7827047 | Anderson et al. | Nov 2010 | B2 |
7831423 | Schubert | Nov 2010 | B2 |
7831426 | Bennett | Nov 2010 | B2 |
7831432 | Bodin et al. | Nov 2010 | B2 |
7835504 | Donald et al. | Nov 2010 | B1 |
7836437 | Kacmarcik et al. | Nov 2010 | B2 |
7840348 | Kim et al. | Nov 2010 | B2 |
7840400 | Lavi et al. | Nov 2010 | B2 |
7840447 | Kleinrock et al. | Nov 2010 | B2 |
7840581 | Ross et al. | Nov 2010 | B2 |
7840912 | Elias et al. | Nov 2010 | B2 |
7844394 | Kim | Nov 2010 | B2 |
7848924 | Nurminen et al. | Dec 2010 | B2 |
7848926 | Goto et al. | Dec 2010 | B2 |
7853444 | Wang et al. | Dec 2010 | B2 |
7853445 | Bachenko et al. | Dec 2010 | B2 |
7853574 | Kraenzel et al. | Dec 2010 | B2 |
7853577 | Sundaresan et al. | Dec 2010 | B2 |
7853664 | Wang et al. | Dec 2010 | B1 |
7853900 | Nguyen et al. | Dec 2010 | B2 |
7865817 | Ryan et al. | Jan 2011 | B2 |
7869999 | Amato et al. | Jan 2011 | B2 |
7870118 | Jiang et al. | Jan 2011 | B2 |
7870133 | Krishnamoorthy et al. | Jan 2011 | B2 |
7873149 | Schultz et al. | Jan 2011 | B2 |
7873519 | Bennett | Jan 2011 | B2 |
7873654 | Bernard | Jan 2011 | B2 |
7877705 | Chambers et al. | Jan 2011 | B2 |
7880730 | Robinson et al. | Feb 2011 | B2 |
7881283 | Cormier et al. | Feb 2011 | B2 |
7881936 | Longe et al. | Feb 2011 | B2 |
7885390 | Chaudhuri et al. | Feb 2011 | B2 |
7885844 | Cohen et al. | Feb 2011 | B1 |
7886233 | Rainisto et al. | Feb 2011 | B2 |
7889101 | Yokota | Feb 2011 | B2 |
7889184 | Blumenberg et al. | Feb 2011 | B2 |
7889185 | Blumenberg et al. | Feb 2011 | B2 |
7890330 | Ozkaragoz et al. | Feb 2011 | B2 |
7890652 | Bull et al. | Feb 2011 | B2 |
7895039 | Braho et al. | Feb 2011 | B2 |
7895531 | Radtke et al. | Feb 2011 | B2 |
7899666 | Varone | Mar 2011 | B2 |
7904297 | Mirkovic et al. | Mar 2011 | B2 |
7908287 | Katragadda | Mar 2011 | B1 |
7912289 | Kansal et al. | Mar 2011 | B2 |
7912699 | Saraclar et al. | Mar 2011 | B1 |
7912702 | Bennett | Mar 2011 | B2 |
7912720 | Hakkani-Tur et al. | Mar 2011 | B1 |
7912828 | Bonnet et al. | Mar 2011 | B2 |
7913185 | Benson et al. | Mar 2011 | B1 |
7916979 | Simmons | Mar 2011 | B2 |
7917367 | Di Cristo et al. | Mar 2011 | B2 |
7917497 | Harrison et al. | Mar 2011 | B2 |
7920678 | Cooper et al. | Apr 2011 | B2 |
7920682 | Byrne et al. | Apr 2011 | B2 |
7920857 | Lau et al. | Apr 2011 | B2 |
7925525 | Chin | Apr 2011 | B2 |
7925610 | Elbaz et al. | Apr 2011 | B2 |
7929805 | Wang et al. | Apr 2011 | B2 |
7930168 | Weng et al. | Apr 2011 | B2 |
7930183 | Odell et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7936339 | Marggraff et al. | May 2011 | B2 |
7936861 | Martin et al. | May 2011 | B2 |
7936863 | John et al. | May 2011 | B2 |
7937075 | Zellner | May 2011 | B2 |
7941009 | Li et al. | May 2011 | B2 |
7945294 | Zhang et al. | May 2011 | B2 |
7945470 | Cohen et al. | May 2011 | B1 |
7949529 | Weider et al. | May 2011 | B2 |
7949534 | Davis et al. | May 2011 | B2 |
7949752 | Lange et al. | May 2011 | B2 |
7953679 | Chidlovskii et al. | May 2011 | B2 |
7957975 | Burns et al. | Jun 2011 | B2 |
7958136 | Curtis et al. | Jun 2011 | B1 |
7962179 | Huang | Jun 2011 | B2 |
7974835 | Balchandran et al. | Jul 2011 | B2 |
7974844 | Sumita | Jul 2011 | B2 |
7974972 | Cao | Jul 2011 | B2 |
7975216 | Woolf et al. | Jul 2011 | B2 |
7983478 | Liu et al. | Jul 2011 | B2 |
7983915 | Knight et al. | Jul 2011 | B2 |
7983917 | Kennewick et al. | Jul 2011 | B2 |
7983919 | Conkie | Jul 2011 | B2 |
7983997 | Allen et al. | Jul 2011 | B2 |
7984062 | Dunning et al. | Jul 2011 | B2 |
7986431 | Emori et al. | Jul 2011 | B2 |
7987151 | Schott et al. | Jul 2011 | B2 |
7987244 | Lewis et al. | Jul 2011 | B1 |
7991614 | Washio et al. | Aug 2011 | B2 |
7992085 | Wang-Aryattanwanich et al. | Aug 2011 | B2 |
7996228 | Miller et al. | Aug 2011 | B2 |
7996589 | Schultz et al. | Aug 2011 | B2 |
7996769 | Fux et al. | Aug 2011 | B2 |
7996792 | Anzures et al. | Aug 2011 | B2 |
7999669 | Singh et al. | Aug 2011 | B2 |
8000453 | Cooper et al. | Aug 2011 | B2 |
8005664 | Hanumanthappa | Aug 2011 | B2 |
8005679 | Jordan et al. | Aug 2011 | B2 |
8006180 | Tunning et al. | Aug 2011 | B2 |
8014308 | Gates et al. | Sep 2011 | B2 |
8015006 | Kennewick et al. | Sep 2011 | B2 |
8015011 | Nagano et al. | Sep 2011 | B2 |
8015144 | Zheng et al. | Sep 2011 | B2 |
8018431 | Zehr et al. | Sep 2011 | B1 |
8019271 | Izdepski | Sep 2011 | B1 |
8020104 | Robarts et al. | Sep 2011 | B2 |
8024195 | Mozer et al. | Sep 2011 | B2 |
8024415 | Horvitz et al. | Sep 2011 | B2 |
8027836 | Baker et al. | Sep 2011 | B2 |
8031943 | Chen et al. | Oct 2011 | B2 |
8032383 | Bhardwaj et al. | Oct 2011 | B1 |
8036901 | Mozer | Oct 2011 | B2 |
8037034 | Plachta et al. | Oct 2011 | B2 |
8041557 | Liu | Oct 2011 | B2 |
8041570 | Mirkovic et al. | Oct 2011 | B2 |
8041611 | Kleinrock et al. | Oct 2011 | B2 |
8042053 | Darwish et al. | Oct 2011 | B2 |
8046363 | Cha et al. | Oct 2011 | B2 |
8046374 | Bromwich et al. | Oct 2011 | B1 |
8050500 | Batty et al. | Nov 2011 | B1 |
8054180 | Scofield et al. | Nov 2011 | B1 |
8055502 | Clark et al. | Nov 2011 | B2 |
8055708 | Chitsaz et al. | Nov 2011 | B2 |
8056070 | Goller et al. | Nov 2011 | B2 |
8060824 | Brownrigg, Jr. et al. | Nov 2011 | B2 |
8064753 | Freeman | Nov 2011 | B2 |
8065143 | Yanagihara | Nov 2011 | B2 |
8065155 | Gazdzinski | Nov 2011 | B1 |
8065156 | Gazdzinski | Nov 2011 | B2 |
8068604 | Leeds et al. | Nov 2011 | B2 |
8069046 | Kennewick et al. | Nov 2011 | B2 |
8069422 | Sheshagiri et al. | Nov 2011 | B2 |
8073681 | Baldwin et al. | Dec 2011 | B2 |
8073695 | Hendricks et al. | Dec 2011 | B1 |
8077153 | Benko et al. | Dec 2011 | B2 |
8078473 | Gazdzinski | Dec 2011 | B1 |
8082153 | Coffman et al. | Dec 2011 | B2 |
8082498 | Salamon et al. | Dec 2011 | B2 |
8090571 | Elshishiny et al. | Jan 2012 | B2 |
8095364 | Longe et al. | Jan 2012 | B2 |
8099289 | Mozer et al. | Jan 2012 | B2 |
8099395 | Pabla et al. | Jan 2012 | B2 |
8099418 | Inoue et al. | Jan 2012 | B2 |
8103510 | Sato | Jan 2012 | B2 |
8107401 | John et al. | Jan 2012 | B2 |
8112275 | Kennewick et al. | Feb 2012 | B2 |
8112280 | Lu | Feb 2012 | B2 |
8117037 | Gazdzinski | Feb 2012 | B2 |
8117542 | Radtke et al. | Feb 2012 | B2 |
8121413 | Hwang et al. | Feb 2012 | B2 |
8121837 | Agapi et al. | Feb 2012 | B2 |
8122094 | Kotab | Feb 2012 | B1 |
8122353 | Bouta | Feb 2012 | B2 |
8131557 | Davis et al. | Mar 2012 | B2 |
8135115 | Hogg, Jr. et al. | Mar 2012 | B1 |
8138912 | Singh et al. | Mar 2012 | B2 |
8140335 | Kennewick et al. | Mar 2012 | B2 |
8140567 | Padovitz et al. | Mar 2012 | B2 |
8145489 | Freeman et al. | Mar 2012 | B2 |
8150694 | Kennewick et al. | Apr 2012 | B2 |
8150700 | Shin et al. | Apr 2012 | B2 |
8155956 | Cho et al. | Apr 2012 | B2 |
8156005 | Vieri | Apr 2012 | B2 |
8160877 | Nucci et al. | Apr 2012 | B1 |
8160883 | Lecoeuche | Apr 2012 | B2 |
8165321 | Paquier et al. | Apr 2012 | B2 |
8165886 | Gagnon et al. | Apr 2012 | B1 |
8166019 | Lee et al. | Apr 2012 | B1 |
8166032 | Sommer et al. | Apr 2012 | B2 |
8170790 | Lee et al. | May 2012 | B2 |
8175872 | Kristjansson et al. | May 2012 | B2 |
8179370 | Yamasani et al. | May 2012 | B1 |
8188856 | Singh et al. | May 2012 | B2 |
8190359 | Bourne | May 2012 | B2 |
8195467 | Mozer et al. | Jun 2012 | B2 |
8195468 | Kennewick et al. | Jun 2012 | B2 |
8200495 | Braho et al. | Jun 2012 | B2 |
8201109 | Van Os et al. | Jun 2012 | B2 |
8204238 | Mozer | Jun 2012 | B2 |
8205788 | Gazdzinski et al. | Jun 2012 | B1 |
8209183 | Patel et al. | Jun 2012 | B1 |
8213911 | Williams et al. | Jul 2012 | B2 |
8219115 | Nelissen | Jul 2012 | B1 |
8219406 | Yu et al. | Jul 2012 | B2 |
8219407 | Roy et al. | Jul 2012 | B1 |
8219608 | alSafadi et al. | Jul 2012 | B2 |
8224649 | Chaudhari et al. | Jul 2012 | B2 |
8228299 | Maloney et al. | Jul 2012 | B1 |
8233919 | Haag et al. | Jul 2012 | B2 |
8234111 | Lloyd et al. | Jul 2012 | B2 |
8239206 | LeBeau et al. | Aug 2012 | B1 |
8239207 | Seligman et al. | Aug 2012 | B2 |
8244712 | Serlet et al. | Aug 2012 | B2 |
8250071 | Killalea et al. | Aug 2012 | B1 |
8254829 | Kindred et al. | Aug 2012 | B1 |
8255216 | White | Aug 2012 | B2 |
8255217 | Stent et al. | Aug 2012 | B2 |
8260247 | Lazaridis et al. | Sep 2012 | B2 |
8260617 | Dhanakshirur et al. | Sep 2012 | B2 |
8270933 | Riemer et al. | Sep 2012 | B2 |
8275621 | Alewine et al. | Sep 2012 | B2 |
8279171 | Hirai et al. | Oct 2012 | B2 |
8280438 | Barbera | Oct 2012 | B2 |
8285546 | Reich | Oct 2012 | B2 |
8285551 | Gazdzinski | Oct 2012 | B2 |
8285553 | Gazdzinski | Oct 2012 | B2 |
8290777 | Nguyen et al. | Oct 2012 | B1 |
8290778 | Gazdzinski | Oct 2012 | B2 |
8290781 | Gazdzinski | Oct 2012 | B2 |
8296124 | Holsztynska et al. | Oct 2012 | B1 |
8296145 | Clark et al. | Oct 2012 | B2 |
8296146 | Gazdzinski | Oct 2012 | B2 |
8296153 | Gazdzinski | Oct 2012 | B2 |
8296380 | Kelly et al. | Oct 2012 | B1 |
8296383 | Lindahl | Oct 2012 | B2 |
8300801 | Sweeney et al. | Oct 2012 | B2 |
8301456 | Gazdzinski | Oct 2012 | B2 |
8311834 | Gazdzinski | Nov 2012 | B1 |
8311835 | Lecoeuche | Nov 2012 | B2 |
8311838 | Lindahl et al. | Nov 2012 | B2 |
8312017 | Martin et al. | Nov 2012 | B2 |
8321786 | Lunati et al. | Nov 2012 | B2 |
8326627 | Kennewick et al. | Dec 2012 | B2 |
8332218 | Cross et al. | Dec 2012 | B2 |
8332224 | Di Cristo et al. | Dec 2012 | B2 |
8332748 | Karam | Dec 2012 | B1 |
8340975 | Rosenberger | Dec 2012 | B1 |
8345665 | Vieri et al. | Jan 2013 | B2 |
8352183 | Thota et al. | Jan 2013 | B2 |
8352268 | Naik et al. | Jan 2013 | B2 |
8352272 | Rogers et al. | Jan 2013 | B2 |
8355919 | Silverman et al. | Jan 2013 | B2 |
8359234 | Vieri | Jan 2013 | B2 |
8370145 | Endo et al. | Feb 2013 | B2 |
8370158 | Gazdzinski | Feb 2013 | B2 |
8371503 | Gazdzinski | Feb 2013 | B2 |
8374871 | Ehsani et al. | Feb 2013 | B2 |
8375320 | Kotler et al. | Feb 2013 | B2 |
8380504 | Peden et al. | Feb 2013 | B1 |
8380507 | Herman et al. | Feb 2013 | B2 |
8381107 | Rottler et al. | Feb 2013 | B2 |
8381135 | Hotelling et al. | Feb 2013 | B2 |
8386485 | Kerschberg et al. | Feb 2013 | B2 |
8386926 | Matsuoka | Feb 2013 | B1 |
8391844 | Lamiraux et al. | Mar 2013 | B2 |
8396714 | Rogers et al. | Mar 2013 | B2 |
8406745 | Upadhyay et al. | Mar 2013 | B1 |
8423288 | Stahl et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8433778 | Shreesha et al. | Apr 2013 | B1 |
8442821 | Vanhoucke | May 2013 | B1 |
8447612 | Gazdzinski | May 2013 | B2 |
8452597 | Bringert et al. | May 2013 | B2 |
8457959 | Kaiser | Jun 2013 | B2 |
8458115 | Cai et al. | Jun 2013 | B2 |
8458278 | Christie et al. | Jun 2013 | B2 |
8464150 | Davidson et al. | Jun 2013 | B2 |
8473289 | Jitkoff et al. | Jun 2013 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8484027 | Murphy | Jul 2013 | B1 |
8489599 | Bellotti | Jul 2013 | B2 |
8498857 | Kopparapu et al. | Jul 2013 | B2 |
8514197 | Shahraray et al. | Aug 2013 | B2 |
8515750 | Lei et al. | Aug 2013 | B1 |
8521513 | Millett et al. | Aug 2013 | B2 |
8527276 | Senior et al. | Sep 2013 | B1 |
8543398 | Strope et al. | Sep 2013 | B1 |
8560229 | Park et al. | Oct 2013 | B1 |
8571851 | Tickner et al. | Oct 2013 | B1 |
8583416 | Huang et al. | Nov 2013 | B2 |
8583511 | Hendrickson | Nov 2013 | B2 |
8589869 | Wolfram | Nov 2013 | B2 |
8589911 | Sharkey et al. | Nov 2013 | B1 |
8595004 | Koshinaka | Nov 2013 | B2 |
8606568 | Tickner et al. | Dec 2013 | B1 |
8620659 | Di Cristo et al. | Dec 2013 | B2 |
8620662 | Bellegarda | Dec 2013 | B2 |
8626681 | Jurca et al. | Jan 2014 | B1 |
8639516 | Lindahl et al. | Jan 2014 | B2 |
8645137 | Bellegarda et al. | Feb 2014 | B2 |
8645138 | Weinstein et al. | Feb 2014 | B1 |
8654936 | Tofighbakhsh et al. | Feb 2014 | B1 |
8655646 | Lee et al. | Feb 2014 | B2 |
8655901 | Li et al. | Feb 2014 | B1 |
8660843 | Falcon et al. | Feb 2014 | B2 |
8660849 | Gruber et al. | Feb 2014 | B2 |
8660970 | Fiedorowicz | Feb 2014 | B1 |
8661112 | Creamer et al. | Feb 2014 | B2 |
8661340 | Goldsmith et al. | Feb 2014 | B2 |
8670979 | Gruber et al. | Mar 2014 | B2 |
8675084 | Bolton et al. | Mar 2014 | B2 |
8676904 | Lindahl et al. | Mar 2014 | B2 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8681950 | Vlack et al. | Mar 2014 | B2 |
8682667 | Haughay et al. | Mar 2014 | B2 |
8687777 | Lavian et al. | Apr 2014 | B1 |
8688446 | Yanagihara et al. | Apr 2014 | B2 |
8688453 | Joshi et al. | Apr 2014 | B1 |
8695074 | Saraf et al. | Apr 2014 | B2 |
8696364 | Cohen | Apr 2014 | B2 |
8706472 | Ramerth et al. | Apr 2014 | B2 |
8706474 | Blume et al. | Apr 2014 | B2 |
8706503 | Cheyer et al. | Apr 2014 | B2 |
8713119 | Lindahl et al. | Apr 2014 | B2 |
8713418 | King et al. | Apr 2014 | B2 |
8719006 | Bellegarda et al. | May 2014 | B2 |
8719014 | Wagner et al. | May 2014 | B2 |
8731610 | Appaji | May 2014 | B2 |
8731912 | Tickner et al. | May 2014 | B1 |
8731942 | Cheyer et al. | May 2014 | B2 |
8739208 | Rodriguez et al. | May 2014 | B2 |
8744852 | Seymour et al. | Jun 2014 | B1 |
8760537 | Johnson et al. | Jun 2014 | B2 |
8762145 | Ouchi et al. | Jun 2014 | B2 |
8762156 | Chen et al. | Jun 2014 | B2 |
8762469 | Lindahl et al. | Jun 2014 | B2 |
8768693 | Lempel et al. | Jul 2014 | B2 |
8768702 | Boettcher et al. | Jul 2014 | B2 |
8775154 | Clinchant et al. | Jul 2014 | B2 |
8775931 | Fux et al. | Jul 2014 | B2 |
8781841 | Wang | Jul 2014 | B1 |
8798255 | Lubowich et al. | Aug 2014 | B2 |
8798995 | Edara et al. | Aug 2014 | B1 |
8799000 | Guzzoni et al. | Aug 2014 | B2 |
8805690 | LeBeau et al. | Aug 2014 | B1 |
8812302 | Xiao et al. | Aug 2014 | B2 |
8838457 | Cerra et al. | Sep 2014 | B2 |
8855915 | Furuhata et al. | Oct 2014 | B2 |
8861925 | Ohme | Oct 2014 | B1 |
8862252 | Rottler et al. | Oct 2014 | B2 |
8868409 | Mengibar et al. | Oct 2014 | B1 |
8880405 | Cerra et al. | Nov 2014 | B2 |
8886540 | Cerra et al. | Nov 2014 | B2 |
8886541 | Friedlander | Nov 2014 | B2 |
8892446 | Cheyer et al. | Nov 2014 | B2 |
8898568 | Bull et al. | Nov 2014 | B2 |
8903716 | Chen et al. | Dec 2014 | B2 |
8909693 | Frissora et al. | Dec 2014 | B2 |
8930176 | Li et al. | Jan 2015 | B2 |
8930191 | Gruber et al. | Jan 2015 | B2 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942986 | Cheyer et al. | Jan 2015 | B2 |
8943423 | Merrill et al. | Jan 2015 | B2 |
8972878 | Mohler et al. | Mar 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8989713 | Doulton | Mar 2015 | B2 |
8990235 | King et al. | Mar 2015 | B2 |
8994660 | Neels et al. | Mar 2015 | B2 |
8996376 | Fleizach et al. | Mar 2015 | B2 |
8996381 | Mozer et al. | Mar 2015 | B2 |
9009046 | Stewart | Apr 2015 | B1 |
9020804 | Barbaiani et al. | Apr 2015 | B2 |
9026425 | Nikoulina et al. | May 2015 | B2 |
9031834 | Coorman et al. | May 2015 | B2 |
9037967 | Al-Jefri et al. | May 2015 | B1 |
9043208 | Koch et al. | May 2015 | B2 |
9049255 | MacFarlane et al. | Jun 2015 | B2 |
9053706 | Jitkoff et al. | Jun 2015 | B2 |
9058811 | Wang et al. | Jun 2015 | B2 |
9063979 | Chiu et al. | Jun 2015 | B2 |
9070366 | Mathias et al. | Jun 2015 | B1 |
9071701 | Donaldson et al. | Jun 2015 | B2 |
9081411 | Kalns et al. | Jul 2015 | B2 |
9081482 | Zhai et al. | Jul 2015 | B1 |
9098467 | Blanksteen et al. | Aug 2015 | B1 |
9101279 | Ritchey et al. | Aug 2015 | B2 |
9112984 | Sejnoha et al. | Aug 2015 | B2 |
9117447 | Gruber et al. | Aug 2015 | B2 |
9123338 | Sanders et al. | Sep 2015 | B1 |
9171541 | Kennewick et al. | Oct 2015 | B2 |
9171546 | Pike | Oct 2015 | B1 |
9190062 | Haughay | Nov 2015 | B2 |
9208153 | Zaveri et al. | Dec 2015 | B1 |
9218809 | Bellegarda | Dec 2015 | B2 |
9218819 | Stekkelpak et al. | Dec 2015 | B1 |
9223537 | Brown et al. | Dec 2015 | B2 |
9255812 | Maeoka et al. | Feb 2016 | B2 |
9258604 | Bilobrov et al. | Feb 2016 | B1 |
9262612 | Cheyer | Feb 2016 | B2 |
9292487 | Weber | Mar 2016 | B1 |
9292489 | Sak et al. | Mar 2016 | B1 |
9299344 | Braho et al. | Mar 2016 | B2 |
9305543 | Fleizach et al. | Apr 2016 | B2 |
9305548 | Kennewick et al. | Apr 2016 | B2 |
9311912 | Swietlinski et al. | Apr 2016 | B1 |
9313317 | LeBeau et al. | Apr 2016 | B1 |
9318108 | Gruber et al. | Apr 2016 | B2 |
9325809 | Barros et al. | Apr 2016 | B1 |
9338493 | Van Os et al. | May 2016 | B2 |
9349368 | LeBeau et al. | May 2016 | B1 |
9361084 | Costa | Jun 2016 | B1 |
9367541 | Servan et al. | Jun 2016 | B1 |
9377871 | Waddell et al. | Jun 2016 | B2 |
9378740 | Rosen et al. | Jun 2016 | B1 |
9380155 | Reding et al. | Jun 2016 | B1 |
9390726 | Smus et al. | Jul 2016 | B1 |
9401147 | Jitkoff et al. | Jul 2016 | B2 |
9412392 | Lindahl | Aug 2016 | B2 |
9423266 | Clark et al. | Aug 2016 | B2 |
9436918 | Pantel et al. | Sep 2016 | B2 |
9437186 | Liu et al. | Sep 2016 | B1 |
9437189 | Epstein et al. | Sep 2016 | B2 |
9454957 | Mathias et al. | Sep 2016 | B1 |
9495129 | Fleizach et al. | Nov 2016 | B2 |
9502025 | Kennewick et al. | Nov 2016 | B2 |
9510044 | Pereira et al. | Nov 2016 | B1 |
9536527 | Carlson | Jan 2017 | B1 |
9547647 | Badaskar | Jan 2017 | B2 |
9548050 | Gruber et al. | Jan 2017 | B2 |
9607612 | Deleeuw | Mar 2017 | B2 |
9620113 | Kennewick et al. | Apr 2017 | B2 |
9620126 | Chiba | Apr 2017 | B2 |
9626955 | Fleizach et al. | Apr 2017 | B2 |
9633660 | Haughay | Apr 2017 | B2 |
9652453 | Mathur et al. | May 2017 | B2 |
20010000534 | Matulich et al. | Apr 2001 | A1 |
20010005859 | Okuyama et al. | Jun 2001 | A1 |
20010020259 | Sekiguchi et al. | Sep 2001 | A1 |
20010023397 | Tajima et al. | Sep 2001 | A1 |
20010027394 | Theimer | Oct 2001 | A1 |
20010027396 | Sato | Oct 2001 | A1 |
20010029455 | Chin et al. | Oct 2001 | A1 |
20010030660 | Zainoulline | Oct 2001 | A1 |
20010032080 | Fukada | Oct 2001 | A1 |
20010041021 | Boyle et al. | Nov 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20010044724 | Hon et al. | Nov 2001 | A1 |
20010047264 | Roundtree | Nov 2001 | A1 |
20010055963 | Cloutier | Dec 2001 | A1 |
20010056342 | Piehn et al. | Dec 2001 | A1 |
20010056347 | Chazan et al. | Dec 2001 | A1 |
20020001395 | Davis et al. | Jan 2002 | A1 |
20020002039 | Qureshey et al. | Jan 2002 | A1 |
20020002413 | Tokue | Jan 2002 | A1 |
20020002461 | Tetsumoto | Jan 2002 | A1 |
20020002465 | Maes | Jan 2002 | A1 |
20020004703 | Gaspard, II | Jan 2002 | A1 |
20020010581 | Euler et al. | Jan 2002 | A1 |
20020010584 | Schultz et al. | Jan 2002 | A1 |
20020010589 | Nashida et al. | Jan 2002 | A1 |
20020010726 | Rogson | Jan 2002 | A1 |
20020010798 | Ben-Shaul et al. | Jan 2002 | A1 |
20020013707 | Shaw et al. | Jan 2002 | A1 |
20020013784 | Swanson | Jan 2002 | A1 |
20020013852 | Janik | Jan 2002 | A1 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020015064 | Robotham et al. | Feb 2002 | A1 |
20020021278 | Hinckley et al. | Feb 2002 | A1 |
20020026315 | Miranda | Feb 2002 | A1 |
20020026456 | Bradford | Feb 2002 | A1 |
20020031254 | Lantrip et al. | Mar 2002 | A1 |
20020031262 | Imagawa et al. | Mar 2002 | A1 |
20020032048 | Kitao et al. | Mar 2002 | A1 |
20020032564 | Ehsani et al. | Mar 2002 | A1 |
20020032591 | Mahaffy et al. | Mar 2002 | A1 |
20020032751 | Bharadwaj | Mar 2002 | A1 |
20020035467 | Morimoto et al. | Mar 2002 | A1 |
20020035469 | Holzapfel | Mar 2002 | A1 |
20020035474 | Alpdemir | Mar 2002 | A1 |
20020040297 | Tsiao et al. | Apr 2002 | A1 |
20020040359 | Green et al. | Apr 2002 | A1 |
20020042707 | Zhao et al. | Apr 2002 | A1 |
20020045438 | Tagawa et al. | Apr 2002 | A1 |
20020045961 | Gibbs et al. | Apr 2002 | A1 |
20020046025 | Hain | Apr 2002 | A1 |
20020046032 | Wutte | Apr 2002 | A1 |
20020046315 | Miller et al. | Apr 2002 | A1 |
20020049587 | Miyazawa | Apr 2002 | A1 |
20020052730 | Nakao | May 2002 | A1 |
20020052740 | Charlesworth et al. | May 2002 | A1 |
20020052746 | Handelman | May 2002 | A1 |
20020052747 | Sarukkai | May 2002 | A1 |
20020052913 | Yamada et al. | May 2002 | A1 |
20020054094 | Matsuda | May 2002 | A1 |
20020055844 | L'Esperance et al. | May 2002 | A1 |
20020055934 | Lipscomb et al. | May 2002 | A1 |
20020057293 | Liao | May 2002 | A1 |
20020059066 | O'hagan | May 2002 | A1 |
20020059068 | Rose et al. | May 2002 | A1 |
20020065659 | Isono et al. | May 2002 | A1 |
20020065797 | Meidan et al. | May 2002 | A1 |
20020067308 | Robertson | Jun 2002 | A1 |
20020069063 | Buchner et al. | Jun 2002 | A1 |
20020069071 | Knockeart et al. | Jun 2002 | A1 |
20020069220 | Tran | Jun 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020072908 | Case et al. | Jun 2002 | A1 |
20020072914 | Alshawi et al. | Jun 2002 | A1 |
20020072915 | Bower | Jun 2002 | A1 |
20020073177 | Clark et al. | Jun 2002 | A1 |
20020077082 | Cruickshank | Jun 2002 | A1 |
20020077817 | Atal | Jun 2002 | A1 |
20020078041 | Wu | Jun 2002 | A1 |
20020080163 | Morey | Jun 2002 | A1 |
20020082831 | Hwang et al. | Jun 2002 | A1 |
20020083068 | Quass et al. | Jun 2002 | A1 |
20020085037 | Leavitt et al. | Jul 2002 | A1 |
20020086268 | Shpiro | Jul 2002 | A1 |
20020086680 | Hunzinger | Jul 2002 | A1 |
20020087306 | Lee et al. | Jul 2002 | A1 |
20020087508 | Hull et al. | Jul 2002 | A1 |
20020087974 | Sprague et al. | Jul 2002 | A1 |
20020091511 | Hellwig et al. | Jul 2002 | A1 |
20020091529 | Whitham | Jul 2002 | A1 |
20020095286 | Ross et al. | Jul 2002 | A1 |
20020095290 | Kahn et al. | Jul 2002 | A1 |
20020099547 | Chu et al. | Jul 2002 | A1 |
20020099552 | Rubin et al. | Jul 2002 | A1 |
20020101447 | Carro | Aug 2002 | A1 |
20020103641 | Kuo et al. | Aug 2002 | A1 |
20020103644 | Brocious et al. | Aug 2002 | A1 |
20020103646 | Kochanski et al. | Aug 2002 | A1 |
20020107684 | Gao | Aug 2002 | A1 |
20020109709 | Sagar | Aug 2002 | A1 |
20020110248 | Kovales et al. | Aug 2002 | A1 |
20020111198 | Heie et al. | Aug 2002 | A1 |
20020111806 | Franz et al. | Aug 2002 | A1 |
20020111810 | Khan et al. | Aug 2002 | A1 |
20020116082 | Gudorf | Aug 2002 | A1 |
20020116171 | Russell | Aug 2002 | A1 |
20020116185 | Cooper et al. | Aug 2002 | A1 |
20020116189 | Yeh et al. | Aug 2002 | A1 |
20020116420 | Allam et al. | Aug 2002 | A1 |
20020117384 | Marchant | Aug 2002 | A1 |
20020120697 | Generous et al. | Aug 2002 | A1 |
20020120925 | Logan | Aug 2002 | A1 |
20020122053 | Dutta et al. | Sep 2002 | A1 |
20020123804 | Gwon et al. | Sep 2002 | A1 |
20020123891 | Epstein et al. | Sep 2002 | A1 |
20020123892 | Woodward | Sep 2002 | A1 |
20020123894 | Woodward | Sep 2002 | A1 |
20020126097 | Savolainen | Sep 2002 | A1 |
20020128821 | Ehsani et al. | Sep 2002 | A1 |
20020128827 | Bu et al. | Sep 2002 | A1 |
20020128840 | Hinde et al. | Sep 2002 | A1 |
20020129057 | Spielberg | Sep 2002 | A1 |
20020133341 | Gillick et al. | Sep 2002 | A1 |
20020133347 | Schoneburg et al. | Sep 2002 | A1 |
20020133348 | Pearson et al. | Sep 2002 | A1 |
20020135565 | Gordon et al. | Sep 2002 | A1 |
20020135618 | Maes et al. | Sep 2002 | A1 |
20020137505 | Eiche et al. | Sep 2002 | A1 |
20020138254 | Isaka et al. | Sep 2002 | A1 |
20020138265 | Stevens et al. | Sep 2002 | A1 |
20020138270 | Bellegarda et al. | Sep 2002 | A1 |
20020138274 | Sharma et al. | Sep 2002 | A1 |
20020138616 | Basson et al. | Sep 2002 | A1 |
20020140679 | Wen | Oct 2002 | A1 |
20020143523 | Balaj et al. | Oct 2002 | A1 |
20020143532 | Mclean et al. | Oct 2002 | A1 |
20020143533 | Lucas et al. | Oct 2002 | A1 |
20020143542 | Eide | Oct 2002 | A1 |
20020143551 | Sharma et al. | Oct 2002 | A1 |
20020143826 | Day et al. | Oct 2002 | A1 |
20020151297 | Remboski et al. | Oct 2002 | A1 |
20020152045 | Dowling et al. | Oct 2002 | A1 |
20020152255 | Smith et al. | Oct 2002 | A1 |
20020154160 | Hosokawa | Oct 2002 | A1 |
20020156771 | Frieder et al. | Oct 2002 | A1 |
20020161865 | Nguyen | Oct 2002 | A1 |
20020163544 | Baker et al. | Nov 2002 | A1 |
20020164000 | Cohen et al. | Nov 2002 | A1 |
20020165717 | Solmer et al. | Nov 2002 | A1 |
20020165918 | Bettis | Nov 2002 | A1 |
20020166123 | Schrader et al. | Nov 2002 | A1 |
20020167534 | Burke | Nov 2002 | A1 |
20020169592 | Aityan | Nov 2002 | A1 |
20020169605 | Damiba et al. | Nov 2002 | A1 |
20020173273 | Spurgat et al. | Nov 2002 | A1 |
20020173889 | Odinak et al. | Nov 2002 | A1 |
20020173955 | Reich | Nov 2002 | A1 |
20020173961 | Guerra | Nov 2002 | A1 |
20020173962 | Tang et al. | Nov 2002 | A1 |
20020173966 | Henton | Nov 2002 | A1 |
20020177993 | Veditz et al. | Nov 2002 | A1 |
20020184003 | Hakkinen et al. | Dec 2002 | A1 |
20020184015 | Li et al. | Dec 2002 | A1 |
20020184027 | Brittan et al. | Dec 2002 | A1 |
20020184189 | Hay et al. | Dec 2002 | A1 |
20020188454 | Sauber | Dec 2002 | A1 |
20020188847 | Valeria | Dec 2002 | A1 |
20020189426 | Hirade et al. | Dec 2002 | A1 |
20020191029 | Gillespie et al. | Dec 2002 | A1 |
20020193996 | Squibbs et al. | Dec 2002 | A1 |
20020196911 | Gao et al. | Dec 2002 | A1 |
20020198714 | Zhou | Dec 2002 | A1 |
20020198715 | Belrose | Dec 2002 | A1 |
20030001881 | Mannheimer et al. | Jan 2003 | A1 |
20030002632 | Bhogal et al. | Jan 2003 | A1 |
20030003609 | Sauer et al. | Jan 2003 | A1 |
20030003897 | Hyon | Jan 2003 | A1 |
20030004703 | Prabhakar et al. | Jan 2003 | A1 |
20030004968 | Romer et al. | Jan 2003 | A1 |
20030005174 | Coffman et al. | Jan 2003 | A1 |
20030009459 | Chastain et al. | Jan 2003 | A1 |
20030013483 | Ausems et al. | Jan 2003 | A1 |
20030016770 | Trans et al. | Jan 2003 | A1 |
20030018475 | Basu et al. | Jan 2003 | A1 |
20030020760 | Takatsu et al. | Jan 2003 | A1 |
20030023420 | Goodman et al. | Jan 2003 | A1 |
20030023426 | Pun et al. | Jan 2003 | A1 |
20030025676 | Cappendijk | Feb 2003 | A1 |
20030026392 | Brown et al. | Feb 2003 | A1 |
20030026402 | Clapper | Feb 2003 | A1 |
20030028380 | Freeland et al. | Feb 2003 | A1 |
20030030645 | Ribak et al. | Feb 2003 | A1 |
20030033148 | Silverman et al. | Feb 2003 | A1 |
20030033152 | Cameron | Feb 2003 | A1 |
20030033153 | Olson et al. | Feb 2003 | A1 |
20030033214 | Mikkelsen et al. | Feb 2003 | A1 |
20030036909 | Kato | Feb 2003 | A1 |
20030037073 | Tokuda et al. | Feb 2003 | A1 |
20030037077 | Brill et al. | Feb 2003 | A1 |
20030037254 | Fischer et al. | Feb 2003 | A1 |
20030038786 | Nguyen et al. | Feb 2003 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030046075 | Stone | Mar 2003 | A1 |
20030046401 | Abbott et al. | Mar 2003 | A1 |
20030046434 | Flanagin et al. | Mar 2003 | A1 |
20030048881 | Trajkovic et al. | Mar 2003 | A1 |
20030050781 | Tamura et al. | Mar 2003 | A1 |
20030051136 | Curtis et al. | Mar 2003 | A1 |
20030055537 | Odinak et al. | Mar 2003 | A1 |
20030055623 | Epstein et al. | Mar 2003 | A1 |
20030055641 | Yi et al. | Mar 2003 | A1 |
20030061317 | Brown et al. | Mar 2003 | A1 |
20030061570 | Hatori et al. | Mar 2003 | A1 |
20030063073 | Geaghan et al. | Apr 2003 | A1 |
20030065805 | Barnes, Jr. | Apr 2003 | A1 |
20030069893 | Kanai et al. | Apr 2003 | A1 |
20030074195 | Bartosik et al. | Apr 2003 | A1 |
20030074198 | Sussman | Apr 2003 | A1 |
20030074457 | Kluth | Apr 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030078778 | Emam et al. | Apr 2003 | A1 |
20030078779 | Desai et al. | Apr 2003 | A1 |
20030078780 | Kochanski et al. | Apr 2003 | A1 |
20030078969 | Sprague et al. | Apr 2003 | A1 |
20030079024 | Hough et al. | Apr 2003 | A1 |
20030079038 | Robbin et al. | Apr 2003 | A1 |
20030080991 | Crow et al. | May 2003 | A1 |
20030083113 | Chua et al. | May 2003 | A1 |
20030083878 | Lee et al. | May 2003 | A1 |
20030083884 | Odinak et al. | May 2003 | A1 |
20030084350 | Eibach et al. | May 2003 | A1 |
20030085870 | Hinckley | May 2003 | A1 |
20030086699 | Benyamin et al. | May 2003 | A1 |
20030088414 | Huang et al. | May 2003 | A1 |
20030088421 | Maes et al. | May 2003 | A1 |
20030090467 | Hohl et al. | May 2003 | A1 |
20030090474 | Schaefer | May 2003 | A1 |
20030095096 | Robbin et al. | May 2003 | A1 |
20030097210 | Horst et al. | May 2003 | A1 |
20030097379 | Ireton | May 2003 | A1 |
20030097407 | Litwin et al. | May 2003 | A1 |
20030097408 | Kageyama et al. | May 2003 | A1 |
20030098892 | Hiipakka | May 2003 | A1 |
20030099335 | Tanaka et al. | May 2003 | A1 |
20030101045 | Moffatt et al. | May 2003 | A1 |
20030101054 | Davis et al. | May 2003 | A1 |
20030115060 | Junqua et al. | Jun 2003 | A1 |
20030115064 | Gusler et al. | Jun 2003 | A1 |
20030115186 | Wilkinson et al. | Jun 2003 | A1 |
20030115289 | Chinn et al. | Jun 2003 | A1 |
20030115552 | Jahnke et al. | Jun 2003 | A1 |
20030117365 | Shteyn | Jun 2003 | A1 |
20030120494 | Jost et al. | Jun 2003 | A1 |
20030122652 | Himmelstein et al. | Jul 2003 | A1 |
20030122787 | Zimmerman et al. | Jul 2003 | A1 |
20030125927 | Seme | Jul 2003 | A1 |
20030125945 | Doyle | Jul 2003 | A1 |
20030125955 | Arnold et al. | Jul 2003 | A1 |
20030126559 | Fuhrmann | Jul 2003 | A1 |
20030128819 | Lee et al. | Jul 2003 | A1 |
20030130847 | Case et al. | Jul 2003 | A1 |
20030131320 | Kumhyr et al. | Jul 2003 | A1 |
20030133694 | Yeo | Jul 2003 | A1 |
20030134678 | Tanaka | Jul 2003 | A1 |
20030135501 | Frerebeau et al. | Jul 2003 | A1 |
20030135740 | Talmor et al. | Jul 2003 | A1 |
20030139925 | Anderson et al. | Jul 2003 | A1 |
20030140088 | Robinson et al. | Jul 2003 | A1 |
20030144846 | Denenberg et al. | Jul 2003 | A1 |
20030145285 | Miyahira et al. | Jul 2003 | A1 |
20030147512 | Abburi | Aug 2003 | A1 |
20030149557 | Cox et al. | Aug 2003 | A1 |
20030149567 | Schmitz et al. | Aug 2003 | A1 |
20030149978 | Plotnick | Aug 2003 | A1 |
20030152203 | Berger et al. | Aug 2003 | A1 |
20030152261 | Hiroe et al. | Aug 2003 | A1 |
20030152894 | Townshend | Aug 2003 | A1 |
20030154079 | Ota et al. | Aug 2003 | A1 |
20030154081 | Chu et al. | Aug 2003 | A1 |
20030154116 | Lofton | Aug 2003 | A1 |
20030157968 | Boman et al. | Aug 2003 | A1 |
20030158732 | Pi et al. | Aug 2003 | A1 |
20030158735 | Yamada et al. | Aug 2003 | A1 |
20030158737 | Csicsatka | Aug 2003 | A1 |
20030160702 | Tanaka | Aug 2003 | A1 |
20030160830 | Degross | Aug 2003 | A1 |
20030163316 | Addison et al. | Aug 2003 | A1 |
20030164848 | Dutta et al. | Sep 2003 | A1 |
20030167167 | Gong | Sep 2003 | A1 |
20030167318 | Robbin et al. | Sep 2003 | A1 |
20030167335 | Alexander | Sep 2003 | A1 |
20030171911 | Fairweather | Sep 2003 | A1 |
20030171928 | Falcon et al. | Sep 2003 | A1 |
20030171936 | Sall et al. | Sep 2003 | A1 |
20030174830 | Boyer et al. | Sep 2003 | A1 |
20030177046 | Socha-Leialoha et al. | Sep 2003 | A1 |
20030179222 | Noma et al. | Sep 2003 | A1 |
20030182115 | Malayath et al. | Sep 2003 | A1 |
20030182119 | Junqua et al. | Sep 2003 | A1 |
20030182131 | Arnold et al. | Sep 2003 | A1 |
20030182394 | Ryngle et al. | Sep 2003 | A1 |
20030187655 | Dunsmuir | Oct 2003 | A1 |
20030187659 | Cho et al. | Oct 2003 | A1 |
20030187775 | Du et al. | Oct 2003 | A1 |
20030187844 | Li et al. | Oct 2003 | A1 |
20030187925 | Inala et al. | Oct 2003 | A1 |
20030188005 | Yoneda et al. | Oct 2003 | A1 |
20030188192 | Tang et al. | Oct 2003 | A1 |
20030190074 | Loudon et al. | Oct 2003 | A1 |
20030191625 | Gorin et al. | Oct 2003 | A1 |
20030191645 | Zhou | Oct 2003 | A1 |
20030193481 | Sokolsky | Oct 2003 | A1 |
20030194080 | Michaelis et al. | Oct 2003 | A1 |
20030195741 | Mani et al. | Oct 2003 | A1 |
20030197736 | Murphy | Oct 2003 | A1 |
20030197744 | Irvine | Oct 2003 | A1 |
20030200085 | Nguyen et al. | Oct 2003 | A1 |
20030200452 | Tagawa et al. | Oct 2003 | A1 |
20030200858 | Xie | Oct 2003 | A1 |
20030202697 | Simard et al. | Oct 2003 | A1 |
20030204392 | Finnigan et al. | Oct 2003 | A1 |
20030204492 | Wolf et al. | Oct 2003 | A1 |
20030206199 | Pusa et al. | Nov 2003 | A1 |
20030208756 | Macrae et al. | Nov 2003 | A1 |
20030210266 | Cragun et al. | Nov 2003 | A1 |
20030212543 | Epstein et al. | Nov 2003 | A1 |
20030212961 | Soin et al. | Nov 2003 | A1 |
20030214519 | Smith et al. | Nov 2003 | A1 |
20030216919 | Roushar | Nov 2003 | A1 |
20030221198 | Sloo et al. | Nov 2003 | A1 |
20030224760 | Day | Dec 2003 | A1 |
20030228863 | Vander Veen et al. | Dec 2003 | A1 |
20030228909 | Tanaka et al. | Dec 2003 | A1 |
20030229490 | Etter | Dec 2003 | A1 |
20030229616 | Wong | Dec 2003 | A1 |
20030233230 | Ammicht et al. | Dec 2003 | A1 |
20030233237 | Garside et al. | Dec 2003 | A1 |
20030233240 | Kaatrasalo | Dec 2003 | A1 |
20030234824 | Litwiller | Dec 2003 | A1 |
20030236663 | Dimitrova et al. | Dec 2003 | A1 |
20030237055 | Lange et al. | Dec 2003 | A1 |
20040001396 | Keller et al. | Jan 2004 | A1 |
20040006467 | Anisimovich et al. | Jan 2004 | A1 |
20040008277 | Nagaishi et al. | Jan 2004 | A1 |
20040010484 | Foulger et al. | Jan 2004 | A1 |
20040012556 | Yong et al. | Jan 2004 | A1 |
20040013252 | Craner | Jan 2004 | A1 |
20040015342 | Garst et al. | Jan 2004 | A1 |
20040021676 | Chen et al. | Feb 2004 | A1 |
20040022369 | Vitikainen et al. | Feb 2004 | A1 |
20040022373 | Suder et al. | Feb 2004 | A1 |
20040023643 | Vander Veen et al. | Feb 2004 | A1 |
20040024834 | Alegria et al. | Feb 2004 | A1 |
20040030551 | Marcu et al. | Feb 2004 | A1 |
20040030554 | Boxberger-Oberoi et al. | Feb 2004 | A1 |
20040030556 | Bennett | Feb 2004 | A1 |
20040030559 | Payne et al. | Feb 2004 | A1 |
20040030996 | Van Liempd et al. | Feb 2004 | A1 |
20040036715 | Warren | Feb 2004 | A1 |
20040044516 | Kennewick et al. | Mar 2004 | A1 |
20040048627 | Olvera-Hernandez | Mar 2004 | A1 |
20040049388 | Roth et al. | Mar 2004 | A1 |
20040049391 | Polanyi et al. | Mar 2004 | A1 |
20040051729 | Borden, IV | Mar 2004 | A1 |
20040052338 | Celi, Jr. et al. | Mar 2004 | A1 |
20040054530 | Davis et al. | Mar 2004 | A1 |
20040054533 | Bellegarda | Mar 2004 | A1 |
20040054534 | Junqua | Mar 2004 | A1 |
20040054535 | Mackie et al. | Mar 2004 | A1 |
20040054541 | Kryze et al. | Mar 2004 | A1 |
20040054690 | Hillerbrand et al. | Mar 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040056899 | Sinclair, II et al. | Mar 2004 | A1 |
20040059574 | Ma et al. | Mar 2004 | A1 |
20040059577 | Pickering | Mar 2004 | A1 |
20040059790 | Austin-Lane et al. | Mar 2004 | A1 |
20040061717 | Menon et al. | Apr 2004 | A1 |
20040062367 | Fellenstein et al. | Apr 2004 | A1 |
20040064593 | Sinclair et al. | Apr 2004 | A1 |
20040069122 | Wilson | Apr 2004 | A1 |
20040070567 | Longe et al. | Apr 2004 | A1 |
20040070612 | Sinclair et al. | Apr 2004 | A1 |
20040073427 | Moore | Apr 2004 | A1 |
20040073428 | Zlokarnik et al. | Apr 2004 | A1 |
20040076086 | Keller et al. | Apr 2004 | A1 |
20040078382 | Mercer et al. | Apr 2004 | A1 |
20040085162 | Agarwal et al. | May 2004 | A1 |
20040085368 | Johnson, Jr. et al. | May 2004 | A1 |
20040086120 | Akins, III et al. | May 2004 | A1 |
20040093213 | Conkie | May 2004 | A1 |
20040093215 | Gupta et al. | May 2004 | A1 |
20040093328 | Damle | May 2004 | A1 |
20040094018 | Ueshima et al. | May 2004 | A1 |
20040096105 | Holtsberg | May 2004 | A1 |
20040098250 | Kimchi et al. | May 2004 | A1 |
20040100479 | Nakano et al. | May 2004 | A1 |
20040106432 | Kanamori et al. | Jun 2004 | A1 |
20040107169 | Lowe | Jun 2004 | A1 |
20040111266 | Coorman et al. | Jun 2004 | A1 |
20040111332 | Baar et al. | Jun 2004 | A1 |
20040114731 | Gillett et al. | Jun 2004 | A1 |
20040120476 | Harrison et al. | Jun 2004 | A1 |
20040122656 | Abir | Jun 2004 | A1 |
20040122664 | Lorenzo et al. | Jun 2004 | A1 |
20040122673 | Park et al. | Jun 2004 | A1 |
20040124583 | Landis | Jul 2004 | A1 |
20040125088 | Zimmerman et al. | Jul 2004 | A1 |
20040125922 | Specht | Jul 2004 | A1 |
20040127198 | Roskind et al. | Jul 2004 | A1 |
20040127241 | Shostak | Jul 2004 | A1 |
20040128137 | Bush et al. | Jul 2004 | A1 |
20040128614 | Andrews et al. | Jul 2004 | A1 |
20040133817 | Choi | Jul 2004 | A1 |
20040135701 | Yasuda et al. | Jul 2004 | A1 |
20040135774 | La Monica | Jul 2004 | A1 |
20040136510 | Vander Veen | Jul 2004 | A1 |
20040138869 | Heinecke | Jul 2004 | A1 |
20040138881 | Divay et al. | Jul 2004 | A1 |
20040145607 | Alderson | Jul 2004 | A1 |
20040148154 | Acero et al. | Jul 2004 | A1 |
20040152054 | Gleissner et al. | Aug 2004 | A1 |
20040153306 | Tanner et al. | Aug 2004 | A1 |
20040155869 | Robinson et al. | Aug 2004 | A1 |
20040160419 | Padgitt | Aug 2004 | A1 |
20040162741 | Flaxer et al. | Aug 2004 | A1 |
20040167778 | Valsan et al. | Aug 2004 | A1 |
20040168120 | Scopes | Aug 2004 | A1 |
20040170379 | Yao et al. | Sep 2004 | A1 |
20040174399 | Wu et al. | Sep 2004 | A1 |
20040174434 | Walker et al. | Sep 2004 | A1 |
20040176958 | Salmenkaita et al. | Sep 2004 | A1 |
20040177319 | Horn | Sep 2004 | A1 |
20040178994 | Kairls, Jr. | Sep 2004 | A1 |
20040181392 | Parikh et al. | Sep 2004 | A1 |
20040183833 | Chua | Sep 2004 | A1 |
20040186713 | Gomas et al. | Sep 2004 | A1 |
20040186714 | Baker | Sep 2004 | A1 |
20040186777 | Margiloff et al. | Sep 2004 | A1 |
20040186857 | Serlet et al. | Sep 2004 | A1 |
20040193398 | Chu et al. | Sep 2004 | A1 |
20040193420 | Kennewick et al. | Sep 2004 | A1 |
20040193421 | Blass | Sep 2004 | A1 |
20040193426 | Maddux et al. | Sep 2004 | A1 |
20040196256 | Wobbrock et al. | Oct 2004 | A1 |
20040198436 | Alden | Oct 2004 | A1 |
20040199375 | Ehsani et al. | Oct 2004 | A1 |
20040199387 | Wang et al. | Oct 2004 | A1 |
20040199663 | Horvitz et al. | Oct 2004 | A1 |
20040203520 | Schirtzinger et al. | Oct 2004 | A1 |
20040205151 | Sprigg et al. | Oct 2004 | A1 |
20040205671 | Sukehiro et al. | Oct 2004 | A1 |
20040208302 | Urban et al. | Oct 2004 | A1 |
20040210438 | Gillick et al. | Oct 2004 | A1 |
20040210442 | Glynn et al. | Oct 2004 | A1 |
20040210634 | Ferrer et al. | Oct 2004 | A1 |
20040213419 | Varma et al. | Oct 2004 | A1 |
20040215449 | Roy | Oct 2004 | A1 |
20040215731 | Tzann-en Szeto | Oct 2004 | A1 |
20040216049 | Lewis et al. | Oct 2004 | A1 |
20040218451 | Said et al. | Nov 2004 | A1 |
20040220798 | Chi et al. | Nov 2004 | A1 |
20040220809 | Wang et al. | Nov 2004 | A1 |
20040221235 | Marchisio et al. | Nov 2004 | A1 |
20040223485 | Arellano et al. | Nov 2004 | A1 |
20040223599 | Bear et al. | Nov 2004 | A1 |
20040224638 | Fadell et al. | Nov 2004 | A1 |
20040225501 | Cutaia et al. | Nov 2004 | A1 |
20040225504 | Junqua et al. | Nov 2004 | A1 |
20040225650 | Cooper et al. | Nov 2004 | A1 |
20040225746 | Niell et al. | Nov 2004 | A1 |
20040226042 | Ellis | Nov 2004 | A1 |
20040230420 | Kadambe et al. | Nov 2004 | A1 |
20040230637 | Lecoueche et al. | Nov 2004 | A1 |
20040236778 | Junqua et al. | Nov 2004 | A1 |
20040242286 | Benco et al. | Dec 2004 | A1 |
20040243412 | Gupta et al. | Dec 2004 | A1 |
20040243415 | Commarford et al. | Dec 2004 | A1 |
20040243419 | Wang | Dec 2004 | A1 |
20040249629 | Webster | Dec 2004 | A1 |
20040249637 | Baker et al. | Dec 2004 | A1 |
20040249667 | Oon | Dec 2004 | A1 |
20040252119 | Hunleth et al. | Dec 2004 | A1 |
20040252604 | Johnson et al. | Dec 2004 | A1 |
20040252966 | Holloway et al. | Dec 2004 | A1 |
20040254791 | Coifman et al. | Dec 2004 | A1 |
20040254792 | Busayapongchai et al. | Dec 2004 | A1 |
20040257432 | Girish et al. | Dec 2004 | A1 |
20040259536 | Keskar et al. | Dec 2004 | A1 |
20040260438 | Chernetsky et al. | Dec 2004 | A1 |
20040260547 | Cohen et al. | Dec 2004 | A1 |
20040260718 | Fedorov et al. | Dec 2004 | A1 |
20040261023 | Bier | Dec 2004 | A1 |
20040262051 | Carro | Dec 2004 | A1 |
20040263636 | Cutler et al. | Dec 2004 | A1 |
20040267825 | Novak et al. | Dec 2004 | A1 |
20040268253 | Demello et al. | Dec 2004 | A1 |
20040268262 | Gupta et al. | Dec 2004 | A1 |
20050002507 | Timmins et al. | Jan 2005 | A1 |
20050010409 | Hull et al. | Jan 2005 | A1 |
20050012723 | Pallakoff | Jan 2005 | A1 |
20050015254 | Beaman | Jan 2005 | A1 |
20050015751 | Grassens | Jan 2005 | A1 |
20050015772 | Saare et al. | Jan 2005 | A1 |
20050021330 | Mano et al. | Jan 2005 | A1 |
20050021424 | Lewis et al. | Jan 2005 | A1 |
20050022114 | Shanahan et al. | Jan 2005 | A1 |
20050024341 | Gillespie et al. | Feb 2005 | A1 |
20050024345 | Eastty et al. | Feb 2005 | A1 |
20050027385 | Yueh | Feb 2005 | A1 |
20050030175 | Wolfe | Feb 2005 | A1 |
20050031106 | Henderson | Feb 2005 | A1 |
20050033582 | Gadd et al. | Feb 2005 | A1 |
20050033771 | Schmitter et al. | Feb 2005 | A1 |
20050034164 | Sano et al. | Feb 2005 | A1 |
20050038657 | Roth et al. | Feb 2005 | A1 |
20050039141 | Burke et al. | Feb 2005 | A1 |
20050042591 | Bloom et al. | Feb 2005 | A1 |
20050043946 | Ueyama et al. | Feb 2005 | A1 |
20050043949 | Roth et al. | Feb 2005 | A1 |
20050043974 | Vassilev et al. | Feb 2005 | A1 |
20050044569 | Marcus | Feb 2005 | A1 |
20050045373 | Born | Mar 2005 | A1 |
20050049862 | Choi et al. | Mar 2005 | A1 |
20050049870 | Zhang et al. | Mar 2005 | A1 |
20050049880 | Roth et al. | Mar 2005 | A1 |
20050050526 | Dahne-Steuber et al. | Mar 2005 | A1 |
20050055212 | Nagao | Mar 2005 | A1 |
20050055403 | Brittan | Mar 2005 | A1 |
20050058438 | Hayashi | Mar 2005 | A1 |
20050060151 | Kuo et al. | Mar 2005 | A1 |
20050060155 | Chu et al. | Mar 2005 | A1 |
20050071165 | Hofstader et al. | Mar 2005 | A1 |
20050071332 | Ortega et al. | Mar 2005 | A1 |
20050071437 | Bear et al. | Mar 2005 | A1 |
20050074113 | Mathew et al. | Apr 2005 | A1 |
20050075875 | Shozakai et al. | Apr 2005 | A1 |
20050075881 | Rigazio et al. | Apr 2005 | A1 |
20050080613 | Colledge et al. | Apr 2005 | A1 |
20050080620 | Rao et al. | Apr 2005 | A1 |
20050080625 | Bennett et al. | Apr 2005 | A1 |
20050080632 | Endo et al. | Apr 2005 | A1 |
20050080780 | Colledge et al. | Apr 2005 | A1 |
20050086059 | Bennett | Apr 2005 | A1 |
20050086255 | Schran et al. | Apr 2005 | A1 |
20050086605 | Ferrer et al. | Apr 2005 | A1 |
20050091118 | Fano | Apr 2005 | A1 |
20050094475 | Naoi | May 2005 | A1 |
20050099398 | Garside et al. | May 2005 | A1 |
20050100214 | Zhang et al. | May 2005 | A1 |
20050102144 | Rapoport | May 2005 | A1 |
20050102614 | Brockett et al. | May 2005 | A1 |
20050102625 | Lee et al. | May 2005 | A1 |
20050105712 | Williams et al. | May 2005 | A1 |
20050108001 | Aarskog | May 2005 | A1 |
20050108017 | Esser et al. | May 2005 | A1 |
20050108074 | Bloechl et al. | May 2005 | A1 |
20050108338 | Simske et al. | May 2005 | A1 |
20050108344 | Tafoya et al. | May 2005 | A1 |
20050108642 | Sinclair et al. | May 2005 | A1 |
20050114124 | Liu et al. | May 2005 | A1 |
20050114140 | Brackett et al. | May 2005 | A1 |
20050114306 | Shu et al. | May 2005 | A1 |
20050114791 | Bollenbacher et al. | May 2005 | A1 |
20050119890 | Hirose | Jun 2005 | A1 |
20050119897 | Bennett et al. | Jun 2005 | A1 |
20050125215 | Wu et al. | Jun 2005 | A1 |
20050125216 | Chitrapura et al. | Jun 2005 | A1 |
20050125218 | Rajput et al. | Jun 2005 | A1 |
20050125226 | Magee | Jun 2005 | A1 |
20050125235 | Lazay et al. | Jun 2005 | A1 |
20050131951 | Zhang et al. | Jun 2005 | A1 |
20050132301 | Ikeda | Jun 2005 | A1 |
20050136949 | Barnes, Jr. | Jun 2005 | A1 |
20050138305 | Zellner | Jun 2005 | A1 |
20050140504 | Marshall et al. | Jun 2005 | A1 |
20050143970 | Roth et al. | Jun 2005 | A1 |
20050143972 | Gopalakrishnan et al. | Jun 2005 | A1 |
20050144003 | Iso-Sipila | Jun 2005 | A1 |
20050144070 | Cheshire | Jun 2005 | A1 |
20050144568 | Gruen et al. | Jun 2005 | A1 |
20050148356 | Ferguson et al. | Jul 2005 | A1 |
20050149214 | Yoo et al. | Jul 2005 | A1 |
20050149326 | Hogengout et al. | Jul 2005 | A1 |
20050149328 | Huang et al. | Jul 2005 | A1 |
20050149330 | Katae | Jul 2005 | A1 |
20050149332 | Kuzunuki et al. | Jul 2005 | A1 |
20050149510 | Shafrir | Jul 2005 | A1 |
20050152558 | Van Tassel | Jul 2005 | A1 |
20050152602 | Chen et al. | Jul 2005 | A1 |
20050154578 | Tong et al. | Jul 2005 | A1 |
20050154580 | Horowitz et al. | Jul 2005 | A1 |
20050154591 | Lecoeuche | Jul 2005 | A1 |
20050159939 | Mohler et al. | Jul 2005 | A1 |
20050159957 | Roth et al. | Jul 2005 | A1 |
20050162395 | Unruh | Jul 2005 | A1 |
20050165015 | Ncube et al. | Jul 2005 | A1 |
20050165607 | Di Fabbrizio et al. | Jul 2005 | A1 |
20050166153 | Eytchison et al. | Jul 2005 | A1 |
20050171766 | Albesano et al. | Aug 2005 | A1 |
20050171779 | Joublin | Aug 2005 | A1 |
20050177445 | Church | Aug 2005 | A1 |
20050181770 | Helferich | Aug 2005 | A1 |
20050182616 | Kotipalli | Aug 2005 | A1 |
20050182627 | Tanaka et al. | Aug 2005 | A1 |
20050182628 | Choi | Aug 2005 | A1 |
20050182629 | Coorman et al. | Aug 2005 | A1 |
20050182630 | Miro et al. | Aug 2005 | A1 |
20050182765 | Liddy | Aug 2005 | A1 |
20050184958 | Gnanamgari et al. | Aug 2005 | A1 |
20050185779 | Toms | Aug 2005 | A1 |
20050187770 | Kompe et al. | Aug 2005 | A1 |
20050187773 | Filoche et al. | Aug 2005 | A1 |
20050190059 | Wehrenberg | Sep 2005 | A1 |
20050190970 | Griffin | Sep 2005 | A1 |
20050190973 | Kristensson et al. | Sep 2005 | A1 |
20050191159 | Benko | Sep 2005 | A1 |
20050192795 | Lam et al. | Sep 2005 | A1 |
20050192801 | Lewis et al. | Sep 2005 | A1 |
20050192807 | Emam et al. | Sep 2005 | A1 |
20050192812 | Buchholz et al. | Sep 2005 | A1 |
20050195077 | Mcculloch et al. | Sep 2005 | A1 |
20050195429 | Archbold | Sep 2005 | A1 |
20050196733 | Budra et al. | Sep 2005 | A1 |
20050201572 | Lindahl et al. | Sep 2005 | A1 |
20050202854 | Kortum et al. | Sep 2005 | A1 |
20050203738 | Hwang | Sep 2005 | A1 |
20050203747 | Lecoeuche | Sep 2005 | A1 |
20050203782 | Smith | Sep 2005 | A1 |
20050203991 | Kawamura et al. | Sep 2005 | A1 |
20050209848 | Ishii | Sep 2005 | A1 |
20050210394 | Crandall et al. | Sep 2005 | A1 |
20050216271 | Konig | Sep 2005 | A1 |
20050216331 | Ahrens et al. | Sep 2005 | A1 |
20050222843 | Kahn et al. | Oct 2005 | A1 |
20050222973 | Kaiser | Oct 2005 | A1 |
20050228665 | Kobayashi et al. | Oct 2005 | A1 |
20050245243 | Zuniga | Nov 2005 | A1 |
20050246350 | Canaran | Nov 2005 | A1 |
20050246365 | Lowles et al. | Nov 2005 | A1 |
20050246686 | Seshadri et al. | Nov 2005 | A1 |
20050246726 | Labrou et al. | Nov 2005 | A1 |
20050251572 | McMahan et al. | Nov 2005 | A1 |
20050254481 | Vishik et al. | Nov 2005 | A1 |
20050255874 | Stewart-Baxter et al. | Nov 2005 | A1 |
20050261901 | Davis et al. | Nov 2005 | A1 |
20050261903 | Kawazoe et al. | Nov 2005 | A1 |
20050262440 | Stanciu et al. | Nov 2005 | A1 |
20050267738 | Wilkinson et al. | Dec 2005 | A1 |
20050267757 | Iso-Sipila et al. | Dec 2005 | A1 |
20050268247 | Baneth | Dec 2005 | A1 |
20050271216 | Lashkari | Dec 2005 | A1 |
20050273332 | Scott et al. | Dec 2005 | A1 |
20050273337 | Erell et al. | Dec 2005 | A1 |
20050273626 | Pearson et al. | Dec 2005 | A1 |
20050275505 | Himmelstein | Dec 2005 | A1 |
20050278297 | Nelson | Dec 2005 | A1 |
20050278643 | Ukai et al. | Dec 2005 | A1 |
20050278647 | Leavitt et al. | Dec 2005 | A1 |
20050283363 | Weng et al. | Dec 2005 | A1 |
20050283364 | Longe et al. | Dec 2005 | A1 |
20050283726 | Lunati | Dec 2005 | A1 |
20050283729 | Morris et al. | Dec 2005 | A1 |
20050288934 | Omi | Dec 2005 | A1 |
20050288936 | Busayapongchai et al. | Dec 2005 | A1 |
20050289458 | Kylmanen | Dec 2005 | A1 |
20050289463 | Wu et al. | Dec 2005 | A1 |
20060001652 | Chiu et al. | Jan 2006 | A1 |
20060004570 | Ju et al. | Jan 2006 | A1 |
20060004640 | Swierczek | Jan 2006 | A1 |
20060004744 | Nevidomski et al. | Jan 2006 | A1 |
20060007174 | Shen | Jan 2006 | A1 |
20060009973 | Nguyen et al. | Jan 2006 | A1 |
20060013414 | Shih | Jan 2006 | A1 |
20060013446 | Stephens | Jan 2006 | A1 |
20060015317 | Nakagawa | Jan 2006 | A1 |
20060015326 | Mori et al. | Jan 2006 | A1 |
20060015341 | Baker | Jan 2006 | A1 |
20060015484 | Weng et al. | Jan 2006 | A1 |
20060015819 | Hawkins et al. | Jan 2006 | A1 |
20060018446 | Schmandt et al. | Jan 2006 | A1 |
20060018492 | Chiu et al. | Jan 2006 | A1 |
20060020890 | Kroll et al. | Jan 2006 | A1 |
20060025999 | Feng et al. | Feb 2006 | A1 |
20060026233 | Tenembaum et al. | Feb 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060033724 | Chaudhri et al. | Feb 2006 | A1 |
20060035632 | Sorvari et al. | Feb 2006 | A1 |
20060036946 | Radtke et al. | Feb 2006 | A1 |
20060041424 | Todhunter et al. | Feb 2006 | A1 |
20060041431 | Maes | Feb 2006 | A1 |
20060041549 | Gundersen et al. | Feb 2006 | A1 |
20060041590 | King et al. | Feb 2006 | A1 |
20060041926 | Istvan et al. | Feb 2006 | A1 |
20060047632 | Zhang | Mar 2006 | A1 |
20060050865 | Kortum et al. | Mar 2006 | A1 |
20060052141 | Suzuki | Mar 2006 | A1 |
20060053007 | Niemisto et al. | Mar 2006 | A1 |
20060053014 | Yoshizawa | Mar 2006 | A1 |
20060053365 | Hollander et al. | Mar 2006 | A1 |
20060053379 | Henderson et al. | Mar 2006 | A1 |
20060053387 | Ording | Mar 2006 | A1 |
20060058999 | Barker et al. | Mar 2006 | A1 |
20060059424 | Petri et al. | Mar 2006 | A1 |
20060059437 | Conklin | Mar 2006 | A1 |
20060060762 | Chan et al. | Mar 2006 | A1 |
20060061488 | Dunton | Mar 2006 | A1 |
20060064693 | Messer et al. | Mar 2006 | A1 |
20060067535 | Culbert et al. | Mar 2006 | A1 |
20060067536 | Culbert et al. | Mar 2006 | A1 |
20060069567 | Tischer et al. | Mar 2006 | A1 |
20060069664 | Ling et al. | Mar 2006 | A1 |
20060072248 | Watanabe et al. | Apr 2006 | A1 |
20060072716 | Pham | Apr 2006 | A1 |
20060074628 | Elbaz et al. | Apr 2006 | A1 |
20060074651 | Arun et al. | Apr 2006 | A1 |
20060074660 | Waters et al. | Apr 2006 | A1 |
20060074674 | Zhang et al. | Apr 2006 | A1 |
20060074750 | Clark et al. | Apr 2006 | A1 |
20060074898 | Gavalda et al. | Apr 2006 | A1 |
20060075429 | Istvan et al. | Apr 2006 | A1 |
20060077055 | Basir | Apr 2006 | A1 |
20060080098 | Campbell | Apr 2006 | A1 |
20060085183 | Jain | Apr 2006 | A1 |
20060085187 | Barquilla | Apr 2006 | A1 |
20060085465 | Nori et al. | Apr 2006 | A1 |
20060085757 | Andre et al. | Apr 2006 | A1 |
20060093998 | Vertegaal | May 2006 | A1 |
20060095265 | Chu et al. | May 2006 | A1 |
20060095790 | Nguyen et al. | May 2006 | A1 |
20060095846 | Nurmi | May 2006 | A1 |
20060095848 | Naik | May 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060100848 | Cozzi et al. | May 2006 | A1 |
20060100849 | Chan | May 2006 | A1 |
20060101354 | Hashimoto et al. | May 2006 | A1 |
20060103633 | Gioeli | May 2006 | A1 |
20060106592 | Brockett et al. | May 2006 | A1 |
20060106594 | Brockett et al. | May 2006 | A1 |
20060106595 | Brockett et al. | May 2006 | A1 |
20060111906 | Cross et al. | May 2006 | A1 |
20060111909 | Maes et al. | May 2006 | A1 |
20060112810 | Eves et al. | Jun 2006 | A1 |
20060116874 | Samuelsson et al. | Jun 2006 | A1 |
20060116877 | Pickering et al. | Jun 2006 | A1 |
20060117002 | Swen | Jun 2006 | A1 |
20060119582 | Ng et al. | Jun 2006 | A1 |
20060122834 | Bennett | Jun 2006 | A1 |
20060122836 | Cross et al. | Jun 2006 | A1 |
20060129379 | Ramsey et al. | Jun 2006 | A1 |
20060129929 | Weber et al. | Jun 2006 | A1 |
20060130006 | Chitale | Jun 2006 | A1 |
20060132812 | Barnes et al. | Jun 2006 | A1 |
20060135214 | Zhang et al. | Jun 2006 | A1 |
20060136213 | Hirose et al. | Jun 2006 | A1 |
20060136280 | Cho et al. | Jun 2006 | A1 |
20060136352 | Brun et al. | Jun 2006 | A1 |
20060141990 | Zak et al. | Jun 2006 | A1 |
20060142576 | Meng et al. | Jun 2006 | A1 |
20060142993 | Menendez-Pidal et al. | Jun 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060143559 | Spielberg et al. | Jun 2006 | A1 |
20060143576 | Gupta et al. | Jun 2006 | A1 |
20060148520 | Baker et al. | Jul 2006 | A1 |
20060149544 | Hakkani-Tur et al. | Jul 2006 | A1 |
20060149557 | Kaneko et al. | Jul 2006 | A1 |
20060149558 | Kahn et al. | Jul 2006 | A1 |
20060150087 | Cronenberger et al. | Jul 2006 | A1 |
20060152496 | Knaven | Jul 2006 | A1 |
20060153040 | Girish et al. | Jul 2006 | A1 |
20060156252 | Sheshagiri et al. | Jul 2006 | A1 |
20060156307 | Kunjithapatham et al. | Jul 2006 | A1 |
20060161870 | Hotelling et al. | Jul 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060161872 | Rytivaara et al. | Jul 2006 | A1 |
20060165105 | Shenfield et al. | Jul 2006 | A1 |
20060167676 | Plumb | Jul 2006 | A1 |
20060168150 | Naik et al. | Jul 2006 | A1 |
20060168507 | Hansen | Jul 2006 | A1 |
20060168539 | Hawkins et al. | Jul 2006 | A1 |
20060172720 | Islam et al. | Aug 2006 | A1 |
20060173683 | Roth et al. | Aug 2006 | A1 |
20060173684 | Fischer et al. | Aug 2006 | A1 |
20060174207 | Deshpande | Aug 2006 | A1 |
20060178868 | Billerey-Mosier | Aug 2006 | A1 |
20060181519 | Vernier et al. | Aug 2006 | A1 |
20060183466 | Lee et al. | Aug 2006 | A1 |
20060184370 | Kwak et al. | Aug 2006 | A1 |
20060184886 | Chung et al. | Aug 2006 | A1 |
20060187073 | Lin et al. | Aug 2006 | A1 |
20060190169 | Kawai | Aug 2006 | A1 |
20060190255 | Fukada | Aug 2006 | A1 |
20060190269 | Tessel et al. | Aug 2006 | A1 |
20060190436 | Richardson et al. | Aug 2006 | A1 |
20060190577 | Yamada | Aug 2006 | A1 |
20060193518 | Dong | Aug 2006 | A1 |
20060194181 | Rosenberg | Aug 2006 | A1 |
20060195206 | Moon et al. | Aug 2006 | A1 |
20060195323 | Monne et al. | Aug 2006 | A1 |
20060195516 | Beaupre | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060197755 | Bawany | Sep 2006 | A1 |
20060200253 | Hoffberg et al. | Sep 2006 | A1 |
20060200342 | Corston-Oliver et al. | Sep 2006 | A1 |
20060200347 | Kim et al. | Sep 2006 | A1 |
20060205432 | Hawkins et al. | Sep 2006 | A1 |
20060206313 | Xu et al. | Sep 2006 | A1 |
20060206454 | Forstall et al. | Sep 2006 | A1 |
20060206724 | Schaufele et al. | Sep 2006 | A1 |
20060212415 | Backer et al. | Sep 2006 | A1 |
20060217967 | Goertzen et al. | Sep 2006 | A1 |
20060218244 | Rasmussen et al. | Sep 2006 | A1 |
20060221738 | Park et al. | Oct 2006 | A1 |
20060221788 | Lindahl et al. | Oct 2006 | A1 |
20060224570 | Quiroga et al. | Oct 2006 | A1 |
20060229802 | Vertelney et al. | Oct 2006 | A1 |
20060229870 | Kobal | Oct 2006 | A1 |
20060229876 | Aaron et al. | Oct 2006 | A1 |
20060230350 | Baluja | Oct 2006 | A1 |
20060230410 | Kurganov et al. | Oct 2006 | A1 |
20060234680 | Doulton | Oct 2006 | A1 |
20060235550 | Csicsatka et al. | Oct 2006 | A1 |
20060235690 | Tomasic et al. | Oct 2006 | A1 |
20060235700 | Wong et al. | Oct 2006 | A1 |
20060235841 | Betz et al. | Oct 2006 | A1 |
20060236262 | Bathiche et al. | Oct 2006 | A1 |
20060239419 | Joseph et al. | Oct 2006 | A1 |
20060239471 | Mao et al. | Oct 2006 | A1 |
20060240866 | Eilts et al. | Oct 2006 | A1 |
20060241948 | Abrash et al. | Oct 2006 | A1 |
20060242190 | Wnek | Oct 2006 | A1 |
20060246955 | Nirhamo et al. | Nov 2006 | A1 |
20060247931 | Caskey et al. | Nov 2006 | A1 |
20060252457 | Schrager | Nov 2006 | A1 |
20060253210 | Rosenberg | Nov 2006 | A1 |
20060253787 | Fogg | Nov 2006 | A1 |
20060256934 | Mazor | Nov 2006 | A1 |
20060258376 | Ewell et al. | Nov 2006 | A1 |
20060262876 | LaDue | Nov 2006 | A1 |
20060265208 | Assadollahi | Nov 2006 | A1 |
20060265503 | Jones et al. | Nov 2006 | A1 |
20060265648 | Rainisto et al. | Nov 2006 | A1 |
20060271627 | Szczepanek | Nov 2006 | A1 |
20060274051 | Longe et al. | Dec 2006 | A1 |
20060274905 | Lindahl et al. | Dec 2006 | A1 |
20060277031 | Ramsey et al. | Dec 2006 | A1 |
20060277058 | J″maev et al. | Dec 2006 | A1 |
20060282264 | Denny et al. | Dec 2006 | A1 |
20060282415 | Shibata et al. | Dec 2006 | A1 |
20060282455 | Lee et al. | Dec 2006 | A1 |
20060286527 | Morel | Dec 2006 | A1 |
20060287864 | Pusa et al. | Dec 2006 | A1 |
20060288024 | Braica | Dec 2006 | A1 |
20060291666 | Ball et al. | Dec 2006 | A1 |
20060293876 | Kamatani et al. | Dec 2006 | A1 |
20060293880 | Elshishiny et al. | Dec 2006 | A1 |
20060293886 | Odell et al. | Dec 2006 | A1 |
20060293889 | Kiss et al. | Dec 2006 | A1 |
20060293890 | Blair et al. | Dec 2006 | A1 |
20070003026 | Hodge et al. | Jan 2007 | A1 |
20070004451 | C. Anderson | Jan 2007 | A1 |
20070005206 | Zhang et al. | Jan 2007 | A1 |
20070005849 | Oliver | Jan 2007 | A1 |
20070006098 | Krumm et al. | Jan 2007 | A1 |
20070011154 | Musgrove et al. | Jan 2007 | A1 |
20070014280 | Cormier et al. | Jan 2007 | A1 |
20070016563 | Omoigui | Jan 2007 | A1 |
20070016865 | Johnson et al. | Jan 2007 | A1 |
20070021956 | Qu et al. | Jan 2007 | A1 |
20070022380 | Swartz et al. | Jan 2007 | A1 |
20070025704 | Tsukazaki et al. | Feb 2007 | A1 |
20070026852 | Logan et al. | Feb 2007 | A1 |
20070027732 | Hudgens | Feb 2007 | A1 |
20070028009 | Robbin et al. | Feb 2007 | A1 |
20070030824 | Ribaudo et al. | Feb 2007 | A1 |
20070032247 | Shaffer et al. | Feb 2007 | A1 |
20070033003 | Morris | Feb 2007 | A1 |
20070033005 | Cristo et al. | Feb 2007 | A1 |
20070033026 | Bartosik et al. | Feb 2007 | A1 |
20070033054 | Snitkovskiy et al. | Feb 2007 | A1 |
20070036117 | Taube et al. | Feb 2007 | A1 |
20070036286 | Champlin et al. | Feb 2007 | A1 |
20070036294 | Chaudhuri et al. | Feb 2007 | A1 |
20070038436 | Cristoe et al. | Feb 2007 | A1 |
20070038452 | Blair et al. | Feb 2007 | A1 |
20070038460 | Navratil et al. | Feb 2007 | A1 |
20070038609 | Wu | Feb 2007 | A1 |
20070040813 | Kushler et al. | Feb 2007 | A1 |
20070041361 | Iso-Sipila | Feb 2007 | A1 |
20070042812 | Basir et al. | Feb 2007 | A1 |
20070043568 | Dhanakshirur et al. | Feb 2007 | A1 |
20070043574 | Coffman et al. | Feb 2007 | A1 |
20070043687 | Bodart et al. | Feb 2007 | A1 |
20070043820 | George et al. | Feb 2007 | A1 |
20070044038 | Horentrup et al. | Feb 2007 | A1 |
20070046641 | Lim | Mar 2007 | A1 |
20070047719 | Dhawan et al. | Mar 2007 | A1 |
20070050184 | Drucker et al. | Mar 2007 | A1 |
20070050191 | Weider et al. | Mar 2007 | A1 |
20070050393 | Vogel et al. | Mar 2007 | A1 |
20070050712 | Hull et al. | Mar 2007 | A1 |
20070052586 | Horstemeyer | Mar 2007 | A1 |
20070055493 | Lee | Mar 2007 | A1 |
20070055508 | Zhao et al. | Mar 2007 | A1 |
20070055514 | Beattie et al. | Mar 2007 | A1 |
20070055525 | Kennewick et al. | Mar 2007 | A1 |
20070055529 | Kanevsky et al. | Mar 2007 | A1 |
20070058832 | Hug et al. | Mar 2007 | A1 |
20070060107 | Day | Mar 2007 | A1 |
20070060114 | Ramer et al. | Mar 2007 | A1 |
20070060118 | Guyette | Mar 2007 | A1 |
20070061152 | Doi | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070061712 | Bodin et al. | Mar 2007 | A1 |
20070061754 | Ardhanari et al. | Mar 2007 | A1 |
20070067173 | Bellegarda | Mar 2007 | A1 |
20070067272 | Flynt et al. | Mar 2007 | A1 |
20070072553 | Barbera | Mar 2007 | A1 |
20070073540 | Hirakawa et al. | Mar 2007 | A1 |
20070073541 | Tian | Mar 2007 | A1 |
20070073745 | Scott et al. | Mar 2007 | A1 |
20070074131 | Assadollahi et al. | Mar 2007 | A1 |
20070074617 | Vergo | Apr 2007 | A1 |
20070075965 | Huppi et al. | Apr 2007 | A1 |
20070079027 | Marriott et al. | Apr 2007 | A1 |
20070080936 | Tsuk et al. | Apr 2007 | A1 |
20070083366 | Peters | Apr 2007 | A1 |
20070083467 | Lindahl et al. | Apr 2007 | A1 |
20070083623 | Nishimura et al. | Apr 2007 | A1 |
20070088556 | Andrew | Apr 2007 | A1 |
20070089132 | Qureshey et al. | Apr 2007 | A1 |
20070089135 | Qureshey et al. | Apr 2007 | A1 |
20070093277 | Cavacuiti et al. | Apr 2007 | A1 |
20070094026 | Ativanichayaphong et al. | Apr 2007 | A1 |
20070098195 | Holmes | May 2007 | A1 |
20070100206 | Lin et al. | May 2007 | A1 |
20070100602 | Kim | May 2007 | A1 |
20070100619 | Purho et al. | May 2007 | A1 |
20070100624 | Weng et al. | May 2007 | A1 |
20070100635 | Mahajan et al. | May 2007 | A1 |
20070100709 | Lee et al. | May 2007 | A1 |
20070100790 | Cheyer et al. | May 2007 | A1 |
20070100814 | Lee et al. | May 2007 | A1 |
20070100883 | Rose et al. | May 2007 | A1 |
20070106491 | Carter et al. | May 2007 | A1 |
20070106497 | Ramsey et al. | May 2007 | A1 |
20070106512 | Acero et al. | May 2007 | A1 |
20070106513 | Boillot et al. | May 2007 | A1 |
20070106657 | Brzeski et al. | May 2007 | A1 |
20070106674 | Agrawal et al. | May 2007 | A1 |
20070106685 | Houh et al. | May 2007 | A1 |
20070112562 | Vainio et al. | May 2007 | A1 |
20070112568 | Fingscheidt et al. | May 2007 | A1 |
20070116195 | Thompson et al. | May 2007 | A1 |
20070118351 | Sumita | May 2007 | A1 |
20070118377 | Badino et al. | May 2007 | A1 |
20070118378 | Skuratovsky | May 2007 | A1 |
20070121846 | Altberg et al. | May 2007 | A1 |
20070124131 | Chino et al. | May 2007 | A1 |
20070124132 | Takeuchi et al. | May 2007 | A1 |
20070124149 | Shen et al. | May 2007 | A1 |
20070124289 | Imielinski | May 2007 | A1 |
20070124291 | Hassan et al. | May 2007 | A1 |
20070124675 | Ban et al. | May 2007 | A1 |
20070124676 | Amundsen et al. | May 2007 | A1 |
20070127888 | Hayashi et al. | Jun 2007 | A1 |
20070128777 | Yin et al. | Jun 2007 | A1 |
20070129059 | Nadarajah et al. | Jun 2007 | A1 |
20070129098 | Cheng et al. | Jun 2007 | A1 |
20070130014 | Altberg et al. | Jun 2007 | A1 |
20070130128 | Garg et al. | Jun 2007 | A1 |
20070132738 | Lowles et al. | Jun 2007 | A1 |
20070133771 | Stifelman et al. | Jun 2007 | A1 |
20070135187 | Kreiner et al. | Jun 2007 | A1 |
20070135949 | Snover et al. | Jun 2007 | A1 |
20070136064 | Carroll | Jun 2007 | A1 |
20070136071 | Lee et al. | Jun 2007 | A1 |
20070136778 | Birger et al. | Jun 2007 | A1 |
20070143163 | Weiss et al. | Jun 2007 | A1 |
20070143376 | McIntosh | Jun 2007 | A1 |
20070149252 | Jobs et al. | Jun 2007 | A1 |
20070150403 | Mock et al. | Jun 2007 | A1 |
20070150444 | Chesnais et al. | Jun 2007 | A1 |
20070150842 | Chaudhri et al. | Jun 2007 | A1 |
20070152978 | Kocienda et al. | Jul 2007 | A1 |
20070152980 | Kocienda et al. | Jul 2007 | A1 |
20070155346 | Mijatovic et al. | Jul 2007 | A1 |
20070156410 | Stohr et al. | Jul 2007 | A1 |
20070156627 | D'Alicandro | Jul 2007 | A1 |
20070157089 | Van Os et al. | Jul 2007 | A1 |
20070157268 | Girish et al. | Jul 2007 | A1 |
20070162274 | Ruiz et al. | Jul 2007 | A1 |
20070162296 | Altberg et al. | Jul 2007 | A1 |
20070162414 | Horowitz et al. | Jul 2007 | A1 |
20070165003 | Fux et al. | Jul 2007 | A1 |
20070167136 | Groth | Jul 2007 | A1 |
20070168922 | Kaiser et al. | Jul 2007 | A1 |
20070173233 | Vander Veen et al. | Jul 2007 | A1 |
20070173267 | Klassen et al. | Jul 2007 | A1 |
20070174057 | Genly | Jul 2007 | A1 |
20070174188 | Fish | Jul 2007 | A1 |
20070174350 | Pell et al. | Jul 2007 | A1 |
20070174396 | Kumar et al. | Jul 2007 | A1 |
20070179776 | Segond et al. | Aug 2007 | A1 |
20070179778 | Gong et al. | Aug 2007 | A1 |
20070180383 | Naik | Aug 2007 | A1 |
20070182595 | Ghasabian | Aug 2007 | A1 |
20070185551 | Meadows et al. | Aug 2007 | A1 |
20070185754 | Schmidt | Aug 2007 | A1 |
20070185831 | Churcher | Aug 2007 | A1 |
20070185917 | Prahlad et al. | Aug 2007 | A1 |
20070188901 | Heckerman et al. | Aug 2007 | A1 |
20070192026 | Lee et al. | Aug 2007 | A1 |
20070192027 | Lee et al. | Aug 2007 | A1 |
20070192095 | Braho et al. | Aug 2007 | A1 |
20070192105 | Neeracher et al. | Aug 2007 | A1 |
20070192179 | Van et al. | Aug 2007 | A1 |
20070192293 | Swen | Aug 2007 | A1 |
20070192403 | Heine et al. | Aug 2007 | A1 |
20070192744 | Reponen | Aug 2007 | A1 |
20070198267 | Jones et al. | Aug 2007 | A1 |
20070198269 | Braho et al. | Aug 2007 | A1 |
20070198273 | Hennecke | Aug 2007 | A1 |
20070198566 | Sustik | Aug 2007 | A1 |
20070203869 | Ramsey et al. | Aug 2007 | A1 |
20070203955 | Pomerantz | Aug 2007 | A1 |
20070207785 | Chatterjee et al. | Sep 2007 | A1 |
20070208555 | Blass et al. | Sep 2007 | A1 |
20070208569 | Subramanian et al. | Sep 2007 | A1 |
20070208579 | Peterson | Sep 2007 | A1 |
20070208726 | Krishnaprasad et al. | Sep 2007 | A1 |
20070211071 | Slotznick et al. | Sep 2007 | A1 |
20070213099 | Bast | Sep 2007 | A1 |
20070213857 | Bodin et al. | Sep 2007 | A1 |
20070213984 | Ativanichayaphong et al. | Sep 2007 | A1 |
20070213986 | Bodin et al. | Sep 2007 | A1 |
20070217693 | Kretzschmar, Jr. | Sep 2007 | A1 |
20070219645 | Thomas et al. | Sep 2007 | A1 |
20070219777 | Chu et al. | Sep 2007 | A1 |
20070219786 | Isaac et al. | Sep 2007 | A1 |
20070219801 | Sundaram et al. | Sep 2007 | A1 |
20070219803 | Chiu et al. | Sep 2007 | A1 |
20070219983 | Fish | Sep 2007 | A1 |
20070225980 | Sumita | Sep 2007 | A1 |
20070225984 | Milstein et al. | Sep 2007 | A1 |
20070226652 | Kikuchi et al. | Sep 2007 | A1 |
20070229323 | Plachta et al. | Oct 2007 | A1 |
20070230729 | Naylor et al. | Oct 2007 | A1 |
20070233484 | Coelho et al. | Oct 2007 | A1 |
20070233487 | Cohen et al. | Oct 2007 | A1 |
20070233490 | Yao | Oct 2007 | A1 |
20070233497 | Paek et al. | Oct 2007 | A1 |
20070233692 | Lisa et al. | Oct 2007 | A1 |
20070233725 | Michmerhuizen et al. | Oct 2007 | A1 |
20070238488 | Scott | Oct 2007 | A1 |
20070238489 | Scott | Oct 2007 | A1 |
20070238520 | Kacmarcik | Oct 2007 | A1 |
20070239429 | Johnson et al. | Oct 2007 | A1 |
20070239453 | Paek et al. | Oct 2007 | A1 |
20070240043 | Fux et al. | Oct 2007 | A1 |
20070240044 | Fux et al. | Oct 2007 | A1 |
20070240045 | Fux et al. | Oct 2007 | A1 |
20070240172 | Banker et al. | Oct 2007 | A1 |
20070241885 | Clipsham et al. | Oct 2007 | A1 |
20070244702 | Kahn et al. | Oct 2007 | A1 |
20070244976 | Carroll et al. | Oct 2007 | A1 |
20070247441 | Kim et al. | Oct 2007 | A1 |
20070255435 | Cohen et al. | Nov 2007 | A1 |
20070255979 | Deily et al. | Nov 2007 | A1 |
20070257890 | Hotelling et al. | Nov 2007 | A1 |
20070258642 | Thota | Nov 2007 | A1 |
20070260460 | Hyatt | Nov 2007 | A1 |
20070260595 | Beatty et al. | Nov 2007 | A1 |
20070260822 | Adams | Nov 2007 | A1 |
20070261080 | Saetti | Nov 2007 | A1 |
20070265831 | Dinur et al. | Nov 2007 | A1 |
20070265850 | Kennewick et al. | Nov 2007 | A1 |
20070271104 | McKay | Nov 2007 | A1 |
20070271510 | Grigoriu et al. | Nov 2007 | A1 |
20070274468 | Cai | Nov 2007 | A1 |
20070276651 | Bliss et al. | Nov 2007 | A1 |
20070276714 | Beringer | Nov 2007 | A1 |
20070276810 | Rosen | Nov 2007 | A1 |
20070277088 | Bodin et al. | Nov 2007 | A1 |
20070281603 | Nath et al. | Dec 2007 | A1 |
20070282595 | Tunning et al. | Dec 2007 | A1 |
20070285958 | Platchta et al. | Dec 2007 | A1 |
20070286363 | Burg et al. | Dec 2007 | A1 |
20070286399 | Ramamoorthy et al. | Dec 2007 | A1 |
20070288238 | Hetherington et al. | Dec 2007 | A1 |
20070288241 | Cross et al. | Dec 2007 | A1 |
20070288449 | Datta et al. | Dec 2007 | A1 |
20070291108 | Huber et al. | Dec 2007 | A1 |
20070294077 | Narayanan et al. | Dec 2007 | A1 |
20070294083 | Bellegarda et al. | Dec 2007 | A1 |
20070294199 | Nelken et al. | Dec 2007 | A1 |
20070294263 | Punj et al. | Dec 2007 | A1 |
20070299664 | Peters et al. | Dec 2007 | A1 |
20070299831 | Williams et al. | Dec 2007 | A1 |
20070300140 | Makela et al. | Dec 2007 | A1 |
20070300185 | Macbeth et al. | Dec 2007 | A1 |
20080001785 | Elizarov et al. | Jan 2008 | A1 |
20080010355 | Vieri et al. | Jan 2008 | A1 |
20080010605 | Frank et al. | Jan 2008 | A1 |
20080012950 | Lee et al. | Jan 2008 | A1 |
20080013751 | Hiselius | Jan 2008 | A1 |
20080015863 | Agapi et al. | Jan 2008 | A1 |
20080015864 | Ross et al. | Jan 2008 | A1 |
20080016575 | Vincent et al. | Jan 2008 | A1 |
20080021708 | Bennett et al. | Jan 2008 | A1 |
20080021886 | Wang-Aryattanwanich et al. | Jan 2008 | A1 |
20080022208 | Morse | Jan 2008 | A1 |
20080027726 | Hansen et al. | Jan 2008 | A1 |
20080031475 | Goldstein | Feb 2008 | A1 |
20080033719 | Hall et al. | Feb 2008 | A1 |
20080034032 | Healey et al. | Feb 2008 | A1 |
20080034044 | Bhakta et al. | Feb 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080040339 | Zhou et al. | Feb 2008 | A1 |
20080042970 | Liang et al. | Feb 2008 | A1 |
20080043936 | Liebermann | Feb 2008 | A1 |
20080043943 | Sipher et al. | Feb 2008 | A1 |
20080046239 | Boo | Feb 2008 | A1 |
20080046250 | Agapi et al. | Feb 2008 | A1 |
20080046422 | Lee et al. | Feb 2008 | A1 |
20080046820 | Lee et al. | Feb 2008 | A1 |
20080046948 | Verosub | Feb 2008 | A1 |
20080048908 | Sato | Feb 2008 | A1 |
20080050027 | Bashyam et al. | Feb 2008 | A1 |
20080052063 | Bennett et al. | Feb 2008 | A1 |
20080052073 | Goto et al. | Feb 2008 | A1 |
20080052077 | Bennett et al. | Feb 2008 | A1 |
20080052080 | Narayanan et al. | Feb 2008 | A1 |
20080052262 | Kosinov et al. | Feb 2008 | A1 |
20080055194 | Baudino et al. | Mar 2008 | A1 |
20080056459 | Vallier et al. | Mar 2008 | A1 |
20080056579 | Guha | Mar 2008 | A1 |
20080057922 | Kokes et al. | Mar 2008 | A1 |
20080059190 | Chu et al. | Mar 2008 | A1 |
20080059200 | Puli | Mar 2008 | A1 |
20080059876 | Hantler et al. | Mar 2008 | A1 |
20080062141 | Chaudhri | Mar 2008 | A1 |
20080065382 | Gerl et al. | Mar 2008 | A1 |
20080065387 | Cross et al. | Mar 2008 | A1 |
20080071529 | Silverman et al. | Mar 2008 | A1 |
20080071544 | Beaufays et al. | Mar 2008 | A1 |
20080071742 | Yang et al. | Mar 2008 | A1 |
20080072143 | Assadollahi | Mar 2008 | A1 |
20080075296 | Lindahl et al. | Mar 2008 | A1 |
20080076972 | Dorogusker et al. | Mar 2008 | A1 |
20080077310 | Murlidar et al. | Mar 2008 | A1 |
20080077384 | Agapi et al. | Mar 2008 | A1 |
20080077386 | Gao et al. | Mar 2008 | A1 |
20080077391 | Chino et al. | Mar 2008 | A1 |
20080077393 | Gao et al. | Mar 2008 | A1 |
20080077406 | Ganong, III | Mar 2008 | A1 |
20080077859 | Schabes et al. | Mar 2008 | A1 |
20080079566 | Singh et al. | Apr 2008 | A1 |
20080080411 | Cole | Apr 2008 | A1 |
20080082332 | Mallett et al. | Apr 2008 | A1 |
20080082338 | O'Neil et al. | Apr 2008 | A1 |
20080082390 | Hawkins et al. | Apr 2008 | A1 |
20080082576 | Bodin et al. | Apr 2008 | A1 |
20080082651 | Singh et al. | Apr 2008 | A1 |
20080084974 | Dhanakshirur | Apr 2008 | A1 |
20080085689 | Zellner | Apr 2008 | A1 |
20080091406 | Baldwin et al. | Apr 2008 | A1 |
20080091426 | Rempel et al. | Apr 2008 | A1 |
20080091428 | Bellegarda | Apr 2008 | A1 |
20080091443 | Strope et al. | Apr 2008 | A1 |
20080096531 | Mcquaide et al. | Apr 2008 | A1 |
20080096533 | Manfredi et al. | Apr 2008 | A1 |
20080096726 | Riley et al. | Apr 2008 | A1 |
20080097937 | Hadjarian | Apr 2008 | A1 |
20080098302 | Roose | Apr 2008 | A1 |
20080098480 | Henry et al. | Apr 2008 | A1 |
20080100579 | Robinson et al. | May 2008 | A1 |
20080101584 | Gray et al. | May 2008 | A1 |
20080103774 | White | May 2008 | A1 |
20080109222 | Liu | May 2008 | A1 |
20080109402 | Wang et al. | May 2008 | A1 |
20080114480 | Harb | May 2008 | A1 |
20080114598 | Prieto et al. | May 2008 | A1 |
20080114604 | Wei et al. | May 2008 | A1 |
20080114841 | Lambert | May 2008 | A1 |
20080115084 | Scott et al. | May 2008 | A1 |
20080118143 | Gordon et al. | May 2008 | A1 |
20080119953 | Reed | May 2008 | A1 |
20080120102 | Rao | May 2008 | A1 |
20080120112 | Jordan et al. | May 2008 | A1 |
20080120196 | Reed et al. | May 2008 | A1 |
20080120311 | Reed | May 2008 | A1 |
20080120312 | Reed | May 2008 | A1 |
20080120330 | Reed | May 2008 | A1 |
20080120342 | Reed et al. | May 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080124695 | Myers et al. | May 2008 | A1 |
20080126075 | Thorn et al. | May 2008 | A1 |
20080126077 | Thorn | May 2008 | A1 |
20080126091 | Clark et al. | May 2008 | A1 |
20080126093 | Sivadas | May 2008 | A1 |
20080126100 | Grost et al. | May 2008 | A1 |
20080126491 | Portele et al. | May 2008 | A1 |
20080129520 | Lee | Jun 2008 | A1 |
20080130867 | Bowen | Jun 2008 | A1 |
20080131006 | Oliver | Jun 2008 | A1 |
20080132221 | Willey et al. | Jun 2008 | A1 |
20080132295 | Horowitz | Jun 2008 | A1 |
20080133215 | Sarukkai | Jun 2008 | A1 |
20080133228 | Rao | Jun 2008 | A1 |
20080133230 | Herforth et al. | Jun 2008 | A1 |
20080133241 | Baker et al. | Jun 2008 | A1 |
20080133956 | Fadell | Jun 2008 | A1 |
20080140413 | Millman et al. | Jun 2008 | A1 |
20080140416 | Shostak | Jun 2008 | A1 |
20080140652 | Millman et al. | Jun 2008 | A1 |
20080140657 | Azvine et al. | Jun 2008 | A1 |
20080140702 | Reed et al. | Jun 2008 | A1 |
20080141125 | Ghassabian et al. | Jun 2008 | A1 |
20080141180 | Reed et al. | Jun 2008 | A1 |
20080141182 | Barsness et al. | Jun 2008 | A1 |
20080146245 | Appaji | Jun 2008 | A1 |
20080146290 | Sreeram et al. | Jun 2008 | A1 |
20080147408 | Da Palma et al. | Jun 2008 | A1 |
20080147411 | Dames et al. | Jun 2008 | A1 |
20080147874 | Yoneda et al. | Jun 2008 | A1 |
20080150900 | Han | Jun 2008 | A1 |
20080154577 | Kim et al. | Jun 2008 | A1 |
20080154599 | Muschett et al. | Jun 2008 | A1 |
20080154600 | Tian et al. | Jun 2008 | A1 |
20080154603 | Oddo | Jun 2008 | A1 |
20080154612 | Evermann et al. | Jun 2008 | A1 |
20080154828 | Antebi et al. | Jun 2008 | A1 |
20080157867 | Krah | Jul 2008 | A1 |
20080161113 | Hansen et al. | Jul 2008 | A1 |
20080162120 | Mactavish et al. | Jul 2008 | A1 |
20080162471 | Bernard | Jul 2008 | A1 |
20080163119 | Kim et al. | Jul 2008 | A1 |
20080163131 | Hirai et al. | Jul 2008 | A1 |
20080165144 | Forstall et al. | Jul 2008 | A1 |
20080165980 | Pavlovic et al. | Jul 2008 | A1 |
20080165994 | Caren et al. | Jul 2008 | A1 |
20080167013 | Novick et al. | Jul 2008 | A1 |
20080167858 | Christie et al. | Jul 2008 | A1 |
20080167876 | Bakis et al. | Jul 2008 | A1 |
20080168052 | Ott et al. | Jul 2008 | A1 |
20080168366 | Kocienda et al. | Jul 2008 | A1 |
20080183473 | Nagano et al. | Jul 2008 | A1 |
20080186960 | Kocheisen et al. | Aug 2008 | A1 |
20080189099 | Friedman et al. | Aug 2008 | A1 |
20080189106 | Low et al. | Aug 2008 | A1 |
20080189110 | Freeman et al. | Aug 2008 | A1 |
20080189114 | Fail et al. | Aug 2008 | A1 |
20080189606 | Rybak | Aug 2008 | A1 |
20080195312 | Aaron et al. | Aug 2008 | A1 |
20080195388 | Bower et al. | Aug 2008 | A1 |
20080195391 | Marple et al. | Aug 2008 | A1 |
20080195601 | Ntoulas et al. | Aug 2008 | A1 |
20080195630 | Exartier et al. | Aug 2008 | A1 |
20080195940 | Gail et al. | Aug 2008 | A1 |
20080200142 | Abdel-Kader et al. | Aug 2008 | A1 |
20080201000 | Heikkila et al. | Aug 2008 | A1 |
20080201133 | Cave et al. | Aug 2008 | A1 |
20080201306 | Cooper et al. | Aug 2008 | A1 |
20080201375 | Khedouri et al. | Aug 2008 | A1 |
20080201434 | Holmes et al. | Aug 2008 | A1 |
20080204379 | Perez-Noguera | Aug 2008 | A1 |
20080207176 | Brackbill et al. | Aug 2008 | A1 |
20080208585 | Ativanichayaphong et al. | Aug 2008 | A1 |
20080208587 | Ben-David et al. | Aug 2008 | A1 |
20080208864 | Cucerzan et al. | Aug 2008 | A1 |
20080212796 | Denda | Sep 2008 | A1 |
20080219641 | Sandrew et al. | Sep 2008 | A1 |
20080221866 | Katragadda et al. | Sep 2008 | A1 |
20080221879 | Cerra et al. | Sep 2008 | A1 |
20080221880 | Cerra et al. | Sep 2008 | A1 |
20080221887 | Rose et al. | Sep 2008 | A1 |
20080221889 | Cerra et al. | Sep 2008 | A1 |
20080221903 | Kanevsky et al. | Sep 2008 | A1 |
20080222118 | Scian et al. | Sep 2008 | A1 |
20080226130 | Kansai et al. | Sep 2008 | A1 |
20080228463 | Mori et al. | Sep 2008 | A1 |
20080228485 | Owen | Sep 2008 | A1 |
20080228490 | Fischer et al. | Sep 2008 | A1 |
20080228495 | Cross et al. | Sep 2008 | A1 |
20080228496 | Yu et al. | Sep 2008 | A1 |
20080228928 | Donelli et al. | Sep 2008 | A1 |
20080229185 | Lynch | Sep 2008 | A1 |
20080229218 | Maeng | Sep 2008 | A1 |
20080235017 | Satomura et al. | Sep 2008 | A1 |
20080235024 | Goldberg et al. | Sep 2008 | A1 |
20080235027 | Cross | Sep 2008 | A1 |
20080240569 | Tonouchi | Oct 2008 | A1 |
20080242280 | Shapiro et al. | Oct 2008 | A1 |
20080242322 | Scott et al. | Oct 2008 | A1 |
20080242363 | Onda et al. | Oct 2008 | A1 |
20080243834 | Rieman et al. | Oct 2008 | A1 |
20080244390 | Fux et al. | Oct 2008 | A1 |
20080244446 | Lefevre et al. | Oct 2008 | A1 |
20080247519 | Abella et al. | Oct 2008 | A1 |
20080247529 | Barton et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080249770 | Kim et al. | Oct 2008 | A1 |
20080249778 | Barton et al. | Oct 2008 | A1 |
20080253577 | Eppolito | Oct 2008 | A1 |
20080254425 | Cohen et al. | Oct 2008 | A1 |
20080255837 | Kahn et al. | Oct 2008 | A1 |
20080255842 | Simhi et al. | Oct 2008 | A1 |
20080255845 | Bennett | Oct 2008 | A1 |
20080256613 | Grover | Oct 2008 | A1 |
20080259022 | Mansfield et al. | Oct 2008 | A1 |
20080262828 | Och et al. | Oct 2008 | A1 |
20080262838 | Nurminen et al. | Oct 2008 | A1 |
20080262846 | Burns et al. | Oct 2008 | A1 |
20080263139 | Martin | Oct 2008 | A1 |
20080267416 | Goldstein et al. | Oct 2008 | A1 |
20080270118 | Kuo et al. | Oct 2008 | A1 |
20080270138 | Knight et al. | Oct 2008 | A1 |
20080270139 | Shi et al. | Oct 2008 | A1 |
20080270140 | Hertz et al. | Oct 2008 | A1 |
20080270151 | Mahoney et al. | Oct 2008 | A1 |
20080270344 | Yurick et al. | Oct 2008 | A1 |
20080273672 | Didcock et al. | Nov 2008 | A1 |
20080277473 | Kotlarsky et al. | Nov 2008 | A1 |
20080281510 | Shahine | Nov 2008 | A1 |
20080281582 | Hsu et al. | Nov 2008 | A1 |
20080288259 | Chambers et al. | Nov 2008 | A1 |
20080288460 | Poniatowski et al. | Nov 2008 | A1 |
20080292112 | Valenzuela et al. | Nov 2008 | A1 |
20080294418 | Cleary et al. | Nov 2008 | A1 |
20080294517 | Hill | Nov 2008 | A1 |
20080294651 | Masuyama et al. | Nov 2008 | A1 |
20080294981 | Balzano et al. | Nov 2008 | A1 |
20080298563 | Rondeau et al. | Dec 2008 | A1 |
20080298766 | Wen et al. | Dec 2008 | A1 |
20080299523 | Chai et al. | Dec 2008 | A1 |
20080300871 | Gilbert | Dec 2008 | A1 |
20080300877 | Gilbert et al. | Dec 2008 | A1 |
20080300878 | Bennett | Dec 2008 | A1 |
20080301567 | Martin et al. | Dec 2008 | A1 |
20080303645 | Seymour et al. | Dec 2008 | A1 |
20080306727 | Thurmair et al. | Dec 2008 | A1 |
20080312909 | Hermansen et al. | Dec 2008 | A1 |
20080312928 | Goebel et al. | Dec 2008 | A1 |
20080313335 | Jung et al. | Dec 2008 | A1 |
20080316183 | Westerman et al. | Dec 2008 | A1 |
20080319735 | Kambhatla et al. | Dec 2008 | A1 |
20080319738 | Liu et al. | Dec 2008 | A1 |
20080319753 | Hancock | Dec 2008 | A1 |
20080319763 | Di Fabbrizio et al. | Dec 2008 | A1 |
20080319783 | Yao et al. | Dec 2008 | A1 |
20090003115 | Lindahl et al. | Jan 2009 | A1 |
20090005012 | Van Heugten | Jan 2009 | A1 |
20090005891 | Batson et al. | Jan 2009 | A1 |
20090006096 | Li et al. | Jan 2009 | A1 |
20090006097 | Etezadi et al. | Jan 2009 | A1 |
20090006099 | Sharpe et al. | Jan 2009 | A1 |
20090006100 | Badger et al. | Jan 2009 | A1 |
20090006343 | Platt et al. | Jan 2009 | A1 |
20090006345 | Platt et al. | Jan 2009 | A1 |
20090006488 | Lindahl et al. | Jan 2009 | A1 |
20090006671 | Batson et al. | Jan 2009 | A1 |
20090007001 | Morin et al. | Jan 2009 | A1 |
20090011709 | Akasaka et al. | Jan 2009 | A1 |
20090012748 | Beish et al. | Jan 2009 | A1 |
20090012775 | El Hady et al. | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090018829 | Kuperstein | Jan 2009 | A1 |
20090018834 | Cooper et al. | Jan 2009 | A1 |
20090018835 | Cooper et al. | Jan 2009 | A1 |
20090018839 | Cooper et al. | Jan 2009 | A1 |
20090018840 | Lutz et al. | Jan 2009 | A1 |
20090022329 | Mahowald | Jan 2009 | A1 |
20090024595 | Chen | Jan 2009 | A1 |
20090028435 | Wu et al. | Jan 2009 | A1 |
20090030800 | Grois | Jan 2009 | A1 |
20090030978 | Johnson et al. | Jan 2009 | A1 |
20090043580 | Mozer et al. | Feb 2009 | A1 |
20090043583 | Agapi et al. | Feb 2009 | A1 |
20090043763 | Peng | Feb 2009 | A1 |
20090044094 | Rapp et al. | Feb 2009 | A1 |
20090048821 | Yam et al. | Feb 2009 | A1 |
20090048845 | Burckart et al. | Feb 2009 | A1 |
20090049067 | Murray | Feb 2009 | A1 |
20090055168 | Wu et al. | Feb 2009 | A1 |
20090055175 | Terrell et al. | Feb 2009 | A1 |
20090055179 | Cho et al. | Feb 2009 | A1 |
20090055186 | Lance et al. | Feb 2009 | A1 |
20090055380 | Peng et al. | Feb 2009 | A1 |
20090055381 | Wu et al. | Feb 2009 | A1 |
20090055648 | Kim et al. | Feb 2009 | A1 |
20090058823 | Kocienda | Mar 2009 | A1 |
20090058860 | Fong et al. | Mar 2009 | A1 |
20090060351 | Li et al. | Mar 2009 | A1 |
20090060472 | Bull et al. | Mar 2009 | A1 |
20090063974 | Bull et al. | Mar 2009 | A1 |
20090064031 | Bull et al. | Mar 2009 | A1 |
20090070097 | Wu et al. | Mar 2009 | A1 |
20090070102 | Maegawa | Mar 2009 | A1 |
20090070109 | Didcock et al. | Mar 2009 | A1 |
20090070114 | Staszak | Mar 2009 | A1 |
20090074214 | Bradford et al. | Mar 2009 | A1 |
20090076792 | Lawson-Tancred | Mar 2009 | A1 |
20090076796 | Daraselia | Mar 2009 | A1 |
20090076819 | Wouters et al. | Mar 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090076825 | Bradford et al. | Mar 2009 | A1 |
20090077047 | Cooper et al. | Mar 2009 | A1 |
20090077165 | Rhodes et al. | Mar 2009 | A1 |
20090079622 | Seshadri et al. | Mar 2009 | A1 |
20090083034 | Hernandez et al. | Mar 2009 | A1 |
20090083035 | Huang et al. | Mar 2009 | A1 |
20090083036 | Zhao et al. | Mar 2009 | A1 |
20090083037 | Gleason et al. | Mar 2009 | A1 |
20090083047 | Lindahl et al. | Mar 2009 | A1 |
20090089058 | Bellegarda | Apr 2009 | A1 |
20090092239 | Macwan et al. | Apr 2009 | A1 |
20090092260 | Powers | Apr 2009 | A1 |
20090092261 | Bard | Apr 2009 | A1 |
20090092262 | Costa et al. | Apr 2009 | A1 |
20090094029 | Koch et al. | Apr 2009 | A1 |
20090094033 | Mozer et al. | Apr 2009 | A1 |
20090097634 | Nambiar et al. | Apr 2009 | A1 |
20090097637 | Boscher et al. | Apr 2009 | A1 |
20090098903 | Donaldson et al. | Apr 2009 | A1 |
20090100049 | Cao | Apr 2009 | A1 |
20090100454 | Weber | Apr 2009 | A1 |
20090104898 | Harris | Apr 2009 | A1 |
20090106026 | Ferrieux | Apr 2009 | A1 |
20090106376 | Tom et al. | Apr 2009 | A1 |
20090106397 | O'Keefe | Apr 2009 | A1 |
20090112572 | Thorn | Apr 2009 | A1 |
20090112576 | Jackson et al. | Apr 2009 | A1 |
20090112592 | Candelore et al. | Apr 2009 | A1 |
20090112677 | Rhett | Apr 2009 | A1 |
20090112892 | Cardie et al. | Apr 2009 | A1 |
20090119587 | Allen et al. | May 2009 | A1 |
20090123021 | Jung et al. | May 2009 | A1 |
20090123071 | Iwasaki | May 2009 | A1 |
20090125477 | Lu et al. | May 2009 | A1 |
20090125602 | Bhatia et al. | May 2009 | A1 |
20090125947 | Ibaraki | May 2009 | A1 |
20090128505 | Partridge et al. | May 2009 | A1 |
20090132253 | Bellegarda | May 2009 | A1 |
20090132255 | Lu | May 2009 | A1 |
20090137286 | Luke et al. | May 2009 | A1 |
20090138263 | Shozakai et al. | May 2009 | A1 |
20090138736 | Chin | May 2009 | A1 |
20090138828 | Schultz et al. | May 2009 | A1 |
20090144049 | Haddad et al. | Jun 2009 | A1 |
20090144428 | Bowater et al. | Jun 2009 | A1 |
20090144609 | Liang et al. | Jun 2009 | A1 |
20090146848 | Ghassabian | Jun 2009 | A1 |
20090150147 | Jacoby et al. | Jun 2009 | A1 |
20090150156 | Kennewick et al. | Jun 2009 | A1 |
20090152349 | Bonev et al. | Jun 2009 | A1 |
20090153288 | Hope et al. | Jun 2009 | A1 |
20090154669 | Wood et al. | Jun 2009 | A1 |
20090157382 | Bar | Jun 2009 | A1 |
20090157384 | Toutanova et al. | Jun 2009 | A1 |
20090157401 | Bennett | Jun 2009 | A1 |
20090158200 | Palahnuk et al. | Jun 2009 | A1 |
20090158323 | Bober et al. | Jun 2009 | A1 |
20090158423 | Orlassino et al. | Jun 2009 | A1 |
20090160803 | Hashimoto | Jun 2009 | A1 |
20090163243 | Barbera | Jun 2009 | A1 |
20090164301 | O'Sullivan et al. | Jun 2009 | A1 |
20090164441 | Cheyer | Jun 2009 | A1 |
20090164655 | Pettersson et al. | Jun 2009 | A1 |
20090164937 | Alviar et al. | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090171578 | Kim et al. | Jul 2009 | A1 |
20090171662 | Huang et al. | Jul 2009 | A1 |
20090171664 | Kennewick et al. | Jul 2009 | A1 |
20090172108 | Singh | Jul 2009 | A1 |
20090172542 | Girish et al. | Jul 2009 | A1 |
20090174667 | Kocienda et al. | Jul 2009 | A1 |
20090174677 | Gehani et al. | Jul 2009 | A1 |
20090177300 | Lee | Jul 2009 | A1 |
20090177461 | Ehsani et al. | Jul 2009 | A1 |
20090177966 | Chaudhri | Jul 2009 | A1 |
20090182445 | Girish et al. | Jul 2009 | A1 |
20090182702 | Miller | Jul 2009 | A1 |
20090183070 | Robbins | Jul 2009 | A1 |
20090187402 | Scholl | Jul 2009 | A1 |
20090187577 | Reznik et al. | Jul 2009 | A1 |
20090187950 | Nicas et al. | Jul 2009 | A1 |
20090191895 | Singh et al. | Jul 2009 | A1 |
20090192782 | Drewes | Jul 2009 | A1 |
20090192787 | Roon | Jul 2009 | A1 |
20090192798 | Basson et al. | Jul 2009 | A1 |
20090198497 | Kwon | Aug 2009 | A1 |
20090204409 | Mozer et al. | Aug 2009 | A1 |
20090204478 | Kaib et al. | Aug 2009 | A1 |
20090204596 | Brun et al. | Aug 2009 | A1 |
20090204601 | Grasset | Aug 2009 | A1 |
20090204620 | Thione et al. | Aug 2009 | A1 |
20090210230 | Schwarz et al. | Aug 2009 | A1 |
20090210232 | Sanchez et al. | Aug 2009 | A1 |
20090213134 | Stephanick et al. | Aug 2009 | A1 |
20090215466 | Ahl et al. | Aug 2009 | A1 |
20090215503 | Zhang et al. | Aug 2009 | A1 |
20090216396 | Yamagata | Aug 2009 | A1 |
20090216528 | Gemello et al. | Aug 2009 | A1 |
20090216540 | Tessel et al. | Aug 2009 | A1 |
20090216704 | Zheng et al. | Aug 2009 | A1 |
20090219166 | MacFarlane et al. | Sep 2009 | A1 |
20090221274 | Venkatakrishnan et al. | Sep 2009 | A1 |
20090222257 | Sumita et al. | Sep 2009 | A1 |
20090222270 | Likens et al. | Sep 2009 | A2 |
20090222488 | Boerries et al. | Sep 2009 | A1 |
20090228126 | Spielberg et al. | Sep 2009 | A1 |
20090228273 | Wang et al. | Sep 2009 | A1 |
20090228277 | Bonforte et al. | Sep 2009 | A1 |
20090228281 | Singleton et al. | Sep 2009 | A1 |
20090228439 | Manolescu et al. | Sep 2009 | A1 |
20090228792 | Van Os et al. | Sep 2009 | A1 |
20090228842 | Westerman et al. | Sep 2009 | A1 |
20090234638 | Ranjan et al. | Sep 2009 | A1 |
20090234651 | Basir et al. | Sep 2009 | A1 |
20090234655 | Kwon | Sep 2009 | A1 |
20090235280 | Tannier et al. | Sep 2009 | A1 |
20090239202 | Stone | Sep 2009 | A1 |
20090239552 | Churchill et al. | Sep 2009 | A1 |
20090240485 | Dalal et al. | Sep 2009 | A1 |
20090241054 | Hendricks | Sep 2009 | A1 |
20090241760 | Georges | Oct 2009 | A1 |
20090247237 | Mittleman et al. | Oct 2009 | A1 |
20090248182 | Logan et al. | Oct 2009 | A1 |
20090248395 | Alewine et al. | Oct 2009 | A1 |
20090248402 | Ito et al. | Oct 2009 | A1 |
20090248420 | Basir et al. | Oct 2009 | A1 |
20090248422 | Li et al. | Oct 2009 | A1 |
20090248456 | Fahmy et al. | Oct 2009 | A1 |
20090249198 | Davis et al. | Oct 2009 | A1 |
20090249247 | Tseng et al. | Oct 2009 | A1 |
20090252350 | Seguin | Oct 2009 | A1 |
20090253457 | Seguin | Oct 2009 | A1 |
20090253463 | Shin et al. | Oct 2009 | A1 |
20090254339 | Seguin | Oct 2009 | A1 |
20090254345 | Fleizach et al. | Oct 2009 | A1 |
20090254819 | Song et al. | Oct 2009 | A1 |
20090254823 | Barrett | Oct 2009 | A1 |
20090259475 | Yamagami et al. | Oct 2009 | A1 |
20090259969 | Pallakoff | Oct 2009 | A1 |
20090265171 | Davis | Oct 2009 | A1 |
20090265368 | Crider et al. | Oct 2009 | A1 |
20090271109 | Lee et al. | Oct 2009 | A1 |
20090271175 | Bodin et al. | Oct 2009 | A1 |
20090271176 | Bodin et al. | Oct 2009 | A1 |
20090271178 | Bodin et al. | Oct 2009 | A1 |
20090271188 | Agapi et al. | Oct 2009 | A1 |
20090271189 | Agapi et al. | Oct 2009 | A1 |
20090274315 | Carnes et al. | Nov 2009 | A1 |
20090281789 | Waibel et al. | Nov 2009 | A1 |
20090284482 | Chin | Nov 2009 | A1 |
20090286514 | Lichorowic et al. | Nov 2009 | A1 |
20090287583 | Holmes | Nov 2009 | A1 |
20090290718 | Kahn et al. | Nov 2009 | A1 |
20090292987 | Sorenson | Nov 2009 | A1 |
20090296552 | Hicks et al. | Dec 2009 | A1 |
20090298474 | George | Dec 2009 | A1 |
20090298529 | Mahajan | Dec 2009 | A1 |
20090299745 | Kennewick et al. | Dec 2009 | A1 |
20090299849 | Cao et al. | Dec 2009 | A1 |
20090300391 | Jessup et al. | Dec 2009 | A1 |
20090300488 | Salamon et al. | Dec 2009 | A1 |
20090304198 | Herre et al. | Dec 2009 | A1 |
20090305203 | Okumura et al. | Dec 2009 | A1 |
20090306967 | Nicolov et al. | Dec 2009 | A1 |
20090306969 | Goud et al. | Dec 2009 | A1 |
20090306979 | Jaiswal et al. | Dec 2009 | A1 |
20090306980 | Shin | Dec 2009 | A1 |
20090306981 | Cromack et al. | Dec 2009 | A1 |
20090306985 | Roberts et al. | Dec 2009 | A1 |
20090306988 | Chen et al. | Dec 2009 | A1 |
20090306989 | Kaji | Dec 2009 | A1 |
20090307162 | Bui et al. | Dec 2009 | A1 |
20090307201 | Dunning et al. | Dec 2009 | A1 |
20090307584 | Davidson et al. | Dec 2009 | A1 |
20090307594 | Kosonen et al. | Dec 2009 | A1 |
20090313014 | Shin et al. | Dec 2009 | A1 |
20090313020 | Koivunen | Dec 2009 | A1 |
20090313023 | Jones | Dec 2009 | A1 |
20090313026 | Coffman et al. | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090316943 | Frigola Munoz et al. | Dec 2009 | A1 |
20090318119 | Basir et al. | Dec 2009 | A1 |
20090318198 | Carroll | Dec 2009 | A1 |
20090319257 | Blume et al. | Dec 2009 | A1 |
20090319266 | Brown et al. | Dec 2009 | A1 |
20090326923 | Yan et al. | Dec 2009 | A1 |
20090326936 | Nagashima | Dec 2009 | A1 |
20090326938 | Marila et al. | Dec 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20090327977 | Bachfischer et al. | Dec 2009 | A1 |
20100004918 | Lee et al. | Jan 2010 | A1 |
20100004931 | Ma et al. | Jan 2010 | A1 |
20100005081 | Bennett | Jan 2010 | A1 |
20100010803 | Ishikawa et al. | Jan 2010 | A1 |
20100010814 | Patel | Jan 2010 | A1 |
20100013760 | Hirai et al. | Jan 2010 | A1 |
20100013796 | Abileah et al. | Jan 2010 | A1 |
20100017212 | Attwater et al. | Jan 2010 | A1 |
20100017382 | Katragadda et al. | Jan 2010 | A1 |
20100019834 | Zerbe et al. | Jan 2010 | A1 |
20100023318 | Lemoine | Jan 2010 | A1 |
20100023320 | Di Cristo et al. | Jan 2010 | A1 |
20100023331 | Duta et al. | Jan 2010 | A1 |
20100026526 | Yokota | Feb 2010 | A1 |
20100030549 | Lee et al. | Feb 2010 | A1 |
20100030928 | Conroy et al. | Feb 2010 | A1 |
20100031143 | Rao et al. | Feb 2010 | A1 |
20100036653 | Kim et al. | Feb 2010 | A1 |
20100036655 | Cecil et al. | Feb 2010 | A1 |
20100036660 | Bennett | Feb 2010 | A1 |
20100037183 | Miyashita et al. | Feb 2010 | A1 |
20100042400 | Block et al. | Feb 2010 | A1 |
20100042576 | Roettger et al. | Feb 2010 | A1 |
20100046842 | Conwell et al. | Feb 2010 | A1 |
20100049498 | Cao et al. | Feb 2010 | A1 |
20100049514 | Kennewick et al. | Feb 2010 | A1 |
20100050064 | Liu et al. | Feb 2010 | A1 |
20100054512 | Solum | Mar 2010 | A1 |
20100057443 | Di Cristo et al. | Mar 2010 | A1 |
20100057457 | Ogata et al. | Mar 2010 | A1 |
20100057461 | Neubacher et al. | Mar 2010 | A1 |
20100057643 | Yang | Mar 2010 | A1 |
20100060646 | Unsal et al. | Mar 2010 | A1 |
20100063804 | Sato et al. | Mar 2010 | A1 |
20100063825 | Williams et al. | Mar 2010 | A1 |
20100063961 | Guiheneuf et al. | Mar 2010 | A1 |
20100064113 | Lindahl et al. | Mar 2010 | A1 |
20100064218 | Bull et al. | Mar 2010 | A1 |
20100064226 | Stefaniak et al. | Mar 2010 | A1 |
20100066684 | Shahraray et al. | Mar 2010 | A1 |
20100067723 | Bergmann et al. | Mar 2010 | A1 |
20100067867 | Lin et al. | Mar 2010 | A1 |
20100070281 | Conkie et al. | Mar 2010 | A1 |
20100070521 | Clinchant et al. | Mar 2010 | A1 |
20100070899 | Hunt et al. | Mar 2010 | A1 |
20100071003 | Bychkov et al. | Mar 2010 | A1 |
20100076760 | Kraenzel et al. | Mar 2010 | A1 |
20100076993 | Klawitter et al. | Mar 2010 | A1 |
20100077350 | Lim et al. | Mar 2010 | A1 |
20100079501 | Ikeda et al. | Apr 2010 | A1 |
20100080398 | Waldmann | Apr 2010 | A1 |
20100080470 | Deluca et al. | Apr 2010 | A1 |
20100081456 | Singh et al. | Apr 2010 | A1 |
20100081487 | Chen et al. | Apr 2010 | A1 |
20100082286 | Leung | Apr 2010 | A1 |
20100082327 | Rogers et al. | Apr 2010 | A1 |
20100082328 | Rogers et al. | Apr 2010 | A1 |
20100082329 | Silverman et al. | Apr 2010 | A1 |
20100082333 | Al-Shammari | Apr 2010 | A1 |
20100082346 | Rogers et al. | Apr 2010 | A1 |
20100082347 | Rogers et al. | Apr 2010 | A1 |
20100082348 | Silverman et al. | Apr 2010 | A1 |
20100082349 | Bellegarda et al. | Apr 2010 | A1 |
20100082567 | Rosenblatt et al. | Apr 2010 | A1 |
20100082970 | Lindahl et al. | Apr 2010 | A1 |
20100086152 | Rank et al. | Apr 2010 | A1 |
20100086153 | Hagen et al. | Apr 2010 | A1 |
20100086156 | Rank et al. | Apr 2010 | A1 |
20100088020 | Sano et al. | Apr 2010 | A1 |
20100088093 | Lee et al. | Apr 2010 | A1 |
20100088100 | Lindahl | Apr 2010 | A1 |
20100094632 | Davis et al. | Apr 2010 | A1 |
20100098231 | Wohlert et al. | Apr 2010 | A1 |
20100100212 | Lindahl et al. | Apr 2010 | A1 |
20100100384 | Ju et al. | Apr 2010 | A1 |
20100100385 | Davis et al. | Apr 2010 | A1 |
20100100816 | Mccloskey et al. | Apr 2010 | A1 |
20100103776 | Chan | Apr 2010 | A1 |
20100106486 | Hua et al. | Apr 2010 | A1 |
20100106498 | Morrison et al. | Apr 2010 | A1 |
20100106500 | McKee et al. | Apr 2010 | A1 |
20100106503 | Farrell et al. | Apr 2010 | A1 |
20100114856 | Kuboyama | May 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100121637 | Roy et al. | May 2010 | A1 |
20100125456 | Weng et al. | May 2010 | A1 |
20100125458 | Franco et al. | May 2010 | A1 |
20100125460 | Mellott et al. | May 2010 | A1 |
20100125811 | Moore et al. | May 2010 | A1 |
20100131269 | Park et al. | May 2010 | A1 |
20100131273 | Aley-Raz et al. | May 2010 | A1 |
20100131498 | Linthicum et al. | May 2010 | A1 |
20100131899 | Hubert | May 2010 | A1 |
20100138215 | Williams | Jun 2010 | A1 |
20100138224 | Bedingfield, Sr. | Jun 2010 | A1 |
20100138416 | Bellotti | Jun 2010 | A1 |
20100138680 | Brisebois et al. | Jun 2010 | A1 |
20100138759 | Roy | Jun 2010 | A1 |
20100138798 | Wilson et al. | Jun 2010 | A1 |
20100142740 | Roerup | Jun 2010 | A1 |
20100145694 | Ju et al. | Jun 2010 | A1 |
20100145700 | Kennewick et al. | Jun 2010 | A1 |
20100145707 | Ljolje et al. | Jun 2010 | A1 |
20100146442 | Nagasaka et al. | Jun 2010 | A1 |
20100150321 | Harris et al. | Jun 2010 | A1 |
20100153114 | Shih et al. | Jun 2010 | A1 |
20100153115 | Klee et al. | Jun 2010 | A1 |
20100153448 | Harpur et al. | Jun 2010 | A1 |
20100161311 | Massuh | Jun 2010 | A1 |
20100161313 | Karttunen | Jun 2010 | A1 |
20100161337 | Pulz et al. | Jun 2010 | A1 |
20100161554 | Datuashvili et al. | Jun 2010 | A1 |
20100164897 | Morin et al. | Jul 2010 | A1 |
20100169075 | Raffa et al. | Jul 2010 | A1 |
20100169093 | Washio | Jul 2010 | A1 |
20100169097 | Nachman et al. | Jul 2010 | A1 |
20100169098 | Patch | Jul 2010 | A1 |
20100171713 | Kwok et al. | Jul 2010 | A1 |
20100174544 | Heifets | Jul 2010 | A1 |
20100175066 | Paik | Jul 2010 | A1 |
20100179932 | Yoon et al. | Jul 2010 | A1 |
20100179991 | Lorch et al. | Jul 2010 | A1 |
20100180218 | Boston et al. | Jul 2010 | A1 |
20100185448 | Meisel | Jul 2010 | A1 |
20100185949 | Jaeger | Jul 2010 | A1 |
20100191520 | Gruhn et al. | Jul 2010 | A1 |
20100197359 | Harris | Aug 2010 | A1 |
20100199180 | Brichter et al. | Aug 2010 | A1 |
20100199215 | Seymour et al. | Aug 2010 | A1 |
20100204986 | Kennewick et al. | Aug 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20100211379 | Gorman et al. | Aug 2010 | A1 |
20100216509 | Riemer et al. | Aug 2010 | A1 |
20100217604 | Baldwin et al. | Aug 2010 | A1 |
20100222033 | Scott et al. | Sep 2010 | A1 |
20100222098 | Garg | Sep 2010 | A1 |
20100223055 | Mclean | Sep 2010 | A1 |
20100223056 | Kadirkamanathan et al. | Sep 2010 | A1 |
20100223131 | Scott et al. | Sep 2010 | A1 |
20100225599 | Danielsson et al. | Sep 2010 | A1 |
20100225809 | Connors et al. | Sep 2010 | A1 |
20100227642 | Kim et al. | Sep 2010 | A1 |
20100228540 | Bennett | Sep 2010 | A1 |
20100228549 | Herman et al. | Sep 2010 | A1 |
20100228691 | Yang et al. | Sep 2010 | A1 |
20100229082 | Karmarkar et al. | Sep 2010 | A1 |
20100229100 | Miller et al. | Sep 2010 | A1 |
20100231474 | Yamagajo et al. | Sep 2010 | A1 |
20100235167 | Bourdon | Sep 2010 | A1 |
20100235341 | Bennett | Sep 2010 | A1 |
20100235729 | Kocienda et al. | Sep 2010 | A1 |
20100235732 | Bergman | Sep 2010 | A1 |
20100235770 | Ording et al. | Sep 2010 | A1 |
20100241418 | Maeda et al. | Sep 2010 | A1 |
20100250542 | Fujimaki | Sep 2010 | A1 |
20100250599 | Schmidt et al. | Sep 2010 | A1 |
20100255858 | Juhasz | Oct 2010 | A1 |
20100257160 | Cao | Oct 2010 | A1 |
20100257478 | Longe et al. | Oct 2010 | A1 |
20100262599 | Nitz | Oct 2010 | A1 |
20100268537 | Al-Telmissani | Oct 2010 | A1 |
20100268539 | Xu et al. | Oct 2010 | A1 |
20100269040 | Lee | Oct 2010 | A1 |
20100274753 | Liberty et al. | Oct 2010 | A1 |
20100277579 | Cho et al. | Nov 2010 | A1 |
20100278320 | Arsenault et al. | Nov 2010 | A1 |
20100278453 | King | Nov 2010 | A1 |
20100280983 | Cho et al. | Nov 2010 | A1 |
20100281034 | Petrou et al. | Nov 2010 | A1 |
20100286984 | Wandinger et al. | Nov 2010 | A1 |
20100286985 | Kennewick et al. | Nov 2010 | A1 |
20100287514 | Cragun et al. | Nov 2010 | A1 |
20100290632 | Lin | Nov 2010 | A1 |
20100293460 | Budelli | Nov 2010 | A1 |
20100295645 | Falldin et al. | Nov 2010 | A1 |
20100299133 | Kopparapu et al. | Nov 2010 | A1 |
20100299138 | Kim | Nov 2010 | A1 |
20100299142 | Freeman et al. | Nov 2010 | A1 |
20100302056 | Dutton et al. | Dec 2010 | A1 |
20100304342 | Zilber | Dec 2010 | A1 |
20100304705 | Hursey et al. | Dec 2010 | A1 |
20100305807 | Basir et al. | Dec 2010 | A1 |
20100305947 | Schwarz et al. | Dec 2010 | A1 |
20100312547 | Van Os et al. | Dec 2010 | A1 |
20100312566 | Odinak et al. | Dec 2010 | A1 |
20100318366 | Sullivan et al. | Dec 2010 | A1 |
20100318576 | Kim | Dec 2010 | A1 |
20100322438 | Siotis | Dec 2010 | A1 |
20100324709 | Starmen | Dec 2010 | A1 |
20100324895 | Kurzweil et al. | Dec 2010 | A1 |
20100324896 | Attwater et al. | Dec 2010 | A1 |
20100324905 | Kurzweil et al. | Dec 2010 | A1 |
20100325131 | Dumais et al. | Dec 2010 | A1 |
20100325158 | Oral et al. | Dec 2010 | A1 |
20100325573 | Estrada et al. | Dec 2010 | A1 |
20100325588 | Reddy et al. | Dec 2010 | A1 |
20100330908 | Maddern et al. | Dec 2010 | A1 |
20100332220 | Hursey et al. | Dec 2010 | A1 |
20100332224 | Mäkelä et al. | Dec 2010 | A1 |
20100332235 | David | Dec 2010 | A1 |
20100332236 | Tan | Dec 2010 | A1 |
20100332280 | Bradley et al. | Dec 2010 | A1 |
20100332348 | Cao | Dec 2010 | A1 |
20100332428 | Mchenry et al. | Dec 2010 | A1 |
20100332976 | Fux et al. | Dec 2010 | A1 |
20100333030 | Johns | Dec 2010 | A1 |
20100333163 | Daly | Dec 2010 | A1 |
20110002487 | Panther et al. | Jan 2011 | A1 |
20110004475 | Bellegarda | Jan 2011 | A1 |
20110009107 | Guba et al. | Jan 2011 | A1 |
20110010178 | Lee et al. | Jan 2011 | A1 |
20110010644 | Merrill et al. | Jan 2011 | A1 |
20110015928 | Odell et al. | Jan 2011 | A1 |
20110016150 | Engstrom et al. | Jan 2011 | A1 |
20110018695 | Bells et al. | Jan 2011 | A1 |
20110021213 | Carr | Jan 2011 | A1 |
20110022292 | Shen et al. | Jan 2011 | A1 |
20110022388 | Wu et al. | Jan 2011 | A1 |
20110022393 | Waller et al. | Jan 2011 | A1 |
20110022394 | Wide et al. | Jan 2011 | A1 |
20110022472 | Zon et al. | Jan 2011 | A1 |
20110022952 | Wu et al. | Jan 2011 | A1 |
20110029616 | Wang et al. | Feb 2011 | A1 |
20110030067 | Wilson | Feb 2011 | A1 |
20110033064 | Johnson et al. | Feb 2011 | A1 |
20110034183 | Haag et al. | Feb 2011 | A1 |
20110035144 | Okamoto et al. | Feb 2011 | A1 |
20110035434 | Lockwood | Feb 2011 | A1 |
20110038489 | Visser et al. | Feb 2011 | A1 |
20110040707 | Theisen et al. | Feb 2011 | A1 |
20110045841 | Kuhlke et al. | Feb 2011 | A1 |
20110047072 | Ciurea | Feb 2011 | A1 |
20110047149 | Vaananen | Feb 2011 | A1 |
20110047161 | Myaeng et al. | Feb 2011 | A1 |
20110050591 | Kim et al. | Mar 2011 | A1 |
20110050592 | Kim et al. | Mar 2011 | A1 |
20110054647 | Chipchase | Mar 2011 | A1 |
20110054894 | Phillips et al. | Mar 2011 | A1 |
20110054901 | Qin et al. | Mar 2011 | A1 |
20110055256 | Phillips et al. | Mar 2011 | A1 |
20110060584 | Ferrucci et al. | Mar 2011 | A1 |
20110060587 | Phillips et al. | Mar 2011 | A1 |
20110060589 | Weinberg et al. | Mar 2011 | A1 |
20110060807 | Martin et al. | Mar 2011 | A1 |
20110064387 | Mendeloff et al. | Mar 2011 | A1 |
20110065456 | Brennan et al. | Mar 2011 | A1 |
20110066366 | Ellanti et al. | Mar 2011 | A1 |
20110066468 | Huang et al. | Mar 2011 | A1 |
20110066634 | Phillips et al. | Mar 2011 | A1 |
20110072492 | Mohler et al. | Mar 2011 | A1 |
20110076994 | Kim et al. | Mar 2011 | A1 |
20110077943 | Miki et al. | Mar 2011 | A1 |
20110080260 | Wang et al. | Apr 2011 | A1 |
20110081889 | Gao et al. | Apr 2011 | A1 |
20110082688 | Kim et al. | Apr 2011 | A1 |
20110083079 | Farrell et al. | Apr 2011 | A1 |
20110087491 | Wittenstein et al. | Apr 2011 | A1 |
20110090078 | Kim et al. | Apr 2011 | A1 |
20110093261 | Angott | Apr 2011 | A1 |
20110093265 | Stent et al. | Apr 2011 | A1 |
20110093271 | Bernard et al. | Apr 2011 | A1 |
20110099000 | Rai et al. | Apr 2011 | A1 |
20110103682 | Chidlovskii et al. | May 2011 | A1 |
20110105097 | Tadayon et al. | May 2011 | A1 |
20110106736 | Aharonson et al. | May 2011 | A1 |
20110106892 | Nelson et al. | May 2011 | A1 |
20110110502 | Daye et al. | May 2011 | A1 |
20110111724 | Baptiste | May 2011 | A1 |
20110112827 | Kennewick et al. | May 2011 | A1 |
20110112837 | Kurki-Suonio et al. | May 2011 | A1 |
20110112838 | Adibi | May 2011 | A1 |
20110112921 | Kennewick et al. | May 2011 | A1 |
20110116610 | Shaw et al. | May 2011 | A1 |
20110119049 | Ylonen | May 2011 | A1 |
20110119051 | Li et al. | May 2011 | A1 |
20110119623 | Kim | May 2011 | A1 |
20110119715 | Chang et al. | May 2011 | A1 |
20110123004 | Chang et al. | May 2011 | A1 |
20110125498 | Pickering et al. | May 2011 | A1 |
20110125540 | Jang et al. | May 2011 | A1 |
20110125701 | Nair et al. | May 2011 | A1 |
20110130958 | Stahl et al. | Jun 2011 | A1 |
20110131036 | DiCristo et al. | Jun 2011 | A1 |
20110131038 | Oyaizu et al. | Jun 2011 | A1 |
20110131045 | Cristo et al. | Jun 2011 | A1 |
20110137636 | Srihari et al. | Jun 2011 | A1 |
20110141141 | Kankainen | Jun 2011 | A1 |
20110143726 | de Silva | Jun 2011 | A1 |
20110143811 | Rodriguez | Jun 2011 | A1 |
20110144857 | Wingrove et al. | Jun 2011 | A1 |
20110144901 | Wang | Jun 2011 | A1 |
20110144973 | Bocchieri et al. | Jun 2011 | A1 |
20110144999 | Jang et al. | Jun 2011 | A1 |
20110145718 | Ketola et al. | Jun 2011 | A1 |
20110151830 | Blanda et al. | Jun 2011 | A1 |
20110153209 | Geelen | Jun 2011 | A1 |
20110153322 | Kwak et al. | Jun 2011 | A1 |
20110153324 | Ballinger et al. | Jun 2011 | A1 |
20110153329 | Moorer | Jun 2011 | A1 |
20110153330 | Yazdani et al. | Jun 2011 | A1 |
20110153373 | Dantzig et al. | Jun 2011 | A1 |
20110154193 | Creutz et al. | Jun 2011 | A1 |
20110157029 | Tseng | Jun 2011 | A1 |
20110161072 | Terao et al. | Jun 2011 | A1 |
20110161076 | Davis et al. | Jun 2011 | A1 |
20110161079 | Gruhn et al. | Jun 2011 | A1 |
20110161309 | Lung et al. | Jun 2011 | A1 |
20110161852 | Vainio et al. | Jun 2011 | A1 |
20110166851 | LeBeau et al. | Jul 2011 | A1 |
20110167350 | Hoellwarth | Jul 2011 | A1 |
20110175810 | Markovic et al. | Jul 2011 | A1 |
20110179002 | Dumitru et al. | Jul 2011 | A1 |
20110179372 | Moore et al. | Jul 2011 | A1 |
20110183650 | Mckee et al. | Jul 2011 | A1 |
20110184721 | Subramanian et al. | Jul 2011 | A1 |
20110184730 | LeBeau et al. | Jul 2011 | A1 |
20110184736 | Slotznick | Jul 2011 | A1 |
20110184768 | Norton et al. | Jul 2011 | A1 |
20110185288 | Gupta et al. | Jul 2011 | A1 |
20110191108 | Friedlander | Aug 2011 | A1 |
20110191271 | Baker et al. | Aug 2011 | A1 |
20110191344 | Jin et al. | Aug 2011 | A1 |
20110195758 | Damale et al. | Aug 2011 | A1 |
20110196670 | Dang et al. | Aug 2011 | A1 |
20110197128 | Assadollahi et al. | Aug 2011 | A1 |
20110201385 | Higginbotham et al. | Aug 2011 | A1 |
20110201387 | Paek et al. | Aug 2011 | A1 |
20110202526 | Lee et al. | Aug 2011 | A1 |
20110205149 | Tom et al. | Aug 2011 | A1 |
20110208511 | Sikstrom et al. | Aug 2011 | A1 |
20110208524 | Haughay | Aug 2011 | A1 |
20110209088 | Hinckley et al. | Aug 2011 | A1 |
20110212717 | Rhoads et al. | Sep 2011 | A1 |
20110218806 | Alewine et al. | Sep 2011 | A1 |
20110218855 | Cao et al. | Sep 2011 | A1 |
20110219018 | Bailey et al. | Sep 2011 | A1 |
20110223893 | Lau et al. | Sep 2011 | A1 |
20110224972 | Millett et al. | Sep 2011 | A1 |
20110228913 | Cochinwala et al. | Sep 2011 | A1 |
20110231182 | Weider et al. | Sep 2011 | A1 |
20110231184 | Kerr | Sep 2011 | A1 |
20110231188 | Kennewick et al. | Sep 2011 | A1 |
20110231432 | Sata et al. | Sep 2011 | A1 |
20110231474 | Locker et al. | Sep 2011 | A1 |
20110238407 | Kent | Sep 2011 | A1 |
20110238408 | Larcheveque et al. | Sep 2011 | A1 |
20110238676 | Liu et al. | Sep 2011 | A1 |
20110239111 | Grover | Sep 2011 | A1 |
20110242007 | Gray et al. | Oct 2011 | A1 |
20110246471 | Rakib et al. | Oct 2011 | A1 |
20110249144 | Chang | Oct 2011 | A1 |
20110250570 | Mack et al. | Oct 2011 | A1 |
20110258188 | Abdalmageed et al. | Oct 2011 | A1 |
20110260829 | Lee | Oct 2011 | A1 |
20110260861 | Singh et al. | Oct 2011 | A1 |
20110264643 | Cao | Oct 2011 | A1 |
20110264999 | Bells et al. | Oct 2011 | A1 |
20110274303 | Filson et al. | Nov 2011 | A1 |
20110276595 | Kirkland et al. | Nov 2011 | A1 |
20110276598 | Kozempel | Nov 2011 | A1 |
20110276944 | Bergman et al. | Nov 2011 | A1 |
20110279368 | Klein et al. | Nov 2011 | A1 |
20110282663 | Talwar et al. | Nov 2011 | A1 |
20110282888 | Koperski et al. | Nov 2011 | A1 |
20110282906 | Wong | Nov 2011 | A1 |
20110283189 | McCarty | Nov 2011 | A1 |
20110288855 | Roy | Nov 2011 | A1 |
20110288861 | Kurzweil et al. | Nov 2011 | A1 |
20110288863 | Rasmussen | Nov 2011 | A1 |
20110288866 | Rasmussen | Nov 2011 | A1 |
20110298585 | Barry | Dec 2011 | A1 |
20110301943 | Patch | Dec 2011 | A1 |
20110302162 | Xiao et al. | Dec 2011 | A1 |
20110306426 | Novak et al. | Dec 2011 | A1 |
20110307241 | Waibel et al. | Dec 2011 | A1 |
20110307491 | Fisk et al. | Dec 2011 | A1 |
20110307810 | Hilerio et al. | Dec 2011 | A1 |
20110313775 | Laligand et al. | Dec 2011 | A1 |
20110314032 | Bennett et al. | Dec 2011 | A1 |
20110314404 | Kotler et al. | Dec 2011 | A1 |
20110320187 | Motik et al. | Dec 2011 | A1 |
20120002820 | Leichter | Jan 2012 | A1 |
20120005602 | Anttila et al. | Jan 2012 | A1 |
20120008754 | Mukherjee et al. | Jan 2012 | A1 |
20120010886 | Razavilar | Jan 2012 | A1 |
20120011138 | Dunning et al. | Jan 2012 | A1 |
20120013609 | Reponen et al. | Jan 2012 | A1 |
20120015629 | Olsen et al. | Jan 2012 | A1 |
20120016658 | Wu et al. | Jan 2012 | A1 |
20120016678 | Gruber et al. | Jan 2012 | A1 |
20120019400 | Patel et al. | Jan 2012 | A1 |
20120020490 | Leichter | Jan 2012 | A1 |
20120022787 | LeBeau et al. | Jan 2012 | A1 |
20120022857 | Baldwin et al. | Jan 2012 | A1 |
20120022860 | Lloyd et al. | Jan 2012 | A1 |
20120022868 | LeBeau et al. | Jan 2012 | A1 |
20120022869 | Lloyd et al. | Jan 2012 | A1 |
20120022870 | Kristjansson et al. | Jan 2012 | A1 |
20120022872 | Gruber et al. | Jan 2012 | A1 |
20120022874 | Lloyd et al. | Jan 2012 | A1 |
20120022876 | LeBeau et al. | Jan 2012 | A1 |
20120022967 | Bachman et al. | Jan 2012 | A1 |
20120023088 | Cheng et al. | Jan 2012 | A1 |
20120023095 | Wadycki et al. | Jan 2012 | A1 |
20120023462 | Rosing et al. | Jan 2012 | A1 |
20120029661 | Jones et al. | Feb 2012 | A1 |
20120029910 | Medlock et al. | Feb 2012 | A1 |
20120034904 | LeBeau et al. | Feb 2012 | A1 |
20120035907 | Lebeau et al. | Feb 2012 | A1 |
20120035908 | Lebeau et al. | Feb 2012 | A1 |
20120035924 | Jitkoff et al. | Feb 2012 | A1 |
20120035925 | Friend et al. | Feb 2012 | A1 |
20120035926 | Ambler | Feb 2012 | A1 |
20120035931 | LeBeau et al. | Feb 2012 | A1 |
20120035932 | Jitkoff et al. | Feb 2012 | A1 |
20120036556 | LeBeau et al. | Feb 2012 | A1 |
20120039539 | Boiman et al. | Feb 2012 | A1 |
20120041752 | Wang et al. | Feb 2012 | A1 |
20120042014 | Desai et al. | Feb 2012 | A1 |
20120042343 | Laligand et al. | Feb 2012 | A1 |
20120053815 | Montanari et al. | Mar 2012 | A1 |
20120053829 | Agarwal et al. | Mar 2012 | A1 |
20120053945 | Gupta | Mar 2012 | A1 |
20120056815 | Mehra | Mar 2012 | A1 |
20120059655 | Cartales | Mar 2012 | A1 |
20120062473 | Xiao et al. | Mar 2012 | A1 |
20120066212 | Jennings | Mar 2012 | A1 |
20120066581 | Spalink | Mar 2012 | A1 |
20120075054 | Ge et al. | Mar 2012 | A1 |
20120078611 | Soltani et al. | Mar 2012 | A1 |
20120078624 | Yook et al. | Mar 2012 | A1 |
20120078627 | Wagner | Mar 2012 | A1 |
20120082317 | Pance et al. | Apr 2012 | A1 |
20120083286 | Kim et al. | Apr 2012 | A1 |
20120084086 | Gilbert et al. | Apr 2012 | A1 |
20120084634 | Wong et al. | Apr 2012 | A1 |
20120088219 | Briscoe et al. | Apr 2012 | A1 |
20120089331 | Schmidt et al. | Apr 2012 | A1 |
20120108166 | Hymel | May 2012 | A1 |
20120108221 | Thomas et al. | May 2012 | A1 |
20120116770 | Chen et al. | May 2012 | A1 |
20120117499 | Mori et al. | May 2012 | A1 |
20120124126 | Alcazar et al. | May 2012 | A1 |
20120128322 | Shaffer et al. | May 2012 | A1 |
20120130709 | Bocchieri et al. | May 2012 | A1 |
20120136572 | Norton | May 2012 | A1 |
20120136985 | Popescu et al. | May 2012 | A1 |
20120137367 | Dupont et al. | May 2012 | A1 |
20120149342 | Cohen et al. | Jun 2012 | A1 |
20120149394 | Singh et al. | Jun 2012 | A1 |
20120150544 | McLoughlin et al. | Jun 2012 | A1 |
20120150580 | Norton | Jun 2012 | A1 |
20120158293 | Burnham | Jun 2012 | A1 |
20120158399 | Tremblay et al. | Jun 2012 | A1 |
20120158422 | Burnham et al. | Jun 2012 | A1 |
20120159380 | Kocienda et al. | Jun 2012 | A1 |
20120163710 | Skaff et al. | Jun 2012 | A1 |
20120166196 | Ju et al. | Jun 2012 | A1 |
20120173222 | Wang et al. | Jul 2012 | A1 |
20120173244 | Kwak et al. | Jul 2012 | A1 |
20120173464 | Tur et al. | Jul 2012 | A1 |
20120174121 | Treat et al. | Jul 2012 | A1 |
20120179457 | Newman et al. | Jul 2012 | A1 |
20120179467 | Williams | Jul 2012 | A1 |
20120185237 | Gajic et al. | Jul 2012 | A1 |
20120185480 | Ni et al. | Jul 2012 | A1 |
20120185781 | Guzman et al. | Jul 2012 | A1 |
20120191461 | Lin et al. | Jul 2012 | A1 |
20120192096 | Bowman et al. | Jul 2012 | A1 |
20120197743 | Grigg et al. | Aug 2012 | A1 |
20120197995 | Caruso | Aug 2012 | A1 |
20120197998 | Kessel et al. | Aug 2012 | A1 |
20120201362 | Crossan et al. | Aug 2012 | A1 |
20120209853 | Desai et al. | Aug 2012 | A1 |
20120209874 | Wong et al. | Aug 2012 | A1 |
20120214141 | Raya et al. | Aug 2012 | A1 |
20120214517 | Singh et al. | Aug 2012 | A1 |
20120215762 | Hall et al. | Aug 2012 | A1 |
20120221339 | Wang et al. | Aug 2012 | A1 |
20120221552 | Reponen et al. | Aug 2012 | A1 |
20120223889 | Medlock et al. | Sep 2012 | A1 |
20120223936 | Aughey et al. | Sep 2012 | A1 |
20120232885 | Barbosa et al. | Sep 2012 | A1 |
20120232886 | Capuozzo et al. | Sep 2012 | A1 |
20120232906 | Lindahl et al. | Sep 2012 | A1 |
20120239661 | Giblin | Sep 2012 | A1 |
20120239761 | Linner et al. | Sep 2012 | A1 |
20120242482 | Elumalai et al. | Sep 2012 | A1 |
20120245719 | Story, Jr. et al. | Sep 2012 | A1 |
20120245941 | Cheyer | Sep 2012 | A1 |
20120245944 | Gruber et al. | Sep 2012 | A1 |
20120246064 | Balkow | Sep 2012 | A1 |
20120250858 | Iqbal et al. | Oct 2012 | A1 |
20120252367 | Gaglio et al. | Oct 2012 | A1 |
20120252540 | Kirigaya | Oct 2012 | A1 |
20120253785 | Hamid et al. | Oct 2012 | A1 |
20120254143 | Varma et al. | Oct 2012 | A1 |
20120254152 | Park et al. | Oct 2012 | A1 |
20120254290 | Naaman | Oct 2012 | A1 |
20120259615 | Morin et al. | Oct 2012 | A1 |
20120265528 | Gruber et al. | Oct 2012 | A1 |
20120265535 | Bryant-Rich et al. | Oct 2012 | A1 |
20120265806 | Blanchflower et al. | Oct 2012 | A1 |
20120271625 | Bernard | Oct 2012 | A1 |
20120271634 | Lenke | Oct 2012 | A1 |
20120271635 | Ljolje | Oct 2012 | A1 |
20120271640 | Basir | Oct 2012 | A1 |
20120271676 | Aravamudan et al. | Oct 2012 | A1 |
20120275377 | Lehane et al. | Nov 2012 | A1 |
20120284027 | Mallett et al. | Nov 2012 | A1 |
20120290291 | Shelley et al. | Nov 2012 | A1 |
20120290300 | Lee et al. | Nov 2012 | A1 |
20120295708 | Hernandez-Abrego et al. | Nov 2012 | A1 |
20120296638 | Patwa | Nov 2012 | A1 |
20120296649 | Bansal et al. | Nov 2012 | A1 |
20120296654 | Hendrickson et al. | Nov 2012 | A1 |
20120296891 | Rangan | Nov 2012 | A1 |
20120297348 | Santoro | Nov 2012 | A1 |
20120303369 | Brush et al. | Nov 2012 | A1 |
20120303371 | Labsky et al. | Nov 2012 | A1 |
20120304124 | Chen et al. | Nov 2012 | A1 |
20120309363 | Gruber et al. | Dec 2012 | A1 |
20120310642 | Cao et al. | Dec 2012 | A1 |
20120310649 | Cannistraro et al. | Dec 2012 | A1 |
20120310652 | O'Sullivan | Dec 2012 | A1 |
20120310922 | Johnson et al. | Dec 2012 | A1 |
20120311478 | Van Os et al. | Dec 2012 | A1 |
20120311583 | Gruber et al. | Dec 2012 | A1 |
20120311584 | Gruber et al. | Dec 2012 | A1 |
20120311585 | Gruber et al. | Dec 2012 | A1 |
20120316862 | Sultan et al. | Dec 2012 | A1 |
20120316878 | Singleton et al. | Dec 2012 | A1 |
20120317194 | Tian | Dec 2012 | A1 |
20120317498 | Logan et al. | Dec 2012 | A1 |
20120321112 | Schubert et al. | Dec 2012 | A1 |
20120324391 | Tocci et al. | Dec 2012 | A1 |
20120327009 | Fleizach | Dec 2012 | A1 |
20120329529 | van der Raadt | Dec 2012 | A1 |
20120330660 | Jaiswal | Dec 2012 | A1 |
20120330661 | Lindahl | Dec 2012 | A1 |
20120330990 | Chen et al. | Dec 2012 | A1 |
20130005405 | Prociw | Jan 2013 | A1 |
20130006633 | Grokop et al. | Jan 2013 | A1 |
20130006637 | Kanevsky et al. | Jan 2013 | A1 |
20130006638 | Lindahl | Jan 2013 | A1 |
20130007648 | Gannon et al. | Jan 2013 | A1 |
20130010575 | He et al. | Jan 2013 | A1 |
20130013313 | Shechtman et al. | Jan 2013 | A1 |
20130013319 | Grant et al. | Jan 2013 | A1 |
20130018659 | Chi | Jan 2013 | A1 |
20130027875 | Zhu et al. | Jan 2013 | A1 |
20130030804 | Zavaliagko et al. | Jan 2013 | A1 |
20130030815 | Madhvanath et al. | Jan 2013 | A1 |
20130030955 | David | Jan 2013 | A1 |
20130031476 | Coin et al. | Jan 2013 | A1 |
20130035086 | Chardon et al. | Feb 2013 | A1 |
20130035942 | Kim et al. | Feb 2013 | A1 |
20130035961 | Yegnanarayanan | Feb 2013 | A1 |
20130041647 | Ramerth et al. | Feb 2013 | A1 |
20130041654 | Walker et al. | Feb 2013 | A1 |
20130041661 | Lee et al. | Feb 2013 | A1 |
20130041665 | Jang et al. | Feb 2013 | A1 |
20130041968 | Cohen et al. | Feb 2013 | A1 |
20130046544 | Kay et al. | Feb 2013 | A1 |
20130050089 | Neels et al. | Feb 2013 | A1 |
20130054550 | Bolohan | Feb 2013 | A1 |
20130054609 | Rajput et al. | Feb 2013 | A1 |
20130054613 | Bishop | Feb 2013 | A1 |
20130054675 | Jenkins et al. | Feb 2013 | A1 |
20130054706 | Graham et al. | Feb 2013 | A1 |
20130055099 | Yao et al. | Feb 2013 | A1 |
20130055147 | Vasudev et al. | Feb 2013 | A1 |
20130063611 | Papakipos et al. | Mar 2013 | A1 |
20130066832 | Sheehan et al. | Mar 2013 | A1 |
20130067307 | Tian et al. | Mar 2013 | A1 |
20130073286 | Bastea-Forte et al. | Mar 2013 | A1 |
20130080152 | Brun et al. | Mar 2013 | A1 |
20130080162 | Chang et al. | Mar 2013 | A1 |
20130080167 | Mozer | Mar 2013 | A1 |
20130080177 | Chen | Mar 2013 | A1 |
20130080251 | Dempski | Mar 2013 | A1 |
20130085755 | Bringert et al. | Apr 2013 | A1 |
20130085761 | Bringert et al. | Apr 2013 | A1 |
20130090921 | Liu et al. | Apr 2013 | A1 |
20130091090 | Spivack et al. | Apr 2013 | A1 |
20130095805 | Lebeau et al. | Apr 2013 | A1 |
20130096909 | Brun et al. | Apr 2013 | A1 |
20130096917 | Edgar et al. | Apr 2013 | A1 |
20130097566 | Berglund | Apr 2013 | A1 |
20130097682 | Zeljkovic et al. | Apr 2013 | A1 |
20130100268 | Mihailidis et al. | Apr 2013 | A1 |
20130103391 | Millmore et al. | Apr 2013 | A1 |
20130106742 | Lee et al. | May 2013 | A1 |
20130110505 | Gruber et al. | May 2013 | A1 |
20130110515 | Guzzoni et al. | May 2013 | A1 |
20130110518 | Gruber et al. | May 2013 | A1 |
20130110519 | Cheyer et al. | May 2013 | A1 |
20130110520 | Cheyer et al. | May 2013 | A1 |
20130111330 | Staikos et al. | May 2013 | A1 |
20130111348 | Gruber et al. | May 2013 | A1 |
20130111487 | Cheyer et al. | May 2013 | A1 |
20130115927 | Gruber et al. | May 2013 | A1 |
20130117022 | Chen et al. | May 2013 | A1 |
20130124189 | Baldwin et al. | May 2013 | A1 |
20130132084 | Stonehocker et al. | May 2013 | A1 |
20130132089 | Fanty et al. | May 2013 | A1 |
20130132871 | Zeng et al. | May 2013 | A1 |
20130141551 | Kim | Jun 2013 | A1 |
20130142317 | Reynolds | Jun 2013 | A1 |
20130142345 | Waldmann | Jun 2013 | A1 |
20130144594 | Bangalore et al. | Jun 2013 | A1 |
20130144616 | Bangalore et al. | Jun 2013 | A1 |
20130151339 | Kim et al. | Jun 2013 | A1 |
20130152092 | Yadgar et al. | Jun 2013 | A1 |
20130154811 | Ferren et al. | Jun 2013 | A1 |
20130158977 | Senior | Jun 2013 | A1 |
20130165232 | Nelson et al. | Jun 2013 | A1 |
20130166303 | Chang et al. | Jun 2013 | A1 |
20130166442 | Nakajima et al. | Jun 2013 | A1 |
20130170738 | Capuozzo et al. | Jul 2013 | A1 |
20130172022 | Seymour et al. | Jul 2013 | A1 |
20130176244 | Yamamoto et al. | Jul 2013 | A1 |
20130176592 | Sasaki | Jul 2013 | A1 |
20130179440 | Gordon | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130185059 | Riccardi et al. | Jul 2013 | A1 |
20130185074 | Gruber et al. | Jul 2013 | A1 |
20130185081 | Cheyer et al. | Jul 2013 | A1 |
20130185336 | Singh et al. | Jul 2013 | A1 |
20130187850 | Schulz et al. | Jul 2013 | A1 |
20130191117 | Atti et al. | Jul 2013 | A1 |
20130197911 | Wei et al. | Aug 2013 | A1 |
20130204813 | Master et al. | Aug 2013 | A1 |
20130207898 | Sullivan et al. | Aug 2013 | A1 |
20130218553 | Fujii et al. | Aug 2013 | A1 |
20130218560 | Hsiao et al. | Aug 2013 | A1 |
20130222249 | Pasquero et al. | Aug 2013 | A1 |
20130225128 | Gomar | Aug 2013 | A1 |
20130231917 | Naik | Sep 2013 | A1 |
20130234947 | Kristensson et al. | Sep 2013 | A1 |
20130235987 | Arroniz-Escobar et al. | Sep 2013 | A1 |
20130238647 | Thompson | Sep 2013 | A1 |
20130244615 | Miller et al. | Sep 2013 | A1 |
20130246048 | Nagase et al. | Sep 2013 | A1 |
20130246050 | Yu et al. | Sep 2013 | A1 |
20130253911 | Petri et al. | Sep 2013 | A1 |
20130253912 | Medlock et al. | Sep 2013 | A1 |
20130275117 | Winer | Oct 2013 | A1 |
20130275138 | Gruber et al. | Oct 2013 | A1 |
20130275164 | Gruber et al. | Oct 2013 | A1 |
20130275625 | Taivalsaari et al. | Oct 2013 | A1 |
20130275875 | Gruber et al. | Oct 2013 | A1 |
20130275899 | Schubert et al. | Oct 2013 | A1 |
20130283168 | Brown et al. | Oct 2013 | A1 |
20130289991 | Eshwar et al. | Oct 2013 | A1 |
20130289993 | Rao et al. | Oct 2013 | A1 |
20130289994 | Newman et al. | Oct 2013 | A1 |
20130291015 | Pan | Oct 2013 | A1 |
20130297317 | Lee et al. | Nov 2013 | A1 |
20130297319 | Kim | Nov 2013 | A1 |
20130297348 | Cardoza et al. | Nov 2013 | A1 |
20130304479 | Teller et al. | Nov 2013 | A1 |
20130304758 | Gruber et al. | Nov 2013 | A1 |
20130304815 | Puente et al. | Nov 2013 | A1 |
20130305119 | Kern et al. | Nov 2013 | A1 |
20130307855 | Lamb et al. | Nov 2013 | A1 |
20130307997 | O'Keefe et al. | Nov 2013 | A1 |
20130308922 | Sano et al. | Nov 2013 | A1 |
20130311997 | Gruber et al. | Nov 2013 | A1 |
20130316746 | Miller et al. | Nov 2013 | A1 |
20130322634 | Bennett et al. | Dec 2013 | A1 |
20130325436 | Wang et al. | Dec 2013 | A1 |
20130325443 | Begeja et al. | Dec 2013 | A1 |
20130325447 | Levien et al. | Dec 2013 | A1 |
20130325448 | Levien et al. | Dec 2013 | A1 |
20130325481 | Van Os et al. | Dec 2013 | A1 |
20130325484 | Chakladar et al. | Dec 2013 | A1 |
20130325979 | Mansfield et al. | Dec 2013 | A1 |
20130329023 | Suplee, III et al. | Dec 2013 | A1 |
20130332159 | Federighi et al. | Dec 2013 | A1 |
20130332162 | Keen | Dec 2013 | A1 |
20130332164 | Nalk | Dec 2013 | A1 |
20130332168 | Kim et al. | Dec 2013 | A1 |
20130332400 | González | Dec 2013 | A1 |
20130339256 | Shroff | Dec 2013 | A1 |
20130346068 | Solem et al. | Dec 2013 | A1 |
20130346347 | Patterson et al. | Dec 2013 | A1 |
20140006012 | Zhou et al. | Jan 2014 | A1 |
20140006025 | Krishnan et al. | Jan 2014 | A1 |
20140006027 | Kim et al. | Jan 2014 | A1 |
20140006153 | Thangam et al. | Jan 2014 | A1 |
20140012580 | Ganong et al. | Jan 2014 | A1 |
20140012586 | Rubin et al. | Jan 2014 | A1 |
20140019116 | Lundberg et al. | Jan 2014 | A1 |
20140019133 | Bao et al. | Jan 2014 | A1 |
20140028735 | Williams et al. | Jan 2014 | A1 |
20140032453 | Eustice et al. | Jan 2014 | A1 |
20140033071 | Gruber et al. | Jan 2014 | A1 |
20140035823 | Khoe et al. | Feb 2014 | A1 |
20140039894 | Shostak | Feb 2014 | A1 |
20140040274 | Aravamudan et al. | Feb 2014 | A1 |
20140040748 | Lemay et al. | Feb 2014 | A1 |
20140040801 | Patel et al. | Feb 2014 | A1 |
20140040918 | Li et al. | Feb 2014 | A1 |
20140046934 | Zhou et al. | Feb 2014 | A1 |
20140047001 | Phillips et al. | Feb 2014 | A1 |
20140052680 | Nitz et al. | Feb 2014 | A1 |
20140052791 | Chakra et al. | Feb 2014 | A1 |
20140053082 | Park et al. | Feb 2014 | A1 |
20140057610 | Olincy et al. | Feb 2014 | A1 |
20140059030 | Hakkani-Tur et al. | Feb 2014 | A1 |
20140067361 | Nikoulina et al. | Mar 2014 | A1 |
20140067371 | Liensberger | Mar 2014 | A1 |
20140068751 | Last et al. | Mar 2014 | A1 |
20140074470 | Jansche et al. | Mar 2014 | A1 |
20140074472 | Lin et al. | Mar 2014 | A1 |
20140074483 | Van Os | Mar 2014 | A1 |
20140074815 | Plimton | Mar 2014 | A1 |
20140078065 | Akkok et al. | Mar 2014 | A1 |
20140080428 | Rhoads et al. | Mar 2014 | A1 |
20140081633 | Badaskar et al. | Mar 2014 | A1 |
20140082501 | Bae et al. | Mar 2014 | A1 |
20140086458 | Rogers et al. | Mar 2014 | A1 |
20140087711 | Geyer et al. | Mar 2014 | A1 |
20140088961 | Woodward et al. | Mar 2014 | A1 |
20140095171 | Lynch et al. | Apr 2014 | A1 |
20140095172 | Cabaco et al. | Apr 2014 | A1 |
20140095173 | Lynch et al. | Apr 2014 | A1 |
20140096209 | Saraf et al. | Apr 2014 | A1 |
20140098247 | Rao et al. | Apr 2014 | A1 |
20140108017 | Mason et al. | Apr 2014 | A1 |
20140114554 | Lagassey | Apr 2014 | A1 |
20140118155 | Bowers et al. | May 2014 | A1 |
20140122059 | Patel et al. | May 2014 | A1 |
20140122086 | Kapur et al. | May 2014 | A1 |
20140122136 | Jayanthi | May 2014 | A1 |
20140122153 | Truitt | May 2014 | A1 |
20140135036 | Bonanni et al. | May 2014 | A1 |
20140136187 | Wolverton et al. | May 2014 | A1 |
20140136195 | Abdossalami et al. | May 2014 | A1 |
20140136212 | Kwon et al. | May 2014 | A1 |
20140136946 | Matas | May 2014 | A1 |
20140142923 | Jones et al. | May 2014 | A1 |
20140142935 | Lindahl et al. | May 2014 | A1 |
20140143550 | Ganong, III et al. | May 2014 | A1 |
20140143721 | Suzuki et al. | May 2014 | A1 |
20140146200 | Scott et al. | May 2014 | A1 |
20140152577 | Yuen et al. | Jun 2014 | A1 |
20140155031 | Lee et al. | Jun 2014 | A1 |
20140157422 | Livshits et al. | Jun 2014 | A1 |
20140163951 | Nikoulina et al. | Jun 2014 | A1 |
20140163953 | Parikh | Jun 2014 | A1 |
20140163981 | Cook et al. | Jun 2014 | A1 |
20140164532 | Lynch et al. | Jun 2014 | A1 |
20140173460 | Kim | Jun 2014 | A1 |
20140180499 | Cooper et al. | Jun 2014 | A1 |
20140180689 | Kim et al. | Jun 2014 | A1 |
20140188477 | Zhang | Jul 2014 | A1 |
20140195233 | Bapat | Jul 2014 | A1 |
20140195244 | Cha et al. | Jul 2014 | A1 |
20140195251 | Zeinstra et al. | Jul 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140203939 | Harrington et al. | Jul 2014 | A1 |
20140207439 | Venkatapathy et al. | Jul 2014 | A1 |
20140207582 | Flinn et al. | Jul 2014 | A1 |
20140214429 | Pantel | Jul 2014 | A1 |
20140214537 | Yoo et al. | Jul 2014 | A1 |
20140218372 | Missig et al. | Aug 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140222678 | Sheets et al. | Aug 2014 | A1 |
20140223377 | Shaw et al. | Aug 2014 | A1 |
20140223481 | Fundament | Aug 2014 | A1 |
20140230055 | Boehl | Aug 2014 | A1 |
20140232656 | Pasquero et al. | Aug 2014 | A1 |
20140236595 | Gray | Aug 2014 | A1 |
20140236986 | Guzman | Aug 2014 | A1 |
20140237042 | Ahmed et al. | Aug 2014 | A1 |
20140244257 | Colibro et al. | Aug 2014 | A1 |
20140244258 | Song et al. | Aug 2014 | A1 |
20140244263 | Pontual et al. | Aug 2014 | A1 |
20140244268 | Abdelsamie et al. | Aug 2014 | A1 |
20140244271 | Lindahl | Aug 2014 | A1 |
20140244712 | Walters et al. | Aug 2014 | A1 |
20140247383 | Dave et al. | Sep 2014 | A1 |
20140247926 | Gainsboro et al. | Sep 2014 | A1 |
20140249817 | Hart et al. | Sep 2014 | A1 |
20140249821 | Kennewick et al. | Sep 2014 | A1 |
20140250046 | Winn et al. | Sep 2014 | A1 |
20140257815 | Zhao et al. | Sep 2014 | A1 |
20140258857 | Dykstra-Erickson et al. | Sep 2014 | A1 |
20140267022 | Kim | Sep 2014 | A1 |
20140267599 | Drouin et al. | Sep 2014 | A1 |
20140272821 | Pitschel et al. | Sep 2014 | A1 |
20140274203 | Ganong et al. | Sep 2014 | A1 |
20140274211 | Sejnoha et al. | Sep 2014 | A1 |
20140278343 | Tran | Sep 2014 | A1 |
20140278349 | Grieves et al. | Sep 2014 | A1 |
20140278379 | Coccaro et al. | Sep 2014 | A1 |
20140278391 | Braho et al. | Sep 2014 | A1 |
20140278406 | Tsumura et al. | Sep 2014 | A1 |
20140278413 | Pitschel et al. | Sep 2014 | A1 |
20140278429 | Ganong, III | Sep 2014 | A1 |
20140278435 | Ganong et al. | Sep 2014 | A1 |
20140278443 | Gunn et al. | Sep 2014 | A1 |
20140278513 | Prakash et al. | Sep 2014 | A1 |
20140280138 | Li et al. | Sep 2014 | A1 |
20140280292 | Skinder | Sep 2014 | A1 |
20140280353 | Delaney et al. | Sep 2014 | A1 |
20140280450 | Luna | Sep 2014 | A1 |
20140281983 | Xian et al. | Sep 2014 | A1 |
20140282003 | Gruber et al. | Sep 2014 | A1 |
20140282007 | Fleizach | Sep 2014 | A1 |
20140282045 | Ayanam et al. | Sep 2014 | A1 |
20140282201 | Pasquero et al. | Sep 2014 | A1 |
20140282586 | Shear et al. | Sep 2014 | A1 |
20140282743 | Howard et al. | Sep 2014 | A1 |
20140288990 | Moore et al. | Sep 2014 | A1 |
20140297267 | Spencer et al. | Oct 2014 | A1 |
20140297281 | Togawa et al. | Oct 2014 | A1 |
20140297284 | Gruber et al. | Oct 2014 | A1 |
20140297288 | Yu et al. | Oct 2014 | A1 |
20140304605 | Ohmura et al. | Oct 2014 | A1 |
20140309990 | Gandrabur et al. | Oct 2014 | A1 |
20140310001 | Kalns et al. | Oct 2014 | A1 |
20140316585 | Boesveld et al. | Oct 2014 | A1 |
20140317502 | Brown et al. | Oct 2014 | A1 |
20140324884 | Lindahl et al. | Oct 2014 | A1 |
20140337048 | Brown et al. | Nov 2014 | A1 |
20140337266 | Wolverton et al. | Nov 2014 | A1 |
20140337751 | Lim et al. | Nov 2014 | A1 |
20140337814 | Kalns et al. | Nov 2014 | A1 |
20140344627 | Schaub et al. | Nov 2014 | A1 |
20140344687 | Durham et al. | Nov 2014 | A1 |
20140350924 | Zurek et al. | Nov 2014 | A1 |
20140350933 | Bak et al. | Nov 2014 | A1 |
20140351741 | Medlock et al. | Nov 2014 | A1 |
20140351760 | Skory et al. | Nov 2014 | A1 |
20140358519 | Mirkin et al. | Dec 2014 | A1 |
20140358523 | Sheth et al. | Dec 2014 | A1 |
20140361973 | Raux et al. | Dec 2014 | A1 |
20140365209 | Evermann | Dec 2014 | A1 |
20140365214 | Bayley | Dec 2014 | A1 |
20140365216 | Gruber et al. | Dec 2014 | A1 |
20140365226 | Sinha | Dec 2014 | A1 |
20140365227 | Cash et al. | Dec 2014 | A1 |
20140365407 | Brown et al. | Dec 2014 | A1 |
20140365880 | Bellegarda | Dec 2014 | A1 |
20140365885 | Carson et al. | Dec 2014 | A1 |
20140365895 | Paulson et al. | Dec 2014 | A1 |
20140370817 | Luna | Dec 2014 | A1 |
20140372931 | Zhai et al. | Dec 2014 | A1 |
20140379334 | Fry | Dec 2014 | A1 |
20150003797 | Schmidt | Jan 2015 | A1 |
20150006148 | Goldszmit et al. | Jan 2015 | A1 |
20150006178 | Peng et al. | Jan 2015 | A1 |
20150006199 | Snider et al. | Jan 2015 | A1 |
20150012271 | Peng et al. | Jan 2015 | A1 |
20150019219 | Tzirkel-Hancock et al. | Jan 2015 | A1 |
20150019221 | Lee et al. | Jan 2015 | A1 |
20150031416 | Wells et al. | Jan 2015 | A1 |
20150032443 | Karov et al. | Jan 2015 | A1 |
20150033219 | Breiner et al. | Jan 2015 | A1 |
20150039292 | Suleman et al. | Feb 2015 | A1 |
20150039299 | Weinstein et al. | Feb 2015 | A1 |
20150039305 | Huang | Feb 2015 | A1 |
20150040012 | Faaborg et al. | Feb 2015 | A1 |
20150045003 | Vora et al. | Feb 2015 | A1 |
20150045068 | Soffer et al. | Feb 2015 | A1 |
20150046537 | Rakib | Feb 2015 | A1 |
20150050633 | Christmas et al. | Feb 2015 | A1 |
20150058013 | Pakhomov et al. | Feb 2015 | A1 |
20150058785 | Ookawara | Feb 2015 | A1 |
20150065200 | Namgung et al. | Mar 2015 | A1 |
20150066494 | Salvador et al. | Mar 2015 | A1 |
20150066496 | Deoras et al. | Mar 2015 | A1 |
20150066506 | Romano et al. | Mar 2015 | A1 |
20150066516 | Nishikawa et al. | Mar 2015 | A1 |
20150067485 | Kim et al. | Mar 2015 | A1 |
20150067822 | Randall | Mar 2015 | A1 |
20150073788 | Allauzen et al. | Mar 2015 | A1 |
20150073804 | Senior et al. | Mar 2015 | A1 |
20150074524 | Nicholson et al. | Mar 2015 | A1 |
20150082229 | Ouyang et al. | Mar 2015 | A1 |
20150088511 | Bharadwaj et al. | Mar 2015 | A1 |
20150088514 | Typrin | Mar 2015 | A1 |
20150088523 | Schuster | Mar 2015 | A1 |
20150095031 | Conkie et al. | Apr 2015 | A1 |
20150095278 | Flinn et al. | Apr 2015 | A1 |
20150100316 | Williams et al. | Apr 2015 | A1 |
20150100983 | Pan | Apr 2015 | A1 |
20150106093 | Weeks et al. | Apr 2015 | A1 |
20150113407 | Hoffert et al. | Apr 2015 | A1 |
20150120723 | Deshmukh et al. | Apr 2015 | A1 |
20150127350 | Agiomyrgiannakis | May 2015 | A1 |
20150133109 | Freeman et al. | May 2015 | A1 |
20150135085 | Shoham et al. | May 2015 | A1 |
20150135123 | Carr et al. | May 2015 | A1 |
20150142420 | Sarikaya et al. | May 2015 | A1 |
20150142438 | Dai et al. | May 2015 | A1 |
20150142447 | Kennewick et al. | May 2015 | A1 |
20150148013 | Baldwin et al. | May 2015 | A1 |
20150149177 | Kalns et al. | May 2015 | A1 |
20150149182 | Kalns et al. | May 2015 | A1 |
20150149354 | Mccoy | May 2015 | A1 |
20150149469 | Xu et al. | May 2015 | A1 |
20150154185 | Waibel | Jun 2015 | A1 |
20150161370 | North et al. | Jun 2015 | A1 |
20150170664 | Doherty et al. | Jun 2015 | A1 |
20150172463 | Quast et al. | Jun 2015 | A1 |
20150178388 | Winnemoeller et al. | Jun 2015 | A1 |
20150185964 | Stout | Jul 2015 | A1 |
20150186012 | Coleman et al. | Jul 2015 | A1 |
20150186110 | Kannan | Jul 2015 | A1 |
20150186155 | Brown et al. | Jul 2015 | A1 |
20150186351 | Hicks et al. | Jul 2015 | A1 |
20150187355 | Parkinson et al. | Jul 2015 | A1 |
20150189362 | Lee et al. | Jul 2015 | A1 |
20150193379 | Mehta | Jul 2015 | A1 |
20150193391 | Khvostichenko et al. | Jul 2015 | A1 |
20150193392 | Greenblatt et al. | Jul 2015 | A1 |
20150194152 | Katuri et al. | Jul 2015 | A1 |
20150195379 | Zhang et al. | Jul 2015 | A1 |
20150195606 | McDevitt | Jul 2015 | A1 |
20150199077 | Zuger et al. | Jul 2015 | A1 |
20150199960 | Huo et al. | Jul 2015 | A1 |
20150201064 | Bells et al. | Jul 2015 | A1 |
20150205858 | Xie et al. | Jul 2015 | A1 |
20150212791 | Kumar et al. | Jul 2015 | A1 |
20150220507 | Mohajer et al. | Aug 2015 | A1 |
20150221304 | Stewart | Aug 2015 | A1 |
20150221307 | Shah et al. | Aug 2015 | A1 |
20150227633 | Shapira | Aug 2015 | A1 |
20150228281 | Raniere | Aug 2015 | A1 |
20150234636 | Barnes, Jr. | Aug 2015 | A1 |
20150234800 | Patrick et al. | Aug 2015 | A1 |
20150242091 | Lu et al. | Aug 2015 | A1 |
20150243278 | Kibre et al. | Aug 2015 | A1 |
20150245154 | Dadu et al. | Aug 2015 | A1 |
20150248651 | Akutagawa et al. | Sep 2015 | A1 |
20150254057 | Klein et al. | Sep 2015 | A1 |
20150254058 | Klein et al. | Sep 2015 | A1 |
20150254333 | Fife et al. | Sep 2015 | A1 |
20150255071 | Chiba | Sep 2015 | A1 |
20150256873 | Klein et al. | Sep 2015 | A1 |
20150261496 | Faaborg et al. | Sep 2015 | A1 |
20150269139 | McAteer et al. | Sep 2015 | A1 |
20150278370 | Stratvert et al. | Oct 2015 | A1 |
20150279360 | Mengibar et al. | Oct 2015 | A1 |
20150281380 | Wang et al. | Oct 2015 | A1 |
20150286627 | Chang et al. | Oct 2015 | A1 |
20150287401 | Lee et al. | Oct 2015 | A1 |
20150287409 | Jang | Oct 2015 | A1 |
20150288629 | Choi et al. | Oct 2015 | A1 |
20150294516 | Chiang | Oct 2015 | A1 |
20150302855 | Kim et al. | Oct 2015 | A1 |
20150309997 | Lee et al. | Oct 2015 | A1 |
20150310858 | Li et al. | Oct 2015 | A1 |
20150310862 | Dauphin et al. | Oct 2015 | A1 |
20150310879 | Buchanan et al. | Oct 2015 | A1 |
20150312182 | Langholz | Oct 2015 | A1 |
20150317069 | Clements et al. | Nov 2015 | A1 |
20150317310 | Eiche et al. | Nov 2015 | A1 |
20150324041 | Varley et al. | Nov 2015 | A1 |
20150324334 | Lee et al. | Nov 2015 | A1 |
20150331664 | Osawa et al. | Nov 2015 | A1 |
20150331711 | Huang et al. | Nov 2015 | A1 |
20150332667 | Mason | Nov 2015 | A1 |
20150339049 | Kasemset et al. | Nov 2015 | A1 |
20150339391 | Kang et al. | Nov 2015 | A1 |
20150340040 | Mun et al. | Nov 2015 | A1 |
20150340042 | Sejnoha et al. | Nov 2015 | A1 |
20150341717 | Song et al. | Nov 2015 | A1 |
20150347086 | Liedholm et al. | Dec 2015 | A1 |
20150347382 | Dolfing et al. | Dec 2015 | A1 |
20150347385 | Flor et al. | Dec 2015 | A1 |
20150347393 | Futrell et al. | Dec 2015 | A1 |
20150347733 | Tsou et al. | Dec 2015 | A1 |
20150347985 | Gross et al. | Dec 2015 | A1 |
20150348547 | Paulik et al. | Dec 2015 | A1 |
20150348548 | Piernot et al. | Dec 2015 | A1 |
20150348549 | Giuli et al. | Dec 2015 | A1 |
20150348551 | Gruber et al. | Dec 2015 | A1 |
20150348554 | Orr et al. | Dec 2015 | A1 |
20150350031 | Burks et al. | Dec 2015 | A1 |
20150370531 | Faaborg | Dec 2015 | A1 |
20150370780 | Wang et al. | Dec 2015 | A1 |
20150370787 | Akbacak et al. | Dec 2015 | A1 |
20150371639 | Foerster et al. | Dec 2015 | A1 |
20150371665 | Naik et al. | Dec 2015 | A1 |
20150373183 | Woolsey et al. | Dec 2015 | A1 |
20150382047 | Napolitano et al. | Dec 2015 | A1 |
20150382079 | Lister et al. | Dec 2015 | A1 |
20160014476 | Caliendo, Jr. et al. | Jan 2016 | A1 |
20160019886 | Hong | Jan 2016 | A1 |
20160026258 | Ou et al. | Jan 2016 | A1 |
20160027431 | Kurzweil et al. | Jan 2016 | A1 |
20160028666 | Li | Jan 2016 | A1 |
20160034811 | Paulik et al. | Feb 2016 | A1 |
20160042735 | Vibbert et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160055422 | Li | Feb 2016 | A1 |
20160063998 | Krishnamoorthy et al. | Mar 2016 | A1 |
20160071521 | Haughay | Mar 2016 | A1 |
20160077794 | Kim et al. | Mar 2016 | A1 |
20160080165 | Ehsani et al. | Mar 2016 | A1 |
20160086116 | Rao et al. | Mar 2016 | A1 |
20160091967 | Prokofieva et al. | Mar 2016 | A1 |
20160092447 | Venkataraman et al. | Mar 2016 | A1 |
20160093291 | Kim | Mar 2016 | A1 |
20160093298 | Naik et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094979 | Naik et al. | Mar 2016 | A1 |
20160117386 | Ajmera et al. | Apr 2016 | A1 |
20160119338 | Cheyer | Apr 2016 | A1 |
20160125048 | Hamada | May 2016 | A1 |
20160132484 | Nauze et al. | May 2016 | A1 |
20160133254 | Vogel et al. | May 2016 | A1 |
20160139662 | Dabhade | May 2016 | A1 |
20160147725 | Patten et al. | May 2016 | A1 |
20160148610 | Kennewick, Jr. et al. | May 2016 | A1 |
20160155442 | Kannan et al. | Jun 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160162456 | Munro et al. | Jun 2016 | A1 |
20160163312 | Naik et al. | Jun 2016 | A1 |
20160170966 | Kolo | Jun 2016 | A1 |
20160180840 | Siddiq et al. | Jun 2016 | A1 |
20160180844 | Vanblon et al. | Jun 2016 | A1 |
20160188181 | Smith | Jun 2016 | A1 |
20160189717 | Kannan et al. | Jun 2016 | A1 |
20160212488 | Os et al. | Jul 2016 | A1 |
20160217784 | Gelfenbeyn et al. | Jul 2016 | A1 |
20160225372 | Cheung et al. | Aug 2016 | A1 |
20160240187 | Fleizach et al. | Aug 2016 | A1 |
20160259779 | Labsk | Sep 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160260433 | Sumner et al. | Sep 2016 | A1 |
20160260436 | Lemay et al. | Sep 2016 | A1 |
20160266871 | Schmid et al. | Sep 2016 | A1 |
20160267904 | Biadsy et al. | Sep 2016 | A1 |
20160275941 | Bellegarda et al. | Sep 2016 | A1 |
20160275947 | Li et al. | Sep 2016 | A1 |
20160282956 | Ouyang et al. | Sep 2016 | A1 |
20160299685 | Zhai et al. | Oct 2016 | A1 |
20160299882 | Hegerty et al. | Oct 2016 | A1 |
20160299883 | Zhu et al. | Oct 2016 | A1 |
20160307566 | Bellegarda | Oct 2016 | A1 |
20160314788 | Jitkoff et al. | Oct 2016 | A1 |
20160314792 | Alvarez et al. | Oct 2016 | A1 |
20160321261 | Spasojevic et al. | Nov 2016 | A1 |
20160322050 | Wang et al. | Nov 2016 | A1 |
20160336007 | Hanazawa | Nov 2016 | A1 |
20160336010 | Lindahl | Nov 2016 | A1 |
20160337299 | Lane et al. | Nov 2016 | A1 |
20160351190 | Binder et al. | Dec 2016 | A1 |
20160357304 | Hatori et al. | Dec 2016 | A1 |
20160357728 | Bellegarda et al. | Dec 2016 | A1 |
20160357861 | Carlhian et al. | Dec 2016 | A1 |
20160358598 | Williams et al. | Dec 2016 | A1 |
20160358600 | Nallasamy et al. | Dec 2016 | A1 |
20160378747 | Orr et al. | Dec 2016 | A1 |
20160379641 | Liu et al. | Dec 2016 | A1 |
20170004824 | Yoo et al. | Jan 2017 | A1 |
20170011742 | Jing et al. | Jan 2017 | A1 |
20170018271 | Khan et al. | Jan 2017 | A1 |
20170068423 | Napolitano et al. | Mar 2017 | A1 |
20170068513 | Stasior et al. | Mar 2017 | A1 |
20170068670 | Orr et al. | Mar 2017 | A1 |
20170083179 | Gruber et al. | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170091168 | Bellegarda et al. | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170161018 | Lemay et al. | Jun 2017 | A1 |
20170180499 | Gelfenbeyn et al. | Jun 2017 | A1 |
20170278514 | Mathias et al. | Sep 2017 | A1 |
20170337478 | Sarikaya | Nov 2017 | A1 |
20180060301 | Li | Mar 2018 | A1 |
20180075847 | Lee et al. | Mar 2018 | A1 |
20180107917 | Hewavitharana | Apr 2018 | A1 |
20180330721 | Thomson et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2178696 | Dec 1996 | CA |
2631796 | Jul 2007 | CA |
2694314 | Aug 2010 | CA |
2792412 | Jul 2011 | CA |
2666438 | Jun 2013 | CA |
681573 | Apr 1993 | CH |
1263385 | Aug 2000 | CN |
1274440 | Nov 2000 | CN |
1321295 | Nov 2001 | CN |
1369858 | Sep 2002 | CN |
1378156 | Nov 2002 | CN |
1383109 | Dec 2002 | CN |
1407795 | Apr 2003 | CN |
1125436 | Oct 2003 | CN |
1471098 | Jan 2004 | CN |
1494695 | May 2004 | CN |
1524218 | Aug 2004 | CN |
1535519 | Oct 2004 | CN |
1640191 | Jul 2005 | CN |
1673939 | Sep 2005 | CN |
1757027 | Apr 2006 | CN |
1864204 | Nov 2006 | CN |
1898721 | Jan 2007 | CN |
2865153 | Jan 2007 | CN |
1912994 | Feb 2007 | CN |
1959628 | May 2007 | CN |
1975715 | Jun 2007 | CN |
1995917 | Jul 2007 | CN |
101008942 | Aug 2007 | CN |
101162153 | Apr 2008 | CN |
101179754 | May 2008 | CN |
101183525 | May 2008 | CN |
101188644 | May 2008 | CN |
101228503 | Jul 2008 | CN |
101233741 | Jul 2008 | CN |
101246020 | Aug 2008 | CN |
101271689 | Sep 2008 | CN |
101277501 | Oct 2008 | CN |
101297541 | Oct 2008 | CN |
101325756 | Dec 2008 | CN |
101416471 | Apr 2009 | CN |
101427244 | May 2009 | CN |
101448340 | Jun 2009 | CN |
101453498 | Jun 2009 | CN |
101499156 | Aug 2009 | CN |
101535983 | Sep 2009 | CN |
101557432 | Oct 2009 | CN |
101632316 | Jan 2010 | CN |
101636736 | Jan 2010 | CN |
101673544 | Mar 2010 | CN |
101751387 | Jun 2010 | CN |
101847405 | Sep 2010 | CN |
101894547 | Nov 2010 | CN |
101939740 | Jan 2011 | CN |
101951553 | Jan 2011 | CN |
102137193 | Jul 2011 | CN |
102160043 | Aug 2011 | CN |
102246136 | Nov 2011 | CN |
202035047 | Nov 2011 | CN |
202092650 | Dec 2011 | CN |
102368256 | Mar 2012 | CN |
102682771 | Sep 2012 | CN |
102685295 | Sep 2012 | CN |
102693725 | Sep 2012 | CN |
102792320 | Nov 2012 | CN |
102917004 | Feb 2013 | CN |
103035240 | Apr 2013 | CN |
104423625 | Mar 2015 | CN |
3837590 | May 1990 | DE |
4126902 | Feb 1992 | DE |
4334773 | Apr 1994 | DE |
4445023 | Jun 1996 | DE |
102004029203 | Dec 2005 | DE |
19841541 | Dec 2007 | DE |
102008024258 | Nov 2009 | DE |
300390 | Jun 1981 | EP |
57514 | Aug 1982 | EP |
59880 | Sep 1982 | EP |
138061 | Apr 1985 | EP |
140777 | May 1985 | EP |
218859 | Apr 1987 | EP |
262938 | Apr 1988 | EP |
138061 | Jun 1988 | EP |
283995 | Sep 1988 | EP |
293259 | Nov 1988 | EP |
299572 | Jan 1989 | EP |
313975 | May 1989 | EP |
314908 | May 1989 | EP |
327408 | Aug 1989 | EP |
389271 | Sep 1990 | EP |
411675 | Feb 1991 | EP |
441089 | Aug 1991 | EP |
464712 | Jan 1992 | EP |
476972 | Mar 1992 | EP |
534410 | Mar 1993 | EP |
558312 | Sep 1993 | EP |
559349 | Sep 1993 | EP |
570660 | Nov 1993 | EP |
575146 | Dec 1993 | EP |
578604 | Jan 1994 | EP |
586996 | Mar 1994 | EP |
609030 | Aug 1994 | EP |
651543 | May 1995 | EP |
679005 | Oct 1995 | EP |
795811 | Sep 1997 | EP |
476972 | May 1998 | EP |
845894 | Jun 1998 | EP |
852052 | Jul 1998 | EP |
863453 | Sep 1998 | EP |
863469 | Sep 1998 | EP |
867860 | Sep 1998 | EP |
869697 | Oct 1998 | EP |
559349 | Jan 1999 | EP |
889626 | Jan 1999 | EP |
917077 | May 1999 | EP |
691023 | Sep 1999 | EP |
946032 | Sep 1999 | EP |
981236 | Feb 2000 | EP |
982732 | Mar 2000 | EP |
984430 | Mar 2000 | EP |
1001588 | May 2000 | EP |
1014277 | Jun 2000 | EP |
1028425 | Aug 2000 | EP |
1028426 | Aug 2000 | EP |
1047251 | Oct 2000 | EP |
1052566 | Nov 2000 | EP |
1076302 | Feb 2001 | EP |
1091615 | Apr 2001 | EP |
1094406 | Apr 2001 | EP |
1107229 | Jun 2001 | EP |
634042 | Jul 2001 | EP |
1229496 | Aug 2002 | EP |
1233600 | Aug 2002 | EP |
1245023 | Oct 2002 | EP |
1246075 | Oct 2002 | EP |
1280326 | Jan 2003 | EP |
1291848 | Mar 2003 | EP |
1311102 | May 2003 | EP |
1315084 | May 2003 | EP |
1315086 | May 2003 | EP |
1320848 | Jun 2003 | EP |
1345360 | Sep 2003 | EP |
1347361 | Sep 2003 | EP |
1368961 | Dec 2003 | EP |
1379061 | Jan 2004 | EP |
1432219 | Jun 2004 | EP |
1435620 | Jul 2004 | EP |
1480421 | Nov 2004 | EP |
1517228 | Mar 2005 | EP |
1536612 | Jun 2005 | EP |
1566948 | Aug 2005 | EP |
1650938 | Apr 2006 | EP |
1675025 | Jun 2006 | EP |
1693829 | Aug 2006 | EP |
1699042 | Sep 2006 | EP |
1739546 | Jan 2007 | EP |
1181802 | Feb 2007 | EP |
1818786 | Aug 2007 | EP |
1892700 | Feb 2008 | EP |
1912205 | Apr 2008 | EP |
1939860 | Jul 2008 | EP |
1944997 | Jul 2008 | EP |
651543 | Sep 2008 | EP |
1909263 | Jan 2009 | EP |
1335620 | Mar 2009 | EP |
2069895 | Jun 2009 | EP |
2094032 | Aug 2009 | EP |
2096840 | Sep 2009 | EP |
2107553 | Oct 2009 | EP |
2109295 | Oct 2009 | EP |
1720375 | Jul 2010 | EP |
2205010 | Jul 2010 | EP |
2309491 | Apr 2011 | EP |
2329348 | Jun 2011 | EP |
2400373 | Dec 2011 | EP |
2431842 | Mar 2012 | EP |
2551784 | Jan 2013 | EP |
2555536 | Feb 2013 | EP |
2575128 | Apr 2013 | EP |
2733598 | May 2014 | EP |
2801890 | Nov 2014 | EP |
2801972 | Nov 2014 | EP |
2930715 | Oct 2015 | EP |
2938022 | Oct 2015 | EP |
2940556 | Nov 2015 | EP |
2911201 | Jul 2008 | FR |
2293667 | Apr 1996 | GB |
2310559 | Aug 1997 | GB |
2323694 | Sep 1998 | GB |
2342802 | Apr 2000 | GB |
2343285 | May 2000 | GB |
2346500 | Aug 2000 | GB |
2352377 | Jan 2001 | GB |
2367399 | Apr 2002 | GB |
2384399 | Jul 2003 | GB |
2402855 | Dec 2004 | GB |
2445436 | Jul 2008 | GB |
2445667 | Jul 2008 | GB |
FI20010199 | Apr 2003 | IT |
55-80084 | Jun 1980 | JP |
57-41731 | Mar 1982 | JP |
59-57336 | Apr 1984 | JP |
62-153326 | Jul 1987 | JP |
01-010317 | Jan 1989 | JP |
1-500631 | Mar 1989 | JP |
1-254742 | Oct 1989 | JP |
2-86397 | Mar 1990 | JP |
2-153415 | Jun 1990 | JP |
2-502149 | Jul 1990 | JP |
3-113578 | May 1991 | JP |
4-236624 | Aug 1992 | JP |
5-79951 | Mar 1993 | JP |
5-165459 | Jul 1993 | JP |
5-204859 | Aug 1993 | JP |
5-293126 | Nov 1993 | JP |
6-19965 | Jan 1994 | JP |
6-69954 | Mar 1994 | JP |
6-110650 | Apr 1994 | JP |
06-208389 | Jul 1994 | JP |
6-274586 | Sep 1994 | JP |
06-332493 | Dec 1994 | JP |
6-332617 | Dec 1994 | JP |
7-199379 | Aug 1995 | JP |
7-219961 | Aug 1995 | JP |
7-320051 | Dec 1995 | JP |
7-320079 | Dec 1995 | JP |
8-63330 | Mar 1996 | JP |
8-185265 | Jul 1996 | JP |
8-223281 | Aug 1996 | JP |
8-227341 | Sep 1996 | JP |
9-18585 | Jan 1997 | JP |
9-27000 | Jan 1997 | JP |
9-55792 | Feb 1997 | JP |
09-062293 | Mar 1997 | JP |
9-116616 | May 1997 | JP |
9-251416 | Sep 1997 | JP |
9-259063 | Oct 1997 | JP |
9-265457 | Oct 1997 | JP |
10-31497 | Feb 1998 | JP |
10-69578 | Mar 1998 | JP |
10-78952 | Mar 1998 | JP |
10-105324 | Apr 1998 | JP |
10-274997 | Oct 1998 | JP |
10-275046 | Oct 1998 | JP |
10-312194 | Nov 1998 | JP |
10-320169 | Dec 1998 | JP |
11-06743 | Jan 1999 | JP |
11-45241 | Feb 1999 | JP |
11-136278 | May 1999 | JP |
11-231886 | Aug 1999 | JP |
11-265400 | Sep 1999 | JP |
2000-32140 | Jan 2000 | JP |
2000-59497 | Feb 2000 | JP |
2000-90119 | Mar 2000 | JP |
2000-99225 | Apr 2000 | JP |
2000-134407 | May 2000 | JP |
2000-163031 | Jun 2000 | JP |
2000-207167 | Jul 2000 | JP |
2000-216910 | Aug 2000 | JP |
2000-224663 | Aug 2000 | JP |
2000-272349 | Oct 2000 | JP |
2000-276471 | Oct 2000 | JP |
2000-331004 | Nov 2000 | JP |
2000-339137 | Dec 2000 | JP |
2000-352988 | Dec 2000 | JP |
2000-352989 | Dec 2000 | JP |
2001-13978 | Jan 2001 | JP |
2001-14319 | Jan 2001 | JP |
2001-22498 | Jan 2001 | JP |
2001-34289 | Feb 2001 | JP |
2001-34290 | Feb 2001 | JP |
2001-045553 | Feb 2001 | JP |
2001-56233 | Feb 2001 | JP |
2001-109493 | Apr 2001 | JP |
2001-125896 | May 2001 | JP |
2001-148899 | May 2001 | JP |
2001-273283 | Oct 2001 | JP |
2001-282813 | Oct 2001 | JP |
2001-296880 | Oct 2001 | JP |
2001-325052 | Nov 2001 | JP |
2002-14954 | Jan 2002 | JP |
2002-24212 | Jan 2002 | JP |
2002-30676 | Jan 2002 | JP |
2002-33794 | Jan 2002 | JP |
2002-41276 | Feb 2002 | JP |
2002-41624 | Feb 2002 | JP |
2002-82748 | Mar 2002 | JP |
2002-82893 | Mar 2002 | JP |
2002-123295 | Apr 2002 | JP |
2002-132804 | May 2002 | JP |
2002-169588 | Jun 2002 | JP |
2002-182679 | Jun 2002 | JP |
2002-182680 | Jun 2002 | JP |
2002-516549 | Jun 2002 | JP |
2002-230021 | Aug 2002 | JP |
2002-236029 | Aug 2002 | JP |
2002-524806 | Aug 2002 | JP |
2002-281562 | Sep 2002 | JP |
2002-304410 | Oct 2002 | JP |
2002-534716 | Oct 2002 | JP |
2002-341892 | Nov 2002 | JP |
2002-342033 | Nov 2002 | JP |
2002-342212 | Nov 2002 | JP |
2002-344880 | Nov 2002 | JP |
2002-542501 | Dec 2002 | JP |
2003-15682 | Jan 2003 | JP |
2003-022087 | Jan 2003 | JP |
2003-44091 | Feb 2003 | JP |
2003-84877 | Mar 2003 | JP |
2003-517158 | May 2003 | JP |
2003-202897 | Jul 2003 | JP |
2003-233568 | Aug 2003 | JP |
2003-244317 | Aug 2003 | JP |
2003-255991 | Sep 2003 | JP |
2003-527656 | Sep 2003 | JP |
2003-288356 | Oct 2003 | JP |
2003-308079 | Oct 2003 | JP |
2003-533909 | Nov 2003 | JP |
2004-48804 | Feb 2004 | JP |
2004-54080 | Feb 2004 | JP |
2004-056226 | Feb 2004 | JP |
2004-505322 | Feb 2004 | JP |
2004-505525 | Feb 2004 | JP |
2004-86356 | Mar 2004 | JP |
2004-94936 | Mar 2004 | JP |
2004-117905 | Apr 2004 | JP |
2004-152063 | May 2004 | JP |
2004-153306 | May 2004 | JP |
2004-523004 | Jul 2004 | JP |
2004-289266 | Oct 2004 | JP |
2004-295837 | Oct 2004 | JP |
2004-310034 | Nov 2004 | JP |
2004-333870 | Nov 2004 | JP |
2004-534268 | Nov 2004 | JP |
2004-347786 | Dec 2004 | JP |
2005-55782 | Mar 2005 | JP |
2005-63257 | Mar 2005 | JP |
2005-70645 | Mar 2005 | JP |
2005-80094 | Mar 2005 | JP |
2005-86624 | Mar 2005 | JP |
2005-506602 | Mar 2005 | JP |
2005-92441 | Apr 2005 | JP |
2005-149481 | Jun 2005 | JP |
2005-157965 | Jun 2005 | JP |
2005-181386 | Jul 2005 | JP |
2005-189454 | Jul 2005 | JP |
2005-210362 | Aug 2005 | JP |
2005-221678 | Aug 2005 | JP |
2005-228075 | Aug 2005 | JP |
2005-275925 | Oct 2005 | JP |
2005-283843 | Oct 2005 | JP |
2005-311864 | Nov 2005 | JP |
2005-332212 | Dec 2005 | JP |
2006-003142 | Jan 2006 | JP |
2006-4274 | Jan 2006 | JP |
2006-5655 | Jan 2006 | JP |
2006-23860 | Jan 2006 | JP |
2006-30447 | Feb 2006 | JP |
2006-31092 | Feb 2006 | JP |
2006-59094 | Mar 2006 | JP |
2006-079427 | Mar 2006 | JP |
2006-80617 | Mar 2006 | JP |
2006-107438 | Apr 2006 | JP |
2006-146008 | Jun 2006 | JP |
2006-146182 | Jun 2006 | JP |
2006-155368 | Jun 2006 | JP |
2006-189394 | Jul 2006 | JP |
2006-195637 | Jul 2006 | JP |
2006-201870 | Aug 2006 | JP |
2006-208696 | Aug 2006 | JP |
2006-229730 | Aug 2006 | JP |
2006-237735 | Sep 2006 | JP |
2006-244296 | Sep 2006 | JP |
2006-522549 | Sep 2006 | JP |
2006-267328 | Oct 2006 | JP |
2006-302091 | Nov 2006 | JP |
2006-318373 | Nov 2006 | JP |
2006-526185 | Nov 2006 | JP |
2007-4633 | Jan 2007 | JP |
2007-17990 | Jan 2007 | JP |
2007-500903 | Jan 2007 | JP |
2007-53796 | Mar 2007 | JP |
2007-79690 | Mar 2007 | JP |
2007-171534 | Jul 2007 | JP |
2007-193794 | Aug 2007 | JP |
2007-206317 | Aug 2007 | JP |
2007-264471 | Oct 2007 | JP |
2007-264792 | Oct 2007 | JP |
2007-264892 | Oct 2007 | JP |
2007-299352 | Nov 2007 | JP |
2007-322647 | Dec 2007 | JP |
2007-325089 | Dec 2007 | JP |
2007-333603 | Dec 2007 | JP |
2008-009120 | Jan 2008 | JP |
2008-21002 | Jan 2008 | JP |
2008-26381 | Feb 2008 | JP |
2008-39928 | Feb 2008 | JP |
2008-58813 | Mar 2008 | JP |
2008-064687 | Mar 2008 | JP |
2008-90545 | Apr 2008 | JP |
2008-97003 | Apr 2008 | JP |
2008-134949 | Jun 2008 | JP |
2008-526101 | Jul 2008 | JP |
2008-185693 | Aug 2008 | JP |
2008-198022 | Aug 2008 | JP |
2008-217468 | Sep 2008 | JP |
2008-228129 | Sep 2008 | JP |
2008-233678 | Oct 2008 | JP |
2008-236448 | Oct 2008 | JP |
2008-252161 | Oct 2008 | JP |
2008-268684 | Nov 2008 | JP |
2008-271481 | Nov 2008 | JP |
2008-299221 | Dec 2008 | JP |
2009-503623 | Jan 2009 | JP |
2009-36999 | Feb 2009 | JP |
2009-47920 | Mar 2009 | JP |
2009-069062 | Apr 2009 | JP |
2009-98490 | May 2009 | JP |
2009-140444 | Jun 2009 | JP |
2009-186989 | Aug 2009 | JP |
2009-193448 | Aug 2009 | JP |
2009-193457 | Aug 2009 | JP |
2009-193532 | Aug 2009 | JP |
2009-205367 | Sep 2009 | JP |
2009-294913 | Dec 2009 | JP |
2009-294946 | Dec 2009 | JP |
2010-66519 | Mar 2010 | JP |
2010-78979 | Apr 2010 | JP |
2010-108378 | May 2010 | JP |
2010-518526 | May 2010 | JP |
2010-157207 | Jul 2010 | JP |
2010-224236 | Oct 2010 | JP |
4563106 | Oct 2010 | JP |
2010-535377 | Nov 2010 | JP |
2010-287063 | Dec 2010 | JP |
2011-41026 | Feb 2011 | JP |
2011-45005 | Mar 2011 | JP |
2011-59659 | Mar 2011 | JP |
2011-81541 | Apr 2011 | JP |
2011-525045 | Sep 2011 | JP |
2011-238022 | Nov 2011 | JP |
2012-014394 | Jan 2012 | JP |
2012-089020 | May 2012 | JP |
2012-116442 | Jun 2012 | JP |
2012-147063 | Aug 2012 | JP |
2012-518847 | Aug 2012 | JP |
2013-511214 | Mar 2013 | JP |
2013-73240 | Apr 2013 | JP |
2013-080476 | May 2013 | JP |
2013-517566 | May 2013 | JP |
2013-134430 | Jul 2013 | JP |
2013-527947 | Jul 2013 | JP |
2013-156349 | Aug 2013 | JP |
2013-205999 | Oct 2013 | JP |
2013-238936 | Nov 2013 | JP |
2014-10688 | Jan 2014 | JP |
2014-026629 | Feb 2014 | JP |
2014-72586 | Apr 2014 | JP |
2014-077969 | May 2014 | JP |
2014-145842 | Aug 2014 | JP |
2014-150323 | Aug 2014 | JP |
2015-41845 | Mar 2015 | JP |
10-1999-0073234 | Oct 1999 | KR |
10-2001-0092415 | Oct 2001 | KR |
2001-0093654 | Oct 2001 | KR |
10-2001-0102132 | Nov 2001 | KR |
2002-0013984 | Feb 2002 | KR |
2002-0057262 | Jul 2002 | KR |
2002-0064149 | Aug 2002 | KR |
2002-0069952 | Sep 2002 | KR |
2003-0016993 | Mar 2003 | KR |
10-2004-0014835 | Feb 2004 | KR |
10-2004-0044632 | May 2004 | KR |
10-2005-0083561 | Aug 2005 | KR |
10-2005-0090568 | Sep 2005 | KR |
10-2006-0011603 | Feb 2006 | KR |
10-2006-0012730 | Feb 2006 | KR |
10-2006-0055313 | May 2006 | KR |
10-2006-0073574 | Jun 2006 | KR |
10-2006-0091469 | Aug 2006 | KR |
10-2006-0127647 | Dec 2006 | KR |
10-2007-0024262 | Mar 2007 | KR |
10-2007-0071675 | Jul 2007 | KR |
10-2007-0094767 | Sep 2007 | KR |
10-0757496 | Sep 2007 | KR |
10-2007-0100837 | Oct 2007 | KR |
10-0776800 | Nov 2007 | KR |
10-0801227 | Feb 2008 | KR |
10-0810500 | Mar 2008 | KR |
10-2008-0033070 | Apr 2008 | KR |
10-0819928 | Apr 2008 | KR |
10-2008-0049647 | Jun 2008 | KR |
10-2008-0059332 | Jun 2008 | KR |
10-2008-0109322 | Dec 2008 | KR |
10-2009-0001716 | Jan 2009 | KR |
10-2009-0028464 | Mar 2009 | KR |
10-2009-0030117 | Mar 2009 | KR |
10-2009-0086805 | Aug 2009 | KR |
10-0920267 | Oct 2009 | KR |
10-2009-0122944 | Dec 2009 | KR |
10-2009-0127961 | Dec 2009 | KR |
10-2009-0129192 | Dec 2009 | KR |
10-2010-0015958 | Feb 2010 | KR |
10-2010-0048571 | May 2010 | KR |
10-2010-0053149 | May 2010 | KR |
10-2010-0119519 | Nov 2010 | KR |
10-2011-0043644 | Apr 2011 | KR |
10-1032792 | May 2011 | KR |
10-2011-0068490 | Jun 2011 | KR |
10-2011-0072847 | Jun 2011 | KR |
10-2011-0086492 | Jul 2011 | KR |
10-2011-0100620 | Sep 2011 | KR |
10-2011-0113414 | Oct 2011 | KR |
10-2011-0115134 | Oct 2011 | KR |
10-2012-0020164 | Mar 2012 | KR |
10-2012-0031722 | Apr 2012 | KR |
10-1178310 | Aug 2012 | KR |
10-2012-0120316 | Nov 2012 | KR |
10-2012-0137435 | Dec 2012 | KR |
10-2012-0137440 | Dec 2012 | KR |
10-2012-0138826 | Dec 2012 | KR |
10-2012-0139827 | Dec 2012 | KR |
10-1193668 | Dec 2012 | KR |
10-2013-0035983 | Apr 2013 | KR |
10-1334342 | Nov 2013 | KR |
10-2013-0131252 | Dec 2013 | KR |
1014847 | Oct 2001 | NL |
2273106 | Mar 2006 | RU |
2349970 | Mar 2009 | RU |
2353068 | Apr 2009 | RU |
2364917 | Aug 2009 | RU |
468323 | Dec 2001 | TW |
200601264 | Jan 2006 | TW |
200638337 | Nov 2006 | TW |
200643744 | Dec 2006 | TW |
200801988 | Jan 2008 | TW |
1301373 | Sep 2008 | TW |
M348993 | Jan 2009 | TW |
200943903 | Oct 2009 | TW |
201018258 | May 2010 | TW |
201027515 | Jul 2010 | TW |
201028996 | Aug 2010 | TW |
201110108 | Mar 2011 | TW |
2011-42823 | Dec 2011 | TW |
201227715 | Jul 2012 | TW |
201245989 | Nov 2012 | TW |
201312548 | Mar 2013 | TW |
1989003139 | Apr 1989 | WO |
1993020640 | Oct 1993 | WO |
1994016434 | Jul 1994 | WO |
1994029788 | Dec 1994 | WO |
1995002221 | Jan 1995 | WO |
1995016950 | Jun 1995 | WO |
1995017746 | Jun 1995 | WO |
1996003741 | Feb 1996 | WO |
1997010586 | Mar 1997 | WO |
1997026612 | Jul 1997 | WO |
1997029614 | Aug 1997 | WO |
1997038488 | Oct 1997 | WO |
1997049044 | Dec 1997 | WO |
1998009270 | Mar 1998 | WO |
1998033111 | Jul 1998 | WO |
1998041956 | Sep 1998 | WO |
1999001834 | Jan 1999 | WO |
1999008238 | Feb 1999 | WO |
1999016181 | Apr 1999 | WO |
1999056227 | Nov 1999 | WO |
2000014727 | Mar 2000 | WO |
2000014728 | Mar 2000 | WO |
2000019697 | Apr 2000 | WO |
2000022820 | Apr 2000 | WO |
2000029964 | May 2000 | WO |
2000030070 | May 2000 | WO |
2000038041 | Jun 2000 | WO |
2000041065 | Jul 2000 | WO |
2000044173 | Jul 2000 | WO |
2000060435 | Oct 2000 | WO |
2000060435 | Oct 2000 | WO |
2000063766 | Oct 2000 | WO |
2000068936 | Nov 2000 | WO |
2001006489 | Jan 2001 | WO |
200126093 | Apr 2001 | WO |
2001030046 | Apr 2001 | WO |
2001030047 | Apr 2001 | WO |
2001033569 | May 2001 | WO |
2001035391 | May 2001 | WO |
2001044912 | Jun 2001 | WO |
2001046946 | Jun 2001 | WO |
2001065413 | Sep 2001 | WO |
2001067753 | Sep 2001 | WO |
2001071480 | Sep 2001 | WO |
2002010900 | Feb 2002 | WO |
2002025610 | Mar 2002 | WO |
2002031814 | Apr 2002 | WO |
2002037469 | May 2002 | WO |
2002049253 | Jun 2002 | WO |
2002071259 | Sep 2002 | WO |
2002073603 | Sep 2002 | WO |
2002080142 | Oct 2002 | WO |
2003003152 | Jan 2003 | WO |
2003003765 | Jan 2003 | WO |
2003023786 | Mar 2003 | WO |
2003036457 | May 2003 | WO |
2003041364 | May 2003 | WO |
2003049494 | Jun 2003 | WO |
2003056789 | Jul 2003 | WO |
2003067202 | Aug 2003 | WO |
2003084196 | Oct 2003 | WO |
2003094489 | Nov 2003 | WO |
2003105125 | Dec 2003 | WO |
2003107179 | Dec 2003 | WO |
2004008801 | Jan 2004 | WO |
2004025938 | Mar 2004 | WO |
2004047415 | Jun 2004 | WO |
2004055637 | Jul 2004 | WO |
2004057486 | Jul 2004 | WO |
2004061850 | Jul 2004 | WO |
2004072846 | Aug 2004 | WO |
2004084413 | Sep 2004 | WO |
2005003920 | Jan 2005 | WO |
2005008505 | Jan 2005 | WO |
2005008899 | Jan 2005 | WO |
2005010725 | Feb 2005 | WO |
2005027472 | Mar 2005 | WO |
2005027485 | Mar 2005 | WO |
2005031737 | Apr 2005 | WO |
2005034082 | Apr 2005 | WO |
2005034085 | Apr 2005 | WO |
2005041455 | May 2005 | WO |
2005059895 | Jun 2005 | WO |
2005064592 | Jul 2005 | WO |
2005069171 | Jul 2005 | WO |
2005101176 | Oct 2005 | WO |
2006020305 | Feb 2006 | WO |
2006037545 | Apr 2006 | WO |
2006054724 | May 2006 | WO |
2006056822 | Jun 2006 | WO |
2006078246 | Jul 2006 | WO |
2006084144 | Aug 2006 | WO |
2006101649 | Sep 2006 | WO |
2006129967 | Dec 2006 | WO |
2006133571 | Dec 2006 | WO |
2007002753 | Jan 2007 | WO |
2007036762 | Apr 2007 | WO |
2007080559 | Jul 2007 | WO |
2007083894 | Jul 2007 | WO |
2007125151 | Nov 2007 | WO |
2008030970 | Mar 2008 | WO |
2008071231 | Jun 2008 | WO |
2008085742 | Jul 2008 | WO |
2008098900 | Aug 2008 | WO |
2008109835 | Aug 2008 | WO |
2008120036 | Oct 2008 | WO |
2008130095 | Oct 2008 | WO |
2008140236 | Nov 2008 | WO |
2008142472 | Nov 2008 | WO |
2008153639 | Dec 2008 | WO |
2009009240 | Jan 2009 | WO |
2009016631 | Feb 2009 | WO |
2009017280 | Feb 2009 | WO |
2009075912 | Jun 2009 | WO |
2009104126 | Aug 2009 | WO |
2009156438 | Dec 2009 | WO |
2009156978 | Dec 2009 | WO |
2010054373 | May 2010 | WO |
2010075623 | Jul 2010 | WO |
2010141802 | Dec 2010 | WO |
2011057346 | May 2011 | WO |
2011060106 | May 2011 | WO |
20111088053 | Jul 2011 | WO |
2011093025 | Aug 2011 | WO |
2011116309 | Sep 2011 | WO |
2011133543 | Oct 2011 | WO |
2011150730 | Dec 2011 | WO |
2011163350 | Dec 2011 | WO |
20111088053 | Jan 2012 | WO |
2012019637 | Feb 2012 | WO |
2012129231 | Sep 2012 | WO |
2012135157 | Oct 2012 | WO |
2012154317 | Nov 2012 | WO |
2012155079 | Nov 2012 | WO |
2012167168 | Dec 2012 | WO |
2013009578 | Jan 2013 | WO |
2013022135 | Feb 2013 | WO |
2013048880 | Apr 2013 | WO |
2013049358 | Apr 2013 | WO |
2013169842 | Nov 2013 | WO |
2013173511 | Nov 2013 | WO |
2013184953 | Dec 2013 | WO |
2013184990 | Dec 2013 | WO |
2014003138 | Jan 2014 | WO |
2014022148 | Feb 2014 | WO |
2014028797 | Feb 2014 | WO |
2014031505 | Feb 2014 | WO |
2014066352 | May 2014 | WO |
2014078965 | May 2014 | WO |
2014096506 | Jun 2014 | WO |
2014143959 | Sep 2014 | WO |
2014144579 | Sep 2014 | WO |
2014159581 | Oct 2014 | WO |
2014197336 | Dec 2014 | WO |
2014200728 | Dec 2014 | WO |
2014204659 | Dec 2014 | WO |
2015030796 | Mar 2015 | WO |
2015041892 | Mar 2015 | WO |
2015084659 | Jun 2015 | WO |
2015094169 | Jun 2015 | WO |
2015094369 | Jun 2015 | WO |
2015099939 | Jul 2015 | WO |
2015116151 | Aug 2015 | WO |
2015151133 | Oct 2015 | WO |
2015183401 | Dec 2015 | WO |
2015200207 | Dec 2015 | WO |
2016057268 | Apr 2016 | WO |
2016075081 | May 2016 | WO |
2017044629 | Mar 2017 | WO |
2017053311 | Mar 2017 | WO |
Entry |
---|
“Alexa, Turn Up the Heat!”, Smartthings Samsung [online], Available online at https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/, Mar. 3, 2016, 3 pages. |
“DIRECTV™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages. |
“SmartThings +Amazon Echo”, Smartthings Samsung [online], Available online at <https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages. |
“Ask Alexa—Things That Are Smart Wiki”, Available online at <URL:http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, [retrieved from internet on Aug. 2, 2017], Jun. 8, 2016, pp. 1-31. |
“The world of Virtual Assistants—more SemTech . . . ”, End of Business as Usual—Glenn's External blog, Online Available at <https://web.archive.org/web/20091101840940/http://glennas.wordpress.com/2009/10/17/the-world-of-virtual-assistants-more-semtech/>, Oct. 17, 2009, 5 pages. |
2004 Chrysler Pacifica: U-Connect Hands-Free Communication System, The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page. |
2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT), available at <http://review.cnet.com/4505-10865_16-31833144.html>, retrieved on Aug. 3, 2006, 10 pages. |
ABCOM Pty. Ltd. “12.1” 925 Candela Mobile PC, LCDHardware.com, available at <http://www.lcdhardware.com/panel/12_1_panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages. |
ABF Software, “Lens-Magnifying Glass 1.5”, available at <http://download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page. |
Abut et al., “Low-Rate Speech Encoding Using Vector Quantization and Subband Coding”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315. |
Abut et al., “Vector Quantization of Speech and Speech-Like Waveforms”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270. |
Acero et al., “Environmental Robustness in Automatic Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages. |
Acero et al., “Robust Speech Recognition by Normalization of the Acoustic Space”, International Conference on Acoustics, Speech and Signal Processing, 1991, 4 pages. |
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages. |
adobe.com, “Reading PDF Documents with Adobe Reader 6.0—A Guide for People with Disabilities”, Available online at “https://www.adobe.com/enterprise/accessibility/pdfs/acro6_cg_ue.pdf”, Jan. 2004, 76 pages. |
Agnas et al., “Spoken Language Translator: First-Year Report”, SICS (ISSN 0283-3638), SRI and Telia Research AB, Jan. 1994, 161 pages. |
Ahlberg et al., “The Alphaslider: A Compact and Rapid Selector”, CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371. |
Ahlberg et al., “Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317. |
Ahlbom et al., Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques, IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP'87), vol. 12, Apr. 1987, 4 pages. |
Ahlstrom et al., “Overcoming Touchscreen User Fatigue by Workplace Design”, CHI '92 Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102. |
Ahmed et al., “Intelligent Natural Language Query Processor”, TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49. |
Ahuja et al., “A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems”, At&T Bell Laboratories, 1990, pp. 238-248. |
Aikawa et al., “Generation for Multilingual MT”, available at <http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages. |
Aikawa et al., “Speech Recognition Using Time-Warping Neural Networks”, Proceedings of the 1991, IEEE Workshop on Neural Networks for Signal Processing, 1991, 10 pages. |
Aikawa, K. “Time-Warping Neural Network for Phoneme Recognition”, IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127. |
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages |
All Music Website, available at <http://www.allmusic.com/>, retrieved on Mar. 19, 2007, 2 pages. |
Allen et al., “Automated Natural Spoken Dialog”, Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56. |
Allen, J., “Natural Language Understanding”, 2nd Edition, The Benjamin/Cummings Publishing Company, Inc., 1995, 671 pages. |
Alleva et al., “Applying SPHINX-II to DARPA Wall Street Journal CSR Task”, Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398. |
Alshawi et al., “CLARE: A Contextual Reasoning and Co-operative Response Framework for the Core Language Engine”, SRI International, Cambridge Computer Science Research Centre, Cambridge, Dec. 1992, 273 pages. |
Alshawi et al., “Declarative Derivation of Database Queries from Meaning Representations”, Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 1991, 12 pages. |
Alshawi et al., “Logical Forms in the Core Language Engine”, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989, pp. 25-32. |
Alshawi et al., “Overview of the Core Language Engine”, Proceedings of Future Generation Computing Systems,Tokyo, Sep. 1988, 13 pages. |
Alshawi, H., “Translation and Monotonic Interpretation/Generation”, SRI International, Cambridge Computer Science Research Centre, Cambridge, available at <http://www.cam.sri.com/tr/crc024/paper.ps.Z1992>, Jul. 1992, 18 pages. |
Amano et al., “A User-friendly Multimedia Book Authoring System”, The Institute of Electronics, Information and Communication Engineers Technical Report, vol. 103, No. 416, Nov. 2003, pp. 33-40. |
Amano, Junko, “A User-Friendly Authoring System for Digital Talking Books”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103 No. 418, Nov. 6, 2003, pp. 33-40. |
Ambite et al., “Design and Implementation of the CALO Query Manager”, American Association for Artificial Intelligence, 2006, 8 pages. |
Ambite et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager”, The 4th International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), 2005, 18 pages. |
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi_matrixkeyboard.html>, retrieved on Dec. 19, 2002, 1 page. |
Anania, Peter, “Amazon Echo with Home Automation (Smartthings)”, Available online at https://www.youtube.com/watch?v=LMW6aXmsWNE, Dec. 20, 2015, 1 page. |
Anastasakos et al., “Duration Modeling in Large Vocabulary Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, pp. 628-631. |
Anderson et al., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics”, Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, 1967, 12 pages. |
Anhui Ustc Ifl Ytek Co. Ltd., “Flytek Research Center Information Datasheet”, available at <http://www.iflttek.com/english/Research.htm>, retrieved on Oct. 15, 2004, 3 pages. |
Ansari et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach”, IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, pp. 60-62. |
Anthony et al., “Supervised Adaption for Signature Verification System”, IBM Technical Disclosure, Jun. 1, 1978, 3 pages. |
api.ai, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages. |
Appelt et al., “FASTUS: A Finite-State Processor for Information Extraction from Real-world Text”, Proceedings of IJCAI, 1993, 8 pages. |
Appelt et al., “SRI International Fastus System MUC-6 Test Results and Analysis”, SRI International, Menlo Park, California, 1995, 12 pages. |
Appelt et al., “SRI: Description of the JV-FASTUS System used for MUC-5”, SRI International, Artificial Intelligence Center, 1993, 19 pages. |
Apple Computer, “Guide Maker Users Guide”, Apple Computer, Inc., Apr. 1994, 8 pages. |
Apple Computer, “Introduction to Apple Guide”, Apple Computer, Inc., Apr. 1994, 20 pages. |
Apple Computer, “Knowledge Navigator”, published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pages. |
Apple Computer, Inc., “Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC”, available at <http://www.apple.com/ipod/color/specs.html>, 2005, 3 pages. |
Apple Computer, Inc., “Apple Announces iTunes 2”, Press Release, Oct. 23, 2001, 2 pages. |
Apple Computer, Inc., “Apple Introduces iTunes—World's Best and Easiest to Use Jukebox Software”, Macworld Expo, Jan. 9, 2001, 2 pages. |
Apple Computer, Inc., “Apple's iPod Available in Stores Tomorrow”, Press Release, Nov. 9, 2001, 1 page. |
Apple Computer, Inc., “Inside Macintosh”, vol. VI, 1985. |
Apple Computer, Inc., “iTunes 2, Playlist Related Help Screens”, iTunes v2.0, 2000-2001, 8 pages. |
Apple Computer, Inc., “iTunes 2: Specification Sheet”, 2001, 2 pages. |
Apple Computer, Inc., “iTunes, Playlist Related Help Screens”, iTunes v1.0, 2000-2001, 8 pages. |
Apple Computer, Inc., “QuickTime Movie Playback Programming Guide”, Aug. 11, 2005, pp. 1-58. |
Apple Computer, Inc., “QuickTime Overview”, Aug. 11, 2005, pp. 1-34. |
Apple Computer, Inc., “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcome_to_Mac_OS_X_v10.4_Tiger.pdf>, 2005, pp. 1-32. |
Apple, “iPhone User's Guide”, Available at <http://mesnotices.20minutes.fr/manuel-notice-mode-emploi/APPLE/IPHONE%2D%5FE#>, Retrieved on Mar. 27, 2008, Jun. 2007, 137 pages. |
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, retreived on 2014, 3 pages. |
Applebaum et al., “Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training”, International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305. |
AppleEvent Manager, which is described in the publication Inside Macintosh vol. VI, available from Addison-Wesley Publishing Company, 1985. |
Arango et al., “Touring Machine: A Software Platform for Distributed Multimedia Applications”, 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11. |
Archbold et al., “A Team User's Guide”, SRI International, Dec. 21, 1981, 70 pages. |
Arons, Barry M., “The Audio-Graphical Interface to a Personal Integrated Telecommunications System”, Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages. |
Asanovic et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks”, Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkelev.EDU, 1991, 7 pages. |
Atal et al., “Efficient Coding of LPC Parameters by Temporal Decomposition”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'83), Apr. 1983, 4 pages. |
Badino et al., “Language Independent Phoneme Mapping for Foreign TTS”, 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages. |
Baechtle et al., “Adjustable Audio Indicator”, IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages. |
Baeza-Yates, Ricardo, “Visualization of Large Answers in Text Databases”, AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107. |
Bahl et al., “A Maximum Likelihood Approach to Continuous Speech Recognition”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages. |
Bahl et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 7, Jul. 1989, 8 pages. |
Bahl et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 4 pages. |
Bahl et al., “Large Vocabulary Natural Language Continuous Speech Recognition”, Proceedings of 1989 International Conference on Acoustics, Speech and Signal Processing, vol. 1, May 1989, 6 pages. |
Bahl et al., “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages. |
Bahl et al., “Recognition of a Continuously Read Natural Corpus”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424. |
Bahl et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 8 pages. |
Bajarin, Tim, “With Low End Launched, Apple Turns to Portable Future”, PC Week, vol. 7, Oct. 1990, p. 153(1). |
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective”, A Thesis Submitted for the Degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages. |
Barrett et al., “How to Personalize the Web”, 1997 In proceddings of the ACM SIGCHI Conference on Human Factors in Computer Systems, Mar. 22-27, 1997, pp. 75-82. |
Barthel, B., “Information Access for Visually Impaired Persons: Do We Still Keep a “Document” in “Documentation”?”, Professional Communication Conference, Sep. 1995, pp. 62-66. |
Baudel et al., “2 Techniques for Improved HC Interaction: Toolglass & Magic Lenses: The See-Through Interface”, Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994. |
Bear et al., “A System for Labeling Self-Repairs in Speech”, SRI International, Feb. 22, 1993, 9 pages. |
Bear et al., “Detection and Correction of Repairs in Human-Computer Dialog”, SRI International, May 1992, 11 pages. |
Bear et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog”, Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL), 1992, 8 pages. |
Bear et al., “Using Information Extraction to Improve Document Retrieval”, SRI International, Menlo Park, California, 1998, 11 pages. |
Beck et al., “Integrating Natural Language, Query Processing, and Semantic Data Models”, COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543. |
Bederson et al., “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics”, UIST' 94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26. |
Bederson et al., “The Craft of Information Visualization”, Elsevier Science, Inc., 2003, 435 pages. |
Belaid et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages. |
Bellegarda et al., “A Latent Semantic Analysis Framework for Large-Span Language Modeling”, 5th European Conference on Speech, Communication and Technology (EUROSPEECH'97), Sep. 1997, 4 pages. |
Bellegarda et al., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages. |
Bellegarda et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, 1996, 4 pages. |
Bellegarda et al., “Experiments Using Data Augmentation for Speaker Adaptation”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, 4 pages. |
Bellegarda et al., “On-Line Handwriting Recognition using Statistical Mixtures”, Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris, France, Jul. 1993, 11 pages. |
Bellegarda et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task”, Signal Processing VII: Theories and Applications, European Association for Signal Processing, 1994, 4 pages. |
Bellegarda et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages. |
Bellegarda et al., “Tied Mixture Continuous Parameter Modeling for Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045. |
Bellegarda, Jerome R. “Latent Semantic Mapping”, IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80. |
Bellegarda, Jerome R., “Exploiting both Local and Global Constraints for Multi-Span Statistical Language Modeling”, Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'98), vol. 2, May 1998, 5 pages. |
Bellegarda, Jerome R., “Exploiting Latent Semantic Information in Statistical Language Modeling”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 18 pages. |
Bellegarda, Jerome R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of both Local and Global Language Constraints”, available at <http://old.sig.chi.ora/bulletin/1998.2/bellegarda.html>, 1992, 7 pages. |
Bellegarda, Jerome R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages. |
Belvin et al., “Development of the HRL Route Navigation Dialogue System”, Proceedings of the First International Conference on Human Language Technology Research, Paper, 2001, 5 pages. |
Benel et al., “Optimal Size and Spacing of Touchscreen Input Areas”, Human-Computer Interaction—INTERACT, 1987, pp. 581-585. |
Bergmann et al., “An adaptable man-machine interface using connected-word recognition”, 2nd European Conference on Speech Communication and Technology (Eurospeech 91), vol. 2, XP002176387, Sep. 24-26, 1991, pp. 467-470. |
Beringer et al., “Operator Behavioral Biases Using High-Resolution Touch Input Devices”, Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages. |
Beringer, Dennis B., “Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation”, Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages. |
Bernabei et al., “Graphical I/O Devices for Medical Users”, 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836. |
Bernstein, Macrophone, “Speech Corpus”, IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84. |
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22. |
Berry et al., “Symantec”, New version of MORE.TM, Apr. 10, 1990, 1 page. |
Berry et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project”, Proceedings of CP'05 Workshop on Constraint Solving under Change, 2005, 5 pages. |
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages. |
Best Buy, “When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear”, Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp>, retrieved on Jan. 23, 2003, 5 pages. |
Betts et al., “Goals and Objectives for User Interface Software”, Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78. |
Biemann et al., “Disentangling from Babylonian Confusion—Unsupervised Language Identification”, CICLing'05 Proceedings of the 6th international conference on Computational Linguistics and Intelligent Text Processing, vol. 3406, Feb. 2005, pp. 773-784. |
Biemann, Chris, “Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering”, Proceeding COLING ACL '06 Proceedings of the 21st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12. |
Bier et al., “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80. |
Birrell, Andrew, “Personal Jukebox (PJB)”, available at <http://birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages. |
Black et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis”, Proceedings of Eurospeech, vol. 2, 1997, 4 pages. |
Black et al., “Multilingual Text-to-Speech Synthesis”, Acoustics, Speech and Signal Processing (ICASSP'04), Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, pp. 761-764. |
Blair et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System”, Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages. |
Bleher et al., “A Graphic Interactive Application Monitor”, IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402. |
BluePhoneElite: About, available at <http://www.reelintelligence.com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages. |
BluePhoneElite: Features, available at <http://www.reelintelligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages. |
Bluetooth PC Headsets, “‘Connecting’ Your Bluetooth Headset with Your Computer”, Enjoy Wireless VoIP Conversations, available at <http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages. |
Bobrow et al., “Knowledge Representation for Syntactic/Semantic Processing”, From: AAA-80 Proceedings, Copyright 1980, AAAI, 1980, 8 pages. |
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121. |
Bociurkiw, Michael, “Product Guide: Vanessa Mate”, available at <http://www.forbes.com/asap/2000/1127/vmartz_print.html>, retrieved on Jan. 23, 2003, 2 pages. |
Borden IV, G.R., “An Aural User Interface for Ubiquitous Computing”, Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages. |
Borenstein, Nathaniel S., “Cooperative Work in the Andrew Message System”, Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306-323. |
Bouchou et al., “Using Transducers in Natural Language Database Query”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 17 pages. |
Boy, Guy A., “Intelligent Assistant Systems”, Harcourt Brace Jovanovicy, 1991, 1 page. |
Boyer et al., “A Fast String Searching Algorithm”, Communications of the ACM, vol. 20, 1977, pp. 762-772. |
Brain, Marshall, “How MP3 Files Work”, available at <http://www.howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages. |
Bratt et al., “The SRI Telephone-Based ATIS System”, Proceedings of ARPA Workshop on Spoken Language Technology, 1995, 3 pages. |
Briner, L. L., “Identifying Keywords in Text Data Processing”, In Zelkowitz, Marvin V., ED, Directions and Challenges, 15th Annual Technical Symposium, Gaithersbury, Maryland, Jun. 17, 1976, 7 pages. |
Brown et al., “Browing Graphs Using a Fisheye View”, Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992. |
Brown et al., “Browsing Graphs Using a Fisheye View”, CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, 1993, p. 516. |
Bulyko et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System”, Speech Communication, vol. 45, 2005, pp. 271-288. |
Bulyko et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis”, Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages. |
Burger, D., “Improved Access to Computers for the Visually Handicapped: New Prospects and Principles”, IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118. |
Burke et al., “Question Answering from Frequently Asked Question Files”, AI Magazine, vol. 18, No. 2, 1997, 10 pages. |
Burns et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce”, Proceedings of the Americas Conference on Information System (AMCIS), Dec. 31, 1998, 4 pages. |
Busemann et al., “Natural Language Diaglogue Service for Appointment Scheduling Agents”, Technical Report RR-97-02, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH, 1997, 8 pages. |
Bussey, et al., “Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service”, INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available at <http://slrohall.com/oublications/>, Jun. 1990, 8 pages. |
Bussler et al., “Web Service Execution Environment (WSMX)”, retrieved from Internet on Sep. 17, 2012, available at <http://www.w3.org/Submission/WSMX>, Jun. 3, 2005, 29 pages. |
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages. |
Butler, Travis, “Archos Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages. |
Butler, Travis, “Portable MP3: The Nomad Jukebox”, available at <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages. |
Buxton et al., “EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences”, Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications, 1990, pp. 11-34. |
Buzo et al., “Speech Coding Based Upon Vector Quantization”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages. |
Call Centre, “Word Prediction”, The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73. |
Caminero-Gil et al., “Data-Driven Discourse Modeling for Semantic Interpretation”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 1996, 6 pages. |
Campbell et al., “An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)”, (Proceedings of IEEE Int'l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330. |
Cao et al., “Adapting Ranking SVM to Document Retrieval”, SIGIR '06, Seattle, WA, Aug. 6-11, 2006, 8 pages. |
Car Working Group, “Hands-Free Profile 1.5 HFP1.5_SPEC”, Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages. |
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, Iberspeech 2012—Vii Jornadas En Tecnologia Del Habla and Iii Iberiansl Tech Workshop, Nov. 21, 2012, pp. 1-10. |
Card et al., “Readings in Information Visualization Using Vision to Think”, Interactive Technologies, 1999, 712 pages. |
Carpendale et al., “3-Dimensional Pliable Surfaces: for the Effective Presentation of Visual Information”, UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226. |
Carpendale et al., “Extending Distortion Viewing from 2D to 3D”, IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51. |
Carpendale et al., “Making Distortions Comprehensible”, IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages. |
Carter et al., “The Speech-Language Interface in the Spoken Language Translator”, SRI International, Nov. 23, 1994, 9 pages. |
Carter, D., “Lexical Acquisition in the Core Language Engine”, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1989, 8 pages. |
Casner et al., “N-Way Conferencing with Packet Video”, The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6. |
Castleos, “Whole House Voice Control Demonstration”, available online at : https://www.youtube.com/watch?v=9SRCoxrZ_W4, Jun. 2, 2012, 26 pages. |
Cawley, Gavin C. “The Application of Neural Networks to Phonetic Modelling”, PhD. Thesis, University of Essex, Mar. 1996, 13 pages. |
Chai et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: A Case Study”, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, Apr. 2000, 11 pages. |
Chakarova et al., “Digital Still Cameras—Downloading Images to a Computer”, Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.html>, retrieved on May 9, 2005, 2 pages. |
Chamberlain, Kim, “Quick Start Guide Natural Reader”, available online at <http://atrc.colostate.edu/files/quickstarts/Natural_Reader_Quick_Start_Guide.>, Apr. 2008, 5 pages. |
Chang et al., “A Segment-Based Speech Recognition System for Isolated Mandarin Syllables”, Proceedings TEN CON '93, IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, vol. 3, Oct. 1993, 6 pages. |
Chang et al., “Discriminative Training of Dynamic Programming based Speech Recognizers”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143. |
Chartier, David, “Using Multi-Network Meebo Chat Service on Your iPhone”, available at <http://www.tuaw.com/2007/07/04/using-multi-network-meebo-chat-service-on-your-iphone/>, Jul. 4, 2007, 5 pages. |
Chelba et al., “Structured Language Modeling for Speech Recognition”, Available online at : http://arxiv.org/pdf/cs/0001023.pdf, Jan. 25, 2000, 7 pages. |
Chen et al., “An Improved Method for Image Retrieval Using Speech Annotation”, The 9th International Conference on Multi-Media Modeling, Jan. 2003, pp. 1-17. |
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask For”, PSFK Report, Feb. 9, 2012, 9 pages. |
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Agent Architecture, 1996, 6 pages. |
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Open-Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Open-Agent Architecture, 6 pages. |
Cheyer et al., “Multimodal Maps: An Agent-Based Approach”, International Conference on Co-operative Multimodal Communication, 1995, 15 pages. |
Cheyer et al., “Spoken Language and Multimodal Applications for Electronic Realties”, Virtual Reality, vol. 3, 1999, pp. 1-15. |
Cheyer et al., “The Open Agent Architecture”, Autonomous Agents and Multi-Agent Systems, vol. 4, Mar. 1, 2001, 6 pages. |
Cheyer et al., “The Open Agent Architecture: Building Communities of Distributed Software Agents”, Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at <http://www.ai.sri.com/-oaa/>, retrieved on Feb. 21, 1998, 25 pages. |
Cheyer, A., “Demonstration Video of Vanguard Mobile Portal”, published by SRI International no later than 2004, as depicted in ‘Exemplary Screenshots from video entitled Demonstration Video of Vanguard Mobile Portal’, 2004, 10 pages. |
Cheyer, Adam, “A Perspective on AI & Agent Technologies for SCM”, VerticalNet Presentation, 2001, 22 pages. |
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages. |
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746. |
Chomsky et al., “The Sound Pattern of English”, New York, Harper and Row, 1968, 242 pages. |
Choularton et al., “User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains”, Proceedings of the 10th Australian International Conference on Speech Science & Technology, Dec. 8-10, 2004, pp. 457-462. |
Church, Kenneth W., “Phonological Parsing in Speech Recognition”, Kluwer Academic Publishers, 1987. |
Cisco Systems, Inc., “Cisco Unity Unified Messaging User Guide”, Release 4.0(5), Apr. 14, 2005, 152 pages. |
Cisco Systems, Inc., “Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)”, Release 4.0(5), Apr. 14, 2005, 152 pages. |
Cisco Systems, Inc., “Operations Manager Tutorial, Cisco's IPC Management Solution”, 2006, 256 pages. |
Codd, E. F., “Databases: Improving Usability and Responsiveness—How About Recently”, Copyright 1978, Academic Press, Inc., 1978, 28 pages. |
Cohen et al., “An Open Agent Architecture”, available at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1 0.1.1.30.480>, 1994, 8 pages. |
Cohen et al., “Voice User Interface Design,”, Excerpts from Chapter 1 and Chapter 10, 2004, 36 pages. |
Coleman, David W., “Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing”, Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87. |
Coles et al., “Chemistry Question-Answering”, SRI International, Jun. 1969, 15 pages. |
Coles et al., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input”, SRI International, Nov. 1972, 198 Pages. |
Coles et al., “The Application of Theorem Proving to Information Retrieval”, SRI International, Jan. 1971, 21 pages. |
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4. |
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1009318.5, dated Oct. 8, 2010, 5 pages. |
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1217449.6, dated Jan. 17, 2013, 6 pages. |
Compaq Inspiration Technology, “Personal Jukebox (PJB)—Systems Research Center and PAAD”, Oct. 13, 2000, 25 pages. |
Compaq, “Personal Jukebox”, available at <http://research.compaq.com/SRC/pjb/>, 2001, 3 pages. |
Conkie et al., “Preselection of Candidate Units in a Unit Selection-Based Text-to-Speech Synthesis System”, ISCA, 2000, 4 pages. |
Conklin, Jeff, “Hypertext: An Introduction and Survey”, Computer Magazine, Sep. 1987, 25 pages. |
Conklin, Jeffrey, “A Survey of Hypertext”, MCC Software Technology Program, Dec. 1987, 40 pages. |
Connolly et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, 13 pages. |
Constantinides et al., “A Schema Based Approach to Dialog Control”, Proceedings of the International Conference on Spoken Language Processing, 1998, 4 pages. |
Copperi et al., “CELP Coding for High Quality Speech at 8 kbits/s”, Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327. |
Corporate Ladder, BLOC Publishing Corporation, 1991, 1 page. |
Corr, Paul, “Macintosh Utilities for Special Needs Users”, available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds.html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages. |
Cox et al., “Speech and Language Processing for Next-Millennium Communications Services”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages. |
Craig et al., “Deacon: Direct English Access and Control”, AFIPS Conference Proceedings, vol. 19, San Francisco, Nov. 1966, 18 pages. |
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (On Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf>, Apr. 2000, 46 pages. |
Creative Technology Ltd., “Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf>, Jun. 1999, 40 pages. |
Creative Technology Ltd., “Nomad Jukebox”, User Guide, Version 1.0, Aug. 2000, 52 pages. |
Creative, “Creative NOMAD MuVo TX”, available at <http://web.archive.org/web/20041024175952/www.creative.com/products/pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page. |
Creative, “Creative NOMAD MuVo”, available at <http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983>, retrieved on Jun. 7, 2006, 1 page. |
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1 page. |
Croft et al., “Task Support in an Office System”, Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24. |
Crowley et al., “MMConf: An Infrastructure for Building Shared Multimedia Applications”, CSCW 90 Proceedings, Oct. 1990, pp. 329-342. |
Cucerzan et al., “Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day”, In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7. |
Cuperman et al., “Vector Predictive Coding of Speech at 16 kbit s/s”, (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311. |
Cutkosky et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems”, Journal & Magazines, Computer, vol. 26, No. 1, Jan. 1993, 14 pages. |
Dar et al., “DTL's DataSpot: Database Exploration Using Plain Language”, Proceedings of the 24th VLDB Conference, New York, 1998, 5 pages. |
Database WPI Section Ch, Week 8733, Derwent Publications Ltd., London, GB; AN 87-230826 & JP, A, 62 153 326 (Sanwa Kako KK (Sans) Sanwa Kako Co), Jul. 8, 1987, 6 pages. |
Database WPI Section Ch, Week 8947, Derwent Publications Ltd., London, GB; AN 89-343299 & JP, A, 1 254 742 (Sekisui Plastics KK), Oct. 11, 1989, 7 pages. |
Davis et al., “A Personal Handheld Multi-Modal Shopping Assistant”, International Conference on Networking and Services, IEEE, 2006, 9 pages. |
Davis et al., “Stone Soup Translation”, Department of Linguistics, Ohio State University, 2001, 11 pages. |
De Herrera, Chris, “Microsoft ActiveSync 3.1”, Version 1.02, available at <http://www.cewindows.net/wce/activesync3.1.htm>, Oct. 13, 2000, 8 pages. |
Decker et al., “Designing Behaviors for Information Agents”, The Robotics Institute, Carnegie-Mellon University, Paper, Jul. 1996, 15 pages. |
Decker et al., “Matchmaking and Brokering”, The Robotics Institute, Carnegie-Mellon University, Paper, May 1996, 19 pages. |
Deedeevuu, “Amazon Echo Alarm Feature”, Available online at https://www.youtube.com/watch?v=fdjU8eRLk7c, Feb. 16, 2015, 1 page. |
Deerwester et al., “Indexing by Latent Semantic Analysis”, Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages. |
Degani et al., “‘Soft’ Controls for Hard Displays: Still a Challenge”, Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56. |
Del Strother, Jonathan, “Coverflow”, available at <http://www.steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages. |
Deller, Jr. et al., “Discrete-Time Processing of Speech Signals”, Prentice Hall, ISBN: 0-02-328301-7, 1987, 14 pages. |
Diagrammaker, Action Software, 1989. |
Diagram-Master, Ashton-Tate, 1989. |
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages. |
Dickinson et al., “Palmtips: Tiny Containers for All Your Data”, PC Magazine, vol. 9, Mar. 1990, p. 218(3). |
Digital Audio in the New Era, Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages. |
Digital Equipment Corporation, “Open VMS Software Overview”, Software Manual, Dec. 1995, 159 pages. |
Digital Equipment Corporation, “OpenVMS RTL DECtalk (DTK$) Manual”, May 1993, 56 pages. |
Dittenbach et al., “A Natural Language Query Interface for Tourism Information”, In: Information and Communication Technologies in Tourism 2003, XP055114393, Feb. 14, 2003, pp. 152-162. |
Dobrisek et al., “Evolution of the Information-Retrieval System for Blind and Visually-Impaired People”, International Journal of Speech Technology, vol. 6, 2003, pp. 301-309. |
Domingue et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services”, Position Paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, Jun. 2005, 6 pages. |
Donahue et al., “Whiteboards: A Graphical Database Tool”, ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41. |
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers”, available at <http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=1 0.1.1.21.6398>, 2001, 4 pages. |
Dourish et al., “Portholes: Supporting Awareness in a Distributed Work Group”, CHI 1992;, May 1992, pp. 541-547. |
Dowding et al., “Gemini: A Natural Language System for Spoken-Language Understanding”, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 1993, 8 pages. |
Dowding et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser”, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 1994, 7 pages. |
Dragon Naturally Speaking Version 11 Users Guide, Nuance Communications, Inc., Copyright @2002-2010, 132 pages. |
Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 and 6.3 kbit/s, International Telecommunication Union Recommendation G.723, 7 pages. |
Dusan et al., “Multimodal Interaction on PDA's Integrating Speech and Pen Inputs”, Eurospeech Geneva, 2003, 4 pages. |
dyslexic.com, “AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs”, available at <http://www.dyslexic.com/procuts.php?catid-2&pid=465&PHPSESSID=2511b800000f7da>, retrieved on Dec. 6, 2005, 13 pages. |
Eagle et al., “Social Serendipity: Proximity Sensing and Cueing”, MIT Media Laboratory Technical Note 580, May 2004, 18 pages. |
Edwards, John R., “Q&A: Integrated Software with Macros and an Intelligent Assistant”, Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122. |
Egido, Carmen, “Video Conferencing as a Technology to Support Group Work: A Review of its Failures”, Bell Communications Research, 1988, pp. 13-24. |
Elio et al., “On Abstract Task Models and Conversation Policies”, Proc. Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents'99 Conference, 1999, pp. 1-10. |
Elliot, Chip, “High-Quality Multimedia Conferencing Through a Long-Haul Packet Network”, BBN Systems and Technologies, 1993, pp. 91-98. |
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84. |
Elofson et al., “Delegation Technologies: Environmental Scanning with Intelligent Agents”, Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62. |
Eluminx, “Illuminated Keyboard”, available at <http://www.elumix.com/>, retrieved on Dec. 19, 2002, 1 page. |
Engst, Adam C., “SoundJann Keeps on Jammin'”, available at <http://db.tidbits.com/getbits.acgi?tbart=05988>, Jun. 19, 2000, 3 pages. |
Epstein et al., “Natural Language Access to a Melanoma Data Base”, SRI International, Sep. 1978, 7 pages. |
Ericsson et al., “Software Illustrating a Unified Approach to Multimodality and Multilinguality in the In-Home Domain”, Talk and Look: Tools for Ambient Linguistic Knowledge, Dec. 2006, 127 pages. |
Ericsson Inc., “Cellular Phone with Integrated MP3 Player”, Research Disclosure Journal No. 41815, Feb. 1999, 2 pages. |
Erol et al., “Multimedia Clip Generation From Documents for Browsing on Mobile Devices”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, 13 pages. |
Eslambolchilar et al., “Making Sense of Fisheye Views”, Second Dynamics and Interaction Workshop at University of Glasgow, Aug. 2005, 6 pages. |
Eslambolchilar et al., “Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming”, UIST'04, Oct. 24-27, 2004, 2 pages. |
European Search Report received for European Patent Application No. 01201774.5, dated Sep. 14, 2001, 3 pages. |
European Search Report received for European Patent Application No. 99107544.1, dated Jul. 8, 1999, 4 pages. |
European Search Report received for European Patent Application No. 99107545.8, dated Jul. 1, 1999, 3 pages. |
Evermann et al., “Posterior Probability Decoding, Confidence Estimation and System Combination”, Proceedings Speech Transcription Workshop, 2000, 4 pages. |
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages. |
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page. |
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2, dated Feb. 20, 2007, 6 pages. |
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, dated Apr. 28, 2014, 14 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 13169672.6, dated Aug. 14, 2013, 11 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 15169349.6, dated Jul. 28, 2015, 8 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 15196748.6, dated Apr. 4, 2016, 6 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 16150079.8, dated Feb. 18, 2016, 7 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, dated Dec. 9, 2010, 7 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12727027.0, dated Sep. 26, 2014, 7 pages. |
Extended European Search Report (inclusive of the Partial European Search Report and European Search Opinion) received for European Patent Application No. 12729332.2, dated Oct. 31, 2014, 6 pages. |
Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, dated Dec. 18, 2012, 4 pages. |
Extended European Search Report received for European Patent Application No. 11159884.3, dated May 20, 2011, 8 pages. |
Extended European Search Report received for European Patent Application No. 11707939.2, dated Nov. 18, 2016, 13 pages. |
Extended European Search Report received for European Patent Application No. 12186663.6, dated Jul. 16, 2013, 6 pages. |
Extended European Search Report received for European Patent Application No. 13726938.7, dated Dec. 14, 2015, 8 pages. |
Extended European Search Report received for European Patent Application No. 13770552.1, dated Jan. 7, 2016, 5 pages. |
Extended European Search Report received for European Patent Application No. 14719914.5, dated Oct. 10, 2016, 7 pages. |
Extended European Search Report received for European Patent Application No. 14737370.8, dated May 19, 2016, 12 pages. |
Extended European Search Report received for European Patent Application No. 16186308.9, dated Jan. 16, 2017, 9 pages. |
Extended European Search Report received for European Patent Application No. 16188272.5, dated Nov. 18, 2016, 12 pages. |
Extended European Search Report received for European Patent Application No. 16195814.5, dated Jul. 5, 2017, 13 pages. |
Extended European Search Report received for European Patent Application No. 16198245.9, dated Feb. 22, 2017, 13 pages. |
Extended Search Report received for European Patent Application No. 16188055.4, dated Dec. 22, 2016, 8 pages. |
Fanty et al., “A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition”, IEEE, Nov. 1991, pp. 326-329. |
Feigenbaum et al., “Computer-Assisted Semantic Annotation of Scientific Life Works”, Oct. 15, 2007, 22 pages. |
Ferguson et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant”, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 1998, 7 pages. |
Fikes et al., “A Network-Based Knowledge Representation and its Natural Deduction System”, SRI International, Jul. 1977, 43 pages. |
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages. |
Finkel et al., “Joint Parsing and Named Entity Recognition”, Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, Jun. 2009, pp. 326-334. |
Fiscus, J. G., “A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER)”, IEEE Proceedings, Automatic Speech Recognition and Understanding, Dec. 14-17, 1997, pp. 347-354. |
Fisher et al., “Virtual Environment Display System”, Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87. |
Forsdick, Harry, “Explorations into Real-Time Multimedia Conferencing”, Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages. |
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook”, Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages. |
Furnas et al., “Space-Scale Diagrams: Understanding Multiscale Interfaces”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241. |
Furnas, George W., “Effective View Navigation”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374. |
Furnas, George W., “Generalized Fisheye Views”, CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No. 4, Apr. 1986, pp. 16-23. |
Furnas, George W., “The Fisheye Calendar System”, Bellcore Technical Memorandum, Nov. 19, 1991, pp. 1-9. |
Gamback et al., “The Swedish Core Language Engine”, NOTEX Conference, 1992, 17 pages. |
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3. |
Gardner, Jr., P. C., “A System for the Automated Office Environment”, IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345. |
Garretson, R., “IBM Adds ‘Drawing Assistant’ Design Tool to Graphic Series”, PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page. |
Gautier et al., “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering”, CiteSeerx, 1993, pp. 89-97. |
Gaver et al., “One Is Not Enough: Multiple Views in a Media Space”, INTERCHI, Apr. 24-29, 1993, pp. 335-341. |
Gaver et al., “Realizing a Video Environment: EuroPARC's RAVE System”, Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35. |
Gervasio et al., “Active Preference Learning for Personalized Calendar Scheduling Assistance”, CiteSeerx, Proceedings of IUI'05, Jan. 2005, pp. 90-97. |
Giachin et al., “Word Juncture Modeling Using Inter-Word Context-Dependent Phone-Like Units”, Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47. |
Gillespie, Kelly, “Adventures in Integration”, Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92. |
Gillespie, Kelly, “Internationalize Your Applications with Unicode”, Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137. |
Gilloire et al., “Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography”, Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166. |
Glass et al., “Multilingual Language Generation Across Multiple Domains”, International Conference on Spoken Language Processing, Japan, Sep. 1994, 5 pages. |
Glass et al., “Multilingual Spoken-Language Understanding in the Mit Voyager System”, Available online at <http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf>, Aug. 1995, 29 pages. |
Glass, Alyssa, “Explaining Preference Learning”, CiteSeerx, 2006, pp. 1-5. |
Glinert-Stevens, Susan, “Microsoft Publisher: Desktop Wizardry”, PC Sources, vol. 3, No. 2, Feb. 1992, 1 page. |
Glossary of Adaptive Technologies: Word Prediction, available at <http://www.utoronto.ca/atrc/reference/techwordpred.html>, retrieved on Dec. 6, 2005, 5 pages. |
Gmail, “About Group Chat”, available at <http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages. |
Goddeau et al., “A Form-Based Dialogue Manager for Spoken Language Applications”, Available online at <http://phasedance.com/pdf!icslp96.pdf>, Oct. 1996, 4 pages. |
Goddeau et al., “Galaxy: A Human-Language Interface to On-Line Travel Information”, International Conference on Spoken Language Processing, Yokohama, 1994, pp. 707-710. |
Goldberg et al., “Using Collaborative Filtering to Weave an Information Tapestry”, Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages. |
Goldberg, Cheryl, “IBM Drawing Assistant: Graphics for the EGA”, PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page. |
Gomez et al., “Mouth Gesture and Voice Command Based Robot Command Interface”, IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 333-338. |
Gong et al., “Guidelines for Handheld Mobile Device Interface Design”, Proceedings of DSI 2004 Annual Meeting, 2004, pp. 3751-3756. |
Gonnet et al., “Handbook of Algorithms and Data Structures: in Pascal and C. (2nd ed.)”, Addison-Wesley Longman Publishing Co., 1991, 17 pages. |
Good et al., “Building a User-Derived Interface”, Communications of the ACM; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043. |
Gorin et al., “On Adaptive Acquisition of Language”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), vol. 1, Apr. 1990, 5 pages. |
Gotoh et al., “Document Space Models Using Latent Semantic Analysis”, In Proceedings of Eurospeech, 1997, 4 pages. |
Gray et al., “Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure”, (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221. |
Gray, R. M., “Vector Quantization”, IEEE ASSP Magazine, Apr. 1984, 26 pages. |
Green, C., “The Application of Theorem Proving to Question-Answering Systems”, SRI Stanford Research Institute, Artificial Intelligence Group, Jun. 1969, 169 pages. |
Greenberg, Saul, “A Fisheye Text Editor for Relaxed-WYSIWIS Groupware”, CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages. |
Gregg et al., “DSS Access on the WWW: An Intelligent Agent Prototype”, Proceedings of the Americas Conference on Information Systems, Association for Information Systems, 1998, 3 pages. |
Griffin et al., “Signal Estimation From Modified Short-Time Fourier Transform”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243. |
Grishman et al., “Computational Linguistics: An Introduction”, Cambridge University Press, 1986, 172 pages. |
Grosz et al., “Dialogic: A Core Natural-Language Processing System”, SRI International, Nov. 1982, 17 pages. |
Grosz et al., “Research on Natural-Language Processing at SRI”, SRI International, Nov. 1981, 21 pages. |
Grosz et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces”, Artificial Intelligence, vol. 32, 1987, 71 pages. |
Grosz, B., “Team: A Transportable Natural-Language Interface System”, Proceedings of the First Conference on Applied Natural Language Processing, 1983, 7 pages. |
Gruber et al., “An Ontology for Engineering Mathematics”, Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at <http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html>, 1994, pp. 1-22. |
Gruber et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm”, Knowledge Systems Laboratory, Technical Report KSL 92-59, Dec. 1991, Updated Feb. 1993, 24 pages. |
Gruber et al., “Machine-Generated Explanations of Engineering Models: A Compositional Modeling Approach”, Proceedings of International Joint Conference on Artificial Intelligence, 1993, 7 pages. |
Gruber et al., “NIKE: A National Infrastructure for Knowledge Exchange”, A Whitepaper Advocating and ATP Initiative on Technologies for Lifelong Learning, Oct. 1994, pp. 1-10. |
Gruber et al., “Toward a Knowledge Medium for Collaborative Product Development”, Proceedings of the Second International Conference on Artificial Intelligence in Design, Jun. 1992, pp. 1-19. |
Gruber et al., “Siri, a Virtual Personal Assistant Bringing Intelligence to the Interface”, Available at URL:https://web.archive.org/web/20090824055846/http://tomgruber.org/writing/Siri-SemTech09.pdf, Aug. 24, 2009, 21 pages. |
Gruber, Thomas R., “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition, vol. 5, No. 2, Jun. 1993, pp. 199-220. |
Gruber, Thomas R., “Automated Knowledge Acquisition for Strategic Knowledge”, Machine Learning, vol. 4, 1989, pp. 293-336. |
Gruber, Thomas R., “Interactive Acquisition of Justifications: Learning “Why” by Being Told “What””, Knowledge Systems Laboratory, Technical Report KSL 91-17, Original Oct. 1990, Revised Feb. 1991, 24 pages. |
Gruber, Thomas R., “Toward Principles for the Design of Ontologies used for Knowledge Sharing”, International Journal of Human-Computer Studies, vol. 43, 1993, pp. 907-928. |
Gruber, Thomas R., et al., U.S Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion” 13 pages (Copy Not Attached). |
Gruber, Thomas R., et al., U.S Appl. No. 61/493,201, filed Jun. 3, 2011 titled “Generating and Processing Data Items That Represent Tasks to Perform”, 68 pages (Copy Not Attached). |
Gruber, Thomas R., et al., Unpublished U.S Appl. No. 61/657,744, filed Jun. 9, 2012 titled “Automatically Adapting User Interfaces for Hands-Free Interaction”, 40 pages. |
Gruber, Thomas R., et al., U.S. Appl. No. 07/976,970, filed Nov. 16, 1992 titled “Status Bar for Application Windows”, (Copy Not Attached). |
Gruber, Tom, “(Avoiding) The Travesty of the Commons”, Presentation at NPUC, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006, 52 pages. |
Gruber, Tom, “2021: Mass Collaboration and the Really New Economy”, TNTY Futures, vol. 1, No. 6, Available online at <http://tomgruber.org/writing/tnty2001.htm>, Aug. 2001, 5 pages. |
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages. |
Gruber, Tom, “Collaborating Around Shared Content on the WWW, W3C Workshop on WWW and Collaboration”, available at <http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html>, Sep. 1995, 1 page. |
Gruber, Tom, “Collective Knowledge Systems: Where the Social Web Meets the Semantic Web”, Web Semantics: Science, Services and Agents on the World Wide Web, 2007, pp. 1-19. |
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40. |
Gruber, Tom, “Enterprise Collaboration Management with Intraspect”, Intraspect Technical White Paper, Jul. 2001, pp. 1-24. |
Gruber, Tom, “Every Ontology is a Treaty—A Social Agreement-Among People with Some Common Motive in Sharing”, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 3, 2004, pp. 1-5. |
Gruber, Tom, “Helping Organizations Collaborate, Communicate, and Learn”, Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk.htm>, Mar.-Oct. 2003, 30 pages. |
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40. |
Gruber, Tom, “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing”, Proceedings of the International CIDOC CRM Symposium, Available online at <http://tomgruber.org/writing/cidoc-ontology.htm>, Mar. 26, 2003, 21 pages. |
Gruber, Tom, “Ontologies, Web 2.0 and Beyond”, Ontology Summit, Available online at <http://tomgruber.org/writing/ontolog-social-web-keynote.htm>, Apr. 2007, 17 pages. |
Gruber, Tom, “Ontology of Folksonomy: A Mash-Up of Apples and Oranges”, Int'l Journal on Semantic Web & Information Systems, vol. 3, No. 2, 2007, 7 pages. |
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages. |
Gruber, Tom, “TagOntology”, Presentation to Tag Camp, Oct. 29, 2005, 20 pages. |
Gruber, Tom, “Where the Social Web Meets the Semantic Web”, Presentation at the 5th International Semantic Web Conference, Nov. 2006, 38 pages. |
Gruhn et al., “A Research Perspective on Computer-Assisted Office Work”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456. |
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages. |
Guida et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication”, International Journal of Man-Machine Studies, vol. 17, 1982, 17 pages. |
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages. |
Gurevych et al., “Semantic Coherence Scoring Using an Ontology”, North American Chapter of the Association for Computational Linguistics Archive, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, May 27, 2003, 8 pages. |
Guzzoni et al., “A Unified Platform for Building Intelligent Web Interaction Assistants”, Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 2006, 4 pages. |
Guzzoni et al., “Active, A Platform for Building Intelligent Operating Rooms”, Surgetica 2007 Computer-Aided Medical Interventions: Tools and Applications, 2007, pp. 191-198. |
Guzzoni et al., “Active, A platform for Building Intelligent Software”, Computational Intelligence, available at <http://www.informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier >, 2006, 5 pages. |
Guzzoni et al., “Active, A Tool for Building Intelligent User Interfaces”, ASC 2007, Palma de Mallorca, Aug. 2007, 6 pages. |
Guzzoni et al., “Many Robots Make Short Work”, AAAI Robot Contest, SRI International, 1996, 9 pages. |
Guzzoni et al., “Modeling Human-Agent Interaction with Active Ontologies”, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 2007, 8 pages. |
Guzzoni, D., “Active: A Unified Platform for Building Intelligent Assistant Applications”, Oct. 25, 2007, 262 pages. |
Haas et al., “An Approach to Acquiring and Applying Knowledge”, SRI international, Nov. 1980, 22 pages. |
Hadidi et al., “Student's Acceptance of Web-Based Course Offerings: An Empirical Assessment”, Proceedings of the Americas Conference on Information Systems(AMCIS), 1998, 4 pages. |
Haga et al., “A Usability Survey of a Contents-Based Video Retrieval System by Combining Digital Video and an Electronic Bulletin Board”, The Internet and Higher Education, vol. 8, No. 3, 2005, pp. 251-262. |
Hain et al., “The Papageno TTS System”, Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages. |
Haitsma et al., “A Highly Robust Audio Fingerprinting System”, In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), 2002, 9 pages. |
Halbert, D. C., “Programming by Example”, Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76. |
Hall, William S., “Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support”, Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58. |
Haoui et al., “Embedded Coding of Speech: A Vector Quantization Approach”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 297-299. |
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages. |
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages. |
Hartson et al., “Advances in Human-Computer Interaction”, Chapters 1, 5, and 6, vol. 3, 1992, 121 pages. |
Hashimoto, Yoshiyuki , “Simple Guide for iPhone Siri, Which Can Be Operated with Your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131. |
Hawkins et al., “Hierarchical Temporal Memory: Concepts, Theory and Terminology”, Numenta, Inc., Mar. 27, 2007, 20 pages. |
He et al., “Personal Security Agent: KQML-Based PKI”, The Robotics Institute, Carnegie-Mellon University, Paper, 1997, 14 pages. |
He et al., “A data-driven spoken language understanding system”, 2003 IEEE Workshop on Automatic Speech Recognition and Understanding, 2003, pp. 583-588. |
Headset Button Controller v7.3 APK Full APP Download for Android, Blackberry, iPhone, 2014, 11 pages. |
Hear voice from Google translate, Available on URL:https://www.youtube.conn/watch?v=18AvMhFqD28, Jan. 28, 2011, 1 page. |
Heger et al., “KNOWBOT: An Adaptive Data Base Interface”, Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157. |
Helm et al., “Building Visual Language Parsers”, Proceedings of CHI'91, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1991, 8 pages. |
Hendrickson, Bruce, “Latent Semantic Analysis and Fiedler Retrieval”, Linear Algebra and its Applications, vol. 421, 2007, pp. 345-355. |
Hendrix et al., “Developing a Natural Language Interface to Complex Data”, ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, pp. 105-147. |
Hendrix et al., “The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface”, Byte Magazine, Issue 14, Dec. 1987, 1 page. |
Hendrix et al., “Transportable Natural-Language Interfaces to Databases”, SRI International, Technical Note 228, Apr. 30, 1981, 18 pages. |
Hendrix, Gary G., “Human Engineering for Applied Natural Language Processing”, SRI International, Technical Note 139, Feb. 1977, 27 pages. |
Hendrix, Gary G., “Klaus: A System for Managing Information and Computational Resources”, SRI International, Technical Note 230, Oct. 1980, 34 pages. |
Hendrix, Gary G., “Lifer: A Natural Language Interface Facility”, SRI Stanford Research Institute, Technical Note 135, Dec. 1976, 9 pages. |
Hendrix, Gary G., “Natural-Language Interface”, American Journal of Computational Linguistics, vol. 8, No. 2, Apr.-Jun. 1982, pp. 56-61. |
Hendrix, Gary G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces”, SRI International, Technical Note 138, Feb. 1977, 76 pages. |
Henrich et al., “Language Identification for the Automatic Grapheme-To-Phoneme Conversion of Foreign Words in a German Text-To-Speech System”, Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 220-223. |
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech”, Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages. |
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'93), Apr. 1993, 4 pages. |
Heyer et al., “Exploring Expression Data: Identification and Analysis of Coexpressed Genes”, Genome Research, vol. 9, 1999, pp. 1106-1115. |
Hill, R. D., “Some Important Features and Issues in User Interface Management System”, Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120. |
Hinckley et al., “A Survey of Design Issues in Spatial Input”, UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222. |
Hiroshi, “TeannWork Station: Towards a Seamless Shared Workspace”, NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26. |
Hirschman et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding”, Proceedings of the Workshop on Human Language Technology, 1993, pp. 19-24. |
Hobbs et al., “Fastus: A System for Extracting Information from Natural-Language Text”, SRI International, Technical Note 519, Nov. 19, 1992, 26 pages. |
Hobbs et al., “Fastus: Extracting Information from Natural-Language Texts”, SRI International, 1992, pp. 1-22. |
Hobbs, Jerry R., “Sublanguage and Knowledge”, SRI International, Technical Note 329, Jun. 1984, 30 pages. |
Hodjat et al., “Iterative Statistical Language Model Generation for use with an Agent-Oriented Natural Language Interface”, Proceedings of HCI International, vol. 4, 2003, pp. 1422-1426. |
Hoehfeld et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm”, IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages. |
Holmes, “Speech System and Research”, 1955, pp. 129-135, 152-153. |
Holmes, J. N., “Speech Synthesis and Recognition-Stochastic Models for Word Recognition”, Published by Chapman & Hall, London, ISBN 0 412 534304, 1998, 7 pages. |
Hon et al., “CMU Robust Vocabulary-Independent Speech Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), Apr. 1991, 4 pages. |
Hon et al., “Towards Large Vocabulary Mandarin Chinese Speech Recognition”, Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548. |
Hopper, Andy, “Pandora—An Experimental System for Multimedia Applications”, Olivetti Research Laboratory, Apr. 1990, pp. 19-34. |
Horvitz et al., “Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface”, Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, 1995, p. 955. |
Horvitz et al., “In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models”, 1995, 8 pages. |
Howard, John H., “(Abstract) An Overview of the Andrew File System”, Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) To Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6. |
Huang et al., “A Novel Approach to Robust Speech Endpoint Detection in Car Environments”, Acoustics, Speech, and Signal Processing 2000, ICASSP '00, Proceeding S. 2000 IEEE International Conference on Jun. 5-9, 2000, vol. 3, Jun. 5, 2000, pp. 1751-1754. |
Huang et al., “Real-Time Software-Based Video Coder for Multimedia Communication Systems”, Department of Computer Science and Information Engineering, 1993, 10 pages. |
Huang et al., “The SPHINX-II Speech Recognition System: An Overview”, Computer, Speech and Language, vol. 7, No. 2, 1993, 14 pages. |
Hukin, R. W., “Testing an Auditory Model by Resynthesis”, European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246. |
Hunt, “Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database”, Copyright 1996 IEEE. “To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA” ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373-376. |
IAP Sports Lingo 0x09 Protocol V1.00, May 1, 2006, 17 pages. |
IBM Corporation, “Simon Says Here's How”, Users Manual, 1994, 3 pages. |
IBM, “Integrated Audio-Graphics User Interface”, IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991, 4 pages. |
IBM, “Speech Editor”, IBM Technical Disclosure Bulletin, vol. 29, No. 10, Mar. 10, 1987, 3 pages. |
IBM, “Speech Recognition with Hidden Markov Models of Speech Waveforms”, IBM Technical Disclosure Bulletin, vol. 34, No. 1, Jun. 1991, 10 pages. |
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages. |
Ichat AV, “Video Conferencing for the Rest of Us”, Apple—Mac OS X—iChat AV, available at <http://www.apple.com/macosx/features/ichat/>, retrieved on Apr. 13, 2006, 3 pages. |
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages. |
IEEE 1394 (Redirected from Firewire, Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/Firewire>, retrieved on Jun. 8, 2003, 2 pages. |
Interactive Voice, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, dated Jun. 23, 2011, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012637, dated Apr. 10, 1995, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012666, dated Mar. 1, 1995, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 28, 1996, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1995/008369, dated Oct. 9, 1996, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2004/002873, dated Feb. 1, 2006, 5 pages. |
International Preliminary report on Patentability received for PCT Patent Application No. PCT/US2004/016519, dated Jan. 23, 2006, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 20, 2007, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/000042, dated Jul. 7, 2009, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/000043, dated Jul. 7, 2009, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 7, 2009, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/051954, dated Mar. 24, 2011, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/055577, completed on Aug. 6, 2010, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2010/037378, dated Dec. 6, 2011, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020350, dated Jul. 17, 2012, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020825, dated Jan. 13, 2012, 17 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020861, dated Aug. 2, 2012, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/037014, dated Dec. 13, 2012, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, dated Oct. 3, 2013, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/034028, dated Oct. 31, 2013, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040571, dated Dec. 19, 2013, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040801, dated Dec. 19, 2013, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040931, dated Dec. 18, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/043098, dated Jan. 9, 2014, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/043100, dated Jan. 9, 2014, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/056382, dated Apr. 10, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 12, 2014, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028920, dated Sep. 18, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/029156, dated Sep. 9, 2014, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041225, dated Nov. 27, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 18, 2014, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044574, dated Dec. 9, 2014, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 9, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047659, dated Dec. 31, 2014, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047668, dated Jan. 8, 2015, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/052558, dated Feb. 12, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/058916, dated Mar. 19, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/060121, dated Apr. 2, 2015, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 20, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/016988, dated Sep. 3, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/023822, dated Sep. 24, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/023826, dated Sep. 24, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026871, dated Sep. 24, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026873, dated Sep. 24, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028785, dated Sep. 24, 2015, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028950, dated Sep. 24, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/029050, dated Sep. 24, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 24, 2015, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040393, dated Dec. 8, 2015, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040394, dated Dec. 23, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040397, dated Dec. 17, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040401, dated Dec. 8, 2015, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040403 dated Dec. 23, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040961, dated Dec. 17, 2015, 20 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/041159, dated Dec. 17, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/041173, dated Dec. 17, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/049568, dated Feb. 18, 2016, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/023089, dated Jan. 12, 2017, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/023097, dated Jan. 12, 2017, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/023593, dated Dec. 15, 2016, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/029554, dated Dec. 29, 2016, 8 pages. |
International Preliminary Report on Patentability Received for PCT Patent Application No. PCT/US2015/032470, dated Dec. 15, 2016, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/032724, dated Dec. 15, 2016, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/033051, dated Dec. 15, 2016, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/047062, dated Mar. 9, 2017, 18 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/047064, dated Mar. 23, 2017, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/047281, dated Apr. 13, 2017, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/047583, dated Apr. 13, 2017, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/047584, dated Apr. 13, 2017, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/021103, dated Sep. 21, 2017, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/021104, dated Sep. 21, 2017, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/021409, dated Sep. 21, 2017, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/021410, dated Sep. 21, 2017, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/23312, dated Sep. 28, 2017, 5 pages. |
International Search Report & Written Opinion received for PCT Patent Application No. PCT/US2016/021410, dated Jul. 26, 2016, 19 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US16/23312, dated Jun. 27, 2016, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 8, 1995, 3 pages (International Search Report only). |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/002873, dated Oct. 13, 2005, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, dated Nov. 3, 2005, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 17, 2006, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, dated Apr. 5, 2006, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, dated Jul. 2, 2007, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, dated May 21, 2007, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, dated Jun. 19, 2007, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, dated Mar. 31, 2008, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, dated May 8, 2008, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, dated May 8, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, dated Jun. 12, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, dated May 21, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, dated Oct. 10, 2008, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, dated Jun. 12, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, dated Sep. 11, 2008, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000059, dated Sep. 19, 2008, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, dated Jul. 1, 2008, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/051954, dated Oct. 30, 2009, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/055577, dated Jan. 26, 2010, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/037378, dated Aug. 25, 2010, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, dated Jun. 30, 2011, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020825, dated Mar. 18, 2011, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020861, dated Nov. 29, 2011, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, dated Aug. 17, 2012, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, dated Jun. 11, 2012, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040571, dated Nov. 16, 2012, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040801, dated Oct. 22, 2012, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, dated Feb. 1, 2013, 4 pages (International Search Report only). |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, dated Nov. 14, 2012, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043100, dated Nov. 15, 2012, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/056382, dated Dec. 20, 2012, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 26, 2013, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028920, dated Jun. 27, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/029156, dated Jul. 15, 2013, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, dated Nov. 12, 2013, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, dated Aug. 23, 2013, 3 pages (International Search Report only). |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044574, dated Sep. 27, 2013, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 20, 2013, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047659, dated Jul. 7, 2014, 25 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047668, dated Feb. 13, 2014, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/052558, dated Jan. 30, 2014, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/058916, dated Sep. 8, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, dated Dec. 6, 2013, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 26, 2014, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/016988, dated Apr. 29, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023822, dated Sep. 25, 2014, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023826, dated Oct. 9, 2014, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026871, dated Jul. 23, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026873, dated Jan. 5, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028785, dated Oct. 17, 2014, 23 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028950, dated Nov. 25, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029050, dated Jul. 31, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 18, 2014, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040393, dated Dec. 8, 2014, 23 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040394, dated Aug. 8, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040397, dated Aug. 27, 2014, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040401, dated Sep. 4, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040403, dated Sep. 23, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040961, dated Mar. 10, 2015, 5 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041159, dated Sep. 26, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041173, dated Sep. 10, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/049568, dated Nov. 14, 2014, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053951, dated Dec. 8, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053957, dated Feb. 19, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053958, dated Feb. 19, 2015, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019320, dated Jul 2, 2015, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019321, dated Jun. 3, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019322, dated Jun. 18, 2015, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023089, dated Aug. 20, 2015, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023097, dated Jul. 7, 2015, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023593, dated Aug. 14, 2015, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/025188, dated Jun. 23, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/029554, dated Jul. 16, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032470, dated Oct. 1, 2015, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032724, Jul. 27, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/033051, Aug. 5, 2015, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047062, Jan. 13, 2016, 25 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047064, Nov. 13, 2015, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047281, Dec. 17, 2015, 19 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047553, Jan. 5, 2016, 10 pages. |
International Search Report and Written opinion received for PCT Patent Application No. PCT/US2015/047583, Feb. 3, 2016, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047584, Nov. 9, 2015, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/053365, dated Mar. 10, 2016, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/053366, dated Apr. 26, 2016, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/021103, dated Jun. 8, 2016, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/021104, dated Jun. 8, 2016, 15 pages. |
International Search Report and Written opinion received for PCT Patent Application No. PCT/US2016/021409, dated May 26, 2016, 22 pages. |
International Search report and Written Opinion received for PCT Patent Application No. PCT/US2016/024666, dated Jun. 10, 2016, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025404, dated Jun. 24, 2016, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025407, dated Jun. 23, 2016, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025408, dated Aug. 11, 2016, 19 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031059, dated Aug. 8, 2016, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031549, dated Aug. 5, 2016, 35 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031550, dated Aug. 4, 2016, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/035105, dated Aug. 29, 2016, 25 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/035107, dated Aug. 31, 2016, 26 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/035112, dated Aug. 22, 2016, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/043005, dated Oct. 7, 2016, 17 pages. |
International Search Report and Written Opinion Received for PCT Patent Application No. PCT/US2016/047184, dated Jan. 17, 2017, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/047215, dated Oct. 24, 2016, 18 pages. |
International Search Report and Written Opinion Received for PCT Patent Application No. PCT/US2016/051151, dated Nov. 22, 2016, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/051927, dated Feb. 6, 2017, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/053445, dated Dec. 6, 2016, 11 pages. |
International Search Report and Written Opinion Received for PCT Patent Application No. PCT/US2016/054459, dated Dec. 29, 2016, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/055914, dated Jan. 17, 2017, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/056510, dated Jan. 9, 2017, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/064452, dated Feb. 16, 2017, 23 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/019332, dated May 18, 2017, 9 pages. |
International Search Report received for PCT Patent Application No. PCT/GB2009/051684, dated Mar. 12, 2010, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US1993/012666, dated Nov. 9, 1994, 8 pages. |
International Search Report received for PCT Patent Application No. PCT/US1994/000687, dated Jun. 3, 1994, 1 page. |
International Search Report received for PCT Patent Application No. PCT/US1994/00077, dated May 25, 1994, 2 pages. |
International Search Report received for PCT Patent Application No. PCT/US1995/008369, dated Nov. 8, 1995, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US1995/013076, dated Feb. 2, 1996, 1 page. |
International Search Report received for PCT Patent Application No. PCT/US1996/01002, dated Oct. 30, 1996, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2002/024669, dated Nov. 5, 2002, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2002/024670, dated Sep. 26, 2002, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2002/033330, dated Feb. 4, 2003, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2011/037014, dated Oct. 4, 2011, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 22, 2013, 3 pages. |
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview”, available at <http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf>, 1998, 18 pages. |
Invitation to Pay Additional Fee Received for PCT Patent Application No. PCT/US2016/047184, dated Dec. 6, 2016, 9 pages. |
Invitation to Pay Additional Fee Received for PCT Patent Application No. PCT/US2016/051927, dated Nov. 15, 2016, 2 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/016519, dated Aug. 4, 2005, 6 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Jul. 3, 2006, 6 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/048738, dated Jul. 10, 2007, 4 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2011/020350, dated Apr. 14, 2011, 5 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2015/023089, dated Jun. 17, 2015, 7 pages. |
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2016/021410, dated Apr. 28, 2016, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, dated Jun. 27, 2008, 4 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 4, 2008, 4 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2011/037014, dated Aug. 2, 2011, 6 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2012/040801, dated Aug. 8, 2012, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, dated Feb. 27, 2014, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/052558, dated Nov. 7, 2013, 6 pages. |
Invitation to pay additional fees received for PCT Patent Application No. PCT/US2014/029562, dated Jul. 4, 2014, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/040393, dated Sep. 17, 2014, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/040961, dated Jan. 14, 2015, 3 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/047281, dated Oct. 8, 2015, 6 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/053366, dated Feb. 19, 2016, 8 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2016/025408, dated May 13, 2016, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/028785, dated Jul. 4, 2014, 7 pages. |
Invitation to pay additional fees received for the PCT Patent Application No. PCT/US2014/015418, dated May 26, 2014, 5 pages. |
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages. |
IPhone Hacks, “Native iPhone MMS Application Released”, available at <http://www.iphonehacks.com/2007/12/iphone-mms-app.html>, retrieved on Dec. 25, 2007, 5 pages. |
IPhonechat, “iChat for iPhone in JavaScript”, available at <http://www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages. |
Iso-Sipila et al., “Multi-Lingual Speaker-Independent Voice User Interface for Mobile Devices”, ICASSP 2006 Proceedings, IEEE International Conference on Acoustics, Speech and Signal Processing May 14, 2006, pp. 1-1081. |
Issar et al., “CMU's Robust Spoken Language Understanding System”, Proceedings of Eurospeech, 1993, 4 pages. |
Issar, Sunil, “Estimation of Language Models for New Spoken Language Applications”, Proceedings of 4th International Conference on Spoken language Processing, Oct. 1996, 4 pages. |
Jabra Corporation, “FreeSpeak: BT200 User Manual”, 2002, 42 pages. |
Jabra, “Bluetooth Headset: User Manual”, 2005, 17 pages. |
Jabra, “Bluetooth Introduction”, 2004, 15 pages. |
Jacobs et al., “Scisor: Extracting Information from On-Line News”, Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages. |
James, Frankie, “Lessons from Developing Audio HTML Interfaces”, The Third International ACM Conference on Assistive Technologies, 1998, 8 pages. |
Janas, Jurgen M., “The Semantics-Based Natural Language Interface to Relational Databases”, Chapter 6, Cooperative Interfaces to Information Systems, 1986, pp. 143-188. |
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166. |
Jaybird, “Everything Wrong with AIM: Because We've All Thought About It”, available at <http://www.psychonoble.com/archives/articles/82.html>, May 24, 2006, 3 pages. |
Jeffay et al., “Kernel Support for Live Digital Audio and Video”, In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21. |
Jelinek et al., “Interpolated Estimation of Markov Source Parameters from Sparse Data”, In Proceedings of the Workshop on Pattern Recognition in Practice May 1980, pp. 381-397. |
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition”, Readings in Speech Recognition, Edited by Alex Waibel and Kai-Fu Lee, Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 1990, 63 pages. |
Jennings et al., “A Personal News Service Based on a User Model Neural Network”, IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, 12 pages. |
Jensvoll, Maja Henriette, “The Acquisition of Past Tense in English/Norwegian Bilingual Children Single versus Dual Mechanisms”, Proceedings of the 19th Scandinavian Conference of Linguistics, vol. 31, No. 3, 2003, pp. 545-557. |
Ji et al., “A Method for Chinese Syllables Recognition Based upon Sub-syllable Hidden Markov Model”, 1994 International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 4 pages. |
Jiang et al., “A Syllable-based Name Transliteration System”, Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99. |
Johnson, Jeff A., “A Comparison of User Interfaces for Panning on a Touch-Controlled Display”, CHI '95 Proceedings, 1995, 8 pages. |
Johnson, Julia Ann., “A Data Management Strategy for Transportable Natural Language Interfaces”, Doctoral Thesis Submitted to the Department of Computer Science, University of British Columbia, Canada, Jun. 1989, 285 pages. |
Jones, J., “Speech Recognition for Cyclone”, Apple Computer, Inc., E.R.S. Revision 2.9, Sep. 10, 1992, 93 pages. |
Jonsson et al, “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153. |
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE,, 2012,, pp. 4821-4824. |
Julia et al., “http://www.speech.sri.com/demos/atis.html”, Proceedings of AAAI, Spring Symposium, 1997, 5 pages. |
Julia et al., “Un Editeur Interactif De Tableaux Dessines a Main Levee (An Interactive Editor for Hand-Sketched Tables)”, Traitement du Signal, vol. 12, No. 6, 1995, pp. 619-626. |
Kaeppner et al., “Architecture of HeiPhone: A Testbed for Audio/Video Teleconferencing”, IBM European Networking Center, 1993, 51 pages. |
Kahn et al., “CoABS Grid Scalability Experiments”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, pp. 171-178. |
Kamba et al., “Using Small Screen Space More Efficiently”, CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390. |
Kamel et al., “A Graph Based Knowledge Retrieval System”, IEEE International Conference on Systems, Man and Cybernetics, 1990, pp. 269-275. |
Kanda et al., “Robust Domain Selection Using Dialogue History in Multi-domain Spoken Dialogue Systems”, Journal of Information Processing Society, vol. 48, No. 5, May 15, 2007, pp. 1980-1989. (English Abstract Submitted). |
Kanda et al., “Spoken Language Understanding Using Dialogue Context in Database Search Task”, Journal of Information Processing Society of Japan, vol. 47, No. 6, Jun. 15, 2006, pp. 1802-1811. (English Abstract Submitted). |
Kane et al., “Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques”, ASSETS, Oct. 13-15, 2008, pp. 73-80. |
Kang et al., “Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942. |
Karp, P. D., “A Generic Knowledge-Base Access Protocol”, Available online at <http://lecture.cs.buu.ac.th/-f50353/Document/gfp.pdf>, May 12, 1994, 66 pages. |
Katz et al., “Exploiting Lexical Regularities in Designing Natural Language Systems”, Proceedings of the 12th International Conference on Computational Linguistics, 1988, pp. 1-22. |
Katz et al., “REXTOR: A System for Generating Relations from Natural Language”, Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP&IR), Oct. 2000, 11 pages. |
Katz, Boris, “A Three-Step Procedure for Language Generation”, Massachusetts Institute of Technology, A.I. Memo No. 599, Dec. 1980, pp. 1-40. |
Katz, Boris, “Annotating the World Wide Web Using Natural Language”, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997, 7 pages. |
Katz, Boris, “Using English for Indexing and Retrieving”, Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image Handling, 1988, pp. 314-332. |
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages. |
Katzenmaier et al., “Identifying the Addressee in Human-Human-Robot Interactions based on Head Pose and Speech”, Proc. ICMI ' 04, ACM, 2004, pp. 144-151. |
Kazemzadeh et al., “Acoustic Correlates of User Response to Error in Human-Computer Dialogues”, Automatic Speech Recognition and Understanding, 2003, pp. 215-220. |
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages. |
Keahey et al., “Non-Linear Image Magnification”, Apr. 24, 1996, 11 pages. |
Keahey et al., “Nonlinear Magnification Fields”, Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages. |
Keahey et al., “Techniques for Non-Linear Magnification Transformations”, IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45. |
Keahey et al., “Viewing Text With Non-Linear Magnification: An Experimental Study”, Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9. |
Kennedy, P J., “Digital Data Storage Using Video Disc”, IBM Technical Disclosure Bulletin, vol. 24, No. 2, Jul. 1981, p. 1171. |
Kerr, “An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke”, Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39. |
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages. |
Kikui, Gen-Itiro, “Identifying the Coding System and Language of On-Line Documents on the Internet”, International Conference on Computational, Aug. 1996, pp. 652-657. |
Kim, E.A. S., “The Structure and Processing of Fundamental Frequency Contours”, University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages. |
Kirstein et al., “Piloting of Multimedia Integrated Communications for European Researchers”, Proc. INET '93, 1993, pp. 1-12. |
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System”, Computer, vol. 24, No. 6, Jun. 1991, 13 pages. |
Kitaoka et al., “Detection and Recognition of Correction Utterances on Misrecognition of Spoken Dialog System”, Systems and Computers in Japan, vol. 36, No. 11 Oct. 2005, pp. 24-33. |
Kjelldahl et al., “Multimedia—Principles, Systems, and Applications”, Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991, 14 pages. |
Klabbers et al., “Reducing Audible Spectral Discontinuities”, IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages. |
Klatt et al., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence”, Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages. |
Kline et al., “Improving GUI Accessibility for People with Low Vision”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121. |
Kline et al., “UnWindows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5. |
Knight et al., “Heuristic Search”, Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc., 1983-1991. |
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page. |
Kohler, Joachim, “Multilingual Phone Models for Vocabulary-Independent Speech Recognition Tasks”, Speech Communication, vol. 35, No. 1-2, Aug. 2001, pp. 21-30. |
Komatani et al., “Multi-domain Spoken Dialogue System with Extensibility and Robustness Against Speech Recognition Errors”, Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, Association for Computational Linguistics, Jul. 2006, pp. 9-17. |
Kominek et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs”, 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages. |
Konolige, Kurt, “A Framework for a Portable Natural-Language Interface to Large Data Bases”, SRI International, Technical Note 197, Oct. 12, 1979, 54 pages. |
Kroon et al., “Pitch Predictors with High Temporal Resolution”, IEEE, vol. 2, 1990, pp. 661-664. |
Kroon et al., “Quantization Procedures for the Excitation in CELP Coders”, (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323. |
Kubala et al., “Speaker Adaptation from a Speaker-Independent Training Corpus”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages. |
Kubala et al., “The Hub and Spoke Paradigm for CSR Evaluation”, Proceedings of the Spoken Language Technology Workshop, Mar. 1994, 9 pages. |
Külekci et al., “Turkish Word Segmentation Using Morphological Analyzer”, 7th European Conference on Speech Communication and Technology, 2nd Interspeech Event, 2001, 4 pages. |
Kuo et al., “A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition”, International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601. |
Kuo et al., “A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI”, IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865. |
Kurlander et al., “Comic Chat”, [Online], 1996 [Retrieved on: Feb 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225-kurlander.pdf], 1996, pp. 225-236. |
Labriola, Don, “Give Yourself a 3-D hand”, Computer Shopper, vol. 16, No. 8, Aug. 1996, p. 359(1). |
Ladefoged, Peter, “A Course in Phonetics”, New York, Harcourt, Brace, Jovanovich, Second Edition, 1982. |
Laface et al., “A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition”, International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563. |
Lafferty et al., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”, Proceedings of the 18th International Conference on Machine Learning, 2001, 9 pages. |
Laird et al., “SOAR: An Architecture for General Intelligence”, Artificial Intelligence, vol. 33, 1987, pp. 1-64. |
Lamel et al., “Generation and synthesis of Broadcast Messages”, Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages. |
Lamping et al., “Laying Out and Visualizing Large Trees Using a Hyperbolic Space”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14. |
Lamping et al., “Visualizing Large Trees Using the Hyperbolic Browser”, Apple Inc., Video Clip, MIT Media Library, on a CD, 1995. |
Langley et al., “A Design for the ICARUS Architechture”, SIGART Bulletin, vol. 2, No. 4, 1991, pp. 104-109. |
Lantz et al., “Towards a Universal Directory Service”, Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260. |
Lantz, Keith, “An Experiment in Integrated Multimedia Conferencing”, 1986, pp. 267-275. |
Larks, “Intelligent Software Agents”, available at <http://www.cs.cmu.edu/˜softagents/larks.html> retrieved on Mar. 15, 2013, 2 pages. |
Lau et al., “Trigger-Based Language Models: A Maximum Entropy Approach”, ICASSP'93 Proceedings of the 1993 IEEE international conference on Acoustics, speech, and signal processing: speech processing—vol. II, 1993, pp. 45-48. |
Lauwers et al., “Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems”, CHI'90 Proceedings, 1990, pp. 303-311. |
Lauwers et al., “Replicated Architectures for Shared Window Systems: A Critique”, COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin, 1990, pp. 249-260. |
Lazzaro, Joseph J., “Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think”, Computers for the Disabled, BYTE Magazine, Jun. 1993, 4 pages. |
Leahy et al., “Effect of Touch Screen Target Location on User Accuracy”, Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages. |
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI '85 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25. |
Lee et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary”, International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 1990, 5 pages. |
Lee et al., “Golden Mandarin (II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary”, IEEE International Conference of Acoustics, Speech and Signal Processing, vol. 2, 1993, 4 pages. |
Lee et al., “Golden Mandarin (II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions”, International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages. |
Lee et al., “On URL Normalization”, Proceedings of the International Conference on Computational Science and its Applications, ICCSA 2005, pp. 1076-1085. |
Lee et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters”, International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, No. 3 & 4, Nov. 1991, 16 pages. |
Lee, K. F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System”, Partial Fulfillment of the Requirements for the Degree of Doctorof Philosophy, Computer Science Department, Carnegie Mellon University, Apr. 1988, 195 pages. |
Lee, Kai-Fu, “Automatic Speech Recognition”, 1989, 14 pages (Table of Contents). |
Lemon et al., “Multithreaded Context for Robust Conversational Interfaces: Context—Sensitive Speech Recognition and Interpretation of Corrective Fragments”, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, Sep. 2004, pp. 241-267. |
Leong et al., “CASIS: A Context-Aware Speech Interface System”, Proceedings of the 10th International Conference on Intelligent User Interfaces, Jan. 2005, pp. 231-238. |
Leung et al., “A Review and Taxonomy of Distortion-Oriented Presentation Techniques”, ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160. |
Leveseque et al., “A Fundamental Tradeoff in Knowledge Representation and Reasoning”, Readings in Knowledge Representation, 1985, 30 pages. |
Levinson et al., “Speech synthesis in telecommunications”, IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53. |
Lewis, “Speech synthesis in a computer aided learning environment”, UK IT, Mar. 19-22, 1990, pp. 294-298. |
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages. |
Lewis, Peter, “Two New Ways to Buy Your Bits”, CNN Money, available at <http://Money.cnn.com/2003/12/30/commentary/ontechnology/download/>,, Dec. 31, 2003, 4 pages. |
Li et al., “A Phonotactic Language model for Spoken Language Identification”, Proceedings of the 43rd Annual Meeting of the ACL, Jun. 25, 2005, pp. 515-522. |
Lieberman et al., “Out of Context: Computer Systems that Adapt to, and Learn from, Context”, IBM Systems Journal, vol. 39, No. 3 & 4, 2000, pp. 617-632. |
Lieberman, Henry, “A Multi-Scale, Multi-Layer, Translucent Virtual Space”, Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131. |
Lieberman, Henry, “Powers of Ten Thousand: Navigating in Large Information Spaces”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2. |
Lin et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History”, Available on line at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272>, 1999, 4 pages. |
Lin et al., “A New Framework for Recognition of Mandarin Syllables with Tones Using Sub-syllabic Unites”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-93), Apr. 1993, 4 pages. |
Linde et al., “An Algorithm for Vector Quantizer Design”, IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages. |
Liu et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering”, IEEE International Conference of Acoustics, Speech and Signal Processing, ICASSP-92, Mar. 1992, 4 pages. |
Logan et al., “Mel Frequency Cepstral Co-efficients for Music Modeling”, International Symposium on Music Information Retrieval, 2000, 2 pages. |
Lowerre, B. T., “The-Harpy Speech Recognition System”, Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages. |
Lyon, R., “A Computational Model of Binaural Localization and Separation”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151. |
Lyons et al., “Augmenting Conversations Using Dual-Purpose Speech”, Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages. |
Lyons, Richard F., “CCD Correlators for Auditory Models”, Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789. |
Macchi, Marian, “Issues in Text-to-Speech Synthesis” Proceedings of IEEE International Joint Symposia on Intelligence and Systems, May 21, 1998, pp. 318-325. |
Mackenzie et al., “Alphanumeric Entry on Pen-Based Computers”, International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792. |
Mackinlay et al., “The Perspective Wall: Detail and Context Smoothly Integrated”, ACM, 1991, pp. 173-179. |
Macsimum News, “Apple Files Patent for an Audio Interface for the iPod”, available at <http://www.macsimumnews.com/index.php/archive/apple_files_patent_for_an_audio_interface_for_the_ipod>, retrieved on Jul. 13, 2006, 8 pages. |
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages. |
Maghbouleh, Arman, “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations”, Revised Version of a Paper Presented at the Computational Phonology in Speech Technology Workshop, 1996 Annual Meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages. |
Mahedero et al., “Natural Language Processing of Lyrics”, In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages. |
Mangu et al., “Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Networks”, Computer Speech and Language, vol. 14, No. 4, 2000, pp. 291-294. |
Manning etal, “Foundations of Statistical Natural Language Processing”, The MIT Press, Cambridge Massachusetts, 1999, pp. 10-11. |
Marcus et al., “Building a Large Annotated Corpus of English: The Penn Treebank”, Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330. |
Markel et al., “Linear Prediction of Speech”, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 12 pages. |
Markel et al., “Linear Production of Speech”, Reviews, 1976, pp. xii, 288. |
Martin et al., “Building and Using Practical Agent Applications”, SRI International, PAAM Tutorial, 1998, 78 pages. |
Martin et al., “Building Distributed Software Systems with the Open Agent Architecture”, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Mar. 1998, pp. 355-376. |
Martin et al., “Development Tools for the Open Agent Architecture”, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17. |
Martin et al., “Information Brokering in an Agent Architecture”, Proceedings of the Second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1997, pp. 1-20. |
Martin et al., “The Open Agent Architecture: A Framework for Building Distributed Software Systems”, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at <http://adam.cheyer.com/papers/oaa.pdf>>, retrieved from internet on Jan.-Mar. 1999. |
Martin et al., “Transportability and Generality in a Natural-Language Interface System”, Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Technical Note 293, Aug. 1983, 21 pages. |
Martins et al., “Extracting and Exploring the Geo-Temporal Semantics of Textual Resources”, Semantic Computing, IEEE International Conference, 2008, pp. 1-9. |
Masui, Toshiyuki, “POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers”, Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages. |
Matiasek et al., “Tamic-P: A System for NL Access to Social Insurance Database”, 4th International Conference on Applications of Natural Language to Information Systems, Jun. 1999, 7 pages. |
Matsui et al., “Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition”, 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, pp. 1-125-1-128. |
Matsuzawa, A, “Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment”, IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480. |
Mcguire et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering”, Journal of Concurrent Engineering Applications and Research (CERA), 1993, 18 pages. |
Meet Ivee, Your Wi-Fi Voice Activated Assistant, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages. |
Mel Scale, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel_scale>, 2 pages. |
Mellinger, David K., “Feature-Map Methods for Extracting Sound Frequency Modulation”, IEEE Computer Society Press, 1991, pp. 795-799. |
Meng et al., “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval”, Automatic Speech Recognition and Understanding, Dec. 2001, pp. 311-314. |
Meng et al., “Wheels: A Conversational System in the Automobile Classified Domain”, Proceedings of Fourth International Conference on Spoken Language, ICSLP 96, vol. 1, Oct. 1996, 4 pages. |
Menico, Costas, “Faster String Searches”, Dr. Dobbs Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77. |
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at <http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages. |
Merlin et al., “Non Directly Acoustic Process for Costless Speaker Recognition and Indexation”, International Workshop on Intelligent Communication Technologies and Applications, Jan. 1, 1999, 5 pages. |
Meyer, Mike, “A Shell for Modern Personal Computers”, University of California, Aug. 1987, pp. 13-19. |
Meyrowitz et al., “Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems”, Department of Computer Science, Brown University, 1981, pp. 180-189. |
Miastkowski, Stan, “paperWorks Makes Paper Intelligent”, Byte Magazine, Jun. 1992. |
Michos et al., “Towards an Adaptive Natural Language Interface to Command Languages”, Natural Language Engineering, vol. 2, No. 3, 1996, pp. 191-209. |
Microsoft Corporation, “Microsoft MS-DOS Operating System User's Guide”, Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19. |
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pp. MSWord 2003 Figures 1-5, 1983-2003. |
Microsoft Press, “Microsoft Windows User's Guide for the Windows Graphical Environment”, version 3.0, 1985-1990, pp. 33-41 & 70-74. |
Microsoft Windows XP, “Magnifier Utility”, Oct. 25, 2001, 2 pages. |
Microsoft Word 2000 Microsoft Corporation, pp. MSWord Figures 1-5, 1999. |
Microsoft, “Turn On and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx> , retrieved on Jun. 6, 2009. |
Microsoft/Ford, “Basic Sync Commands”, www.SyncMyRide.com, Sep. 14, 2007, 1 page. |
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages. |
Milner, N. P., “A Review of Human Performance and Preferences with Different Input Devices to Computer Systems”, Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352. |
Milstead et al., “Metadata: Cataloging by Any Other Name”, available at <http://www.iicm.tugraz.at/thesis/cguetl_diss/literatur/Kapitel06/References/Milstead_et_al._1999/metadata.html>, Jan. 1999, 18 pages. |
Milward et al., “D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge”, available at <http://www.ihmc.us/users/nblaylock!Pubs/Files/talk d2.2.pdf>, Aug. 8, 2006, 69 pages. |
Miniman, Jared, “Applian Software's Replay Radio and Player v1.02”, pocketnow.com—Review, available at <http://www.pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages. |
Minimum Phase, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages. |
Minker et al., “Hidden Understanding Models for Machine Translation”, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, Jun. 1999, pp. 1-4. |
Mitra et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies”, Advances in Database Technology, Lecture Notes in Computer Science, vol. 1777, 2000, pp. 1-15. |
Moberg et al., “Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems”, Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, INTERSPEECH 2004, Oct. 4-8, 2004, 4 pages. |
Moberg, M., “Contributions to Multilingual Low-Footprint TTS System for Hand-Held Devices”, Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages. |
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page. |
Mobile Tech News, “T9 Text Input Software Updated”, available at <http://www.mobiletechnews.com/info/2004/11/23/122155.htnnl>, Nov. 23, 2004, 4 pages. |
Modi et al., “CMRadar: A Personal Assistant Agent for Calendar Management”, AAAI, Intelligent Systems Demonstrations, 2004, pp. 1020-1021. |
Mok et al., “Media Searching on Mobile Devices”, IEEE EIT 2007 Proceedings, 2007, pp. 126-129. |
Moore et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS”, SRI International, Artificial Intelligence Center, 1995, 4 pages. |
Moore et al., “SRI's Experience with the ATIS Evaluation”, Proceedings of the Workshop on Speech and Natural Language, Jun. 1990, pp. 147-148. |
Moore et al., “The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web”, Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188. |
Moore, Robert C., “Handling Complex Queries in a Distributed Data Base”, SRI International, Technical Note 170, Oct. 8, 1979, 38 pages. |
Moore, Robert C., “Practical Natural-Language Processing by Computer”, SRI International, Technical Note 251, Oct. 1981, 34 pages. |
Moore, Robert C., “The Role of Logic in Knowledge Representation and Commonsense Reasoning”, SRI International, Technical Note 264, Jun. 1982, 19 pages. |
Moore, Robert C., “Using Natural-Language Knowledge Sources in Speech Recognition”, SRI International, Artificial Intelligence Center, Jan. 1999, pp. 1-24. |
Moran et al., “Intelligent Agent-Based User Interfaces”, Proceedings of International Workshop on Human Interface Technology, Oct. 1995, pp. 1-4. |
Moran et al., “Multimodal User Interfaces in the Open Agent Architecture”, International Conference on Intelligent User Interfaces (IUI97), 1997, 8 pages. |
Moran, Douglas B., “Quantifier Scoping in the SRI Core Language Engine”, Proceedings of the 26th Annual Meeting on Association for Computational Linguistics, 1988, pp. 33-40. |
Morgan, B., “Business Objects (Business Objects for Windows) Business Objects Inc.”, DBMS, vol. 5, No. 10, Sep. 1992, 3 pages. |
Morland, D. V., “Human Factors Guidelines for Terminal Interface Design”, Communications ofthe ACM vol. 26, No. 7, Jul. 1983, pp. 484-494. |
Morris et al., “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, (Mar. 1986); vol. 29 No. 3,, Mar. 1986, pp. 184-201. |
Morrison, Jonathan, “iPhone 5 Siri Demo”, Online Available at <https://www.youtube.com/watch?v=_wHWwG5IhWc>, Sep. 21, 2012, 3 pages. |
Morton, Philip, “Checking If an Element Is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages. |
Motro, Amihai, “Flex: A Tolerant and Cooperative User Interface to Databases”, IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, pp. 231-246. |
Mountford et al., “Talking and Listening to Computers”, The Art of Human-Computer Interface Design, Apple Computer, Inc., Addison-Wesley Publishing Company, Inc., 1990, 17 pages. |
Mozer, Michael C., “An Intelligent Environment must be Adaptive”, IEEE Intelligent Systems, 1999, pp. 11-13. |
Muller et al., “CSCW92 Demonstrations”, 1992, pp. 11-14. |
Murty et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition”, IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages. |
Murveit et al., “Integrating Natural Language Constraints into HMM-Based Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing, Apr. 1990, 5 pages. |
Murveit et al., “Speech Recognition in SRI's Resource Management and ATIS Systems”, Proceedings of the Workshop on Speech and Natural Language, 1991, pp. 94-100. |
Musicmatch, “Musicmatch and Xing Technology Introduce Musicmatch Jukebox”, Press Releases, available at <http://www.musicmatch.com/info/company/press/releases/?year=1998&release=2>, May 18, 1998, 2 pages. |
Muthusamy et al., “Speaker-Independent Vowel Recognition: Spectograms versus Cochleagranns”, IEEE, Apr. 1990, pp. 533-536. |
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page. |
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages. |
N200 Hands-Free Bluetooth Car Kit, available at <www.wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages. |
Nadoli et al., “Intelligent Agents in the Simulation of Manufacturing Systems”, Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page. |
Nakagawa et al., “Speaker Recognition by Combining MFCC and Phase Information”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2010, 4 pages. |
Nakagawa et al., “Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines”, Proceedings of the 6th NLPRS, 2001, pp. 325-331. |
Naone, Erica, “TR10: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages. |
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 70 pages. |
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages. |
NCIP, “NCIP Library: Word Prediction Collection”, available at <http://www2.edc.org/ncip/library/wp/toc.htm>, 1998, 4 pages. |
NCIP, “What is Word Prediction?”, available at <http://www2.edc.org/NCIP/library/wp/what_is.htm>, 1998, 2 pages. |
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages. |
Neches et al., “Enabling Technology for Knowledge Sharing”, Fall, 1991, pp. 37-56. |
Newton, Harry, “Newton's Telecom Dictionary”, Mar. 1998, pp. 62, 155, 610-611, 771. |
Ng, Simon, “Google's Task List Now Comes to Iphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 33 pages. |
Nguyen et al., “Generic Manager for Spoken Dialogue Systems”, In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages. |
Niesler et al., “A Variable-Length Category-Based N-Gram Language Model”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, May 1996, 6 pages. |
Nilsson, B. A., “Microsoft Publisher is an Honorable Start for DTP Beginners”, Computer Shopper, Feb. 1, 1992, 2 pages. |
Noik, Emanuel G., “Layout-Independent Fisheye Views of Nested Graphs”, IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages. |
Nonhoff-Arps et al., “StraBennnusik: Portable MP3-Spieler mit USB Anschluss”, CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175. |
Northern Telecom, “Meridian Mail PC User Guide”, 1988, 17 Pages. |
Notenboom, Leo A., “Can I Retrieve Old MSN Messenger Conversations?”, available at <http://ask-leo.com/can_i_retrieve_old_msn_messenger_conversations.html>, Mar. 11, 2004, 23 pages. |
Noth et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, pp. 519-532. |
Nozawa, Naoki et al., “iPhone 4S Perfect Manual”, vol. 1, First Edition, Nov. 11, 2011, 5 pages. |
O'Connor, Rory J., “Apple Banking on Newton's Brain”, San Jose Mercury News, Apr. 22, 1991. |
Odubiyi et al., “SAIRE—A Scalable Agent-Based Information Retrieval Engine”, Proceedings of the First International Conference on Autonomous Agents, 1997, 12 pages. |
Ohsawa et al., “A computational Model of an Intelligent Agent Who Talks with a Person”, Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18. |
Ohtomo et al., “Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model”, Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165. |
Okazaki et al., “Multi-Fisheye Transformation Method for Large-Scale Network Maps”, IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500. |
Omologo et al., “Microphone Array Based Speech Recognition with Different Talker-Array Positions”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230. |
Oregon Scientific, “512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer”, available at <http://www2.oregonscientific.com/shop/product.asp?cid=4&scid=11&pid=581>, retrieved on Jul. 31, 2006, 2 pages. |
Oregon Scientific, “Waterproof Music Player with FM Radio and Pedometer (MP121)—User Manual”, 2005, 24 pages. |
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages. |
Owei et al., “Natural Language Query Filtration in the Conceptual Query Language”, IEEE, 1997, pp. 539-549. |
Padilla, Alfredo, “Palm Treo 750 Cell Phone Review—Messaging”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 17, 2007, 6 pages. |
Palay et al., “The Andrew Toolkit: An Overview”, Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15. |
Palm, Inc., “User Guide: Your Palm® Treo.TM. 755p Snnartphone”, 2005-2007, 304 pages. |
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010. |
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.panasonic.com/computer/notebook/html/01a_s8.htm>, retrieved on Dec. 19, 2002, 3 pages. |
Pannu et al., “A Learning Personal Agent for Text Filtering and Notification”, Proceedings of the International Conference of Knowledge Based Systems, 1996, pp. 1-11. |
Papadimitriou et al., “Latent Semantic Indexing: A Probabilistic Analysis”, Available online at <http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.html>, Nov. 14, 1997, 21 pages. |
Parks et al., “Classification of Whale and Ice Sounds with a cochlear Model”, IEEE, Mar. 1992. |
Parson, T. W., “Voice and Speech Processing”, Pitch and Formant Estimation, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 15 pages. |
Parsons, T. W., “Voice and Speech Processing”, Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 5 pages. |
Patent Abstracts of Japan, vol. 014, No. 273 (E-0940) Jun. 13, 1990 (Jun. 13, 1990)—& JP 02 086057 A (Japan Storage Battery Co Ltd), Mar. 27, 1990 (Mar. 27, 1990), 3 pages. |
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, In: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages. |
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7. |
Patterson et al., “Rendezvous: An Architecture for Synchronous Multi-User Applications”, CSCW '90 Proceedings, 1990, pp. 317-328. |
Pearl, Amy, “System Support for Integrated Desktop Video Conferencing”, Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15. |
Penn et al., “Ale for Speech: A Translation Prototype”, Bell Laboratories, 1999, 4 pages. |
Pereira, Fernando, “Logic for Natural Language Analysis”, SRI International, Technical Note 275, Jan. 1983, 194 pages. |
Perrault et al., “Natural-Language Interfaces”, SRI International, Technical Note 393, Aug. 22, 1986, 48 pages. |
PhatNoise, Voice Index on Tap, Kenwood Music Keg, available at <http://www.phatnoise.com/kenwood/kenwoodssamail.html>, retrieved on Jul. 13, 2006, 1 page. |
Phillipps, Ben, “Touchscreens are Changing the Face of Computers—Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics”, Electronic Products, Nov. 1994, pp. 63-70. |
Phillips, Dick, “The Multi-Media Workstation”, SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109. |
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages. |
Pickering, J. A., “Touch-Sensitive Screens: The Technologies and Their Application”, International Journal of Man-Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269. |
Picone, J., “Continuous Speech Recognition using Hidden Markov Models”, IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages. |
Pingali et al., “Audio-Visual Tracking for Natural Interactivity”, ACM Multimedia, Oct. 1999, pp. 373-382. |
Plaisant et al., “Touchscreen Interfaces for Alphanumeric Data Entry”, Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297. |
Plaisant et al., “Touchscreen Toggle Design”, CHI'92, May 3-7, 1992, pp. 667-668. |
Pollock, Stephen, “A Rule-Based Message Filtering System”, Published in: Journal, ACM Transactions on Information Systems (TOIS), vol. 6, Issue 3, Jul. 1988, pp. 232-254. |
Poly-Optical Products, Inc., “Poly-Optical Fiber Optic Membrane Switch Backlighting”, available at <http://www.poly-optical.com/membrane_switches.html>, retrieved on Dec. 19, 2002, 3 pages. |
Poor, Alfred, “Microsoft Publisher”, PC Magazine, vol. 10, No. 20, Nov. 26, 1991, 1 page. |
Potter et al., “An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database”, International Journal of Human-Computer Interaction, vol. 1, No. 1, 1989, pp. 41-52. |
Potter et al., “Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies”, CHI '88 ACM, 1988, pp. 27-32. |
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, available at http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance, May 4, 2010, 3 pages. |
Public Safety Technologies, “Tracer 2000 Computer”, available at <http://www.pst911.com/tracer.html>, retrieved on Dec. 19, 2002, 3 pages. |
Pulman et al., “Clare: A Combined Language and Reasoning Engine”, Proceedings of JFIT Conference, available at <http://www.cam.sri.com/tr/crc042/paper.ps.Z>, 1993, 8 pages. |
Quazza et al., “Actor: A Multilingual Unit-Selection Speech Synthesis System”, Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages. |
Quick Search Algorithm, Communications of the ACM, 33(8), 1990, pp. 132-142. |
Rabiner et al., “Digital Processing of Speech Signals”, Prentice Hall, 1978, pp. 274-277. |
Rabiner et al., “Fundamental of Speech Recognition”, AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17 pages. |
Rabiner et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients”, Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages. |
Rampe et al., “SmartForm Designer and SmartForm Assistant”, News release, Claris Corp., Jan. 9, 1989, 1 page. |
Rao et al., “Exploring Large Tables with the Table Lens”, Apple Inc., Video Clip, Xerox Corp., on a CD, 1994. |
Rao et al., “Exploring Large Tables with the Table Lens”, CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404. |
Rao et al., “The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7. |
Raper, Larry K.,“The C-MU PC Server Project”, (CMU-ITC-86-051), Dec. 1986, pp. 1-30. |
Ratcliffe et al., “Intelligent Agents Take U.S. Bows”, MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page. |
Ratcliffe, M., “ClearAccess 2.0 Allows SQL Searches Off-Line (Structured Query Language) (ClearAccess Corp. Preparing New Version of Data-Access Application with Simplified User Interface, New Features) (Product Announcement)”, MacWeek, vol. 6, No. 41, Nov. 16, 1992, 2 pages. |
Ravishankar, Mosur K., “Efficient Algorithms for Speech Recognition”, Doctoral Thesis Submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburgh, May 15, 1996, 146 pages. |
Rayner et al., “Adapting the Core Language Engine to French and Spanish”, Cornell University Library, available at <http:I/arxiv.org/abs/cmp-lg/9605015>, May 10, 1996, 9 pages. |
Rayner et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion”, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC, 1992, 8 pages. |
Rayner et al., “Spoken Language Translation with Mid-90's Technology: A Case Study”, Eurospeech, ISCA, Available online at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8608>, 1993, 4 pages. |
Rayner, M., “Abductive Equivalential Translation and its Application to Natural Language Database Interfacing”, Dissertation Paper, SRI International, Sep. 1993, 162 pages. |
Rayner, Manny, “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles”, SRI International, Cambridge, 1993, 11 pages. |
Reddi, “The Parser”. |
Reddy, D. R., “Speech Recognition by Machine: A Review”, Proceedings of the IEEE, Apr. 1976, pp. 501-531. |
Reininger et al., “Speech and Speaker Independent Codebook Design in VQ Coding Schemes”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273. |
Remde et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?”, In Proceedings of Hypertext, 87 Papers, Nov. 1987, 14 pages. |
Ren et al., “Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications”, Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37. |
Ren et al., “Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks”, ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416. |
Ren et al., “The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer”, Human-Computer Interaction INTERACT, 1997, pp. 85-92. |
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System”, IEEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages. |
Rice et al., “Monthly Program: Nov. 14, 1995”, The San Francisco Bay Area Chapter of ACM SIGCHI, available at <http://www.baychi.org/calendar/19951114>, Nov. 14, 1995, 2 pages. |
Rice et al., “Using the Web Instead of a Window System”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI'96, 1996, pp. 1-14. |
Ricker, Thomas, “Apple Patents Audio User Interface”, Engadget, available at <http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/>, May 4, 2006, 6 pages. |
Riecken, R D., “Adaptive Direct Manipulation”, IEEE Xplore, 1991, pp. 1115-1120. |
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'89), May 1989, 4 pages. |
Riley, M D., “Tree-Based Modelling of Segmental Durations”, Talking Machines Theories, Models and Designs, Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 1992, 15 pages. |
Rioport, “Rio 500: Getting Started Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000023453.pdf>, 1999, 2 pages. |
Rivlin et al., “Maestro: Conductor of Multimedia Analysis Technologies”, SRI International, 1999, 7 pages. |
Rivoira et al., “Syntax and Semantics in a Word-Sequence Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'79), Apr. 1979, 5 pages. |
Robbin et al., “MP3 Player and Encoder for Macintosh!”, SoundJam MP Plus, Version 2.0, 2000, 76 pages. |
Robertson et al., “Information Visualization Using 3D Interactive Animation”, Communications of the ACM, vol. 36, No. 4, Apr. 1993, pp. 57-71. |
Robertson et al., “The Document Lens”, UIST '93, Nov. 3-5, 1993, pp. 101-108. |
Roddy et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces”, VerticalNet Solutions, White Paper, Jun. 15, 2000, 23 pages. |
Roddy et al., “Interface Issues in Text Based Chat Rooms”, SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123. |
Root, Robert, “Design of a Multi-Media Vehicle for Social Browsing”, Bell Communications Research, 1988, pp. 25-38. |
Rose et al., “Inside Macintosh”, vols. I, II, and III, Addison-Wesley Publishing Company, Inc., Jul. 1988, 1284 pages. |
Roseberry, Catherine, “How to Pair a Bluetooth Headset & Cell Phone”, available at <http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset_p.htm>, retrieved on Apr. 29, 2006, 2 pages. |
Rosenberg et al., “An Overview of the Andrew Message System”, Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108. |
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling”, Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages. |
Rosner et al., “In Touch: A Graphical User Interface Development Tool”, IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7. |
Rossfrank, “Konstenlose Sprachmitteilungins Festnetz”, XP002234425, Dec. 10, 2000, pp. 1-4. |
Roszkiewicz, A., “Extending your Apple”, Back Talk-Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages. |
Roucos et al., “A Segment Vocoder at 150 B/S”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249. |
Roucos et al., “High Quality Time-Scale Modification for Speech”, Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496. |
Routines, “SmartThings Support”, Available online at <https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 2 pages. |
Rubine, Dean Harris, “Combining Gestures and Direct Manipulation”, CHI '92, May 3-7, 1992, pp. 659-660. |
Rubine, Dean Harris, “The Automatic Recognition of Gestures”, CMU-CS-91-202, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages. |
Ruch et al., “Using Lexical Disambiguation and Named-Entity Recognition to Improve Spelling Correction in the Electronic Patient Record”, Artificial Intelligence in Medicine, Sep. 2003, pp. 169-184. |
Rudnicky et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System”, Proceedings of Eurospeech, vol. 4, 1999, pp. 1531-1534. |
Russell et al., “Artificial Intelligence, A Modern Approach”, Prentice Hall, Inc., 1995, 121 pages. |
Russo et al., “Urgency is a Non-Monotonic Function of Pulse Rate”, Journal of the Acoustical Society of America, vol. 122, No. 5, 2007, 6 pages. |
Sabin et al., “Product Code Vector Quantizers for Waveform and Voice Coding”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288. |
Sacerdoti et al., “A Ladder User's Guide (Revised)”, SRI International Artificial Intelligence Center, Mar. 1980, 39 pages. |
Sagalowicz, D., “AD-Ladder User's Guide”, SRI International, Sep. 1980, 42 pages. |
Sakoe et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, No. 1, Feb. 1978, 8 pages. |
Salton et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis”, Information Processing and Management, vol. 26, No. 1, Great Britain, 1990, 22 pages. |
Sameshima et al., “Authorization with Security Attributes and Privilege Delegation Access control beyond the ACL”, Computer Communications, vol. 20, 1997, 9 pages. |
Sankar, Ananth, “Bayesian Model Combination (BAYCOM) for Improved Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar. 18-23, 2005, pp. 845-848. |
San-Segundo et al., “Confidence Measures for Dialogue Management in the CU Communicator System”, Proceedings of Acoustics, Speech and Signal Processing (ICASSP'00), Jun. 2000, 4 pages. |
Santaholma, Marianne E., “Grammar Sharing Techniques for Rule-based Multilingual NLP Systems”, Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, May 25, 2007, 8 pages. |
Santen, Van P., “Assignment of Segmental Duration in Text-to-Speech Synthesis”, Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128. |
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages. |
Sarkar et al., “Graphical Fisheye Views of Graphs”, CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91. |
Sarkar et al., “Graphical Fisheye Views of Graphs”, Systems Research Center, Digital Equipment Corporation,, Mar. 17, 1992, 31 pages. |
Sarkar et al., “Graphical Fisheye Views”, Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83. |
Sarkar et al., “Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens”, UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91. |
Sarvas et al., “Metadata Creation System for Mobile Images”, Conference Proceedings, The Second International Conference on Mobile Systems, Applications and Services, Jun. 6, 2004, pp. 36-48. |
Sastry, Ravindra W., “A Need for Speed: A New Speedometer for Runners”, submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42. |
Sato, H., “A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database”, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pages. |
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence”, International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1996, 15 pages. |
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition”, International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages. |
Schafer et al., “Digital Representations of Speech Signals”, Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677. |
Schaffer et al., “Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods”, ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188. |
Scheifler, R. W., “The X Window System”, MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics, vol. 5, No. 2, Apr. 1986, pp. 79-109. |
Schluter et al., “Using Phase Spectrum Information for Improved Speech Recognition Performance”, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136. |
Schmandt et al., “A Conversational Telephone Messaging System”, IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv. |
Schmandt et al., “Augmenting a Window System with Speech Input”, IEEE Computer Society, Computer, vol. 23, No. 8, Aug. 1990, 8 pages. |
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82. |
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages. |
Schmid, H., “Part-of-speech tagging with neural networks”, COLING '94 Proceedings of the 15th conference on Computational linguistics—vol. 1, 1994, pp. 172-176. |
Schnelle, Dirk, “Context Aware Voice User Interfaces for Workflow Support”, Dissertation paper, Aug. 27, 2007, 254 pages. |
Schone et al., “Knowledge-Free Induction of Morphology Using Latent Semantic Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72. |
Schooler et al., “A Packet-switched Multimedia Conferencing System”, by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22. |
Schooler et al., “An Architecture for Multimedia Connection Management”, Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274. |
Schooler et al., “Multimedia Conferencing: Has it Come of Age?”, Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716. |
Schooler et al., “The Connection Control Protocol: Architecture Overview”, USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6. |
Schooler, Eve M., “Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System”, Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120. |
Schooler, Eve M., “The Impact of Scaling on a Multimedia Connection Architecture”, Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9. |
Schooler, Eve, “A Distributed Architecture for Multimedia Conference Control”, ISI Research Report, Nov. 1991, pp. 1-18. |
Schultz, Tanja, “Speaker Characteristics”, In: Speaker Classification I, retrieved from <http://ccc.inaoep.mx/˜villasen/bib/Speaker%20Characteristics.pdf>, 2007, pp. 47-74. |
Schütze, H., “Dimensions of Meaning”, Proceedings of Supercomputing'92 Conference, Nov. 1992, 10 pages. |
Schütze, H., “Distributional part-of-speech tagging”, EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148. |
Schütze, Hinrich, “Part-of-speech induction from scratch”, ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258. |
Schwartz et al., “Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208. |
Schwartz et al., “Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24. |
Schwartz et al., “The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses”, IEEE, 1990, pp. 81-84. |
Scott et al., “Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing”, Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364. |
Seagrave, Jim, “A Faster Way to Search Text”, EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52. |
Sears et al., “High Precision Touchscreens: Design Strategies and Comparisons with a Mouse”, International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613. |
Sears et al., “Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed”, Behavior & Information Technology, vol. 12, No. 1, 1993, pp. 17-22. |
Sears et al., “Touchscreen Keyboards”, Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991. |
Seide et al., “Improving Speech Understanding by Incorporating Database Constraints and Dialogue History”, Proceedings of Fourth International Conference on Philadelphia,, 1996, pp. 1017-1020. |
Sen et al., “Indian Accent Text-to-Speech System for Web Browsing”, Sadhana, vol. 27, No. 1, Feb. 2002, pp. 113-126. |
Seneff et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains”, Proceedings of Fourth International Conference on Spoken Language, vol. 2, 1996, 4 pages. |
Sethy et al., “A Syllable Based Approach for Improved Recognition of Spoken Names”, ITRW on Pronunciation Modeling and Lexicon Adaptation for Spoken language Technology (PMLA2002), Sep. 14-15, 2002, pp. 30-35. |
Sharoff et al., “Register-Domain Separation as a Methodology for Development of Natural Language Interfaces to Databases”, Proceedings of Human-Computer Interaction (INTERACT'99), 1999, 7 pages. |
Sheth et al., “Evolving Agents for Personalized Information Filtering”, Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1993, 9 pages. |
Sheth et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships”, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, Oct. 13, 2002, pp. 1-38. |
Shikano et al., “Speaker Adaptation through Vector Quantization”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages. |
Shimazu et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser”, NEG Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages. |
Shinkle, L., “Team User's Guide”, SRI International, Artificial Intelligence Center, Nov. 1984, 78 pages. |
Shiraki et al., “LPC Speech Coding Based on Variable-Length Segment Quantization”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257. |
Shklar et al., “InfoHarness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information”, Proceedings of CAiSE'95, Finland, 1995, 14 pages. |
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Second Edition, 1992, 599 pages. |
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Third Edition, 1998, 669 pages. |
Shneiderman, Ben, “Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces”, Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39. |
Shneiderman, Ben, “Sparks of Innovation in Human-Computer Interaction”, 1993, (Table of Contents, Title Page, Ch. 4, Ch. 6 and List of References), 133 pages (various sections). |
Shneiderman, Ben, “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations”, IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343. |
Shneiderman, Ben, “Touch Screens Now Offer Compelling Uses”, IEEE Software, Mar. 1991, pp. 93-94. |
Shoham et al., “Efficient Bit and Allocation for an Arbitrary Set of Quantizers”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 289-296. |
Sigurdsson et al., “Mel Frequency Cepstral Co-efficients: An Evaluation of Robustness of MP3 Encoded Music”, Proceedings of the 7th International Conference on Music Information Retrieval, 2006, 4 pages. |
Silverman et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 1999, 5 pages. |
Simkovitz, Daniel, “LP-DOS Magnifies the PC Screen”, IEEE, 1992, pp. 203-204. |
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages. |
Singh et al., “Automatic Generation of Phone Sets and Lexical Transcriptions”, Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page. |
Singh, N., “Unifying Heterogeneous Information Models”, Communications of the ACM, 1998, 13 pages. |
Sinitsyn, Alexander, “A Synchronization Framework for Personal Mobile Servers”, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5. |
Slaney et al., “On the Importance of Time—A Temporal Representation of Sound”, Visual Representation of Speech Signals, 1993, pp. 95-116. |
Smeaton, Alan F., “Natural Language Processing and Information Retrieval”, Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20. |
Smith et al., “Guidelines for Designing User Interface Software”, User Lab, Inc., Aug. 1986, pp. 1-384. |
Smith et al., “Relating Distortion to Performance in Distortion Oriented Displays”, Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11. |
Sony Ericsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&lc=en&ver=4001&template=pc3_1_ 1&z . . . >, Sep. 28, 2005, 2 pages. |
Soong et al., “A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment”, (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319. |
Speaker Recognition, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages. |
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www.nashuatelegraph.com/apps/pbcs.dll/article?Date=20060813&Cate . . . >, Aug. 13, 2006, 3 pages. |
Spivack, Nova, “Sneak Preview of Siri—Part Two—Technical Foundations—Interview with Tom Gruber, CTO of Siri”, Online Available at <https://web.archive.org/web/20100114234454/http://www.twine.com/item/12vhy39k4-22m/interview-with-tom-gruber-of-siri>, Jan. 14, 2010, 5 pages. |
SRI International, “The Open Agent Architecture TM 1.0 Distribution”, Open Agent Architecture (OAA), 1999, 2 pages. |
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages. |
Srihari, R. K.., “Use of Multimedia Input in Automated Image Annotation and Content-based Retrieval”, Proceedings of SPIE, International Society for Optical Engineering, vol. 2420, Feb. 9, 1995., pp. 249-260. |
Srinivas et al., “Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems”, CERC Technical Report Series Research Note, Feb. 1992. |
Starr et al., “Knowledge-Intensive Query Processing”, Proceedings of the 5th KRDB Workshop, Seattle, May 31, 1998, 6 pages. |
Stealth Computer Corporation, “Peripherals for Industrial Keyboards & Pointing Devices”, available at <http://www.stealthcomputer.com/peripherals_oem.htm>, retrieved on Dec. 19, 2002, 6 pages. |
Steinberg, Gene, “Sonicblue Rio Car (10 GB, Reviewed: 6 GB)”, available at <http://electronics.cnet.com/electronics/0-6342420-1304-4098389.htrnl>, Dec. 12, 2000, 2 pages. |
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396. |
Stent et al., “The CommandTalk Spoken Dialogue System”, SRI International, 1999, pp. 183-190. |
Stern et al., “Multiple Approaches to Robust Speech Recognition”, Proceedings of Speech and Natural Language Workshop, 1992, 6 pages. |
Stickel, Mark E., “A Nonclausal Connection-Graph Resolution Theorem-Proving Program”, Proceedings of AAAI'82, 1982, 5 pages. |
Stifelman, L., “Not Just Another Voice Mail System”, Proceedings of 1991 Conference, American Voice, Atlanta GA, Sep. 24-26, 1991, pp. 21-26. |
Stone et al., “The Movable Filter as a User Interface Tool”, CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312. |
Strom et al., “Intelligent Barge-In in Conversational Systems”, MIT laboratory for Computer Science, 2000, 4 pages. |
Stuker et al., “Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End”, Influence of Phoneme Set and Acoustic Front-End, Interspeech, Sep. 17-21, 2006, pp. 521-524. |
Su et al., “A Review of ZoomText Xtra Screen Magnification Program for Windows 95”, Journal of Visual Impairment & Blindness, Feb. 1998, pp. 116-119. |
Su, Joseph C., “A Review of Telesensory's Vista PCI Screen Magnification System”, Journal of Visual Impairment & Blindness, Oct. 1998, pp. 705, 707-710. |
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System”, Proceedings of the Americas Conference on Information systems (AMCIS), Dec. 31, 1998, 4 pages. |
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages. |
Summerfield et al., “ASIC Implementation of the Lyon Cochlea Model”, Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing, IEEE, vol. V, 1992, pp. 673-676. |
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128. |
Sycara et al., “Coordination of Multiple Intelligent Software Agents”, International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. 2 & 3, 1996, 31 pages. |
Sycara et al., “Distributed Intelligent Agents”, IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages. |
Sycara et al., “Dynamic Service Matchmaking among Agents in Open Information Environments”, SIGMOD Record, 1999, 7 pages. |
Sycara et al., “The RETSINA MAS Infrastructure”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, 20 pages. |
T3 Magazine, “Creative MuVo TX 256MB”, available at <http://www.t3.co.uk/reviews/entertainment/mp3_player/creative_muvo_tx_256mb>, Aug. 17, 2004, 1 page. |
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosinc.com/presssrelease_090902.htm>, Sep. 16, 2002, 3 pages. |
Taylor et al., “Speech Synthesis by Phonological Structure Matching”, International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages. |
Tello, Ernest R., “Natural-Language Systems”, Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988, pp. 25-64. |
Tenenbaum et al., “Data Structure Using Pascal”, Prentice-Hall, Inc., 1981, 34 pages. |
TextnDrive, “Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page. |
TG3 Electronics, Inc., “BL82 Series Backlit Keyboards”, available at <http://www.tg3electronics.com/products/backlit/backlit.htm>, retrieved on Dec. 19, 2002, 2 pages. |
The HP 150, “Hardware: Compact, Powerful, and Innovative”, vol. 8, No. 10, Oct. 1983, pp. 36-50. |
Tidwell, Jenifer, “Animated Transition”, Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages. |
Timothy et al., “Speech-Based Annotation and Retrieval of Digital Photographs”, Interspeech. 8th Annual Conference of the International Speech Communication Association, Aug. 27, 2007, pp. 2165-2168. |
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages. |
Tombros et al., “Users' Perception of Relevance of Spoken Documents”, Journal of the American Society for Information Science, New York, Aug. 2000, pp. 929-939. |
Top 10 Best Practices for Voice User Interface Design available at <http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm>, Nov. 1, 2002, 4 pages. |
Touch, Joseph, “Zoned Analog Personal Teleconferencing”, USC / Information Sciences Institute, 1993, pp. 1-19. |
Toutanova et al., “Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network”, Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages. |
Trigg et al., “Hypertext Habitats: Experiences of Writers in NoteCards”, Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108. |
Trowbridge, David, “Using Andrew for Development of Educational Applications”, Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6. |
Tsai et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition”, IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages. |
Tsao et al., “Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 237-245. |
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages. |
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611. |
Tur et al., “The CALO Meeting Speech Recognition and Understanding System”, Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages. |
Turletti, Thierry, “The INRIA Videoconferencing System (IVS)”, Oct. 1994, pp. 1-7. |
Tyson et al., “Domain-Independent Task Specification in the TACITUS Natural Language System”, SRI International, Artificial Intelligence Center, May 1990, 16 pages. |
Udell, J., “Computer Telephony”, BYTE, vol. 19, No. 7, Jul. 1994, 9 pages. |
Ushida et al., “Spoken Dialogue Engine based on Autonomous Behavior Decision Model”, Omron Technics, vol. 40, No. 1, 2000, pp. 16-21. {See Communication under 37 CFR § 1.98(a) (3)}. |
Uslan et al., “A Review of Henter-Joyce's MAGic for Windows NT”, Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668. |
Uslan et al., “A Review of Supernova Screen Magnification Program for Windows”, Journal of Visual Impairment & Blindness, Feb. 1999, pp. 108-110. |
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13. |
Van Santen, J. P.H, “Contextual Effects on Vowel Duration”, Journal Speech Communication, vol. 11, No. 6, Dec. 1992, pp. 513-546. |
Veiga, Alex, “AT&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/at_t_mobile_music_5.html?printer=1>, Oct. 5, 2004, 2 pages. |
Vepa et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis”, Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 2002, 4 pages. |
Verschelde, Jan, “MATLAB Lecture 8. Special Matrices in MATLAB”, UIC, Dept. of Math, Stat. & CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages. |
Viegas et al., “Chat Circles”, SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16. |
Viiki et al., “Speaker- and Language-Independent Speech Recognition in Mobile Communication Systems”, IEEE, vol. 1, 2001, pp. 5-8. |
Vingron, Martin, “Near-Optimal Sequence Alignment”, Current Opinion in Structural Biology, vol. 6, No. 3, 1996, pp. 346-352. |
Vlingo Incar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages. |
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store”, Press Release, Dec. 3, 2008, 2 pages. |
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Available online at—“https://www.youtube.com/watch?v=6kOd6Gr8uFE”, Aug. 22, 2012, 1 page. |
Vogel et al., “Shift: A Technique for Operating Pen-Based Interfaces Using Touch”, CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666. |
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page. |
VoiceontheGo, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJqpWgQS98w>, Jul. 27, 2009, 1 page. |
W3C Working Draft, “Speech Synthesis Markup Language Specification for the Speech Interface Framework”, available at <http://www.w3org./TR/speech-synthesis>, retrieved on Dec. 14, 2000, 42 pages. |
Wadlow, M. G., “The Role of Human Interface Guidelines in the Design of Multimedia Applications”, Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22. |
Wahlster et al., “Smartkom: Multimodal Communication with a Life-Like Character”, Eurospeech-Scandinavia, 7th European Conference on Speech Communication and Technology, 2001, 5 pages. |
Waibel, Alex, “Interactive Translation of Conversational Speech”, Computer, vol. 29, No. 7, Jul. 1996, pp. 41-48. |
Waldinger et al., “Deductive Question Answering from Multiple Resources”, New Directions in Question Answering, Published by AAAI, Menlo Park, 2003, 22 pages. |
Walker et al., “Natural Language Access to Medical Text”, SRI International, Artificial Intelligence Center, Mar. 1981, 23 pages. |
Walker et al., “The LOCUS Distributed Operating System 1”, University of California Los Angeles, 1983, pp. 49-70. |
Waltz, D., “An English Language Question Answering System for a Large Relational Database”, ACM, vol. 21, No. 7, 1978, 14 pages. |
Wang et al., “An Industrial-Strength Audio Search Algorithm”, In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2003, 7 pages. |
Wang et al., “An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models”, International Computer Symposium, vol. 2, 1994, pp. 1140-1145. |
Wang et al., “Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245. |
Ward et al., “A Class Based Language Model for Speech Recognition”, IEEE, 1996, 3 pages. |
Ward et al., “Recent Improvements in the CMU Spoken Language Understanding System”, ARPA Human Language Technology Workshop, 1994, 4 pages. |
Ward, Wayne, “The CMU Air Travel Information Service: Understanding Spontaneous Speech”, Proceedings of the Workshop on Speech and Natural Language, HLT '90, 1990, pp. 127-129. |
Ware et al., “The DragMag Image Magnifier Prototype I”, Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995. |
Ware et al., “The DragMag Image Magnifier”, CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408. |
Warren et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries”, American Journal of Computational Linguistics, vol. 8, No. 3-4, 1982, 11 pages. |
Watabe et al., “Distributed Multiparty Desktop Conferencing System: Mermaid”, CSCW 90 Proceedings, Oct. 1990, pp. 27-38. |
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine”, Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages. |
Werner et al., “Prosodic Aspects of Speech, Universite de Lausanne”, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art and Future Challenges, 1994, 18 pages. |
Westerman, Wayne, “Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface”, Doctoral Dissertation, 1999, 363 Pages. |
What is Fuzzy Logic?, available at <http://www.cs.cmu.edu>, retrieved on Apr. 15, 1993, 5 pages. |
White, George M., “Speech Recognition, Neural Nets, and Brains”, Jan. 1992, pp. 1-48. |
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages. |
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 3 pages. |
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 10 pages. |
Wilensky et al., “Talking to UNIX in English: An Overview of UC”, Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593. |
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 13 pages. |
Windows XP: A Big Surprise!—Experiencing Amazement from Windows XP, New Computer, No. 2, Feb. 28, 2002, 8 pages. |
Winiwarter et al., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 22 pages. |
Wirelessinfo, “SMS/MMS Ease of Use (8.0)”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages. |
Wolf, Jonathan, “The Next Step in Routing Configuration: Auto-Configuration Management Will Speed Service Rollout”, vol. 15.3, Mar. 2001, pp. 44-48. |
Wolff, M., “Post Structuralism and the ARTFUL Database: Some Theoretical Considerations”, Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages. |
Wong et al., “An 800 Bit/s Vector Quantization LPC Vocoder”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232. |
Wong et al., “Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization”, (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236. |
Worldwide Character Encoding, Version 2.0, vols. 1,2 by Unicode, Inc., 12 pages. |
Written Opinion received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 9 pages. |
Wu et al., “Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis”, Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237. |
Wu et al., “KDA: A Knowledge-Based Database Assistant”, Proceeding of the Fifth International Conference on Engineering (IEEE Cat.No. 89CH2695-5), 1989, 8 pages. |
Wu, M., “Digital Speech Processing and Coding”, Multimedia Signal Processing, Lecture-2 Course Presentation, University of Maryland, College Park, 2003, 8 pages. |
Wu, M., “Speech Recognition, Synthesis, and H.C.I.”, Multimedia Signal Processing, Lecture-3 Course Presentation, University of Maryland, College Park, 2003, 11 pages. |
Wyle, M. F., “A Wide Area Network Information Filter”, Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 1991, 6 pages. |
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203. |
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160. |
Yan et al., “A Scalable Approach to Using DNN-Derived Features in GMM-HMM Based Acoustic Modeling for LVCSR”, InInterspeech, 2013, pp. 104-108. |
Yang et al., “Auditory Representations of Acoustic Signals”, IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839. |
Yang et al., “Hidden Markov Model for Mandarin Lexical Tone Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992. |
Yang et al., “Smart Sight: A Tourist Assistant System”, Proceedings of Third International Symposium on Wearable Computers, 1999, 6 pages. |
Yankelovich et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment”, Computer Magazine, IEEE, Jan. 1988, 16 pages. |
Yarowsky, David, “Homograph Disambiguation in Text-to-Speech Synthesis”, Chapter 12, Progress in Speech Synthesis, 1997, pp. 157-172. |
Yiourgalis et al., “Text-to-Speech system for Greek”, ICASSP 91, vol. 1, May 14-17, 1991, pp. 525-528. |
Yoon et al., “Letter-to-Sound Rules for Korean”, Department of Linguistics, The Ohio State University, 2002, 4 pages. |
Young et al, “The HTK Book”, Version 3.4, Dec. 2006, 368 pages. |
Young et al., “The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management”, Computer Speech & Language, vol. 24, Issue 2, 2010, pp. 150-174. |
Youtube, “New bar search for Facebook”, Available at “https://www.youtube.com/watch?v=vwgN1WbvCas”, 2 pages. |
Yunker, John, “Beyond Borders: Web Globalization Strategies”, New Riders, Aug. 22, 2002, 11 pages. |
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages. |
Zangerle et al., “Recommending #-Tag in Twitter”, Proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12. |
Zelig, “A Review of the Palm Treo 750v”, available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId/769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages. |
Zeng et al., “Cooperative Intelligent Software Agents”, The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages. |
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages. |
Zhao et al., “Intelligent Agents for Flexible Workflow Systems”, Proceedings of the Americas Conference on Information Systems (AMCIS), Oct. 1998, 4 pages. |
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 380-394. |
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages. |
Ziegler, K, “A Distributed Information System Study”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401. |
Zipnick et al., “U.S. Appl. No. 10/859,661, filed Jun. 2, 2004”, (Copy Not Attached). |
Zovato et al., “Towards Emotional Speech Synthesis: A Rule based Approach”, Proceedings of 5th ISCA Speech Synthesis Workshop-Pittsburgh, 2004, pp. 219-220. |
Zue et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information”, Eurospeech, 1997, 4 pages. |
Zue et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information”, IEEE Transactions on Speech and Audio Processing, Jan. 2000, 13 pages. |
Zue et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning”, Speech Communication, vol. 15, 1994, 10 pages. |
Zue et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation”, Proceedings of IEEE, International Conference on Acoustics, Speech and Signal Processing, 1990, 4 pages. |
Zue, Victor W., “Toward Systems that Understand Spoken Language”, ARPA Strategic Computing Institute, Feb. 1994, 9 pages. |
Zue, Victor, “Conversational Interfaces: Advances and Challenges”, Spoken Language System Group, Sep. 1997, 10 pages. |
Final Office Action received for U.S. Appl. No. 15/678,065, dated Feb. 19, 2019, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/028943, dated Jul. 12, 2018, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/678,065, dated Aug. 24, 2018, 16 pages. |
Office Action received for Danish Patent Application No. PA201770432, dated May 14, 2018, 4 pages. |
Office Action received for Danish Patent Application No. PA201770432, dated Sep. 6, 2017, 8 pages. |
Bellegarda, Jerome R., “Chapter 1: Spoken Language Understanding for Natural Interaction: The Siri Experience”, Natural Interaction with Robots, Knowbots and Smartphones, 2014, pp. 3-14. |
Bellegarda, Jerome, “Spoken Language Understanding for Natural Interaction: The Siri Experience.”, Slideshow retrieved from : <https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2012/files/Bellegarda.pdf>, International Workshop on Spoken Dialog Systems (IWSDS) 2012, May 2012, pp. 1-43. |
Gasic et al., “Training and Evaluation of the HIS POMDP Dialogue System in Noise”, Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, Jun. 19-20, 2008, pp. 112-119. |
Kaelbling et al., “Planning and Acting in Partially Observable Stochastic Domains”, Artificial Intelligence, vol. 101, Issues 1-2, May 1998, pp. 99-134. |
Kim et al., “A Frame-Based Probabilistic Framework for Spoken Dialog Management Using Dialog Examples”, Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue. Association for Computational Linguistics, Jun. 2008, pp. 120-127. |
Lefevre et al., “Unsupervised State Clustering for Stochastic Dialog Management”, IEEE Workshop on Automatic Speech Recognition & Understanding, 2007, pp. 550-555. |
Thomson et al., “Bayesian Update of Dialogue State for Robust Dialogue Systems”, Proceedings of International Conference on Acoustics Speech Signal Processing, 2008, pp. 4937-4940. |
Williams et al., “Factored Partially Observable Markov Decision Processes for Dialogue Management”, Proceedings of 4th Workshop Knowledge Reasoning in Practical Dialogue Systems, 2005, 7 pages. |
Williams et al., “Partially Observable Markov Decision Processes for Spoken Dialog Systems”, Computer Speech & Language 21, 2007, pp. 393-422. |
Williams et al., “Scaling POMDPs for Spoken Dialog Management”, IEEE Trans. on Audio, Speech & Language Processing, Sep. 2007, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/029034, dated Jul. 4, 2018, 15 pages. |
Xu et al., “Policy Optimization of Dialogue Management in Spoken Dialogue System for Out-of-Domain Utterances”, 2016 International Conference on Asian Language Processing (IALP) IEEE, Nov. 21, 2016, pp. 10-13. |
Notice of Allowance received for U.S. Appl. No. 15/678,065, dated Jul. 17, 2019, 13 pages. |
Office Action received for Danish Patent Application No. PA201770431, dated Jul. 15, 2019, 7 pages. |
Gasic et al., “Effective Handling of Dialogue State in the Hidden Information State POMDP-based Dialogue Manager”, ACM Transactions on Speech and Language Processing, May 2011, pp. 1-25. |
Lee, Sungjin, “Structured Discriminative Model for Dialog State Tracking”, Proceedings of the SIGDIAL 2013 Conference, Aug. 2013, pp. 442-451. |
Sarikaya et al., “Semantic Confidence Measurement for Spoken Dialog Systems”, IEEE Transactions on Speech and Audio Processing vol. 13, No. 4, Jul. 2005, pp. 534-545. |
Yeh, Jui-Feng, “Speech Act Identification Using Semantic Dependency Graphs with Probabilistic Context-free Grammars”, ACM Transactions on Asian and Low-Resource Language Information Processing vol. 15, No. 1, Article 5, Dec. 2015, pp. 5.1-5.28. |
Office Action received for Danish Patent Application No. PA201770431, dated May 28, 2018, 4 pages. |
Search Report received for Danish Patent Application No. PA201770431, dated Sep. 14, 2017, 10 pages. |
Office Action received for Danish Patent Application No. PA201770432, dated Aug. 29, 2019, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/028943, dated Nov. 28, 2019, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/029034, dated Nov. 28, 2019, 11 pages. |
Office Action received for Danish Patent Application No. PA201770431, dated Feb. 12, 2020, 3 pages. |
Office Action received for European Patent Application No. 18723309.3, dated Apr. 24, 2020, 4 pages. |
Office Action received for Australian Patent Application No. 2018269238, dated Jun. 18, 2020, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20180329998 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62506465 | May 2017 | US |