The present invention relates generally to heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment. It specifically addresses optimization of the cooling and/or heating capacity relative to the power usage, to continuously maximize the energy efficiency ratio and the coefficient of performance, and the cooling or heating capacity relative to the power consumption, under actual operating conditions.
The thermodynamic method used in nearly all air conditioners, refrigerators and heat pumps is the vapor compression cycle also called the refrigeration cycle. The basic cycle uses four primary components: a compressor, a condenser, an expansion device, and an evaporator; some systems may use additional components such as a receiver, additional heat exchangers, two or more compressors, and/or an accumulator and other specialized components such as a liquid-vapor separator or a vortex separator and/or a surge tank or refrigerant reservoir or vessel. The four primary components are piped in series to form a closed loop system that carries out the changes in temperature, pressure and state of the working fluid refrigerant that form the basic vapor compression cycle. Furthermore, within air conditioners, refrigerators, and heat pumps outside of the refrigeration cycle there are typically ancillary components that move the desired heat transfer medium, such as the blowing of air or of flowing of water that is to be cooled or heated, across the primary heat exchangers being the condenser coil and the evaporator coil. In addition there is typically a control circuit that energizes and de-energizes the driven components including the compressor and such as fan motors, pump motors, damper actuators, and valves accordingly to meet a desired temperature, ventilation and/or humidity or other set points and operating parameters.
The present invention makes adjustments to an air conditioning, refrigerating or heating system for the purpose of maximizing measured EER, COP and/or IEER in a feedback loop utilized to optimize cooling or heating capacity relative to power consumed. The efficiency of vapor compression cycles is numerically described by an energy efficiency ratio (EER) and/or a coefficient of performance (COP). The EER generally refers to the air conditioning, refrigerating or heating system and is the ratio of the heat absorbed by the evaporator cooling coil over the input power to the equipment, or conversely for heat pumps, the rate of heat rejected by the condenser heating coil over the input power to the equipment. EER is defined as the ratio of cooling or heating provided to electric power consumed, in units of Btu/hr per Watt. EER varies greatly with cooling load, refrigerant level and airflow, among other factors. The COP generally refers to the thermodynamic cycle and is defined as the ratio of the heat absorption rate from the evaporator over the rate of input work provided to the cycle, or conversely for heat pumps, the rate of heat rejection by the condenser over the rate of input work provided to the cycle. COP is a unitless numerical ratio. In addition, there is a standard weighted average of EER at four conditions known as the integrated energy efficiency ratio (IEER), which relates to an estimation of the energy efficiency over conditions experienced during a cooling season. Also, there is the seasonal energy efficiency ration (SEER) that is used instead of the IEER for smaller air conditioning units. Either effect of lowering capacity or increasing power manifest in reduced energy efficiency and a reduced EER, COP and IEER while making adjustments to increase capacity without increasing power, or reducing power without decreasing capacity, or both increasing capacity and reducing power will manifest in an increased EER, COP and IEER.
The actual operating EER or COP is key to maximizing efficiency, because it provides an absolute, realistic and continuous assessment of operational efficiency with feedback so a harmonized adjustment of operating parameters can be conducted. Measuring the EER, COP and IEER of systems based on the vapor compression cycle is difficult, more so while operating in a field environment rather than a test laboratory. An accurate heat absorption or heat rejection measurement for these systems is quite complex and requires measurement of the mass flow rate of fluid through the heat exchanger along with enthalpies entering and leaving the heat exchanger; a detailed description of EER and COP measurement is provided for a related invention that is disclosed separately.
The measured EER and COP are affected by the load under which the air conditioning, refrigeration or heating system is running; the load is a function of the evaporating and condensing temperatures. An increase in evaporating temperature will raise the measured EER and COP, as will a decrease in condensing temperature; as can be predicted by the thermodynamic cycle parameters. Likewise, lower evaporating temperature will reduce the measured EER and COP, as will higher condensing temperature.
The prior art does not make adjustments to the operating parameters or the components of the air-conditioning, refrigeration or heat pump system according to the measured EER or COP, neither to increase the evaporating temperature or decrease the condensing temperature, nor to adjust other parameters that effect the refrigerant subcooling or superheat, or the refrigerant composition in the case of systems using mixtures of two or more refrigerants, or of the refrigerant mass flow rate, or the refrigerant pressures, to maximize the EER or COP. An energy management system for refrigeration systems by Cantley (U.S. Pat. No. 4,325,223) relies on inference of energy efficiency rather than a direct measurement; the inference is based on relative comparison of compressor power data and other system parameters stored in memory; and the system does not make control adjustments according to the system energy efficiency ratio, rather it controls evaporative cooling. An invention by Spethmann (U.S. Pat. No. 4,327,559) applies to chilled water systems rather than direct expansion (DX) systems; and simply balances the trade-off between colder chilled water versus faster fan airflow using ratio relays. A method by Enstrom (U.S. Pat. No. 4,611,470) also applies only to chilled water systems; the described method for performance control of heat pumps and refrigeration equipment depends on the chilled water temperature and does not mention refrigerant temperature or pressure measurements. The purpose of an invention by Bahel, et al. (U.S. Pat. No. 5,623,834) is diagnostics and fault correction, rather than energy efficiency optimization; and only the fan speed and thermostatic expansion valve are controlled based on relative comparison of two temperatures and the thermal load calculated via a thermostat. Two patents by Cho, et. Al (U.S. Pat. No. 6,293,108) disclose methods for separating components of refrigerant mixtures to increase energy efficiency or capacity, however, energy efficiency ratio is neither measured nor is it a basis for adjustments. Chen, et al. (U.S. Pat. No. 7,000,413) discloses control of a refrigeration system to optimize coefficient of performance, yet there is no detailed description of how COP is calculated. Adjustment is carried out to achieve a reference COP stored in memory rather than being an optimization process. Also, the primary application of Chen, et al. is transcritical systems using carbon dioxide refrigerant; an embodiment for measurement of the refrigerant flow rate is not described; and only water flow rate and the expansion valve are adjusted. Automatic refrigerant charge adjustment methods by Kang, et al. (U.S. Pat. No. 7,472,557), Murakami, et al. (U.S. Pat. No. 8,056,348), and McMasters, et al. (U.S. Pat. No. 8,272,227) simply adjust charge to match published charging tables or reference temperature or pressure values, which are not optimized values, rather they are non-optimal compromise values that work under a wide range of operating conditions and load.
The controller continuously makes adjustments to any or all of the operating parameters of an air-conditioning, refrigeration or heat pump system to maximize the measured EER and COP. Operating parameter values, such as motor speeds, temperature set points, or actuator positions, are continuously optimized as conditions change, such as changes in ambient temperature, and cooling or heating load, so that efficiency is as high as possible within the physical constraints of the system and the operating conditions. The invention utilizes a genuine and accurate measurement of the EER of the DX cooling, refrigeration, or heating unit, proportional to standard units of cooling capacity per unit of energy use (Btuh per Watt, or MBH per kW) and/or COP (unitless).
The preferred embodiment is a system-mounted control device that can be installed as an enhancement of or alternative to standard air conditioner, refrigerator and heat pump system controllers. An alternative embodiment is an embedded control sequence program in a building automation system (BAS) or energy management system (EMS). Accurate, direct, standard EER and COP measurements are clearly displayed by the controller, along with diagnostic messages identifying out of range values if so desired, allowing a technician to immediately appraise the operating efficiency of the system. EER and COP measurements are based on signals from a plurality of sensors. Sensor data is utilized to calculate the difference between the heat content of the refrigerant at the entrance and exit of the cooling coil (evaporator) or of the heating coil (condenser), and the system or compressor power demand. EER is calculated as the rate of heat transport at the evaporator for cooling or at the condenser for heating divided by the real power input to the system and is provided in units of Btuh per Watt on a display and as an analog or digital signal that is utilized in a control loop. In a similar manner, COP is calculated as the rate of heat transport divided by the real power input to the compressor and provided as a unitless (Watts per Watt) display and as an analog or digital signal. The cooling or the heating being delivered and the power consumed can also be displayed or transmitted by an analog or digital signal, as can any of the other measured, stored, intermediate, or calculated parameters, if desired.
The EER measurement is continually calculated by a microprocessor in a control loop at pre-defined time intervals while operating parameters are iteratively adjusted by changing output values. The adjustment direction, increase or decrease, and relative magnitude, large or small, is first calculated according to measured conditions and a log of previous values stored in memory. Then, with each large or small, increase or decrease, iteration of operating parameter change, the EER measurement after the system has restabilized is compared with the previous EER measurement, and the resulting change in EER is evaluated as either positive, not significant, or negative. A positive change in EER results in iteration of the next operating parameter, and a negative change in EER results in re-adjustment of the parameter. After a pre-defined number of iterations, or if the change in EER is less than a pre-defined convergence value, the next operating parameter is adjusted. The iteration sequence is continued until all operating parameters have been adjusted to achieve the maximum EER, and the control loop repeats with the first operating parameter. In this way, the maximum EER is continuously achieved by incrementally adjusting each operating parameter to realize an incremental increase in EER, even as conditions such as ambient temperature are changing.
The accompanying drawings, which are incorporated in, and form a part of the specification, illustrate one preferred embodiment of the present invention and together with the description serve to explain the principles of the invention. The invention is shown purely by way of example with reference to the preferred embodiment and the drawings. The invention is not limited to the precise arrangements and instrumentalities shown in the document.
In the drawings:
A schematic representation of an air conditioner, refrigerator or heat pump showing the connections from the output of the EER controller to components that are controlled to adjust system operating parameters is shown in
A block diagram showing the input sensor signals; the signal pathways between the sensors, the controller unit, the operating parameter outputs, and the display; the output signals; and the signal output display and connections is shown in
Excitation voltage for transducers P1, P2 and P3, which have micro-electric mechanical system (MEMS) strain-gauge sensing elements that are chemically compatible with refrigerants and refrigerant oils, and for transducers T4W4, F1 and B1, is provided by the control unit. Alternatively, other types of pressure sensors and transducers can be used as would be known to one skilled in the art. In the control unit, conditioned 0-5 VDC signals from the sensors/transducers are converted from analog form to digital form via a general purpose 16-bit multi-channel analog to digital convertor (ADC), or other type of convertor as would be known to one skilled in the art, with unipolar single-ended inputs with an external reference voltage, mounted on a printed circuit board (PCB) comprising a bus header, a field header, and digital logic circuitry with an octal 16-bit ADC; where the field header connects to the signals and the bus header interfaces to the central processing unit (CPU). The ADC sequentially converts each analog sensor signal from the native zero to reference voltage DC range to a binary value=V(sensor)/V(reference)*65536, to support mathematical manipulation by drivers and program code executed by the CPU.
The CPU package of the preferred embodiment consists of either a 25 MHz Freescale MC9S12A512 16-bit flash microprocessor, or a 16 MHz Motorola 68HC11F1 microprocessor, 1 MB Flash and 512K RAM and 320 bytes of EEPROM, with connections via a synchronous SPI serial interface and dual RS232/485 ports; alternatively other architecture microprocessors with various flash, RAM and/or EEPROM configurations be utilized to execute standard C or other program code language as would be known to one skilled in the art. The CPU accepts user input via a keypad for data entry and display selection as needed, or alternatively, from an IEEE 802.11 b/g touch screen device, or other wireless protocol as would be known to one skilled in the art. The microprocessor executes the ADC and DAC drivers and compiled ANSI-standard C program code that filters out-of-range values, calculates the EER and COP, and executes the control loop according to the flowchart in
The text/graphics display driver that in one embodiment has a wired connection to a 256 by 256 pixel LCD display screen or, alternatively, has a connection via standard wireless IEEE 802.11 b/g packet based protocol, or other wireless transmission and reception protocol as would be known to one skilled in the art to a separate or remote display device The measured EER, COP, cooling or heating being delivered and the power consumed is displayed on the wired LCD screen, or on the display of the user's wired or wirelessly connected device, or transmitted by an analog or digital signal, as can any of the other measured, stored, intermediate, output, and/or calculated parameters, as selected using the keypad or wireless touch screen input.
A schematic representation of a basic air conditioner, refrigerator or heat pump showing the primary and secondary components of a basic vapor compression cycle and the preferred positioning of the temperature, pressure, flow, voltage, and current sensors is shown in
Fan, pump, or blower 5 causes the medium that is to be cooled, typically air or water, to flow through or over the evaporator heat exchange coil 4, where flowing liquid refrigerant absorbs the heat from the medium and changes phase from liquid to vapor, and flows into tubing 9 to compressor 1. The temperature of the medium to be cooled is sensed by T4, placed at the inlet of the evaporator coil, and if the medium is air the sensor is a combination temperature relative humidity sensor T4/W4. The temperature of the cooled medium is sensed by T5 placed at the discharge of the air conditioner or refrigerator system. The temperature of the refrigerant vapor in tubing 9 is sensed by T2 for cooling and refrigeration, and by T2′ for heating. Sensors T2, T4, and T5 are thermocouples, though resistance temperature detectors (RTD) or other sensors responding to changes in temperature as would be known to one skilled in the art can be used, or T4 is an RTD type concurrent with element W4 thin-film capacitive sensor, though it can be another type of sensor responsive to air relative humidity as would be known to one skilled in the art. In compressor 1 the specific volume of the refrigerant working fluid is reduced thereby increasing its pressure and temperature and the refrigerant is discharged as a superheated vapor or gas into tubing 6 and then to condenser 2. Fan, pump or blower 10 causes the medium that is to be heated, typically air or water, to flow through condenser heat exchange coil 3, where heat is absorbed by the medium from the flowing vapor refrigerant, which changes phase from vapor to liquid, and flows into tubing 7, where its temperature is sensed by T1, and then to expansion device 3. Expansion device 3 can be an orifice, a thermostatic expansion valve (TXV), a capillary tube, an electronic expansion valve (EXV), a flow control valve, an expander, or other type of expansion device as would be known to one skilled in the art. Bubble fraction sensor B1 is optional, and if used it is mounted onto a liquid line sight glass, if needed, to sense the presence of small amounts of vapor if the sight glass is not clear, as would be known to one skilled in the art. The flow rate of liquid refrigerant in tubing 7 is sensed by F1. Non-intrusive external flow sensor F1 is a thermal sensor, though an ultrasonic sensor, or a Doppler transit-time sensor or other sensor responsive to refrigerant mass or volume flow rate or velocity, or an intrusive sensor such as a turbine, vortex, magnetic or other sensor type can be used. The temperature of the medium to be heated is sensed by T3, placed at the inlet of the condenser coil. Sensors T1 and T3 are thermocouples, though resistance temperature detectors (RTD) or other sensors responding to changes in temperature as would be known to one skilled in the art can be used. As refrigerant passes through the expansion device 3 it experiences a pressure loss approximately equal to the increase in pressure driven by compressor 1 minus pressure losses in the tubing and heat exchangers, its temperature is reduced and it flows as a mixture of vapor and liquid into tubing 8, and then to evaporator 4 and the cycle is completed.
A flowchart of the steps of the preferred process for determining the adjustment of the outputs of an embodiment having three adjustable operating parameters is shown in
Although this invention has been described and illustrated by reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made which clearly fall within the scope of this invention. The present invention is intended to be protected broadly within the spirit and scope of the appended claims.
The present application claims the benefit under any relevant U.S. statute to U.S. Provisional Application No. 61/756,017 filed Jan. 24, 2013, titled EER METER AND OPTIMIZING FEEDBACK CONTROL FOR DX AIR-CONDITIONERS.
Number | Name | Date | Kind |
---|---|---|---|
4186563 | Schulze, Sr. | Feb 1980 | A |
4325223 | Cantley | Apr 1982 | A |
4327559 | Spethmann | May 1982 | A |
4420947 | Yoshino | Dec 1983 | A |
4432232 | Brantley et al. | Feb 1984 | A |
4510576 | MacArthur et al. | Apr 1985 | A |
4611470 | Enstrom | Sep 1986 | A |
5623834 | Bahel et al. | Apr 1997 | A |
5735134 | Liu et al. | Apr 1998 | A |
5979167 | Kochavi | Nov 1999 | A |
6293108 | Cho et al. | Sep 2001 | B1 |
6701725 | Rossi et al. | Mar 2004 | B2 |
7000413 | Chen et al. | Feb 2006 | B2 |
7114343 | Kates | Oct 2006 | B2 |
7200524 | Kang et al. | Apr 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7472557 | Kang et al. | Jan 2009 | B2 |
7500368 | Mowris | Mar 2009 | B2 |
8056348 | Murakami et al. | Nov 2011 | B2 |
8272227 | McMasters et al. | Sep 2012 | B2 |
8583384 | Mowris | Nov 2013 | B2 |
9261542 | West | Feb 2016 | B1 |
20030167792 | Cho et al. | Sep 2003 | A1 |
20060032245 | Kates | Feb 2006 | A1 |
20100153057 | Bersch et al. | Jun 2010 | A1 |
20130186119 | Burns et al. | Jul 2013 | A1 |
20150177109 | Lockhart | Jun 2015 | A1 |
20160061495 | Sillato | Mar 2016 | A1 |
Entry |
---|
U.S. Patent and Trademark Office's Non-Final Office Action dated Aug. 26, 2015 cited in related U.S. Appl. No. 13/162,387 (17 pages). |
Number | Date | Country | |
---|---|---|---|
61756017 | Jan 2013 | US |