The present invention is related to an optoelectronic device and method thereof. More particularly, the present invention provides an optoelectronic device comprising a light emitting semiconductor and an encapsulant. The encapsulant is made from an encapsulant formulation comprising a silicone epoxy, and a curing agent.
Currently, there are no commercial encapsulant materials that meet all requirements for optoelectronic devices such as light emitting diodes (LEDs), charge coupled devices (CCDs), large scale integrations (LSIs), photodiodes, vertical cavity surface emitting lasers (VCSELs), phototransistors, photocouplers, and optoelectronic couplers etc. Early 5 mm LED devices had extremely low flux intensities and consequently low thermal requirements. For example, encapsulant materials used in the 5 mm device ranged from tough silicone to extremely durable epoxy systems. However, silicone materials generally do not have the toughness required for long term durability in advanced lighting applications. Although durability, ease of processing, and cost effectiveness are three of the strengths of epoxy derived encapsulant materials, epoxy systems are not perfect in some aspects either. One of the conventional encapsulations of optoelectronic devices has primarily relied on blends of bisphenol-A epoxy resins and aliphatic anhydride curing agents. As described in U.S. Pat. No. 4,178,274, one disadvantage of these compositions, which harden fast through the use of known accelerators such as tertiary amines, imidazoles or boron trifluoride complexes, is their poor thermal aging stability. The materials used heretofore become discolored after extended exposure to temperatures above 80° C. The resulting resins, which become yellow to brown, have considerably reduced light transmittance. Furthermore, because of the aromatic character of bisphenol-A based epoxy resins, these encapsulants are typically less stable when exposed to ultraviolet radiation and may degrade on extended exposure to ultraviolet light. For example, Bis glycidoxybisphenol A has been employed in 5 mm devices with flux intensity approximately 20 lumens per watt. The aromatic based materials in general are not suitable for UV application due to yellowing upon exposure to wavelengths less than 455 nm. Cyclo-olefin co-polymers have been used in blue power package devices; however, they do not survive long term temperatures above 100° C.
Many previous silicone epoxy materials have had limited shelf life and a viscosity less than ideal for useful application.
Advantageously, the present invention provides an improved optoelectronic device, the encapsulant of which has improved thermal and/or UV stabilities properties, increased viscosity, increased transition glass temperature (Tg), and transparency, among others.
One aspect of the present exemplary embodiment is to provide an optoelectronic device comprising a light emitting semiconductor and an encapsulant. The encapsulant is made from an encapsulant formulation comprising a silicone epoxy and a curing agent.
Another aspect of the present exemplary embodiment is to provide a method of preparing an optoelectronic device, which comprises (i) providing a light emitting semiconductor, and (ii) encapsulating the light emitting semiconductor with an encapsulant that is made from a formulation comprising a silicone epoxy and a curing agent.
The present invention provides an optoelectronic device that comprises a light emitting semiconductor and an encapsulant. The light emitting semiconductor may be a light emitting diode (LED) or a laser diode. The encapsulant is made from an encapsulant formulation comprising a silicone epoxy and a curing agent. Also included within the scope of the present invention are methods of preparing such optoelectronic device.
The optoelectronic device of the invention may be any solid-state or other electronic device for generating, modulating, transmitting, and sensing electromagnetic radiation in the ultraviolet, visible, and infrared portions of the spectrum. Optoelectronic devices, sometimes referred to as semiconductor devices or solid state devices, include, but are not limited to, light emitting diodes (LEDs), charge coupled devices (CCDs), photodiodes, vertical cavity surface emitting lasers (VCSELs), phototransistors, photocouplers, opto-electronic couplers, and the like. However, it should be understood that the encapsulant formulation can also be used in devices other than an optoelectronic device, for example, logic and memory devices, such as microprocessors, ASICs, DRAMs and SRAMs, as well as electronic components, such as capacitors, inductors and resistors, among others.
Several non-limiting examples of optoelectronic devices of the present invention are illustrated in the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating, and are, therefore, not intended to indicate relative size and dimensions of the optoelectronic devices or components thereof.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the invention. In the drawings and the following description, it is to be understood that like numeric designations refer to components of like function.
With reference to
The LED chip 104 emits radiation from the radiation emitting surface 109. The LED may emit visible, ultraviolet or infrared radiation. The LED chip 104 may be any LED chip containing a p-n junction of any semiconductor layers capable of emitting the desired radiation. For example, the LED chip 104 may contain any desired Group III-V compound semiconductor layers, such as GaAs, GaAlAs, GaN, InGaN, GaP, etc., or Group II-VI compound semiconductor layers such as ZnSe, ZnSSe, CdTe, etc., or Group IV-IV semiconductor layers, such as SiC. The LED chip 104 may also contain other layers, such as cladding layers, waveguide layers and contact layers.
The LED is packaged with an encapsulant 111 prepared according to the present invention. In one embodiment, the encapsulant 111 is used with a shell 114. The shell 114 may be any plastic or other material, such as polycarbonate, which is transparent to the LED radiation. However, the shell 114 may be omitted to simplify processing if encapsulant 111 has sufficient toughness and rigidity to be used without a shell. Thus, the outer surface of encapsulant 111 would act in some embodiments as a shell 114 or package. The shell 114 contains a light or radiation emitting surface 115 above the LED chip 104 and a non-emitting surface 116 adjacent to the lead frame 105. The radiation emitting surface 115 may be curved to act as a lens and/or may be colored to act as a filter. In various embodiments the non-emitting surface 116 may be opaque to the LED radiation, and may be made of opaque materials such as metal. The shell 114 may also contain a reflector around the LED chip 104, or other components, such as resistors, etc., if desired.
A phosphor may be coated as a thin film on the LED chip 104; or coated on the inner surface of the shell 114; or interspersed or mixed as a phosphor powder with encapsulant 111. Any suitable phosphor material may be used with the LED chip. For example, a yellow emitting cerium doped yttrium aluminum garnet phosphor (YAG:Ce3+) may be used with a blue emitting InGaN active layer LED chip to produce a visible yellow and blue light output which appears white to a human observer. Other combinations of LED chips and phosphors may be used as desired. A detailed disclosure of a UV/blue LED-Phosphor Device with efficient conversion of UV/blue Light to visible light may be found in U.S. Pat. No. 5,813,752 (Singer) and U.S. Pat. No. 5,813,753 (Vriens).
While the packaged LED chip 104 is supported by the lead frame 105 according to one embodiment as illustrated in
With reference to
A vertical cavity surface emitting laser (VCSEL) is illustrated in
It is to be understood herein, that if a “range” or “group” is mentioned with respect to a particular characteristic of the present disclosure, for example, percentage, chemical species, and temperature etc., it relates to and explicitly incorporates herein each and every specific member and combination of sub-ranges or sub-groups therein whatsoever. Thus, any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-range or sub-group encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein.
As described supra, the present invention provides an optoelectronic device that comprises a light emitting diode and an encapsulant. The encapsulant is made from an encapsulant formulation comprising a silicone epoxy and a curing agent.
The silicone epoxy of the invention is defined herein as a compound that contains two structural units, the first of which is a group of formula (Ia), and the second of which is an epoxy group of formula (Ib):
In a variety of exemplary embodiments, the formula (Ib) epoxy group may be represented as one of the followings:
in which the dashed line represents any linker group such as a C1-6 alkylene group that connects the epoxy group and the silicone portion.
For example, the silicone epoxy may comprise one or more compounds having the following formula (I):
in which x is an integer and x=2-4; m is an integer and m=1-6; n is an integer and n=1-4; R1 and R2 are independently of each other an aryl group or a lower alkyl and may be selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, and neo-pentyl; R3 is phenyl, hydrogen or a lower alkyl such as methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, or neo-pentyl.
In some exemplary embodiments, x=3; m=2; n=2; R1 and R2 are both methyl; and R3 is a hydrogen. The corresponding silicone epoxy compound is illustrated below:
In some exemplary embodiments, x=3; m=2; n=2; R1 and R2 are both methyl; and R3 is phenyl. The corresponding silicone epoxy compound is illustrated below.
The silicone epoxy of formula (I) may be prepared by, for example, hydrosilation or hydrosilylation reaction (addition) between H—Si functional polysiloxanes and vinyl- or allylic-functional epoxy compounds containing olefinic moieties such as 4-vinylcyclohexeneoxide, allylglycidylether or glycidyl acrylate, vinylnorbornene monoxide, dicyclopentadiene monoxide, or the like. Typical addition reaction catalysts are platinum group metal catalysts including platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, the reaction products of chloroplatinic acid with monohydric alcohols, complexes of chloroplatinic acid with olefins, and platinum bisacetoacetate, palladium catalysts, and rhodium catalysts. Many types of platinum catalysts for hydrosilation are known and may be used. When optical clarity is required in some embodiments, the preferred platinum catalysts are those platinum compound catalysts that are soluble in the reaction mixture. Platinum compounds having the formula (PtCl2Olefin) and H(PtCl3Olefin) are described in U.S. Pat. No. 3,159,601; cyclopropane complex of platinum chloride is described in U.S. Pat. No. 3,159,662; a complex formed from chloroplatinic acid with up to 2 moles per gram of platinum of a member selected from the class consisting of alcohols, ethers, aldehydes and mixtures of the above is described in U.S. Pat. No. 3,220,972. Other catalysts are described in U.S. Pat. Nos. 3,715,334; 3,775,452; and 3,814,730 to Karstedt. Additional background concerning the art may be found at J. L. Spier, “Homogeneous Catalysis of Hydrosilation by Transition Metals, in Advances in Organometallic Chemistry, volume 17, pages 407 through 447, F. G. A. Stone and R. West editors, published by the Academic Press (New York, 1979).
The amount of the silicone epoxy may be greater than about 30% by weight, and preferably between about 35% and about 90%, based on the total weight of the encapsulant formulation.
The silicone epoxy may be used optionally in combination with one or more other suitable epoxy compounds (hereinafter “other epoxy compound”) in the encapsulant formulation. Examples of such epoxy compounds include, but are not limited to, aliphatic multiple-epoxy compounds, cycloaliphatic multiple-epoxy compounds, and mixtures thereof. For example, cycloaliphatic multiple-epoxy compounds may be selected from the ERL series epoxies from Ciba-Geigy such as the formula (E-1) compound, which is commonly known as ERL 4221; the formula (E-2) compound, which is commonly known as ERL 4206; the formula (E-3) compound, which is commonly known as ERL 4234; the formula (E-4) compound, which is commonly known as ERL 4299; and the like; and the mixture thereof.
Exemplary aliphatic multiple-epoxy compounds include, but are not limited to, butadiene dioxide, dimethylpentane dioxide, diglycidyl ether, 1,4-butanedioldiglycidyl ether, diethylene glycol diglycidyl ether, dipentene dioxide, polyoldiglycidyl ether, and the like, and mixture thereof.
Other specific exemplary aliphatic multiple-epoxy compounds include, but are not limited to the following structures:
wherein R1 and R2 are independently of each other a C1-10 divalent hydrocarbon group; R3 and R7 are independently of each other selected from the group consisting of OH, alkyl, alkenyl, hydroxyalkyl, hydroxyalkenyl, and C1-10 alkoxy; R4, R8, and R9 are independently of each other selected from the group consisting of hydroxyalkylene, hydroxyalkenylene, R1, R2, —R1—S—R2—, —R1—N(R5)(R2)—, and —C(R5)(R6)—, wherein R5 and R6 are independently selected from the group consisting of H, OH, alkyl, alkoxy, hydroxyalkyl, alkenyl, and C1-10 hydroxyalkenyl; n is an integer from 2 to 6, inclusive; m is an integer from 0 to 4, inclusive; 2≦m+n≦6; p and q are independently of each other selected from the group of integers from 1 to 5, inclusive; r and s are independently selected from the group of integers from 0 to 4, inclusive; 2≦p+r≦5; and 2≦q+s≦5.
Exemplary cycloaliphatic multiple-epoxy compounds include, but are not limited to, 2-(3,4-epoxy)cyclohexyl-5,5-spiro-(3,4-epoxy)cyclohexane-m-dioxane, 3,4-epoxycyclohexyl 3′,4′-epoxycyclohexanecarboxylate (EECH), 3,4-epoxycyclohexylalkyl 3′,4′-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl, 3′,4-epoxy-6′-methylcyclohexanecarboxylate, vinyl cyclohexanedioxide, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methyl cyclohexylmethyl)adipate, exo-exo bis(2,3-epoxycyclopentyl) ether, endo-exo bis(2,3-epoxycyclopentyl) ether, 2,2-bis(4-(2,3-epoxypropoxy)cyclohexyl)propane, 2,6-bis(2,3-epoxy,propoxycyclohexyl-p-dioxanc), 2,6-bis(2,3-epoxypropoxy)norbornene, the diglycidylether of linoleic acid dimer, limonene dioxide, 2,2-bis(3,4-epoxycyclohexyl)propane, dicyclopentadiene dioxide, 1,2-epoxy-6-(2,3-epoxypropoxy)hexahydro-4,7-methanoindane, p-(2,3-epoxy)cyclopentylphenyl-2,3-epoxypropylether, 1-(2,3-epoxypropoxy)phenyl-5,6-epoxyhexahydro-4,7-methanoindane, o-(2,3-epoxy)cyclopentylphenyl-2,3-epoxypropyl ether), 1,2-bis[5-(1,2-epoxy)-4,7-hexahydromethanoindanoxyl]ethane, cyclopentenylphenyl glycidyl ether, cyclohexanediol diglycidyl ether, diglycidyl hexahydrophthalate, and mixture thereof.
In some embodiments, aromatic epoxy resin can be used. Exemplary aromatic epoxy resin include, but are not limited to, bisphenol-A epoxy resins, bisphenol-F epoxy resins, phenol novolac epoxy resins, cresol-novolac epoxy resins, biphenol epoxy resins, biphenyl epoxy resins, 4,4′-biphenyl epoxy resins, divinylbenzene dioxide resins, 2-glycidylphenylglycidyl ether resins, and the like, and mixture thereof.
The total amount of all epoxy compounds is generally greater than about 40%, preferably between about 50% and about 90%, more preferably between about 60% and about 85% by weight, based on the total weight of the encapsulant formulation.
As described supra, the present invention provides an optoelectronic device that comprises a light emitting diode and an encapsulant. The encapsulant is made from an encapsulant formulation comprising a silicone epoxy and a curing agent. The curing agent may be selected from cycloaliphatic anhydrides, aliphatic anhydrides, polyacids and their anhydrides, polyamides, formaldehyde resins, aliphatic polyamines, cycloaliphatic polyamines, aromatic polyamines, polyamide amines, polycarboxylic polyesters, polysulfides and polymercaptans, phenol novolac resins, and polyols such as polyphenols, among others.
Exemplary anhydride curing agents may be those described in “Chemistry and Technology of the Epoxy Resins” 13. Ellis (Ed.) Chapman Hall, New York, 1993 and in “Epoxy Resins Chemistry and Technology”, edited by C. A. May, Marcel Dekker, New York, 2nd edition, 1988. Non-limiting examples of anhydride are succinic anhydride; dodecenylsuccinic anhydride; phthalic anhydride; tetraahydrophthalic anhydride; hexahydrophthalic anhydride; methylhexahydrophthalic anhydride (“MHHPA”); hexahydro-4-methylphthalic anhydride; tetrachlorophthalic anhydride; dichloromaleic anhydride; pyromellitic dianhydride; chlorendic anhydride; anhydride of 1,2,3,4-cyclopentanetetracarboxylic acid; bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride; endo-cis-bicyclo(2.2.1)heptene-2,3-dicarboxylic anhydride; methylbicyclo(2.2.1)heptene-2,3-dicarboxylic anhydride; 1,4,5,6,7,7-hexachlorobicyclo(2.2.1)-5-hept-ene-2,3-dicarboxylic anhydride; anhydrides having the following formula such as HHPA; and the like; and the mixture thereof.
In one specific embodiment, the curing agent comprises HHPA or MHHPA.
Exemplary polyamine curing agents may be aliphatic polyamines and cycloaliphatic polyamines, such as those disclosed in Clayton A. May and Yoshio Tanaka (Ed.), “Epoxy Resins, Chemistry And Technology,” Marcel Dekker (1973), chapters 3 and 4. Non-limiting examples of polyamine are ethylenediamine; diethylenetriamine; triethylenetetramine; hexamethylenediamine; diethylaminopropylamine; menthanediamine (4-(2-aminopropane-2-yl)1-methylcyclohexane-1-amine); silicon-containing polyamines; N-aminoethyl piperazine; olefin oxide-polyamine adducts such as H2N(CH2CH2NH)2(CH2)2OH, H2NRaNH(CH2)2OH, H2N(CH2)2NHRaNH(CH2)2OH, wherein Ra is a C1-10 hydrocarbon group; glycidyl ether-polyamine adducts; ketimines; and the like.
Suitable cycloaliphatic polyamines are, for example, derivatives of piperazine, such as N-aminoethylpiperazine; derivatives of cycloaliphatic hydrocarbons, such as 1,2-diaminocyclohexane, and isophorone diamine having the following formula.
Exemplary polyamide curing agents may be alkyl/alkenyl imidazolines represented by the formula Rd—(C(═O)NH—Rb)u—NH—Rc—NH2, in which Rb and Rc are independently of each other a C1-10 hydrocarbon group, and Rd is selected from the group consisting of H, C1-10 alkyl, C1-10 alkenyl, C1-10 hydroxyalkyl, and C1-10 hydroxyalkenyl, and u is an integer from 1-10 inclusive.
Other suitable curing agents include polymercaptan and polyphenol curing agents such as those identified in Chapter 4 of “Epoxy Resins: Chemistry and Technology”, 2nd Edition, edited by C. A. Mory and published by Marcel Dekker Inc.
In a variety of exemplary embodiments, the formulation of the present invention may comprise phenyl imidazoles, aliphatic sulfonium salts, or any mixture thereof.
The amount of the curing agent(s) in the encapsulant formulation is generally greater than about 10%, preferably between about 20% and about 60%, more preferably between about 30% and about 60% by weight, based on the total weight of the encapsulant formulation.
In some embodiments of the invention, particularly when an acid anhydride or a novolac resin is used as the curing agent, the encapsulant formulation may further contain a catalyst or curing accelerator with an object to accelerate the reaction of the epoxy resin and the curing agent.
Suitable catalysts include, for example, imidazole compounds, tertiary amine compounds, phosphine compounds, cycloamidine compounds and the like. Examples of the imidazole compound include, for example, a 2-methylimidazole, a 2-ethyl-4-methylimidazole, and a 2-phenylimidazole.
The amount of the catalyst(s) in the encapsulant formulation is generally greater than about 0.01%, preferably between about 0.01% and about 20%, more preferably between about 0.05% and about 5% by weight, based on the total weight of the encapsulant formulation.
Other suitable catalysts that may be included in the encapsulant formulation are, for example, Boron-containing catalysts. Preferably, a Boron-containing catalyst essentially contains no or a minimal amount of halogen. A minimal amount of halogen means that halogen, if any, is present in such minute quantities that the encapsulant end product is not substantially discolored by the presence of minute quantities of halogen. In a variety of exemplary embodiments, a Boron-containing catalyst may comprise a formula (B-1) or (B-2) compound:
wherein Rb1, Rb2, and Rb3 are C1-20 aryl, alkyl or cycloalkyl residues and substituted derivatives thereof, or aryloxy, alkyloxy or cycloalkoxy residues and substituted derivatives thereof. Examples of the aforementioned catalysts include, but are not limited to, triphenylborate, tributylborate, trihexylborate, tricyclohexylborate, triphenylboroxine, trimethylboroxine, tributylboroxine, trimethoxyboroxine, and tributoxyboroxine, among others.
Optional components of the encapsulant formulation of the invention may comprise one or more of ancillary curing catalysts. Illustrative examples of ancillary curing catalysts are described in “Chemistry and Technology of the Epoxy Resins” edited by B. Ellis, Chapman Hall, New York, 1993, and in “Epoxy Resins Chemistry and Technology”, edited by C. A. May, Marcel Dekker, New York, 2nd edition, 1988. In particular embodiments, the ancillary curing catalyst comprises at least one of a metal carboxylate, a metal acetylacetonate, a metal octoate or 2-ethylhexanoate as shown below. These compounds can be used singly or in a combination of at least two compounds.
Optional components of the encapsulant formulation of the invention can comprise one or more of cure modifiers which may modify the rate of cure of epoxy. In various embodiments of the present invention, cure modifiers comprise at least one cure accelerator or cure inhibitor. Cure modifiers may comprise compounds containing heteroatoms that possess lone electron pairs. In various embodiments cure modifiers comprise alcohols such as polyfunctional alcohols such as diols, triols, etc., and bisphenols, trisphenols, etc. Further, the alcohol group in such compounds may be primary, secondary or tertiary, or mixtures thereof. Representative examples comprise benzyl alcohol, cyclohexanemethanol, alkyl diols, cyclohexanedimethanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol such as 2,5-hexylene glycol, heptanediol, octanediol, polyethylene glycol, glycerol, polyether polyols such as those sold under the trade name VORANOL by the Dow Chemical Company, and the like. In a specific embodiment, the cure modifier may be selected from one of the compounds as shown below, or mixture thereof.
Phosphites may also be used as cure modifiers. Illustrative examples of phosphites comprise trialkylphosphites, triarylphosphites, trialkylthiophosphites, and triarylthiophosphites. In some embodiments phosphites comprise triphenyl phosphite, benzyldiethyl phosphite, or tributyl phosphite. Other suitable cure modifiers comprise sterically hindered amines and 2,2,6,6-tetramethylpiperidyl residues, such as for example bis(2,2,6,6-tetramethylpiperidyl)sebacate. In a specific embodiment, triphenyl phosphite as shown below is used in the encapsulant formulation of the present invention.
Optional components of the encapsulant formulation of the invention may also comprise coupling agents which in various embodiments may help the encapsulant epoxy resin bind to a matrix, such as a glass matrix, so as to form a strong bond such that premature failure does not occur. In a variety of exemplary embodiments, the coupling agent may have a formula as shown below:
in which Rc1, Rc2, and Rc3 are an alkyl group such as methyl or ethyl, and Rc4 is selected from the group consisting of alkyl such as C4-16 alkyl, vinyl, vinyl alkyl, ω-glycidoxyalkyl such as 3-glycidoxypropyl, ω-mercaptoalkyl such as 3-mercaptopropyl, ω-acryloxyalkyl such as 3-acryloxypropyl, and ω-methacryloxyalkyl such as 3-methacryloxypropyl, among others. In a specific embodiment, the coupling agent is a compound as shown below:
Other exemplary coupling agents comprise compounds that contain both silane and mercapto moieties, illustrative examples of which comprise mercaptomethyltriphenylsilane, beta-mercaptoethyltriphenylsilane, beta-mercaptopropyltriphenyl-silane, gamma-mercaptopropyldiphenylmethyl-silane, gamma-mercaptopropylphenyidimethyl-silane, delta-mercaptobutylphenyidimethyl-silane, delta-mercaptobutyltriphenyl-silane, tris(beta-mercaptoethyl)phenylsilane, tris(gamma-mercaptopropyl)phenylsilane, tris(gamma-mercaptopropyl)methylsilane, tris(gamma-mercaptopropyl)ethylsilane, tris(gamma-mercaptopropyl)benzylsilane, and the like.
In a variety of exemplary embodiments, the formulation may optionally include silsesquioxane polymers to lend better mechanical integrity.
To lessen degradation of encapsulant, stabilizers such as thermal stabilizers and UV-stabilizers may be added in the formulation of the present invention as optional component. Examples of stabilizers are described in J. F. Rabek, “Photostabilization of Polymers; Principles and Applications”, Elsevier Applied Science, NY, 1990 and in “Plastics Additives Handbook”, 5th edition, edited by H. Zweifel, Hanser Publishers, 2001.
Illustrative examples of suitable stabilizers include organic phosphites and phosphonites, such as triphenyl phosphite, diphenylalkyl phosphites, phenyldialkyl phosphites, tri-(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, di-stearyl-pentaerythritol diphosphite, tris-(2,4-di-tert-butylphenyl)phosphite, di-isodecylpentaerythritol diphosphite, di-(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tristearyl-sorbitol triphosphite, and tetrakis-(2,4-di-tert-butylphenyl)-4,4′-biphenyldiphosphonite.
Illustrative examples of suitable stabilizers include sulfur-containing phosphorus compounds such as trismethylthiophosphite, trisethylthiophosphite, trispropylthiophosphite, trispentylthiophosphite, trishexylthiophosphite, trisheptylthiophosphite, trisoctylthiophosphite, trisnonylthiophosphite, trislaurylthiophosphite, trisphenylthiophosphite, trisbenzylthiophosphite, bispropiothiomethylphosphite, bispropiothiononylphosphite, bisnonylthiomethylphosphite, bisnonylthiobutylphosphite, methylethylthiobutylphosphite, methylethylthiopropiophosphite, methyinonylthiobutylphosphite, methylnonylthiolaurylphosphite, and pentylnonylthiolaurylphosphite.
Suitable stabilizers may comprise sterically hindered phenols. Illustrative examples of sterically hindered phenol stabilizers include 2-tertiary-alkyl-substituted phenol derivatives, 2-tertiary-amyl-substituted phenol derivatives, 2-tertiary-octyl-substituted phenol derivatives, 2-tertiary-butyl-substituted phenol derivatives, 2,6-di-tertiary-butyl-substituted phenol derivatives, 2-tertiary-butyl-6-methyl- (or 6-methylene)substituted phenol derivatives, and 2,6-di-methyl-substituted phenol derivatives. In certain particular embodiments of the present invention, sterically hindered phenol stabilizers comprise alpha-tocopherol and butylated hydroxy toluene.
Suitable stabilizers include sterically hindered amines, illustrative examples of which comprise bis-(2,2,6,6-tetramethylpiperidyl-)sebacate, bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate, n-butyl-3,5-di-tert-butyl-4-hydroxybenzyl malonic acid bis-(1,2,2,6,6-pentamethylpiperidyl)ester, condensation product of 1-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, condensation product of N,N′-(2,2,6,6-tetramethylpiperidyl)-hexamethylene-diamine and 4-tert-octyl-amino-2,6-dichloro-s-triazine, tris-(2,2,6,6-tetramethylpiperidyl)-nitrilotriacetate, tetrakis-(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, and 1,1′-(1,2-ethanediyl)-bis-(3,3,5,5-tetramethylpiperazinone) etc.
Suitable stabilizers include compounds which destroy peroxide, illustrative examples of which comprise esters of beta-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters; mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole; zinc dibutyl-dithiocarbamate; dioctadecyl disulfide; and pentaerythritol tetrakis-(beta-dodecylmercapto)-propionate.
Other optional components may include phosphor particles. The phosphor particles may be prepared from larger pieces of phosphor material by any grinding or pulverization method, such as ball milling using zirconia-toughened balls or jet milling. They also may be prepared by crystal growth from solution, and their size may be controlled by terminating the crystal growth at an appropriate time. An exemplary phosphor is the cerium-doped yittrium aluminum oxide Y3Al5O12 garnet 37 YAG:Ce”). Other suitable phosphors are based on YAG doped with more than one type of rare earth ions, such as (Y1-x-yGdxCey)3Al5O12 (“YAG:Gd,Ce”), (Y1-xCex)3(Al1-yGay)O12 (“YAG:Ga,Ce”), (Y1-x-yGdxCey)(Al5-zGaz)O12 (“YAG:Gd,Ga,Ce”), and (Gd1-xCex)Sc2Al3O12 (“GSAG”), where 0≦x≦1, 0≦y≦1, 0≦z≦5, and x+y≦1. For example, the YAG:Gd,Ce phosphor shows an absorption of light in the wavelength range from about 390 nm to about 530 nm (i.e., the blue-green spectral region) and an emission of light in the wavelength range from about 490 nm to about 700 nm (i.e., the green-to-red spectral region). Related phosphors include Lu3A5O12 and Tb2Al5O12, both doped with cerium. In addition, these cerium-doped garnet phosphors may also be additionally doped with small amounts of Pr (such as about 0.1-2 mole percent) to produce an additional enhancement of red emission. Non-limiting examples of phosphors that are efficiently excited by radiation of 300 nm to about 500 nm include green-emitting phosphors such as Ca8Mg(SiO4)4Cl2:Eu2+, Mn2+; GdBO3:Ce3+, Tb3+; CeMgAl11O19:Tb3+; Y2SiO5:Ce3+, Tb3+; and BaMg2Al16O27:Eu2+, Mn2+ etc.; red-emitting phosphors such as Y2O3:Bi3+,Eu3+; Sr2P2O7:Eu2+, Mn2+; SrMgP2O7:Eu2+,Mn2+; (Y,Gd)(V,B)O4:Eu3+; and 3.5MgO.0.5MgF2.GeO2:Mn4+ (magnesium fluorogermanate) etc.; blue-emitting phosphors such as BaMg2Al16O27:Eu2+; Sr5(PO4)10Cl2:Eu2+; (Ba,Ca,Sr)(PO4)10(Cl,F)2:Eu2+; and (Ca,Ba,Sr)(Al,Ga)2S4:Eu2+ etc.; and yellow-emitting phosphors such as (Ba,Ca,Sr)(PO4)10(Cl,F)2:Eu2+, Mn2+ etc. Still other ions may be incorporated into the phosphor to transfer energy from the emitted light to other activator ions in the phosphor host lattice as a way to increase the energy utilization. For example, when Sb3+ and Mn2+ ions exist in the same phosphor lattice, Sb3+ efficiently absorbs light in the blue region, which is not absorbed very efficiently by Mn2+, and transfers the energy to Mn2+ ion. Thus, a larger total amount of light from light emitting diode is absorbed by both ions, resulting in higher quantum efficiency.
Other optional components may include one or more refractive index modifiers. Non-limiting examples of suitable refractive index modifiers are compounds of Groups II, III, IV, V, and VI of the Periodic Table. Non-limiting examples are titanium oxide, hafnium oxide, aluminum oxide, gallium oxide, indium oxide, yttrium oxide, zirconium oxide, cerium oxide, zinc oxide, magnesium oxide, calcium oxide, lead oxide, zinc selenide, zinc sulphide, gallium nitride, silicon nitride, aluminum nitride, or alloys of two or more metals of Groups II, III, IV, V, and VI such as alloys made from Zn, Se, S, and Te.
As a person skilled in the art can appreciate, many other optional components may be included in the formulation. For example, reactive or unreactive diluent (to decrease viscosity), flame retardant, mold releasing additives, anti-oxidant, and plasticizing additive etc., may be advantageously incorporated therein.
As described supra, the present invention also provides a method of preparing an optoelectronic device, which comprises (i) providing a light emitting semiconductor, and (ii) encapsulating the light emitting semiconductor with an encapsulant that is made from a formulation comprising a silicone epoxy and a curing agent. The light emitting semiconductor may be a light emitting diode (LED) or a laser diode.
The encapsulant can be prepared by combining various formulation components, and optional components if desired, in any convenient order. In various embodiments, all the components may be mixed together. In other embodiments, two or more components may be premixed and then subsequently combined with other components.
The formulation may be hand mixed but also can be mixed by standard mixing equipment such as dough mixers, chain can mixers, planetary mixers, and the like. The blending can be performed in batch, continuous, or semi-continuous mode.
Although any suitable polymer processing techniques may be employed in encapsulation of the optoelectronic device, resin transfer molding and/or casting are preferred. In a variety of exemplary embodiments, the encapsulating material prepared according to the above formulation is resin transfer moldable, castable, or both.
In transfer (or plunger) molding, the to-be-molded material is introduced through a small opening or gate after the mold is closed. This process can be used when additional material such as glass or other designed object such as a LED apparatus, are placed in the mold prior to closing the mold. In real-world transfer or pot-type molding, the mold is closed and placed in a press, the clamping action of which keeps the mold closed. The material is introduced into an open port at the top of the mold. A plunger is placed into the pot, and the press is closed. As the press closes, it pushes against the plunger forcing the molding material into the mold cavity. Excess molding material may be added to ensure that that there is sufficient material to fill the mold. After the material is cured to a required extent, the plunger and the part are removed from the mold.
In preparing a castable material, at least two methods may be used to control the physical properties such as viscosity of the encapsulating material to meet the requirements for casting. In the first method, the encapsulant formulation is lightly, or not densely, crosslinked. In the second method, polymerization of the encapsulant formulation is controlled to such an extent that is suitable for casting. For example, the polymerization rate can be controlled effectively to allow a castable form of the material to be produced. Preferably, the two methods are combined. In practice, special shapes, tubes, rods, sheets, and films may be produced from the castable material of the invention without added pressure in the processing. In casting, the composition according to the formulation may be e.g. heated to a fluid, poured into a mold, cured, and removed from the mold. As a skilled artisan can understand, various technical benefits may be achieved from this aspect of the invention, such as flexibility of the encapsulating material to adapt to novel LED package design; and controllable polymerization chemistry; among others.
In a variety of exemplary embodiments, after an optoelectronic device is enveloped in the uncured formulation, typically performed in a mold, the formulation is cured. The curing may be conducted in one or more stages using methods such as thermal, UV, electron beam techniques, or combinations thereof. For example, thermal cure may be performed at temperatures in one embodiment in a range of between 20° C. and about 200° C., in another embodiment in a range between about 80° C. and about 200° C., in still another embodiment in a range between about 100° C. and about 200° C., and in still another embodiment in a range between about 120° C. and about 160° C. Also in other embodiments the formulation can be photo-chemically cured, initially at about room temperature. Although some thermal excursion from the photochemical reaction and subsequent cure can occur, no external heating is typically required. In other embodiments, the formulations may be cured in two stages wherein an initial thermal or UV cure, for example, may be used to produce a partially hardened or B-staged epoxy resin. This material, which is easily handled, may then be further cured using, for example, either thermal or UV techniques, to produce a material which gives the optoelectronic device desired performances.
In a variety of exemplary embodiments, the optoelectronic device of the invention possesses numerous benefits, such as thermal and/or UV stabilities properties, increased viscosity, transparency, catalyst system, and good Tg characteristics, among others.
The following examples are included to provide additional guidance to those skilled in the art in practicing the claimed invention. The examples provided are merely representative of the work that contributes to the teaching of the present application. Accordingly, these examples are not intended to limit the invention, as defined in the appended claims, in any manner.
In a typical preparation, tris(dimethylsilyloxy)phenyl silane was added dropwise to a flask containing a stirring solution of VCHO, toluene and catalyst (Cl2Pt(Et2S)2) for 30 minutes at room temperature. Reaction was 96% complete after stirring 2 hours at room temp, and completely reacted after a total of 5 hours. The platinum catalyst was removed by addition of polystyrene supported triphenylphosphine, stirring for several hours and removal by filtration. Toluene and remaining VCHO were removed by high-vacuum stripping leaving the product as a viscous transparent fluid. The product was analyzed by 1H NMR.
Reagents used in the example included hexahydrophthalic anhydride(HHPA, cycloaliphatic anhydride, hardener or curing agent) and 4-methylhexahydrophthalic anhydride (MHHPA,cycloaliphatic anhydride, hardener or curing agent), which were obtained from Aldrich Chemical and distilled prior to use. 2-phenyl imidazole (PI, catalyst or accelerator) and zinc octoate catalysts were purchased from Aldrich Chemical and used as received. SR 355 was a silicone resin obtained from GE Silicone. Distearyl Pentaerythritol Diphosphite was obtained under the trade name GE Weston 618.
To prepare the cured epoxy, 16.884 grams of Example 1 product was blended with antioxidants and stabilizers etc. including 0.35 grams SR 355, 0.1 grams triphenyl phosphite, 60 mg 2,6-di-tert-butyl-4-methylphenol, and 0.1 g Weston 618 or 616; and once all in solution, it was added to a flask containing 2.6 grams of 4-methyl hexahydrophthalic anhydride and 0.1 grams of zinc octoate. The solutions were blended together at room temperature until homogeneous, after which time curing commenced in a staged profile first curing at 100° C. for 30 minutes and final cure at 150° C. for three hours. The cured epoxy thus prepared showed thermal transition Tg at 100° C. and optical transmission of 88% at 400 nm. The Tg of this material was noticeably higher than reported silicone epoxy materials. The refractive index was measured to be 1.513 higher than reported all aliphatic silicone epoxies.
While the invention has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present invention. As such, further modifications and equivalents of the invention herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the invention as defined by the following claims. All patents and publications cited herein are incorporated herein by reference.