This application is based on Japanese Patent Application No. 2014-167685 filed on Aug. 20, 2014, the contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to optoacoustic imaging devices.
2. Description of Related Art
Conventionally, as devices for acquiring cross-sectional images inside a living body, there are known ultrasonic imaging diagnosis devices. Ultrasonic imaging diagnosis devices are capable of transmitting an ultrasonic wave into a living body as a tested object, performing luminance modulation on the reflection signal of the ultrasonic wave, and displaying cross-sectional morphological images. Some devices are capable of exploiting the Doppler effect to display blood velocity distribution, and some modern devices are even capable of displaying tissue elasticity.
On the other hand, in recent years, there has been developed optoacoustic imaging technology. In optoacoustic imaging technology, a living body as a tested object is irradiated nub pulsating light from a laser or the like. Then a living tissue inside the living body absorbs the pulsating light, and as a result of adiabatic expansion, an optoacoustic wave (ultrasonic wave), which is an elastic wave, is generated. This optoacoustic wave is detected with an ultrasonic probe, an optoacoustic image is generated based on the detection signal, and thereby the interior of the living body is visualized. By using pulsating light of a wavelength in or around a near-infrared region, it is possible to visualize differences in composition between different living tissues, for example differences in the amount of hemoglobin, the degree of oxidation, the amount of lipids, etc.
In analysis and diagnosis of a pathologically affected part, blood flow distribution and the pulsatility of blood flowing into the affected pan are observed to determine, for example, malignity. If pulsatility is present, blood flow increases in cardiac systole and decreases in cardiac diastole. One approach is to acquire moving image information on the affected part, but this requires storage and playback of moving images, leading to an increased amount of data stored and an increased analysis time.
With the optoacoustic imaging mentioned above, it is possible to grasp blood flow itself in the affected part, but as to its relationship with heart beats, it is necessary to separately test the heart, and thus a user has to conduct analysis on the acquired rest results, leading to an increased analysis time.
Incidentally, Japanese patent application published No. 2001-292993 discloses an ultrasonic diagnosis device that generates an ultrasonic cross-sectional image in synchronism with an electrocardiographic signal, but suggests nothing about optoacoustic imaging.
An object of the present invention is to provide an optoacoustic imaging device that allows a user easy analysis of information acquired from an optoacoustic wave for study in relation to organ pulsation (e.g., heart beats).
To achieve the above object, according to the present invention, an optoacoustic imaging device includes: a light source module which irradiates a tested object with light; a light source driver which drives and controls the light source module; a detector which detects an optoacoustic wave generated inside the tested object as a result of the tested object being irradiated with the light; an image generator which generates still image information based on a detection signal from the detector, and an acquirer which acquires an organ pulsation signal. Here, the organ pulsation signal is used as a trigger to make the light source driver drive the light source module and to make the image generator generate the still image information (a first configuration).
In the first configuration described above, the image generator may generate the still image information only at first and second timings within one cycle of the organ pulsation signal, the first tinting corresponding to systole of an organ and the second timing corresponding to diastole of an organ (a second configuration).
With this configuration, it is possible to acquire images appropriate for study in relation to organ pulsation while greatly reducing the amount of data.
In the second configuration described above, the first timing may be a timing delayed by a first delay time from the timing at which a predetermined wave indicating contraction of the organ is detected in the organ pulsation signal, and the second timing may be a timing delayed by a second delay time, which is longer than the first delay time, from the timing at which the predetermined wave is detected in the organ pulsation signal (a third configuration).
With this configuration, it is possible to acquire images with consideration given to a delay in issue reaction inside the tested object.
In the first configuration described above, during a predetermined period from a timing delayed by a predetermined delay time from the timing at which the predetermined wave is detected in the organ pulsation signal, the image generator may generate a plurality of sets of still image information.
With this configuration, it is possible to acquire appropriate images even when the delay in tissue reaction varies from one tested object to another.
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, with reference to
More specifically, as shown in
The ultrasonic probe 20 includes a drive power supply 101, a light source driver 102 which is supplied with electric power from the drive power supply 101, an irradiator 201A, an irradiator 201B, and an acoustoelectric converter 202. The irradiators 201A and 201B each include a light source module 103. Each light source module 103 includes light sources 103A and 103B, which are LED light sources. The light source driver 102 includes a light source drive circuit 102A, which drives the light source 103A, and a light source drive circuit 102B, which drives the light source 103B.
A schematic from view and a schematic side view of the ultrasonic probe 20 are shown in
Between the light sources 103A and 103B, the LED elements have different emission wavelengths. The light source drive circuit 102A (
The irradiators 201A and 201B shown in
The acoustoelectric converter 202 is composed of a plurality of ultrasonic oscillating elements 202A arranged in the Y direction between the irradiators 201A and 201B. The ultrasonic oscillating elements 202A are piezoelectric elements which, when a voltage is applied to them, oscillate and generate an ultrasonic wave and which, when vibration (ultrasonic wave) is applied to them, generate voltage. Between the acoustoelectric converter 202 and the surface of the tested object 150, an adjustment layer (unillustrated) is provided which allows adjustment of a difference in acoustic impedance. The adjustment layer serves to propagate the ultrasonic wave generated by the ultrasonic oscillating elements 202A efficiently into the tested object 150, and also serves to propagate the ultrasonic wave (including an optoacoustic wave) from inside the tested object 150 efficiently to the ultrasonic oscillating elements 202A.
The irradiators 201A and 201B emit pulsating light, which enters the tested object 150 while being diffused, and is absorbed by a light absorber (living tissue) inside the tested object 150. When the light absorber (e.g., living tissue P1 shown in
The ultrasonic oscillating elements 202A also generate an ultrasonic wave to transmit it into the tested object 150, and receives the ultrasonic wave reflected inside the tested object 150 to generate a voltage signal. Thus, the optoacoustic imaging device 100 of this embodiment can perform not only optoacoustic imaging but also ultrasonic imaging.
The image generator 30 (
The reception circuit 301 selects, out of the plurality of ultrasonic oscillating elements 202A, a part of them, and amplifies the voltage signal (detection signal) with respect to the selected ultrasonic oscillating elements.
In optoacoustic imaging, for example the plurality of ultrasonic oscillating elements 202A are divided into two regions adjoining in the Y direction; of the two regions, one is selected for first-time irradiation, and the other is selected for second-time irradiation. In ultrasonic imaging, for example, an ultrasonic wave is generated while switching is performed from one part of the plurality of ultrasonic oscillating elements 202A to another, i.e., from one group of adjoining ultrasonic oscillating elements to another (so-called linear electronic scanning), and the reception circuit 301 accordingly so switches as to select one group after another.
The A/D convener 302 converts the amplified detection signal from the reception circuit 301 into a digital signal. The reception memory 303 stores the digital signal from the A/D converter 302. The data processor 304 serves to branch the signal stored in the reception memory 303 between the optoacoustic image reconstructor 305 and the ultrasonic image reconstructor 308.
The optoacoustic image reconstructor 305 performs phase matching addition based on the detection signal of an optoacoustic wave, and reconstructs the data of the optoacoustic wave. The discriminator/logarithmic converter 306 performs logarithmic compression and envelope discrimination on the data of the reconstructed optoacoustic wave. The optoacoustic image constructor 307 then converts the data that has undergone the processing by the discriminator/logarithmic converter 306 into pixel-by-pixel luminance value data. Specifically, according to the amplitude of the optoacoustic wave, optoacoustic image data (grayscale data) is generated as data comprising the luminance value at every pixel on the XY plane in
On the other hand, the ultrasonic image reconstructor 308 performs phase matching addition based on the detection signal of an ultrasonic wave, and reconstructs the data of the ultrasonic wave. The discriminator/logarithmic converter 309 performs logarithmic compression and envelope discrimination based on the data of the reconstructed ultrasonic wave. The ultrasonic image constructor 310 then converts the data that has undergone the processing by the discriminator/logarithmic converter 309 into pixel-by-pixel luminance value data. Specifically, according to the amplitude of the ultrasonic wave as the reflected wave, ultrasonic image data (grayscale data) is generated as data comprising the luminance value at every pixel on the XY plane in
The image merger 311 merges the optoacoustic image data and the ultrasonic image data together to generate composite image data. The image merging here may be achieved by superimposing the optoacoustic image on the ultrasonic image, or by putting together the optoacoustic image and the ultrasonic imaging side by side (or one on top of the other). The image display 40 displays an image based on the composite image data generated by the image merger 311.
The image merger 311 may output the optoacoustic image data or the ultrasonic image data as it is to the image display 40.
The controller 312 transmits a wavelength control signal to the light source driver 102. On receiving the wavelength control signal, the light source driver 102 chooses either the light sources 103A or the light sources 103B. The controller 312 then transmits a light trigger signal to the light source driver 102, which then transmits a drive signal to whichever of the light sources 103A and the light sources 103B is chosen.
In response to an instruction from the controller 312, the transmission control circuit 313 transmits a drive signal to the acoustoelectric converter 202 to make it generate an ultrasonic wave. The controller 312 also controls the reception circuit 301, etc.
The storage 314 is a storage device in which the controller 312 stores various kinds of data, and is configured as a non-volatile memory device, a HDD (hard disk drive), or the like.
Here, it is assumed that the light sources 103A and 103B emit light of different wavelengths. The wavelengths can be set at wavelengths at which a test target exhibits a high absorptance. For example, the wavelength of the light source 103A can be set at 760 nm, at which oxidized hemoglobin in blood exhibits a high absorptance, and the wavelength of the light source 103B can be set at 850 nm, at which reduced hemoglobin in blood exhibits a high absorptance. In this case, for example, when light is emitted from the light source 103A so that the tested object 150 is irradiated with light of a wavelength of 760 nm, the light is absorbed by oxidized hemoglobin contained in blood present in arteries, tumors, etc. inside the tested object 150, and as optoacoustic wave is generated as a result; the optoacoustic image constructor 307 thus generates an optoacoustic image showing the arteries, tumors, etc.
Next, a synchronous electrocardiographic imaging function according to this embodiment will be described with reference also to a timing chart in
As shown in
For example as shown in
The controller 312 acquires the electrocardiographic signal detected by the electrocardiographic detector 110. When the controller 312 detects an r-wave in the acquired electrocardiographic signal, from that timing (r-wave detection timing in
Moreover, at the timing that the controller 312 has counted a predetermined delay time t2 longer than the delay time t1 (imaging timing (t2) in
The timing delayed by the delay time t1 from the r-wave detection timing allows for a delay in tissue reaction in the tested object 150, and thus corresponds to cardiac systole. The timing delayed by the delay time t2 likewise allows for a delay in tissue reaction in the tested object 150, and thus corresponds to cardiac diastole.
Based on the first and second optoacoustic image data stored in the storage 314, the image display 40 can display the corresponding images (still images) (side by side or otherwise). For example, in a case where the wavelength of the light emitted from the light source 103A used for imaging is set at a wavelength at which oxidized hemoglobin exhibits a high absorptance, if in the images displayed on the image display 40 based on the first and second optoacoustic image data, a high luminance level is observed in a pathologically affected part and a large variation in luminance is observed between the two images, then it is suspected that arterial blood flows into the affected part in synchronism with heart beats, indicating a rather malignant tumor. On the other hand, a small variation in luminance between the two images reveals that the affected part is little affected by heart beats.
Moreover, in this embodiment, within one cycle of an electrocardiographic signal (the period from one r-wave to the next), optoacoustic image data is generated only at two timings corresponding to delay times t1 and t2 respectively, and this helps greatly reduce the amount of data stored in the storage 314. It is however also possible to perform imaging at timings delayed not only by delay times t1 and t2 but also by an intermediate delay time between t1 and t2.
Next, a second embodiment of the present invention will be described. This embodiment is a modified example of the synchronous electrocardiographic imaging function according to the first embodiment. The synchronous electrocardiographic imaging function according to the second embodiment will now be described with reference to a timing chart in
When the controller 312 detects an r-wave in the electrocardiographic signal acquired from the electrocardiographic detector 110, from that timing (r-wave detection timing in
The generation of image data by the optoacoustic image constructor 307 is repeated until a predetermined, delay time t1″ longer than the delay time t1 elapses, with a result that optoacoustic image data (first optoacoustic image data) of a plurality of frames is generated and stored in the storage 314.
Moreover, when the controller 312 has counted time corresponding to a predetermined delay time t2′ (longer than the delay time t1″ but shorter than the predetermined delay time t2) from the timing that the r-wave was detected, it starts to transmit a light trigger signal in a similar mariner as described above, so that the optoacoustic image constructor 307 starts generating image generation. The image generation by the optoacoustic image constructor 307 is repeated until a predetermined delay time t2″ longer than the delay time t2 elapses, with a result that optoacoustic image data (second optoacoustic image data) of a plurality of frames is generated and stored in the storage 314.
As described above, in this embodiment, during a period from before to after the time point that a delay time t1 corresponding to cardiac systole lapses, optoacoustic image data (first optoacoustic image data) of a plurality of frames is generated, and during a period from before to after the time point that a delay time t2 corresponding to cardiac diastole lapses, optoacoustic image data (second optoacoustic image data) of a plurality of frames is generated. The generation of image data during two periods as described above is repeated every time an r-wave is detected.
Through the viewing of a plurality of still images displayed on the image display 40 based on the first and second optoacoustic image data stored in the storage 314, a user can easily study the test results in relation to heart beats.
In particular, in this embodiments, even if different tested objects 150 have different tissue reaction delays, it is possible to obtain image data appropriate for conducting diagnosis.
The embodiments through which the present invention is described herein allow for various modifications without departing from the spirit of the present invention. For example, the electrocardiographic detector may be provided in the optoacoustic device.
For another example, the timings of organ pulsation (e.g., heart beats) may be detected by analyzing an optoacoustic image (or ultrasonic image) without using an electrocardiographic signal, and imaging may be performed at the detected timings. This falls within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-167685 | Aug 2014 | JP | national |