The field of the disclosure is data processing, or, more specifically, methods, apparatus, and products for intelligently compressing data in a storage array that includes a plurality of storage devices.
Enterprise storage systems frequently include a plurality of storage devices. Each of the storage devices may be capable of storing a particular amount of data, and as such, the storage system as a whole is characterized by the cumulative capacity of the storage devices that make up the storage system. In order to better utilize the capacity of the storage system, data reduction techniques are often applied to reduce the size of the data stored in the storage system. One such technique is data compression. Data compression, however, is frequently carried out in an unsophisticated, non-optimal manner.
Methods, apparatuses, and products for intelligently compressing data in a storage array that includes a plurality of storage devices, including: prioritizing, in dependence upon an expected benefit to be gained from compressing each data element, one or more data elements; receiving an amount of processing resources available for compressing the one or more of the data elements; and selecting, in dependence upon the prioritization of the one or more data elements and the amount of processing resources available for compressing one or more of the data elements, a data compression algorithm to utilize on one or more of the data elements.
The foregoing and other objects, features and advantages of the disclosure will be apparent from the following more particular descriptions of example embodiments of the disclosure as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of example embodiments of the disclosure.
Example methods, apparatuses, and products for intelligently compressing data in a storage array in accordance with the present disclosure are described with reference to the accompanying drawings, beginning with
The computing devices (164, 166, 168, 170) in the example of
The local area network (160) of
The example storage arrays (102, 104) of
Each storage array controller (106, 112) may be implemented in a variety of ways, including as a Field Programmable Gate Array (‘FPGA’), a Programmable Logic Chip (‘PLC’), an Application Specific Integrated Circuit (‘ASIC’), or computing device that includes discrete components such as a central processing unit, computer memory, and various adapters. Each storage array controller (106, 112) may include, for example, a data communications adapter configured to support communications via the SAN (158) and the LAN (160). Although only one of the storage array controllers (112) in the example of
Each write buffer device (148, 152) may be configured to receive, from the storage array controller (106, 112), data to be stored in the storage devices (146). Such data may originate from any one of the computing devices (164, 166, 168, 170). In the example of
A ‘storage device’ as the term is used in this specification refers to any device configured to record data persistently. The term ‘persistently’ as used here refers to a device's ability to maintain recorded data after loss of a power source. Examples of storage devices may include mechanical, spinning hard disk drives, Solid-state drives (e.g., “Flash drives”), and the like.
The storage array controllers (106, 112) of
The arrangement of computing devices, storage arrays, networks, and other devices making up the example system illustrated in
Intelligently compressing data in a storage array in accordance with embodiments of the present disclosure is generally implemented with computers. In the system of
The storage array controller (202) of
The storage array controller (202) of
Stored in RAM (214) is an operating system (246). Examples of operating systems useful in storage array controllers (202) configured for intelligently compressing data in a storage array according to embodiments of the present disclosure include UNIX™, Linux™, Microsoft Windows™, and others as will occur to those of skill in the art. Also stored in RAM (236) is a compression optimization module (248), a module that includes computer program instructions useful in intelligently compressing data in a storage array that includes a plurality of storage devices according to embodiments of the present disclosure.
The compression optimization module (248) may intelligently compress data in a storage array that includes a plurality of storage devices by: prioritizing, in dependence upon an expected benefit to be gained from compressing each data element, one or more data elements; receiving an amount of processing resources available for compressing the one or more of the data elements; and selecting, in dependence upon the prioritization of the one or more data elements and the amount of processing resources available for compressing one or more of the data elements, a data compression algorithm to utilize on one or more of the data elements, as will be described in greater detail below.
The compression optimization module (248) may further intelligently compress data in a storage array that includes a plurality of storage devices by: determining, for each of the plurality of data elements, an amount of time that the data element is expected to remain stored in the storage array, where the expected benefit is determined in dependence upon the amount of time that the data element is expected to remain stored in the storage array; determining, for each of the plurality of data elements, an expected compression ratio to be achieved by compressing the data element, where the expected benefit is determined in dependence upon the expected compression ratio to be achieved by compressing the data element; determining, for each of the plurality of data elements, an expected amount of time required to uncompress the data element, where the expected benefit is determined in dependence upon the amount of time required to uncompress the data element; determining the amount of processing resources available for compressing one or more of the data elements; and determining, for one or more compression algorithms, an amount of processing resources required to compress one or more of the data elements utilizing the compression algorithm, as will be described in greater detail below.
The storage array controller (202) of
The storage array controller (202) of
The storage array controller (202) of
The storage array controller (202) of
Readers will recognize that these components, protocols, adapters, and architectures are for illustration only, not limitation. Such a storage array controller may be implemented in a variety of different ways, each of which is well within the scope of the present disclosure.
For further explanation,
The example method depicted in
The example method depicted in
In the example method depicted in
Readers will appreciate that prioritizing (324) one or more data elements (308, 310, 312, 314, 316, 318) in dependence upon the expected benefit (322) to be gained from compressing each data element (308, 310, 312, 314, 316, 318) may be carried out for multiple compression algorithms. In fact, given that one compression algorithm may produce greater expected benefits for one type of data and another compression algorithm may produce greater expected benefits for one type of data, the one or more data elements (308, 310, 312, 314, 316, 318) may be prioritized differently for different compression algorithms. For example, assume that the expected compression ratio for the six data elements (308, 310, 312, 314, 316, 318) depicted in
In the example depicted in Table 1, utilizing only the expected compression ratio to determine the expected benefit to be gained by compressing each data element, a different prioritization of the data elements would result if compression algorithm 1 was selected versus selecting compression algorithm 2. Readers will appreciate that while compression algorithm 2 generally produces greater data reduction than compression algorithm 1, other factors (e.g., the amount of CPU cycles required to apply each compression algorithm, the amount of time required to apply each compression algorithm, and so on) may ultimately lead to applying compression algorithm 1 rather than compression algorithm 2, as will be described in more detail below.
The example method depicted in
The example method depicted in
Selecting (330) a data compression algorithm (332) to utilize on one or more of the data elements (308, 310, 312, 314, 316, 318) may be carried out, for example, by selecting the combination of a data compression algorithm (332) and one or more of the data elements (308, 310, 312, 314, 316, 318) that are to be compressed using the data compression algorithm (332) that yields the largest cumulative expected benefit. Readers will appreciate, however, that the combination of a data compression algorithm (332) and one or more of the data elements (308, 310, 312, 314, 316, 318) that are to be compressed using the data compression algorithm (332) may only be selected when the selected data elements (308, 310, 312, 314, 316, 318) may be compressed using the selected data compression algorithm (332) by utilizing an amount of processing resources that are equal to or less than the processing resources (326) that are available for compressing one or more of the data elements (308, 310, 312, 314, 316, 318). Continuing with the example described in Table 1, assume that compressing each data element requires the following amount of processing resources.
In the example depicted above, assume that each data element is 10 MB in size and that the amount of processing resources (326) available for compressing the one or more of the data elements (308, 310, 312, 314, 316, 318) that was received (328) is 300 processing cycles. In such an example, three data elements (314, 310, 308) could be compressed using compression algorithm 1 within the amount of processing resources (326) available for compressing the data elements. The total amount of space saved by compressing the three highest priority data elements (314, 310, 308) using compression algorithm 1 would be 17.5 MB. In this example, only two data elements (312, 314) could be compressed using compression algorithm 2 within the amount of processing resources (326) available for compressing the data elements. The total amount of space saved by compressing the two highest priority data elements (312, 314) using compression algorithm 2 would be 14.3 MB. As such, the greatest cumulative benefit would be achieved by selecting (330) to compress data elements (314, 310, 308) with compression algorithm 1.
Readers will appreciate that although the example described above includes data elements that are equally sized, this is not included as a limitation. In fact, data elements may be quite disparate in size but the concepts described above may still apply. Readers will further appreciate that although the example described above includes only a single consideration (data reduction), multiple considerations may be taken into account and each consideration may be given equal or unequal weightings according to embodiments of the present disclosure.
For further explanation,
The example method depicted in
In the example method depicted n
For further explanation,
The example method depicted in
In the example method depicted in
For further explanation,
The example method depicted in
In the example method depicted in
For further explanation,
The example method depicted in
The example method depicted in
Example embodiments of the present disclosure are described largely in the context of a fully functional computer system. Readers of skill in the art will recognize, however, that the present disclosure also may be embodied in a computer program product disposed upon computer readable media for use with any suitable data processing system. Such computer readable storage media may be any transitory or non-transitory media. Examples of such media include storage media for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of such media also include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a computer program product. Persons skilled in the art will recognize also that, although some of the example embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware, as hardware, or as an aggregation of hardware and software are well within the scope of embodiments of the present disclosure.
It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present disclosure without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present disclosure is limited only by the language of the following claims.
This application is a continuation application of and claims priority from U.S. Pat. No. 10,346,043, issued Jul. 9, 2019.
Number | Name | Date | Kind |
---|---|---|---|
5706210 | Kumano et al. | Jan 1998 | A |
5799200 | Brant et al. | Aug 1998 | A |
5933598 | Scales et al. | Aug 1999 | A |
6012032 | Donovan et al. | Jan 2000 | A |
6085333 | DeKoning et al. | Jul 2000 | A |
6195024 | Fallon | Feb 2001 | B1 |
6309424 | Fallon | Oct 2001 | B1 |
6597812 | Fallon et al. | Jul 2003 | B1 |
6601104 | Fallon | Jul 2003 | B1 |
6604158 | Fallon | Aug 2003 | B1 |
6624761 | Fallon | Sep 2003 | B2 |
6643641 | Snyder | Nov 2003 | B1 |
6647514 | Umberger et al. | Nov 2003 | B1 |
6748457 | Fallon et al. | Jun 2004 | B2 |
6789162 | Talagala et al. | Sep 2004 | B1 |
7089272 | Garthwaite et al. | Aug 2006 | B1 |
7107389 | Inagaki et al. | Sep 2006 | B2 |
7130913 | Fallon | Oct 2006 | B2 |
7146521 | Nguyen | Dec 2006 | B1 |
7161506 | Fallon | Jan 2007 | B2 |
7181608 | Fallon | Feb 2007 | B2 |
7321937 | Fallon | Jan 2008 | B2 |
7334124 | Pham et al. | Feb 2008 | B2 |
7352300 | Fallon | Apr 2008 | B2 |
7358867 | Fallon | Apr 2008 | B2 |
7376772 | Fallon | May 2008 | B2 |
7378992 | Fallon | May 2008 | B2 |
7395345 | Fallon | Jul 2008 | B2 |
7415530 | Fallon | Aug 2008 | B2 |
7417568 | Fallon et al. | Aug 2008 | B2 |
7437530 | Rajan | Oct 2008 | B1 |
7493424 | Bali et al. | Feb 2009 | B1 |
7669029 | Mishra et al. | Feb 2010 | B1 |
7689609 | Lango et al. | Mar 2010 | B2 |
7743191 | Liao | Jun 2010 | B1 |
7899780 | Shmuylovich et al. | Mar 2011 | B1 |
8042163 | Karr et al. | Oct 2011 | B1 |
8086585 | Brashers et al. | Dec 2011 | B1 |
8090936 | Fallon et al. | Jan 2012 | B2 |
8112619 | Fallon et al. | Feb 2012 | B2 |
8200887 | Bennett | Jun 2012 | B2 |
8271700 | Annem et al. | Sep 2012 | B1 |
8275897 | Fallon | Sep 2012 | B2 |
8387136 | Lee et al. | Feb 2013 | B2 |
8437189 | Montierth et al. | May 2013 | B1 |
8465332 | Hogan et al. | Jun 2013 | B2 |
8502707 | Fallon | Aug 2013 | B2 |
8504710 | Fallon | Aug 2013 | B2 |
8527544 | Colgrove et al. | Sep 2013 | B1 |
8566546 | Marshak et al. | Oct 2013 | B1 |
8578442 | Banerjee | Nov 2013 | B1 |
8613066 | Brezinski et al. | Dec 2013 | B1 |
8620970 | English et al. | Dec 2013 | B2 |
8643513 | Fallon | Feb 2014 | B2 |
8692695 | Fallon et al. | Apr 2014 | B2 |
8717203 | Fallon | May 2014 | B2 |
8717204 | Fallon et al. | May 2014 | B2 |
8719438 | Fallon | May 2014 | B2 |
8723701 | Fallon et al. | May 2014 | B2 |
8742958 | Fallon et al. | Jun 2014 | B2 |
8751463 | Chamness | Jun 2014 | B1 |
8756332 | Fallon | Jun 2014 | B2 |
8762642 | Bates et al. | Jun 2014 | B2 |
8769622 | Chang et al. | Jul 2014 | B2 |
8800009 | Beda, III et al. | Aug 2014 | B1 |
8806062 | Vertongen | Aug 2014 | B1 |
8812860 | Bray | Aug 2014 | B1 |
8850546 | Field et al. | Sep 2014 | B1 |
8880862 | Fallon et al. | Nov 2014 | B2 |
8898346 | Simmons | Nov 2014 | B1 |
8909854 | Yamagishi et al. | Dec 2014 | B2 |
8931041 | Banerjee | Jan 2015 | B1 |
8933825 | Fallon | Jan 2015 | B2 |
8949863 | Coatney et al. | Feb 2015 | B1 |
8984602 | Bailey et al. | Mar 2015 | B1 |
8990905 | Bailey et al. | Mar 2015 | B1 |
9054728 | Fallon | Jun 2015 | B2 |
9081713 | Bennett | Jul 2015 | B1 |
9116908 | Fallon | Aug 2015 | B2 |
9124569 | Hussain et al. | Sep 2015 | B2 |
9134922 | Rajagopal et al. | Sep 2015 | B2 |
9141992 | Fallon et al. | Sep 2015 | B2 |
9143161 | Greene | Sep 2015 | B1 |
9143546 | Fallon et al. | Sep 2015 | B2 |
9189334 | Bennett | Nov 2015 | B2 |
9209973 | Aikas et al. | Dec 2015 | B2 |
9250823 | Kamat et al. | Feb 2016 | B1 |
9300660 | Borowiec et al. | Mar 2016 | B1 |
9311182 | Bennett | Apr 2016 | B2 |
9444822 | Borowiec et al. | Sep 2016 | B1 |
9507532 | Colgrove et al. | Nov 2016 | B1 |
9632870 | Bennett | Apr 2017 | B2 |
9667751 | Fallon et al. | May 2017 | B2 |
9792308 | Fallon et al. | Oct 2017 | B2 |
10346043 | Golden et al. | Jul 2019 | B2 |
20020013802 | Mori et al. | Jan 2002 | A1 |
20030145172 | Galbraith et al. | Jul 2003 | A1 |
20030191783 | Wolczko et al. | Oct 2003 | A1 |
20030225961 | Chow et al. | Dec 2003 | A1 |
20040080985 | Chang et al. | Apr 2004 | A1 |
20040111573 | Garthwaite | Jun 2004 | A1 |
20040153844 | Ghose et al. | Aug 2004 | A1 |
20040193814 | Erickson et al. | Sep 2004 | A1 |
20040260967 | Guha et al. | Dec 2004 | A1 |
20050160416 | Jamison | Jul 2005 | A1 |
20050188246 | Emberty et al. | Aug 2005 | A1 |
20050216800 | Bicknell et al. | Sep 2005 | A1 |
20060015771 | Van Gundy et al. | Jan 2006 | A1 |
20060129817 | Borneman et al. | Jun 2006 | A1 |
20060161726 | Lasser | Jul 2006 | A1 |
20060230245 | Gounares et al. | Oct 2006 | A1 |
20060239075 | Williams et al. | Oct 2006 | A1 |
20070022227 | Miki | Jan 2007 | A1 |
20070028068 | Golding et al. | Feb 2007 | A1 |
20070038738 | Iyengar | Feb 2007 | A1 |
20070055702 | Fridella et al. | Mar 2007 | A1 |
20070109856 | Pellicone et al. | May 2007 | A1 |
20070150689 | Pandit et al. | Jun 2007 | A1 |
20070168321 | Saito et al. | Jul 2007 | A1 |
20070220227 | Long | Sep 2007 | A1 |
20070294563 | Bose | Dec 2007 | A1 |
20070294564 | Reddin et al. | Dec 2007 | A1 |
20080005587 | Ahlquist | Jan 2008 | A1 |
20080077825 | Bello et al. | Mar 2008 | A1 |
20080117968 | Wang | May 2008 | A1 |
20080162674 | Dahiya | Jul 2008 | A1 |
20080195833 | Park | Aug 2008 | A1 |
20080270678 | Cornwell et al. | Oct 2008 | A1 |
20080282045 | Biswas et al. | Nov 2008 | A1 |
20090077340 | Johnson et al. | Mar 2009 | A1 |
20090100115 | Park et al. | Apr 2009 | A1 |
20090112949 | Ergan | Apr 2009 | A1 |
20090198889 | Ito et al. | Aug 2009 | A1 |
20100052625 | Cagno et al. | Mar 2010 | A1 |
20100211723 | Mukaida | Aug 2010 | A1 |
20100246266 | Park et al. | Sep 2010 | A1 |
20100257142 | Murphy et al. | Oct 2010 | A1 |
20100262764 | Liu et al. | Oct 2010 | A1 |
20100325345 | Ohno et al. | Dec 2010 | A1 |
20100332754 | Lai et al. | Dec 2010 | A1 |
20110072290 | Davis et al. | Mar 2011 | A1 |
20110125955 | Chen | May 2011 | A1 |
20110131231 | Haas et al. | Jun 2011 | A1 |
20110167221 | Pangal et al. | Jul 2011 | A1 |
20120023144 | Rub | Jan 2012 | A1 |
20120054264 | Haugh et al. | Mar 2012 | A1 |
20120079318 | Colgrove et al. | Mar 2012 | A1 |
20120131253 | McKnight et al. | May 2012 | A1 |
20120303919 | Hu et al. | Nov 2012 | A1 |
20120311000 | Post et al. | Dec 2012 | A1 |
20130006948 | Shmueli | Jan 2013 | A1 |
20130007845 | Chang et al. | Jan 2013 | A1 |
20130031414 | Dhuse et al. | Jan 2013 | A1 |
20130036272 | Nelson | Feb 2013 | A1 |
20130071087 | Motiwala et al. | Mar 2013 | A1 |
20130145447 | Maron | Jun 2013 | A1 |
20130185269 | Amit | Jul 2013 | A1 |
20130191555 | Liu | Jul 2013 | A1 |
20130198459 | Joshi et al. | Aug 2013 | A1 |
20130205067 | Kettner | Aug 2013 | A1 |
20130205173 | Yoneda | Aug 2013 | A1 |
20130219164 | Hamid | Aug 2013 | A1 |
20130227201 | Talagala et al. | Aug 2013 | A1 |
20130290607 | Chang et al. | Oct 2013 | A1 |
20130311434 | Jones | Nov 2013 | A1 |
20130318297 | Jibbe et al. | Nov 2013 | A1 |
20130332614 | Brunk et al. | Dec 2013 | A1 |
20140020083 | Fetik | Jan 2014 | A1 |
20140074850 | Noel et al. | Mar 2014 | A1 |
20140082715 | Grajek et al. | Mar 2014 | A1 |
20140086146 | Kim et al. | Mar 2014 | A1 |
20140090009 | Li et al. | Mar 2014 | A1 |
20140096220 | Da Cruz Pinto et al. | Apr 2014 | A1 |
20140101434 | Senthurpandi et al. | Apr 2014 | A1 |
20140156611 | Sainath | Jun 2014 | A1 |
20140164774 | Nord et al. | Jun 2014 | A1 |
20140173232 | Reohr et al. | Jun 2014 | A1 |
20140195636 | Karve et al. | Jul 2014 | A1 |
20140201512 | Seethaler et al. | Jul 2014 | A1 |
20140201541 | Paul et al. | Jul 2014 | A1 |
20140208155 | Pan | Jul 2014 | A1 |
20140215590 | Brand | Jul 2014 | A1 |
20140229654 | Goss et al. | Aug 2014 | A1 |
20140230017 | Saib | Aug 2014 | A1 |
20140258526 | Le Sant et al. | Sep 2014 | A1 |
20140282983 | Ju et al. | Sep 2014 | A1 |
20140285917 | Cudak et al. | Sep 2014 | A1 |
20140325262 | Cooper et al. | Oct 2014 | A1 |
20140351627 | Best et al. | Nov 2014 | A1 |
20140373104 | Gaddam et al. | Dec 2014 | A1 |
20140373126 | Hussain et al. | Dec 2014 | A1 |
20150026387 | Sheredy et al. | Jan 2015 | A1 |
20150074463 | Jacoby et al. | Mar 2015 | A1 |
20150089569 | Sondhi et al. | Mar 2015 | A1 |
20150095515 | Krithivas et al. | Apr 2015 | A1 |
20150113203 | Dancho et al. | Apr 2015 | A1 |
20150121137 | McKnight et al. | Apr 2015 | A1 |
20150134920 | Anderson et al. | May 2015 | A1 |
20150149822 | Coronado et al. | May 2015 | A1 |
20150193169 | Sundaram et al. | Jul 2015 | A1 |
20150339059 | Kang | Nov 2015 | A1 |
20150378888 | Zhang et al. | Dec 2015 | A1 |
20160065241 | Ichien | Mar 2016 | A1 |
20160098323 | Mutha et al. | Apr 2016 | A1 |
20160098439 | Dickie et al. | Apr 2016 | A1 |
20160350009 | Cerreta et al. | Dec 2016 | A1 |
20160352720 | Hu et al. | Dec 2016 | A1 |
20160352830 | Borowiec et al. | Dec 2016 | A1 |
20160352834 | Borowiec et al. | Dec 2016 | A1 |
20170185313 | Golden et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
0725324 | Aug 1996 | EP |
WO-2012087648 | Jun 2012 | WO |
WO-2013071087 | May 2013 | WO |
WO-2014110137 | Jul 2014 | WO |
WO-2016015008 | Dec 2016 | WO |
WO-2016190938 | Dec 2016 | WO |
WO-2016195759 | Dec 2016 | WO |
WO-2016195958 | Dec 2016 | WO |
WO-2016195961 | Dec 2016 | WO |
WO-2017116553 | Jul 2017 | WO |
Entry |
---|
Paul Sweere, Creating Storage Class Persistent Memory with NVDIMM, Published in Aug. 2013, Flash Memory Summit 2013, <http://ww.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130814_T2_Sweere.pdf>, 22 pages. |
PCMAG, Storage Array Definition, Published May 10, 2013. <http://web.archive.org/web/20130510121646/http://www.pcmag.com/encyclopedia/term/52091/storage-array>, 2 pages. |
Google Search of “storage array define” performed by the Examiner on Nov. 4, 2015 for U.S. Appl. No. 14/725,278, Results limited to entries dated before 2012, 1 page. |
Techopedia, What is a disk array, techopedia.com (online), Jan. 13, 2012, 1 page, URL: web.archive.org/web/20120113053358/http://www.techopedia.com/definition/1009/disk-array. |
Webopedia, What is a disk array, webopedia.com (online), May 26, 2011, 2 pages, URL: web/archive.org/web/20110526081214/http://www.webopedia.com/TERM/D/disk_array.html. |
Li et al., Access Control for the Services Oriented Architecture, Proceedings of the 2007 ACM Workshop on Secure Web Services (SWS '07), Nov. 2007, pp. 9-17, ACM New York, NY. |
Hota et al., Capability-based Cryptographic Data Access Control in Cloud Computing, International Journal of Advanced Networking and Applications, col. 1, Issue 1, Aug. 2011, 10 pages, Eswar Publications, India. |
Faith, dictzip file format, GitHub.com (online), accessed Jul. 28, 2015, 1 page, URL: github.com/fidlej/idzip. |
Wikipedia, Convergent Encryption, Wikipedia.org (online), accessed Sep. 8, 2015, 2 pages, URL: en.wikipedia.org/wiki/Convergent_encryption. |
Storer et al., Secure Data Deduplication, Proceedings of the 4th ACM International Workshop on Storage Security And Survivability (StorageSS'08), Oct. 2008, 10 pages, ACM New York, NY. USA, DOI: 10.1145/1456469.1456471. |
ETSI, Network Function Virtualisation (NFV); Resiliency Requirements, ETSI GS NFCV-REL 001, V1.1.1, Jan. 2015, 82 pages, etsi.org (online), URL: www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf. |
Microsoft, Hybrid for SharePoint Server 2013—Security Reference Architecture, Microsoft (online), Oct. 2014, 53 pages, URL: hybrid.office.com/img/Security_Reference_Architecture.pdf. |
Microsoft, Hybrid Identity, Microsoft (online), Apr. 2014, 36 pages, URL: www.aka.ms/HybridIdentityWp. |
Microsoft, Hybrid Identity Management, Microsoft (online), Apr. 2014, 2 pages, URL: download.microsoft.com/download/E/A/E/EAE57CD1-A80B-423C-96BB-142FAAC630B9/Hybrid_Identity_Datasheet.pdf. |
Bellamy-McIntyre et al., OpenID and the Enterprise: A Model-based Analysis of Single Sign-On Authentication, 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), Aug. 29, 2011, pp. 129-138, IEEE Computer Society, USA, DOI: 10.1109/EDOC.2011.26, ISBN: 978-1-4577-0362-1. |
Kong, Using PCI Express As The Primary System Interconnect In Multiroot Compute, Storage, Communications And Embedded Systems, White Paper, IDT.com (online), Aug. 28, 2008, 12 pages, URL: www.idt.com/document/whp/idt-pcie-multi-root-white-paper. |
Hu et al., Container Marking: Combining Data Placement, Garbage Collection and Wear Levelling for Flash, 19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunications Systems, Jul. 25-27, 2011, 11 pages, ISBN: 978-0-7695-4430-4, DOI: 10.1109/MASCOTS.2011.50. |
International Search Report and Written Opinion, PCT/US2016/015006, dated Jul. 18, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/015008, dated May 4, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/020410, dated Jul. 8, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/032084, dated Jul. 18, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/016333, dated Jun. 8, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/032052, dated Aug. 30, 2016, 17 pages. |
International Search Report and Written Opinion, PCT/US2016/035492, dated Aug. 17, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/036693, dated Aug. 29, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/038758, dated Oct. 7, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/040393, dated Sep. 22, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/044020, dated Sep. 30, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/044874, dated Oct. 7, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/044875, dated Oct. 5, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/044876, dated Oct. 21, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/044877, dated Sep. 29, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/059757, dated Jan. 17, 2017, 11 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 14980632 | Dec 2015 | US |
Child | 16456719 | US |