Field of the Invention
This invention generally relates to opto-mechanical devices for producing images to be displayed and more specifically to opto-mechanical devices for use in procedures requiring miniaturized imaging devices.
Description of Related Art
In recent years endoscopic and other like imaging systems have been developed to display an image on a video monitor. These imaging systems typically include opto-mechanical devices with housings for supporting optical devices such as objectives of one or more lenses. An objective forms an image for being conveyed to a remote video processor. In some applications, an image sensor proximate the objective interfaces with the objective and converts the incoming light from the objective into digital signals that are coupled to a video processor. Other applications define an interface for one end of a coherent fiber bundle and an objective; the other end of the bundle terminates with a remote connection to the video processor. In either embodiment glass objectives are preferred for good image quality.
Customers for such devices, particularly in the medical field, also express a desire for imaging systems with minimal cross-sections, particularly systems that can be manufactured at low cost and in high volumes for single-use, disposable instrumentation. Recently imaging sensors have become available with cross-sections of less than 2 mm. and with pixel densities that provide good image resolution. However, prior art optical devices have not been available for interfacing with such image sensors in commercially acceptable production quantities and costs.
As known, the production of a larger, conventional lens involves grinding and polishing end surfaces of an optical glass blank to form two polished spherical optical surfaces spaced along an axis. Each lens then undergoes edge grinding to reduce the lens diameter to a specified value and to align the optical and mechanical axes. United States Letters U.S. Pat. No. 7,715,105 (2010) to Forkey et al. for an Acylindrical Optical Device discloses an alternative by which small diameter lenses are manufactured from over-sized lens elements and other optical elements formed into lens systems. Edges are sawn into each lens system to reduce its overall size. Sawing can be applied to integral lens elements or lens arrays. As an alternative, lenses also can be molded from glass or plastic. Photolithographic techniques constitute another alternative that can be used to fabricate lenses on a wafer, such as included in an image sensor.
Prior art molding processes become difficult to implement for the production of small lenses with diameters less than 2 mm. It is difficult to obtain acceptable resolution with plastic lenses of this size. Edge grinding, such as used with manufacture of standard lenses, must be undertaken with tighter controls for increased accuracy. Edge grinding is also time-consuming and therefore increases manufacturing costs. The above mentioned sawing process may not be appropriate for newer applications, particularly those which require high-volume, low cost production. Lithographic processes can be applied only to a limited number of materials and have limited radii of curvature. Consequently they are unlikely to provide a lens with a high index of refraction and/or short radius of curvature as is required for obtaining a large field of view with small lenses.
What is needed is an opto-mechanical assembly constructed with a diameter of in the order of 2 mm or less that can interface with a small image sensor or coherent fiber bundle wherein the opto-mechanical assembly can be provided in sufficiently large volumes and at sufficiently low costs such that instruments incorporating such assemblies can be made as disposable instruments or components thereof.
Therefore it is an object of this invention to provide an opto-mechanical assembly to be constructed with a small glass lens for being interfaced with components for conveying an image to a remote image processor.
Another object of this invention is to provide an opto-mechanical assembly with a small glass lens and an image sensor at reasonable production costs at high volumes.
Still another object of this invention is to provide an opto-mechanical assembly with a small glass lens and an interface for a coherent fiber bundle for conveying an image to a remote image processor at reasonable production costs and high-volumes.
In accordance with one aspect of this invention an opto-mechanical assembly comprises a lens having first and second polished surfaces that intersect in a sharp edge at the periphery thereof. A support carries the lens.
In accordance with another aspect of this invention, an opto-mechanical assembly comprises a lens having first and second polished surfaces that intersect in a sharp edge at the periphery thereof. A support in form of a housing carries the lens. A processor supported by the housing receives light from the lens and the housing includes a structure that positions the lens and the processor in an operative relationship.
The appended claims particularly point out and distinctly claim the subject matter of this invention. The various objects, advantages and novel features of this invention will be more fully apparent from a reading of the following detailed description in conjunction with the accompanying drawings in which like reference numerals refer to like parts, and in which:
As previously indicated, opto-mechanical devices, such as the device 30, are difficult to manufacture as the diameters of the lens and housing reduce into the range of 2 mm or less.
Still referring to
The objective lens 50 is a sharp-edged lens. Specifically, it is a lens formed by two optical surfaces 52 and 53 that intersect at an angle thereby forming a sharp edge 54 about the periphery of the lens which has not been subjected to any edge grinding. Thus, the manufacturing of the sharp-edged lens 50 of
Sharp-edged lenses have not been widely adopted in optics manufacturing. This is, in part, due to the potential that small shocks can cause the sharp edge of a larger lens to break. However, small sharp-edged lenses to which this invention is directed have a smaller mass. Two other factors are involved. First, circumference is proportional to lens diameter. Force on a lens due to shock is proportional to the mass of the lens which, in turn, is approximately proportional to the diameter, d, of the lens cubed (i.e., d3). Force per unit length of a sharp edge at the lens periphery is proportional to the diameter squared (i.e., d2). Consequently as the diameter of a lens decreases into the range at which this invention is directed, the force per unit length at the sharp edge decreases dramatically and a sharp-edge lens having a diameter in a range of less than 2 mm can withstand normally encountered adverse effects of shocks and other forces.
Other lens shapes can be used with the same benefits for other applications.
As now will be apparent, an opto-mechanical assembly or lens cell in accordance with this invention includes a sharp-edged lens and interface for conveying the image to a remote image processing system. The use of sharp-edged lenses enables the manufacture of such lens cells in high volumes and at low cost. This could be particularly important in designing a lens cell, such as the lens cell 20 in
This invention has been disclosed in terms of certain embodiments. Many modifications can be made to the disclosed apparatus without departing from the invention. For example, this application shows several embodiments of sharp-edged lenses useful in accordance with this invention. Embodiments with other configurations could be substituted. Specific cylindrical housing configurations have been disclosed; alternative housing configurations could be substituted. Therefore, it is the intent of the appended claims to cover all such variations and modifications as come within the true spirit and scope of this invention.
This application is a continuation of U.S. application Ser. No. 13/893,470, filed May 14, 2013, now U.S. Pat. No. 9,036,281, which claims priority from U.S. provisional application Ser. No. 61/646,769, filed on May 14, 2012, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5781351 | Murakami | Jul 1998 | A |
7715105 | Forkey et al. | May 2010 | B2 |
9036281 | Breidenthal et al. | May 2015 | B2 |
20010033436 | Hunter | Oct 2001 | A1 |
20040196569 | Quake et al. | Oct 2004 | A1 |
20060077563 | Mihara et al. | Apr 2006 | A1 |
20100073531 | Yano | Mar 2010 | A1 |
20120140342 | Tsai | Jun 2012 | A1 |
Entry |
---|
Efremov A.A., et al., “Sborka Opticheskikh Priborov,” Vysshaia Shkola, in Moskva, 1978, pp. 144-145. |
International Search Report for Application No. PCT/US2013/050438, mailed on Nov. 7, 2013, 2 pages. |
Written opinion for application No. PCT/US2013/050438 mailed on Oct. 10, 2013, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20150241688 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61646769 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13893470 | May 2013 | US |
Child | 14697814 | US |