The present invention is related to electronic passive entry-passive start systems.
Customer demand increasingly provides an impetus for automobile manufacturers to incorporate enhanced features. Electronic passive entry-passive start system (ePEPS) is an example of such an enhanced feature. Additional improvements in ePEPS system technology are possible and are even being requested by the consumer. The problem of fumbling for the existing active remote keyless entry-start fob while standing in the rain or when in an emergency situation has provided the motivation to design and implement an ePEPS system.
Existing electronic passive entry-passive start systems can cause unintentional lock actuations when the consumer is in the near vicinity of the vehicle and does not wish to unlock the vehicle (“false alarms”). False alarms present an additional drain on the vehicle and FOB batteries, prematurely reducing the operating life of the locking system. They can also present a security issue if the false alarm leaves the doors unlocked.
Accordingly, there is a need for improved passive electronic passive entry-passive start systems with improved reliability.
The present invention solves one or more problems of the prior art by providing, in at least one embodiment, an electronic passive entry-passive start (ePEPS) system. The electronic passive entry-passive start system includes a first satellite ultra-wideband antenna positioned within or on a vehicle, a second satellite ultra-wideband antenna positioned within or on a vehicle, a third satellite ultra-wideband antenna positioned within or on a vehicle, and a fourth satellite ultra-wideband antenna positioned within or on a vehicle. A remote function actuator is in electronic communication with the first satellite ultra-wideband antenna, the second satellite ultra-wideband antenna, the third satellite ultra-wideband antenna, and the fourth satellite ultra-wideband antenna. A body control module can be in electronic communication with remote function actuator. A key fob is wireless communication with the first satellite ultra-wideband antenna, the second satellite ultra-wideband antenna, the third satellite ultra-wideband antenna, and the fourth satellite ultra-wideband antenna such that predetermined functions in a vehicle are actuated depending on the position of a user.
In another embodiment, the electronic passive entry-passive start (ePEPS) system operates such that the first satellite ultra-wideband antenna, second satellite ultra-wideband antenna, third satellite ultra-wideband antenna, fourth satellite ultra-wideband antenna, and the key fob transmit and/or receive a signal in the range of 3 kHz to 300 GHz and such that the first satellite ultra-wideband antenna, second satellite ultra-wideband antenna, third satellite ultra-wideband antenna, fourth satellite ultra-wideband antenna, and the key fob transmit and/or receive a signal with a bandwidth greater than or equal to 500 MHz or 20% of a center frequency.
Advantageously, the ePEPS system allows hands free unlocking, locking of the vehicle doors and engine starting with a push of a button, without the need to use a physical key fob. The ePEPS system provides the means to detect the approach and presence of a key fob in and around the vehicle space by driving Ultra Wide Band (UWB) antennas in the vehicle. Based on the fob's location and approach, the base station will unlock or lock doors, open the trunk, or allow starting of the vehicle at the push of a button on the vehicle's instrument panel.
To detect the smart Key Fob with approach and exact 3D (3-Dimensional) location (in-cabin or outside vehicle), typically four active satellite active antennas (SAT) are installed in-cabin vehicle. The packaging locations of these SATs should preferably follow certain guidelines to achieve optimum precision.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Except where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred. Also, unless expressly stated to the contrary, the first definition of an acronym or other abbreviation applies to all subsequent uses herein of the same abbreviation and applies mutatis mutandis to normal grammatical variations of the initially defined abbreviation; and, unless expressly stated to the contrary, measurement of a property is determined by the same technique as previously or later referenced for the same property.
It is also to be understood that this invention is not limited to the specific embodiments and methods described below, as specific components and/or conditions may, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments and is not intended to be limiting in any way.
It must also be noted that the singular form “a”, “an”, and “the” comprise plural referents unless the context clearly indicates otherwise. For example, reference to a component in the singular is intended to comprise a plurality of components.
Throughout this application, where publications are referenced, the disclosures of these publications are hereby incorporated by reference into this application in their entirety to more fully describe the state of the art to which this invention pertains.
“ePEPS” means electronic passive entry-passive start;
“GHz” means gigahertz;
“MHz” means megahertz;
“UWB” means ultra wide band;
With reference to
In a variation, the term “ultra-wideband” refers to a wireless communication technology in which information and, in particular, digital data is transmitted over a wide spectrum of frequency bands by generating radio energy at specific time intervals. Ultra-wideband uses a large bandwidth thereby allowing pulse-position or time modulation. Although the present embodiment is not limited to any particular frequencies, ultra-wideband is a radio technology typically using narrow or short pulses operating in the range of 3 kHz to 300 GHz (e.g., the center frequency). In a refinement, the ultra-wideband antennas 22, 24, 26, 28 and key fob transmit and/or receive a signal (e.g., data) over a short distance, usually less than about 300 feet. In a variation, ultra-wideband has a bandwidth that covers a plurality of octaves. Typically, ultra-wideband antennas 22, 24, 26, 28 and key fob 34 transmit and/or receive a signal with a bandwidth greater than or equal to 500 MHz or 20% of the center frequency. In a refinement, ultra-wideband antennas 22, 24, 26, 28 and key fob 34 transmit and/or receive a signal with a bandwidth from about 500 MHz to about 20 GHz. In another refinement, ultra-wideband antennas 22, 24, 26, 28 and key fob 34 transmit and/or receive a signal with a bandwidth from about 500 MHz to about 4 GHz. In still another refinement, ultra-wideband antennas 22, 24, 26, 28 and key fob 34 transmit and/or receive a signal with a bandwidth from about 2 GHz to about 18 GHz. In many applications, the power spectral density emission limit for ultra-wideband transmission is Δ41.3 dBm/MHz. Additional features regarding UWB technology are found in hraunfossfcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf and in A. K. Thakre and A. I. Dhenge, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 1, Issue 9, November 2012, pages 683-686; the entire disclosures of which are hereby incorporated by reference.
One feature of the present embodiment involves the proper placement of satellite ultra-wideband antenna anchors 14, 16, 18, 20 and therefore, ultra-wideband antennas 22, 24, 26, 28 within a vehicle (i.e. the interior of a vehicle). In particular, satellite ultra-wideband antenna anchors 14, 16, 18, 20 should be as far as possible from each other with respect to axis system (e.g., the X-Y axes) in a plane parallel to the vehicle floor. In a refinement, a separation of about 1 meter or more between the antenna anchors is provided. At least one ultra-wideband antenna anchor should have maximum separation from the other anchors with respect to an axis (e.g., Z axis perpendicular to a plane parallel to a vehicle floor. Satellite ultra-wideband antenna anchors 14, 16, 18, 20 and therefore, ultra-wideband antennas 22, 24, 26, 28 should not be surrounded or enclosed by metal/objects on more than one side. Near the edge of body/metal sheet, the flat base of the satellite ultra-wideband antenna anchors 14, 16, 18, 20 and therefore, ultra-wideband antennas 22, 24, 26, 28 should be facing the sheet/body metal. The satellite ultra-wideband antenna anchors 14, 16, 18, 20 and therefore, ultra-wideband antennas 22, 24, 26, 28 should be near a corner/end of the metal/body sheet, close to and/or in view of glass. Finally, satellite ultra-wideband antenna anchors 14, 16, 18, 20 and therefore, ultra-wideband antennas 22, 24, 26, 28 face outwards from car-body sheet metal.
It should be noted that the above guidelines are difficult to achieve because of packaging restrictions in vehicles. For example, the pillar (and around pillar) locations are restricted because of airbag use. The two packaging locations suggested below are practically possible in a vehicle and the suggestion is based on several studies done at Lear Corporation facilities and successfully implemented on ePEPS experimental project.
With reference to
Still referring to
Still referring to
Still referring to
Still referring to
With reference to
With reference to
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application claims the benefit of U.S. provisional application Ser. No. 62/042,522 filed Aug. 27, 2014, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
62042522 | Aug 2014 | US |