This technology as disclosed herein relates generally to stochastic resonance and, more particularly, to chaos induced stochastic Resonance.
Chaotic dynamics has been observed in various physical systems and has affected almost every field of science. Chaos involves hypersensitivity to initial conditions of the system and introduces unpredictability to the system's output; thus, it is often unwanted. Chaos theory studies the behavior and condition of dynamical deterministic systems that are highly sensitive to initial conditions. Small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging and random outcomes for such dynamical systems. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In other words, the deterministic nature of these systems does not make them predictable. This behavior is known as deterministic chaos, or simply chaos.
Again, chaos is usually perceived as not being desirable. Therefore, using chaos, for example, to induce stochastic resonance in a physical system has not been significantly explored. Stochastic resonance is a phenomenon where a signal that is normally too weak to be detected by a sensor, can be boosted by adding white noise to the signal, which contains a wide spectrum of frequencies. The frequencies in the white noise corresponding to the original signal's frequencies will resonate with each other, amplifying the original signal while not amplifying the rest of the white noise (thereby increasing the signal-to-noise ratio which makes the original signal more prominent). Further, the added white noise can be enough to be detectable by the sensor, which can then be filtered out to effectively detect the original, previously undetectable signal. Stochastic resonance is observed when noise added to a system changes the system's behavior in some fashion. More technically, SR occurs if the signal-to-noise ratio of a nonlinear system or device increases for moderate values of noise intensity. It often occurs in bistable systems or in systems with a sensory threshold and when the input signal to the system is “sub-threshold”. For lower noise intensities, the signal does not cause the device to cross the threshold, so little signal is passed through it. For large noise intensities, the output is dominated by the noise, also leading to a low signal-to-noise ratio. For moderate intensities, the noise allows the signal to reach threshold, but the noise intensity is not so large as to swamp it. Stochastic resonance can be realized in chaotic systems, however, given the perceived undesirable nature of chaos, chaos induced stochastic resonance has not been significantly explored.
One type of physical system where chaotic oscillations can occur is that of opto-mechanical resonators. Micro- and nano-fabricated technologies, which have enabled the creation of novel structures in which enhanced light-matter interactions result in mechanical deformations and self-induced oscillations via the radiation pressure of photons are one type of opto-mechanical resonator. Suspended mirrors, whispering-gallery-mode (WGM) microresonators (e.g., microtoroids, microspheres, and microdisks), cavities with a membrane in the middle, photonic crystals zipper cavities are examples of such opto-mechanical systems where the coupling between optical and mechanical modes have been observed. These have opened new possibilities for fundamental and applied research. For example, they have been proposed for preparing non-classical states of light, high precision metrology, phonon lasing and cooling to their ground state. The nonlinear dynamics originating from the coupling between the optical and mechanical modes of an opto-mechanical resonator can cause both the optical and the mechanical modes to evolve from periodic to chaotic oscillations. However, again, chaos has been perceived to be undesirable in such systems.
Opto-mechanical chaos and the effect on an opto-mechanical system is a relatively unexplored area. Despite recent progress and interest in the involved nonlinear dynamics, optomechanical chaos remains largely unexplored experimentally. Further advancement is needed for the utilization and leveraging of chaos to induce stochastic resonance in optomechanical systems, which can advance the field and could be useful for high-precision measurements, for fundamental tests of nonlinear dynamics and other industrial applications.
*Further, in the past few years exciting progress has been made surrounding novel devices and functionalities enabled by new discoveries and applications of non-Hermitian physics in photonic systems. Exceptional points (EPs) are non-Hermitian degeneracies at which the eigenvalues and the corresponding eigenstates of a dissipative system coalesce when parameters are tuned appropriately. EPs universally occur in all open physical systems and dramatically affect their behavior, leading to counterintuitive phenomena such as loss-induced lasing, unidirectional invisibility, PTsymmetric lasers, just to name a few of the phenomena that have raised much attention recently. For example, a work on PT-symmetric microcavities and nonreciprocal light transport published in Nature Physics, 10, 394-398 (May 2014) has received broad media coverage and scientific interest, and has been cited several times by researchers coming from various fields, including optics, condensed matter, theoretical physics, and quantum mechanics.
The technology as disclosed herein includes a system and method for chaos transfer between multiple detuned signals in an optomechanical resonator where at least one signal is strong enough to induce optomechanical oscillations and where at least one signal is weak enough that it does not induce mechanical oscillation, optical nonlinearity or thermal effects and where the strong and weak signal follow the same route, from periodic oscillations to quasi-periodic and finally to chaotic oscillations, as the power of the strong signal is increased. The technology as disclosed and claimed uses optomechanically-induced Kerr-like nonlinearity and stochastic noise generated from mechanical backaction noise to create stochastic resonance. Stochastic noise is internally provided to the system by mechanical backaction.
With the present technology as disclosed and claimed herein, opto-mechanical systems demonstrate coupling between optical and mechanical modes. Chaos in the present technology has been leveraged a powerful tool to suppress decoherence, to achieve secure communication, and to replace background noise in stochastic resonance, which is a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. The technology as disclosed and claimed herein demonstrates chaos-induced stochastic resonance in an opto-mechanical system, and the opto-mechanically-mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in opto-mechanical systems, and may find application in chaotic transfer of information and for improving the detection of otherwise undetectable signals in opto-mechanical systems.
The nonlinear dynamics originating from the coupling between the optical and mechanical modes of an opto-mechanical resonator can cause both the optical and the mechanical modes to evolve from periodic to chaotic oscillations. These can find use in applications such as random number generation and secure communication as well as chaotic optical sensing. In addition, the intrinsic chaotic dynamics of a nonlinear system can replace the stochastic process (conventionally an externally-provided Gaussian noise) required for the stochastic resonance, which is a phenomenon in which the presence of noise optimizes the response of a nonlinear system leading to the detection of weak signals.
The technology as disclosed and claimed and the various implementations demonstrate opto-mechanically-mediated transfer of chaos from a strong optical field (pump) that excites mechanical oscillations, to a very weak optical field (probe) in the same resonator. The present technology demonstrates that the probe and the pump fields follow the same route, from periodic oscillations to quasi-periodic and finally to chaotic oscillations, as the pump power is increased. The chaos transfer from the pump to the probe is mediated by the mechanical motion of the resonator, because there is no direct talk between these two largely-detuned optical fields. Moreover, this is the first observation of stochastic resonance in an opto-mechanical system. The required stochastic process is provided by the intrinsic chaotic dynamics and the opto-mechanical backaction.
Periodic to chaotic oscillations can find use in applications such as random number generation and secure communication, as well as chaotic optical sensing. In addition, the intrinsic chaotic dynamics of a nonlinear system can replace the stochastic process (conventionally an externally-provided Gaussian noise) required for the stochastic resonance, which is a phenomenon in which the presence of noise optimizes the response of a nonlinear system leading to the detection of weak signals.
As discussed above, stochastic resonance is encountered in bistable systems, where noise induces transitions between two locally-stable states enhancing the system's response to a weak external signal. A related effect showing the constructive role of noise is coherence resonance, which is defined as stochastic resonance without an external signal. Both stochastic resonance and coherence resonance are known to occur in a wide range of physical and biological systems, including electronics, lasers, superconducting quantum interference devices, sensory neurons, nanomechanical oscillators and exciton-polaritons. However, to date they have not been reported in an opto-mechanical system. The technology as disclosed and claimed herein demonstrates chaos-mediated stochastic resonance in an opto-mechanical microresonator.
The technology as disclosed and claimed including the various implementations and applications demonstrate the ability to transfer chaos from a strong signal to a very weak signal via mechanical motion, such that the signals are correlated and follow the same route to chaos, which opens new venues for applications of opto-mechanics. One such direction would be to transfer chaos from a classical field to a quantum field to create chaotic quantum states of light for secure and reliable transmission of quantum signals. The chaotic transfer of classical and quantum information in such micro-cavity-opto-mechanical systems demonstrated here is limited by the achievable chaotic bandwidth, which is determined by the strength of the opto-mechanical interaction and the bandwidth restrictions imposed by the cavity. Qantum networks for long distance communication and distributed computing require nodes which are capable of storing and processing quantum information and connected to each other via photonic channels.
Recent achievements in quantum information have brought quantum networking much closer to realization. Quantum networks exhibit advantages when transmitting classical and quantum information with proper encoding into and decoding from quantum states. However, the efficient transfer of quantum information among many nodes has remained as a problem, which becomes more crucial for the limited-resource scenarios in large-scale networks. Multiple access, which allows simultaneous transmission of multiple quantum data streams in a shared channel, can provide a remedy to this problem. Popular multiple-access methods in classical communication networks include time-division multiple-access (TDMA), frequency division multiple-access (FDMA), and code-division multiple-access (CDMA).
In a CDMA network, the information-bearing fields a1 and a2, having the same frequency ωc, are modulated by two different pseudo-noise signals, which not only broaden them in the frequency domain but also change the shape of their wavepackets. Thus, the energies of the fields a1 and a2 are distributed over a very broad frequency span, in which the contribution of ωc is extremely small and impossible to extract without coherent sharpening of the ωc components. This, on the other hand, is possible only via chaos synchronization which effectively eliminates the pseudo-noises in the fields and enables the recovery of a1 (a2) at the output a3 (a4) with almost no disturbance from a2 (a1). This is similar to the classical CDMA. Thus, this protocol can be referred to as q-CDMA.
The nonlinear coupling between the optical fields and the Duffing oscillators and the chaos synchronization to achieve the chaotic encoding and decoding could be realized using different physical platforms. For example, in opto-mechanical systems, the interaction Hamiltonian can be realized by coupling the optical field via the radiation pressure to a moving mirror connected to a nonlinear spring. Chaotic mechanical resonators can provide a frequency-spreading of several hundreds of MHz for a quantum signal, and this is broad enough, compared to the final recovered quantum signal, to realize the q-CDMA and noise suppression. Chaos synchronization with a mediating optical field, similar to that used to synchronize chaotic semiconductor lasers for high speed secure communication, would be the method of choice for long-distance quantum communication. The main difficulty in this method, however, will be the coupling between the classical chaotic light and the information-bearing quantum light. The present technology provides a solution to this coupling challenge.
One can increase the chaotic bandwidth by using waveguide structures which have larger bandwidths than cavities. Moreover, the presence of chaos-mediated stochastic resonance in opto-mechanical systems illustrates not only the nonlinear dynamics induced by the opto-mechanical coupling, but also illustrates the use stochastic resonance to enhance the signal-processing capabilities to detect and manipulate weak signals. The technology as disclosed and claimed herein can be extended to micro/nano-mechanical systems where frequency-separated mechanical modes are coupled to each other, e.g., acoustic modes of a micromechanical resonator or cantilevers regularly spaced along a central clamped-clamped beam. Generating, transferring and controlling opto-mechanical chaos and using it for stochastic resonance makes it possible to develop electronic and photonic devices that exploit the intrinsic sensitivity of chaos.
This work has two aspects: First, optomechanical oscillations induce chaos on a pump strong field. Then the detuned probe is affected and it also follows the same route to chaos. One can say optomechanically-induced chaos transfer between optical fields and modes. Second, is the stochastic resonance, independent of First. Here Pump induces mechanical oscillations, which then induce chaotic behavior and the stochastic noise via backaction. Then a probe feels a nonlinear system with stochastic noice, and as a result it is signal-to-noise ratio first increases with increasing pump power and then decreases.
Further, one technology disclosed herein is a micro resonator operating close to an EP where a strong chirality can be imposed on an otherwise non-chiral system, and the emission direction of a waveguide-coupled micro laser can be tuned from bidirectional to a fully unidirectional output in a preferred direction. By directly establishing the essential link between the non-Hermitian scattering properties of a waveguide-coupled whispering-gallery-mode (WGM) micro resonator and a strong asymmetric backscattering in the vicinity of an EP, allows for dynamic control of the chirality of resonator modes, which is equivalent to a switchable direction of light rotation inside the resonator. This enables the ability to tune the direction of a WGM micro laser from a bidirectional emission to a unidirectional emission in the preferred direction: When the system is away from the EPs, the resonator modes are non-chiral and hence laser emission is bidirectional, whereas in the vicinity of EPs the modes become chiral and allow unidirectional emission such that by transiting from one EP to another EP the direction of unidirectional emission is completely reversed. Such an effect has not been observed or demonstrated before.
Moreover, the ability to controllably tune the ratio of the light fields propagating in opposite directions on demand is achieved—the maximum impact is reached right at the EP, where modes are fully chiral. To achieve this highly non-trivial feature, the system leverages the use of the fact that the out-coupling of light via scatterers placed outside the resonator leads to an effective breaking of time-reversal symmetry in its interior. Such a system opens a new avenue to explore chiral photonics on a chip at the crossroads between practical applications and fundamental research. WGM resonators play a special role in modern photonics, as they are ideal tools to store and manipulate light for a variety of applications, ranging from cavity-QED and optomechanics to ultra-low threshold lasers, frequency combs and sensors. Much effort has therefore been invested into providing these devices with new functionalities, each of which was greeted with enormous excitement. Take here as examples the first demonstrations to detect ultra-small particles; to observe the PT-symmetry phase transition with an associated breaking of reciprocity; to observe the loss-induced suppression and revival of lasing at exceptional points; or the measurement based control of a mechanical oscillator. By explicitly connecting the features of resonator modes with the intriguing physics of EP, the system adds a new and very convenient functionality, which is a benefit all the fields where these devices are in use.
Controlling the emission and the flow of light in micro and nanostructures is crucial for on chip information processing. The system as disclosed imposes a strong chirality and a switchable direction of light propagation in an optical system by steering it to an exceptional point (EP)—a degeneracy universally occurring in all open physical systems when two eigenvalues and the corresponding eigenstates coalesce. In one implementation a fiber-coupled whispering-gallery-mode (WGM) resonator, dynamically controls the chirality of resonator modes and the emission direction of a WGM microlaser in the vicinity of an EP: Away from the EPs, the resonator modes are non-chiral and laser emission is bidirectional. As the system approaches an EP the modes become chiral and allow unidirectional emission such that by transiting from one EP to another one the direction of emission can be completely reversed. The system operation results exemplify a very counterintuitive feature of non-Hermitian physics that paves the way to chiral photonics on a chip.
The features, functions, and advantages that have been discussed can be achieved independently in various implementations or may be combined in yet other implementations further details of which can be seen with reference to the following description and drawings. These and other advantageous features of the present technology as disclosed will be in part apparent and in part pointed out herein below.
For a better understanding of the present technology as disclosed, reference may be made to the accompanying drawings in which:
While the technology as disclosed is susceptible to various modifications and alternative forms, specific implementations thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description presented herein are not intended to limit the disclosure to the particular implementations as disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the present technology as disclosed and as defined by the appended claims.
According to the implementation(s) of the present technology as disclosed, various views are illustrated in
One implementation of the present technology as disclosed comprising an opto-mechanical system having opto-mechanically induced chaos and stochastic resonance teaches a novel system and method for opto-mechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. The opto-mechanical system can be utilized for encoding chaos on a weak signal for chaotic encoding that can be used in secure communication. Chaos induced stochastic resonance in opto-mechanical systems are also applicable for use in improving signal detection.
The technology as disclosed and claimed demonstrates generating and transferring optical chaos in an opto-mechanical resonator. The technology demonstrates opto-mechanically-mediated transfer of chaos from a strong optical field (pump) that excites mechanical oscillations, to a very weak optical field (probe) in the same resonator. The technology demonstrates that the probe and the pump fields follow the same route, from periodic oscillations to quasi-periodic and finally to chaotic oscillations, as the pump power is increased. The chaos transfer from the pump to the probe is mediated by the mechanical motion of the resonator, because there is no direct talk between these two largely-detuned optical fields. Moreover, the technology demonstrates stochastic resonance in an opto-mechanical system. The required stochastic process is provided by the chaotic dynamics and the opto-mechanical backaction.
The details of the technology as disclosed and various implementations can be better understood by referring to the figures of the drawing. Referring to
When the power of the pump field is increased, it is observed that the transmitted pump light transited from a fixed state to a region of periodic oscillations, and finally to the chaotic regime through period-doubling bifurcation cascades (see
These phenomena observed for the pump field originate from the nonlinear opto-mechanical coupling between the optical pump field and the mechanical mode of the resonator. Intuitively, one may attribute this observed dynamic to the chaotic mechanical motion of the resonator. However, the reconstructed mechanical motion of the resonator, using the experimental data in the theoretical model, showed that the optical signal was chaotic even if the mechanical motion of the resonator was periodic. Thus, it can be concluded that the reason for the chaotic behaviour in the optical field in our experiments is the strong nonlinear optical Kerr response induced by the nonlinear coupling between the optical and mechanical modes.
Simultaneously monitoring the probe field reveals that as the pump power is increased, the probe, also, experienced periodic, quasi periodic, and finally chaotic regimes. More importantly, the pump and probe entered the chaotic regime via the same bifurcation route (
In order to effectively demonstrate the present technology, the probe field is sufficiently weak such that it could not induce any mechanical oscillations of its own, and the large frequency-detuning between the pump field (in the 1550 nm band) and the probe field (in the 980 nm band) assured that there was no direct crosstalk between the optical fields. Thus the observed close relation between the route-to-chaos for the pump and probe fields can only be attributed to the fact that the periodic mechanical motion of the microresonator mediates the coupling between the optical modes via opto-mechanically-induced Kerr-like nonlinearity (the induced refractive index change is directly proportional to the square of the field instead of varying in linearity with it), and enables the probe to follow the pump field.
To demonstrate the technology, light from an external cavity laser in the 1550 nm band is first amplified by an erbium-doped fiber amplifier (EDFA) and then coupled into a microtoroid to act as the pump for the excitation of the mechanical modes. Optical transmission spectrum, is obtained by scanning the wavelength of the pump laser, which shows a typical Lorentzian lineshape (follows a fourier transform line broadening function) for low powers of the pump field (
In order to demonstrate the effect of the mechanical motion induced by the strong pump field on a weak light field (probe light) within the same resonator, an external cavity laser with emission in the 980 nm band can be used. The power of the probe laser is chosen such that it does not induce any thermal or mechanical effect on the resonator, i.e., its power is well below the threshold of mechanical oscillations. The transmission spectra of the pump and the probe fields are separately monitored by photodiodes connected to an oscilloscope and an ESA. The probe resonance mode had a quality factor of 6×106.
Referring to
An optical pump field, provided by a tunable External Cavity Laser Diode (ECLD) in the 1550 nm band, is first amplified using an erbium-doped fiber amplifier (EDFA), and then coupled into a fiber, using a 2-to-1 fiber coupler, together with a probe field provided by a tunable ECLD in the 980 nm band. A section of the fiber is tapered, to enable efficient coupling of the pump and probe fields into and out of a microtoroid resonator. The pump and probe fields in the transmitted signals are separated from each other using a wavelength division multiplexer (WDM) and then sent to two separate photodetectors (PDs). The electrical signals from the PDs are then fed to an oscilloscope, in order to monitor the time-domain behavior, and also to an electrical spectrum analyzer (ESA) to obtain the power spectra.
It can be concluded that the intracavity pump and probe fields do not directly couple to each other, and that the probe and pump fields couple to the same mechanical mode of the microcavity with different coupling strengths. The technology demonstrates that in such a situation, the mechanical mode mediates an indirect coupling between the fields. The dynamical equation for the intracavity pump mode coupled to the mechanical mode of the cavity can be written as
{dot over (a)}
pump−[γpump−i(Δpump−gpumpX)]apump+iκϵpump(t), (S1)
where apump is the complex amplitude of the intracavity pump field, γpump is the damping rate of the cavity pump mode, ϵpump(t) represents the amplitude of the input pump field, κ is the pump-resonator coupling rate, Δpump is the frequency detuning between the input pump field and the cavity resonance, X is the position of the mechanical mode coupled to apump, and gpump is the strength of the optomechanical coupling between the optical pump field and the mechanical mode. This equation can be solved in the frequency-domain by using the Fourier transform as
where apump(ω) X(ω), and ϵpump(ω) are the Fourier transforms of the time-domain signals apump(t), X(t), and ϵpump(t). Since the dynamics of the mechanical motion X(t) is slow compared to that of the optical mode, the convolution term can be replaced in the above equation by the product apump (ω)X(ω), under the slowly-varying envelope approximation, which then leads to
X(ω) is in general so small that we have gpump2|X(ω)|2«(ω−Δpump)2+γpump2. Then using the identity 1/(1−x)≈1+x, for x«1, we can re-write Eq. (S3) as
By multiplying the above equation with its conjugate and dropping the linear term of X(ω), which is zero on average, we can obtain the relation between the spectrum Spump(ω)=|apump(ω)|2 of the optical mode apump and the spectrum of the mechanical motion SX(ω)=|X(ω)|2 as
is a susceptibility coefficient. By further introducing the normalized spectrum
the above equation can be written as
A similar equation can be obtained by analyzing the spectrum of the optical mode aprobe coupled to the probe field as
γprobe is the damping rate of the cavity mode coupled to the probe field, ϵprobe(t) represents the amplitude of the input probe field, Δprobe is the detuning between the input probe field and the cavity resonance, and gprobe is the coupling strength between the optical mode aprobe and the mechanical mode.
From Eqs. (S8) and (S9), the relation between the normalized spectra {tilde over (S)}pump(ω) and {tilde over (S)}probe (ω) is obtain as
If we assume that the detunings and damping rates of the optical modes are close to each other, i.e., Δpump≈Δprobe and γpump≈γprobe, we have χprobe2(ω)/χpump2(ω)≈1, leading to
{tilde over (S)}probe(ω)≈G {tilde over (S)}pump(ω). S(13)
This implies that the spectra of the pump and probe fields are correlated with each other. The correlation factor G is mainly determined by the opto-mechanical coupling strengths of the pump and the probe fields as well as the intensities of these fields.
The relation between the spectra of the pump and probe signals shows that the opto-mechanical coupling strengths gpump and gprobe of the pump and probe field to the excited mechanical mode determine how closely the probe field will follow the pump field. Clearly, these coupling strengths do not change the shape of the spectrum, and this is the reason why the probe signal follows the pump signal in the frequency domain and enters the chaotic regime via the same bifurcation route, despite the fact that they are far detuned from each other (
When demonstrating the technology, the mechanical motion is excited by the strong pump field, and the probe is chosen to have such a low power that it could not induce any mechanical oscillations. The large pump and probe detuning ensured that there is no direct coupling between them. The fact that both the pump and the probe are within the same resonator that sustains the mechanical oscillation naturally implies that both the pump and the probe are affected by the same mechanical oscillation with varying strengths, depending on how strongly they are coupled to the mechanical mode. The pump and probe spectra (
One implementation of the technology as disclosed and claimed is configured to control chaos and stochastic noise. The technology is configured to control chaos and stochastic noise by increasing the pump power (1550 nm band) on the detected pump and the probe signals (980 nm band), on the degree of sensitivity to initial conditions and chaos in the probe. This is accomplished by calculating the maximal Lyapunov exponent (MLE) from the detected pump and probe signals. Lyapunov exponents quantify the sensitivity of a system to initial conditions and give a measure of predictability. They are a measure of the rate of convergence or divergence of nearby trajectories in phase space.
The behavior of the MLE is a good indicator of the degree of convergence or divergence of the whole system. A positive MLE implies divergence and sensitivity to initial conditions, and that the orbits are on a chaotic attractor. If, on the other hand, the MLE is negative, then trajectories converge to a common fixed point. A zero exponent implies that the orbits maintain their relative positions and they are on a stable attractor. The technology demonstrates that with increasing pump power the degree of chaos and sensitivity to initial conditions, as indicated by the positive MLE, first increase and then decreased after reaching its maximum, both for the pump and the probe fields (
Referring to
The bandwidth D of the probe signal increases with increasing pump power (
The effect of opto-mechanical backaction, on the other hand, is always present in the power range shown in
In
The technology as disclosed and claimed demonstrates stochastic resonance mediated by opto-mechanically-induced-chaos. Referring to
The technology as disclosed and claimed herein demonstrates that below a critical value, increasing the pump power increases the signal-to-noise ratio (SNR) of both the probe and the pump fields; however, beyond this value, the SNR decreased despite increasing pump power (
An observed noise benefit (
At low pump powers, corresponding to periodic or less-chaotic regimes (i.e., negative or zero Lyapunov exponent), the contribution of the backaction noise is small, and chaos is not strong enough to help amplify the signal. Therefore, the SNR is low. At much higher pump power levels, the system evolves out of chaos. At the same time, the noise contribution to the probe from the opto-mechanical backaction increases with increasing pump power and becomes comparable to the probe signal. Consequently, the SNR of the probe decreases. Between these two SNR minima, the noise attains the optimal level to amplify the signal coherently with the help of intermode interference due to the chaotic map; and thus an SNR maximum occurs. Indeed, resonant jumps between different attractors of a system due to chaos-mediated noise as a route to stochastic resonance and to improve SNR.
The mean (τ) (
The technology as disclosed and claimed demonstrates a bifurcation process and the route to chaos of the probe fields follow the route to chaos of the pump. When under test, the technology demonstrated a mechanical mode with a frequency of around 26 MHz, and the evolution of this mode as a function of the power of the input pump field.
Referring to
In
{dot over (a)}
pump=−[γpump−i(Δpump−gpumpX)]apump+iκϵpump(t), (S14)
{dot over (a)}
probe=−[γprobe−i(Δprobe−gprobeX)]aprobe+iκϵprobe(t), (S15)
{dot over (X)}=−Γ
m
X+Ω
m
P, (S16) 2
{dot over (P)}=−Γ
m
P−Ω
m
X+g
pump
|a
pump|2, (S17)
which describe the evolution of the pump and probe cavity modes and the mechanical mode. In a simulation, a single mechanical eigenmode with frequency 26 MHz can be considered, similar to what is demonstrated by the technology under test. Here, Ωm and Γm are the frequency and damping rate of the mechanical mode. The probe signal is chosen to be very weak, so that it does not induce mechanical or thermal oscillations. Consequently, the mechanical mode was induced only by the pump field as described by the expression in Eq. (S17). The model explains the observations of the technology. It is clearly seen that the probe field follows the pump field during the bifurcation process.
As shown in
Referring to
In order to understand how the co-existence of the pump and probe fields in the same opto-mechanical resonator affect their interaction with the system and with each other, consider the following Hamiltonian
where the first (fourth) and second (fifth) terms are related to the free evolution of the probe aprobe (pump apump) field, and the third (sixth) term explains the interaction of the probe (the pump) field with the mechanical mode X. The last term corresponds to the free evolution of the mechanical mode.
First, consider only the probe field by eliminating the fourth, fifth and sixth terms. In this case, resulting at the Hamiltonian
By introducing the translational transformation
the Hamiltonian H can be re-expressed as
where we see that the nonlinear interaction between the probe field and the mechanical motion leads to an effective Kerr-like nonlinearity in the optical mode aprobe, with its coefficient given as
where Ωm is the frequency of the mechanical mode. Equation (S22) implies that the opto-mechanically-induced Kerr-like nonlinearity is dependent on (i) the opto-mechanical coupling between the optical and mechanical modes and (ii) the frequency of the mechanical mode.
Following a similar procedure, we can derive the coefficient of nonlinearity for the case when only the pump field is present. In such a case, resulting in
By introducing the transformation
the Hamiltonian rewritten as
Thus, the coefficient of the effective Kerr-like nonlinearity in the optical mode apump becomes
where Ωm is the frequency of the mechanical mode and gpump is the strength of the coupling between the pump and mechanical modes.
Now let us consider the case where both the pump and probe fields exist within the same resonator and they are coupled to the same mechanical mode. In this case, by applying the transformation
re-express the Hamiltonian given in Eq. (S18) as
Here the third and seventh terms are the coefficients of the Kerr-like nonlinearity derived earlier for the cases when only the probe or the pump fields exist in the opto-mechanical resonator. The last term, on the other hand, is new and implies an effective interaction between the pump and probe fields, if they both exist in the opto-mechanical resonator.
The dynamical equations of this system can be written as
{dot over (a)}
pump=−[γpump−i(Δpump−gpumpX)]apump+iκϵpump, (S29)
{dot over (a)}
probe=−[γprobe−i(Δprobe−gprobeX)]aprobe+iκϵprobe. (S30)
In the long-time limit (i.e., steady-state), we have {dot over (a)}pump, {dot over (a)}probe≈0, which leads to
If we further eliminate the degrees of freedom of the mechanical mode X from the above equations, then, under the conditions that γpump=γprobe, Δpump=Δprobe, and gpump=gprobe, we have
a
pump=(ϵpump/ϵprobe)αprobe. (S33)
By substituting this equation into the last term in Eq. (S28), we see that the last term of the Hamiltonian becomes
from which we define the coefficient of nonlinearity as
It is clear that even a very weak probe field can experience a strong Kerr nonlinearity, and hence a nonlinear dynamics, if the intensity of the pump is sufficiently strong. Thus, the system intrinsically enables an opto-mechanically-induced Kerr-like nonlinearity, which helps the optical pump and probe fields interact with each other. It is clear that the strength of the interaction can be made very high by increasing the ratio of the intensity of the input pump field ϵpump2 to that of the input probe field ϵprobe2. With the configuration of the technology as tested, the pump field is at least three-orders of magnitude larger than the probe field. Thus the nonlinear coefficient {tilde over (μ)}probe given in Eq. (S35) is increased by at least three-orders of magnitude, compared to the nonlinear coefficient μprobe given in Eq. (S22).
The trajectory of the mechanical motion can be estimated from the demonstration data. The mechanical mode excited in the microtoroid during the demonstration has a frequency of Ωm=26.1 MHz and a damping rate of Γm=0.2 MHz, implying a quality factor of Qm≈130 These values are used in the nonlinear opto-mechanical equations to reconstruct the mechanical motion. It is seen that the opto-mechanical resonator experiences a periodic motion (
{dot over (X)}=−ΓmX+ΩmP, (S36)
{dot over (P)}=−Γ
m
P−Ω
m
X+g
pump
I(t), (S37)
where P is the momentum of the mechanical mode and I(t)=|apump(t)|2 is the intensity of the pump with the field amplitude apump. By introducing the complex amplitude
b=(X+iP)/√{square root over (2)}, Eqs. (S36) and (S37) can be rewritten as
{dot over (b)}=−(Γm−iΩm)b+gpumpl(t). (S38)
The above equation can be solved in the frequency domain as
from which we obtain
is the susceptibility coefficient induced by the mechanical resonator and SI(ω)=|I(ω)|2 is the spectrum of I(t). As shown in
Lyapunov exponents quantify sensitivity of a system to initial conditions and give a measure of predictability. They are a measure of the rate of convergence or divergence of nearby trajectories. A positive exponent implies divergence and that the orbits are on a chaotic attractor. A negative exponent implies convergence to a common fixed point. Zero exponent implies that the orbits maintain their relative positions and they are on a stable attractor. The present technology as disclosed shows how the pump power affects the maximum Lyapunov exponent of the pump and probe fields. In
This is similar to the behavior observed for the varying pump field. Interestingly, both the pump and probe fields follow the same dependence on the pump-cavity detuning. When examining the effect of probe-cavity detuning (
In order to further illustrate the stochastic resonance phenomenon, first, focus on the dynamics of the optical mode coupled to the probe field aprobe. The total Hamiltonian of the optical modes apump, aprobe, and the mechanical mode can be written as in Eq. (S18). By introducing the translation transformation in Eq. (S27) and getting rid of the degrees of freedom of the mechanical mode and the optical mode coupled to the pump field apump, the Hamiltonian in Eq. (S18) can be re-expressed as
H=Δ
probe
a
probe
†
a
probe+κϵprobe(aprobe†+aprobe)−{tilde over (μ)}probe(aprobe†aprobe)2, (S42)
where {tilde over (μ)}probe is given in Eq. (S35). We can see that the nonlinear opto-mechanical coupling leads to an effective fourth-order nonlinear term in the optical mode aprobe. Introducing the normalized position and momentum operators
we write the following dynamical equation by dropping some non-resonant terms and introducing the noise terms:
{dot over (x)}
probe=−γprobexprobe+ωprobepprobe, (S44)
{dot over (p)}
probe=−Δprobexprobe−γprobepprobe+{tilde over (μ)}probex3+κϵprobe(t)+ξ(t), (S45)
where ξ(t) is a noise term with a correlation time negligibly small when compared to the characteristic time scale of the optical modes and mechanical mode of the optomechanical resonator:
ξ(t)ξ(t′=2Dδ(t−t′), (S46)
with D denoting the strength of the noise. Subsequently, we arrive at the second-order oscillation equation
{umlaut over (x)}
probe+2γprobe{dot over (x)}probe=−(Δprobe2+γprobe2)xprobe+{tilde over (μ)}probeΔprobexprobe3+κΔprobeϵprobe(t)+Δprobeξ(t). (S47)
Under the condition that Δprobe«γprobe in the overdamped limit, the above second-order oscillation equation can be reduced to
If introducing the normalized time unit τ=(2γprobe/Δprobe)t, arriving at
which is a typical equation leading to the stochastic resonance phenomenon. The signal-to-noise ratio (SNR) for such a system is given by
Since the strength of the noise D is related to the pump power Ppump by D=αPpump1/2, the relation between the SNR and the pump power can be re-written as
which implies that the SNR is not a monotonous function of the pump power Ppump and hence it is possible to increase the SNR by increasing the pump power (i.e., subsequently by increasing the bandwidth D and hence the noise). Following the same procedure one can derive SNR for the pump in a straightforward way.
In
As discussed above, stochastic resonance is a phenomenon in which the response of a nonlinear system to a weak input signal is optimized by the presence of a particular level of noise, i.e., the noise-enhanced response of a deterministic input signal. Coherence resonance is a related effect demonstrating the constructive role of noise, and is known as stochastic resonance without input signal. Coherence resonance helps to improve the temporal regularity of a bursting time series signal. The main difference between stochastic resonance and coherence resonance is whether a deterministic input signal is input to the system and whether the induced SNR enhancement is the consequence of the response of this deterministic input. With at least on implementation of the present technology, a weak probe signal, which is modulated by the mechanical mode of the optomechanical resonator at the frequency Ωm=26 MHz, acts as a periodic input signal fed into the system. In order to confirm that the observed phenomenon in the technology as demonstrated is stochastic resonance rather than coherence resonance, numerical simulations are performed and compared the results with the present technology demonstration results. The dynamical equations used for numerical simulation are given by
{dot over (a)}
pump=−[γpump−i(Δpump−gpumpX)]apump+iκϵpump(t)+Dpumpξpump(t), (S52)
{dot over (a)}
probe=−[γprobe−i(Δprobe−gprobeX)]aprobe+iκϵprobe(t)+Dprobeξprobe(t), (S53)
{dot over (X)}=−Γ
m
X+Ω
m
P, (S54)
{dot over (P)}=−Γ
m
P−Ω
m
X+g
pump
|a
pump|2+Dmξm(t), (S55)
with parameters Δpump/Ωm=Δprobe/Ωm=1, γpump/Δpump=0.1, γprobe/Δprobe=0.1,
Γm/Ωm=0.01, gpump/Δpump=gprobe/Δprobe=0.1, 78/Δpump=ϵpump/Δpump−1,
Dpump/Δpump=0.1, Dprobe/Δprobe=0.1, Dm/Ωm=0.1. ξpump(t), ξprobe(t), ξm(t) are white noises such that
E[ξ
i(t)]=0,E[ξi(t)ξj(t′)]=δijδ(t−t′), (S56)
where E(·) is average over the noise. In the case of stochastic resonance, ϵprobe/Δprobe=0.1, and in the case of coherence resonance ϵprobe/Δprobe=0 to simulate the system with a weak probe input and without the weak probe input, respectively.
The output spectra obtained from the demonstration of the technology is compared (
It is seen that in the output spectra obtained from the technology demonstration (
Next, the mean interspike intervals are compared and its scaled standard deviation calculated from the output signal measured in our experiments with the results of numerical simulations of the technology in the one or more implementations disclosed when a weak probe field is used as an input (case of stochastic resonance) and when there is no input probe field (case of coherence resonance). The interspike interval is defined as the mean time between two adjacent spikes in the time-domain output signals,
where τi is the time between the i-th and (i+1)-th spikes. The variation R of the interspike intervals which is defined as the scaled standard devistion of the mean interspike interval is given as
In
The various implementations of chaos induced stochastic resonance in opto-mechanical systems as shown above illustrate a novel system and method for opto-mechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. A user of the present technology as disclosed may choose any of the above implementations, or an equivalent thereof, depending upon the desired application. In this regard, it is recognized that various forms of the subject of chaos induced stochastic resonance in opto-mechanical system could be utilized without departing from the scope of the present invention.
**Chirality lies at the heart of the most fascinating and fundamental phenomena in modern physics like the quantum Hall effect, Majorana fermions and the surface conductance in topological insulators as well as in p-wave superconductors. In all of these cases chiral edge states exist, which propagate along the surface of a sample in a specific direction. The chirality (or handedness) is secured by specific mechanisms, which prevent the same edge state from propagating in the opposite direction. For example, in topological insulators the backscattering of edge-states is prevented by the strong spin-orbit coupling of the underlying material.
Transferring such concepts to the optical domain is a challenging endeavor that has recently attracted considerable attention. Quite similar to their electronic counterparts, the electromagnetic realizations of chiral states typically require either a mechanism that breaks time-reversal symmetry or one that gives rise to a spin-orbit coupling of light. Since such mechanisms are often not available or difficult to realize, alternative concepts have recently been proposed, which require, however, a careful arrangement of many optical resonators in structured arrays. Here we demonstrate explicitly that the above demanding requirements on the realization of chiral optical states propagating along the surface of a system can all be bypassed by using a single resonator with non-Hermitian scattering. The key insight in this respect is that a judiciously chosen non-Hermitian out-coupling of two near-degenerate resonator modes to the environment leads to an asymmetric backscattering between them and thus to an effective breaking of the time-reversal symmetry that supports chiral behaviour. More specifically, we show that a strong spatial chirality can be imposed on a pair of WGMs in a resonator in the sense of a switchable direction of rotation inside the resonator such that they can be tuned to propagate in either the clockwise (cw) or the counterclockwise (ccw) direction.
In our experiment we achieved this on-demand tunable modal chirality and directional emission using two scatterers placed in the evanescent field of a resonator. When varying the relative positions of the scatterers the modes in the resonator change their chirality periodically reaching maximal chirality and unidirectional emission at an exceptional point (EP) a feature which is caused by the non-Hermitian character of the system.
The setup consists of a silica microtoroid WGM resonator that allows for the in- and out-coupling of light through two single-mode waveguides (
First, using only the waveguide with ports 1 and 2 (
To investigate this modal chirality in detail we used both of the waveguides and monitored the transmission and reflection spectra at the output ports of the second waveguide for injection of light from two different sides of the first waveguide (
The crucial question to ask at this point is how the “chirality”—an intrinsic property of a mode that we aim to demonstrate-can be distinguished from the simple “directionality” (or sense of rotation) imposed on the light in the resonator just by the biased input. To differentiate between these two fundamentally different concepts based on the experimentally obtained transmission spectra, we determined the chirality and the directionality of the field within the WGM resonator using the following operational definitions: the directionality defined as D=(√{square root over (Ibccw)}−√{square root over (Ibcw)})/(√{square root over (Ibccw)}+√{square root over (Ibcw)}) simply compares the difference of the absolute values of the light amplitudes measured in the ccw and cw directions, irrespective of the direction from which the light is injected (
Finally, we addressed the question how this controllably induced intrinsic chirality can find applications and lead to new physics in the sense that the intrinsic chirality of the modes is fully brought to bear. The answer is to look at lasing in such devices since the lasing modes are intrinsic modes of the system. Previous studies along this line were restricted to ultrasmall resonators on the wavelength scale, where modes were shown to exhibit a local chirality and no connection to asymmetric backscattering could be established. Here we address the challenging case of resonators with a diameter being multiple times the wavelength (>50λ), for which we achieved a global and dynamically tunable chirality in a microcavity laser that we can directly link to the non-Hemitian scattering properties of the resonator. In our last set of experiments, we achieved a global and dynamically tunable chirality in a microcavity laser that we can directly link to the non-Hemitian scattering properties of the resonator. We used an Erbium (Er3+) doped silica microtoroid resonator coupled to only the first waveguide, which was used both to couple into the resonator the pump light to excite Er3+ions and to couple out the generated WGM laser light. With a pump light in the 1450 nm band, lasing from Er3+ions in the WGM resonator occurred in the 1550 nm band. Since the emission from Erbium ions couples into both the cw and ccw modes and the WGM resonators have a rotational symmetry, the outcoupled laser light typically does not have a pre-determined out-coupling direction in the waveguide. With a single fiber tip in the mode field, these initially frequency degenerate modes couple to each other creating split lasing modes. Using another fiber tip as a second scatterer, we investigated the chirality in the WGM microlaser by monitoring the laser field coupled to the waveguide in the cw and ccw directions. For this situation the parameters a and D from above can be conveniently adapted to determine the chirality of lasing modes based on the experimentally accessible quantities. Note that for the lasing modes chirality and directionality are equivalent as they both quantify the intrinsic dynamics of the laser system. We observed that by tuning the relative distance between the scatterers, the chirality of the lasing modes and with it the directional out-coupling to the fiber can be tuned in the same way as shown for the passive resonator (
As depicted in
To relate this behavior to the internal field distribution in the cavity, we also performed numerical simulations which revealed that when the intracavity intensity distribution shows a standing-wave pattern with a balanced contribution of cw and ccw propagating components and a clear interference pattern, the emission is bidirectional, in the sense that laser light leaks into the second waveguide in both the cw and ccw directions (
Summarizing, we have demonstrated chiral modes in whispering-gallery-mode microcavities and microlasers via geometry-induced non-Hermitian mode-couplings. The underlying physical mechanism that enables chirality and directional emission is the strong asymmetric backscattering in the vicinity of an EP which universally occurs in all open physical systems. We believe that our work will lead to new directions of research and to the development of WGM microcavities and microlasers with new functionalities. In addition to controlling the flow of light and laser emission in on-chip micro and nanostructures, our findings have important implications in cavity-QED for the interaction between atoms/molecules and the cavity light. They may also enable high performance sensors to detect nanoscale dielectric, plasmonic and biological particles and aerosols, and be useful for a variety of applications such as the generation of optical beams with a well-defined orbital angular momentum (OAM) (such as OAM microlasers, vortex lasers, etc.) and the topological protection in optical delay lines.
Two-Mode-Approximation (TMA) model and the eigenmode evolution. In this section we briefly review the two-mode approximation (TMA) model and the eigenmode evolution in whispering-gallery-mode (WGM) microcavities with nanoscatterer-induced broken spatial symmetry, as described briefly in the main text. This will help to understand the basic relationship between asymmetric backscattering of counter-propagating waves and the resulting co-propagation, non-orthogonality, and chirality of optical modes. We furthermore derive how the chirality of a lasing mode can be measured by weakly coupling two waveguides to the system. As a complementary schematic of the setup shown in
The TMA model used in our analysis was first phenomenologically introduced for deformed microdisk cavities and was later rigorously derived for the microdisk with two scatterers. The main approach is to model the dynamics in the slowly-varying envelope approximation in the time domain with a Schrödinger-like equation.
**Here Ψ, is the complex-valued two-dimensional vector consisting of the field amplitudes of the CCW propagating wave ΨCCW. and the CW propagating wave ΨCW. The former corresponds to the angular dependence in real space, and the latter to ; the positive integer m is the angular mode number. Since the microcavity is an open system, the corresponding effective Hamiltonian,
is a 2×2 matrix, which is in general non-Hermitian.
The real parts of the diagonal elements Ωc are the frequencies and the imaginary parts are the decay rates of the resonant traveling waves. The complex-valued off-diagonal elements A and B are the backscattering coefficients, which describe the scattering from the CW (CCW) to the CCW (CW) travelling wave. In general, in the open system the backscattering is asymmetric, |A|≠|B|, which is allowed because of the non-Hermiticity of the Hamiltonian. The complex eigenvalues of H are,
to which the following complex (not normalized) right eigenvectors are associated,
As shown in the text, the asymmetric scattering is closely related with the evolution of the eigenmodes, especially in the vicinity of the exceptional points (EP), where either of the backscattering coefficients A or B is zero and both the eigenvalues (S.61) and the eigenvectors (S.62) coalesce. To verify this interesting feature, we specifically checked the eigenmode evolution in our system both theoretically and experimentally. For the particular case of the WGM microtoroid perturbed by two scatterers the matrix elements of H are determined as follows,
where ωc denotes the intrinsic cavity resonant frequency, and κ0 and κ1 are the cavity decay rate and the cavity-waveguide coupling coefficient. The quantities 2Vj and 2Uj are given by the complex frequency shifts for positive- and negative-parity modes introduced by j-th particle (j==1,2) alone. These quantities can be calculated for the single-particle-microdisk system either fully numerically [using, e.g., the finite-difference time-domain method (FDTD), the boundary element method (BEM)], or analytically using the Green's function approach for point scatterers with Uj=0. Here we used the finite element method (FEM). In our simplified model Ui is set to zero since |U1|«|V1|.
Experimental observation of an EP by tuning the size and position of two scatterers. In our experiments with a silica microtoroid WGM resonator, we chose a mode for which there was no observable frequency splitting in the transmission spectra before the introduction of the scatterers. We probed the scatterer-induced chiral dynamics of the WGMs, using two silica nanotips whose relative positions (i.e., relative phase angle β) and sizes within the evanescent field of the WGMs were controlled by nanopositioners (
Emission and chirality analysis for the lasing cavity. As a consequence of the non-Hermitian character of the Hamiltonian the eigenvectors (S.62) are in general not orthogonal. This happens whenever the backscattering is asymmetric,
as
The asymmetric backscattering
also implies that both modes have a dominant component that increases the closer the system is steered to the EP (
In contrast to the original definition of the chirality, this chirality parameter also provides information on the sense of rotation not just on its absolute magnitude. For a balanced contribution, |A|≈|B|, the chirality is close to 0. In the case where the CCW (CW) component dominates, |A|>|B|, (|A|<|B|), the chirality approaches 1 (−1) and both modes become copropagating. It is possible to create a situation of full asymmetry in the backscattering, i.e. a→±1. In this case, either A or B vanishes, while the other component is nonzerol. Solving the Schrödinger Eq. (S.59), we get the eigenfrequencies of the system Eq. (S.61). The corresponding eigenmodes Eq. (S.62) can be further expressed as
Ψ±=ΨCCW±√{square root over (B/AΨCW)}□ (S.67)
In the experiments, the chirality (S.66) of the eigenmodes of the system can be obtained by coupling waveguides to the system (as shown in
a
cw,out=−√{square root over (κ1)}aΨCW=−√{square root over (κ1)}a√{square root over (B)} (S.68)
a
ccw,out=−√{square root over (κ1)}ΨCCW=−√{square root over (κ1)}a√{square root over (A)} (S.69)
Hence, the chirality of the lasing system can be obtained from the waveguide amplitudes as
where accwout can be either a1out or and can be either or or . The same formula can also be used in full numerical calculations to extract the chirality of the quasi-bound states of the system for comparison to the result of the two-mode approximation of Eq. (S.66).
Chirality analysis and comparison between the lasing and the transmission models. In this section we extend the TMA to describe the transmission of light through waveguide-cavity systems as illustrated in
with κ1 denoting the waveguide-resonator coupling coefficient. The losses due to coupling of the cavity to the waveguides are included in the diagonal elements Ω2 of the Hamiltonian (S.60). Assuming that there is no backscattering of light between the microcavity and the waveguides (which is justified when the distance between cavity and waveguides is sufficiently large) we derive the outgoing amplitudes in the lower waveguide as
We can choose κ1 to be real as we are only interested in the absolute values of a3,out and a4,out. For a CW excitation with a1-in at a fixed frequency ωe we find from Eqs. (S.72)-(S.73)
Analogously, for a CCW excitation via a2-in we find
The asymmetric backscattering expresses itself here by the fact that the numerator of a4,out in Eq. (S.75) is proportional to A, whereas the numerator of a3,out in Eq.(S.76) is proportional to B. Assuming that the input amplitudes a1-in and a2-in are the same, we find the chirality as defined by Eq. (S.66) in terms of the transmission amplitudes to be
where a4,out (a3,out) has been obtained by injecting light at port 1 (2). The crucial difference between the formulas for the chirality as measured in the lasing system [Eq. (S.70)] and the formula for the chirality |a|2 measured in a transmission experiment [Eq. (S.78)] is that in the former the intensities, |a|2 of the outgoing waveguide modes are used, whereas in the latter only the modulus of the amplitudes, |a|, appear.
In order to compare the two different chirality formulas, Eqs. (S.70) and (S.78), we have performed numerical calculations using a finite element method where we have solved the inhomogeneous Helmholtz equation. The calculations were restricted to the transverse magnetic (TM) polarization in two dimensions. The geometry of the system is shown in
In
In a next step we explicitly compared the full numerical results to the results from the TMA model. For this, we calculated the parameters A, β, and ωc through separate eigenvalue calculations for each of the scatterers, where no waveguides were attached to the system. The value for the coupling coefficient κ1 has been determined from transmission calculations from port 1 to port 3 with no scatterers present. In
The asymmetric backscattering which results in the intriguing chirality behavior in
Directionality analysis for the biased input case in the transmission model. As discussed in the main text, the intrinsic chirality is different from the directionality when light is injected into the resonator in a preferred direction such as in the CW or the CCW direction (i.e., we referred to this as the biased input). Our experiments described in the main text revealed that varying the relative distance (relative spatial phase) between the scatterers affects the amount of light coupled out of the resonator into the forward direction (i.e., in the direction of the input) and into the backward direction (i.e., in the opposite direction of the input); however, the amount of light coupled out of the resonator into the forward direction always remains higher than that in the backward direction.
As is evident from the foregoing description, certain aspects of the present technology as disclosed are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art. It is accordingly intended that the claims shall cover all such modifications and applications that do not depart from the scope of the present technology as disclosed and claimed.
Other aspects, objects and advantages of the present technology as disclosed can be obtained from a study of the drawings, the disclosure and the appended claims.
This application claims the benefit of and priority to provisional patent application Ser. No. 62/333,667, entitled Opto-Mechanical System And Method Having Chaos Induced Stochastic Resonance And Opto-Mechanically Mediated Chaos Transfer, filed May 9, 2016 and further claims the benefit of and priority to provisional patent application Ser. No. 62/293,746, entitled Chiral Photonics At Exceptional Points, filed Feb. 10, 2016, both of which are incorporated herein in their entirety.
This invention was made with government support under W911NF-12-1-0026 awarded by the U.S. Army Research Office. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62293746 | Feb 2016 | US | |
62333667 | May 2016 | US |