An optoelectronic semiconductor device is provided. Further, glasses comprising such an optoelectronic semiconductor device are also provided.
An article by S. Romero-Garcia et al., entitled “Photonic integrated circuits for multi-color laser engines”, published in the Proceeding of SPIE, on Mar. 2, 2017, discloses photonic circuits.
A problem to be solved is to provide an optoelectronic semiconductor device that has improved emission characteristics.
This object is achieved, inter alia, by an optoelectronic semiconductor device and by glasses as defined in the independent patent claims. Exemplary further developments constitute the subject-matter of the dependent claims.
According to at least one embodiment, the optoelectronic semiconductor device comprises a carrier. For example, the carrier comprises a thermally conductive material like a ceramic, in particular AlN. It is possible that the carrier comprises conductor tracks and/or a circuitry.
According to at least one embodiment, the optoelectronic semiconductor device comprises one or a plurality of semiconductor lasers. The at least one semiconductor laser is configured to emit laser radiation. Moreover, the at least one semiconductor laser is applied on the carrier, for example, by means of soldering. For example, the at least one semiconductor laser is a laser diode, LD for short. If there is a plurality of the semiconductor lasers, all the semiconductor lasers can be of the same type, or there are different types of semiconductor lasers, for example, to produce red, green and blue light, RGB for short.
In the following, reference may be made to a first semiconductor laser and to a second semiconductor laser. In this respect, the terms ‘first’ and ‘second’ refer to an enumeration, and all the features disclosed for the ‘semiconductor laser’ consequently apply in the same manner for the ‘first semiconductor laser’ as well as for the ‘second semiconductor laser’.
According to at least one embodiment, the optoelectronic semiconductor device comprises one or a plurality of multi-mode waveguides. The at least one multi-mode waveguide is configured to guide the laser radiation. The multi-mode waveguide is applied on the carrier, too, for example, by means of soldering.
According to at least one embodiment, the multi-mode waveguide comprises one or a plurality of furcations and a plurality of branches. The branches are connected with each other by the at least one furcation.
In at least one embodiment, the optoelectronic semiconductor device comprises a carrier, a first semiconductor laser configured to emit a first laser radiation and applied on the carrier, and a multi-mode waveguide configured to guide the first laser radiation and also applied on the carrier. The multi-mode waveguide comprises at least one furcation and a plurality of branches connected by the at least one furcation.
For example, in the optoelectronic semiconductor device the multi-mode waveguide is provided with an optional mode-mixer and provides an alignment tolerant LD butt-coupling for RGB imaging and projection applications, particularly for AR/VR applications. AR means augmented reality and VR means virtual reality.
Thus, an alignment tolerant planar light circuit RGB laser combiner and source can be provided.
In mobile, near-to-eye head up displays, for example, for augmented reality and/or virtual reality, and other low-power projection applications, red, green, and blue laser diode outputs often need to be combined into a single emitting port of small emission area so that complex compensating electronic algorithms and/or beam-displacing optics can be avoided. In this way, images can be generated for each color using the same optical path. For example, in augmented reality applications, one can direct the desired RGB light from a single emission point into a light modulator like a liquid crystal on silicon, LCoS for short, or a moving digital mirror device system, DMD system for short, for example. Having multiple emission points for each color implies that there will be different optical paths into and out of the light modulators which complicate the final image generation in the waveguide combiner which projects the image into the viewer's eye.
To solve the problem of having single or multiple, but very closely spaced, emission point(s) for RGB output, integrated waveguide approaches may be considered, especially for augmented reality/virtual reality applications. To avoid terminology problems, the optical waveguide circuit that combines multiple laser outputs is called a ‘planar light circuit’ or PLC. This is to differentiate from the ‘waveguide combiner’ structure in AR/VR glasses that spread the image information over the surface of the glasses, enhancing the eyebox.
Unfortunately, most current PLC approaches assume that the emission point must be single mode to avoid more complex far-field patterns from multi-mode waveguide structures. This means that LD alignment into a single mode waveguide is very difficult, requiring positioning of the LD emission points to well below one wavelength, that is, well below 1 μm. Misalignment causes significant efficiency losses. The high sensitivity to alignment can also cause low production yields.
A second problem of single mode waveguides is that combining multiple waveguides into a single waveguide can lead to significant efficiency losses. Thus, many PLC approaches do not actually combine RGB waveguides to a single waveguide; rather they simply bring the output of each R, G, and B waveguide close together at the emission side. But the desire for a true single emission point is not achieved.
A third problem, especially if LDs are butt-coupled to the waveguide inputs of the PLC, is that the waveguide facets may direct laser radiation back into the LD. This feedback can cause LD instabilities or force LDs to operate in single, or a few, mode states. The loss of strong multimode operation, characteristic of higher power edge-emitting lasers, EELs for short, and larger aperture vertical cavity surface emitting lasers, VCSELs for short, will significantly increase the coherence length of the laser, leading to increased coherent artifacts and laser speckle in the image projected onto the retina, for example.
Single mode output also has full spatial coherence, which will allow for full contrast of such coherence effects in the image. Speckle and coherent artifacts can occur in both direct imaging LCoS and DMD spatial light modulators and in laser beam scanning systems, LBS for short, with one-dimensional or two-dimensional waveguide combiners. Retinal scanning systems with holographic mirrors in glasses can also have coherent artifacts, but less than LBS with waveguide combiners.
By means of the optoelectronic semiconductor device described herein, and its various embodiments, one or more of these problems with current PLC structures used for laser beam combining are solved. In one embodiment, lateral LD alignment tolerances can be relaxed to a few μm, while achieving high efficiency and providing a true single emission point for the output radiation. In another embodiment, the input coupling structure can reduce feedback into the LD. Due to the multi-mode waveguide approach of the PLC structures described herein, all of these embodiments have some potential to reduce spatial coherence and may be especially relevant for reducing speckle and interference artifacts in scanning micro-electromechanical, MEM, mirror AR/VR systems.
Finally, the optoelectronic semiconductor device described herein can make use of a standard lithographic semiconductor type of processing which allows for ease of fabrication and inclusion of alignment fiducials or physical features.
With the optoelectronic semiconductor device described herein, several advantages can be achieved:
a) The optoelectronic semiconductor device can use a wafer level PLC that integrates with LD dies on a single platform.
b) The optoelectronic semiconductor device can be produced using simple photolithography fabrication approaches which lead to cost-effective devices.
c) The sizes of the PLC can be smaller than PLC approaches currently on the market.
d) By means of the optoelectronic semiconductor device the alignment tolerance of the LD with respect to the PLC inputs can be relaxed; for example, a LD lateral adjustment of ±2 μm with respect to the center of the input waveguide structure has only negligible impact on coupling efficiency.
e) The optoelectronic semiconductor device makes use of a mode-mixer to eliminate the dependence on LD alignment to the final emission surface mode structure, making alignment deviations that occur during manufacturing to have minimal influence on the device far-field specifications; further, this allows for complete filling of output waveguide modes to reduce spatial coherence effects.
Alternatively, use of the multi-mode guide without mode-mixing structures can provide relaxation of LD alignment tolerances in some cases. This is when the optical system in the AR/VR system can compensate for small differences in PLC emission point positions, such as by making small timing adjustments for R, G, and B lasers in a scanning mirror system. This is because the output of a non-scattering PLC can be just a shifted and distorted image of the input LD field. If the relay optics magnification such that the waveguide output facet dimensions remain at or below the eye resolution, one will not perceive such distortions caused by the waveguide propagation. The lower magnification of the AR/VR relay optics can also benefit the case of the mode-mixer which can cause more complex far-field patterns, but the speckle-like reimaged waveguide output facet fields will not be resolved by the eye.
The optoelectronic semiconductor device described herein is based, inter alia, on one or several of the following concepts to relax LD alignment tolerances for butt-coupling of laser radiation into a PLC laser beam combiner so that a practical device results:
1. The optoelectronic semiconductor device uses a multi-mode waveguide to significantly reduce tolerance restrictions on LD alignment. This can greatly increase manufacturing yields.
2. Because of the multi-mode configuration, directional evanescent couplers are more difficult to design; the optoelectronic semiconductor device uses direct combining which in the present case can yield high efficiency.
3. By introducing an optional engineered scattering structure within the waveguide, the input field from the LD at various positions and orientations may be stochastically scattered uniformly into all waveguide modes, generating a more uniform, but possibly speckle-like, near-field. This may be beneficial in some cases, providing a statistically uniform far-field distribution.
4. The waveguides can be fabricated using high refractive index materials for the core to have a large index contrast between substrate and cladding materials. This increases confinement and a number of allowable modes for a given cross-section area. The larger mode number further helps to relax alignment issues and relaxes constraints on input coupling structure designs. This will further aid in reduction of spatial coherence. The high index contrast is achieved by etching of deposited high index materials such as Si3N4 on fused silica or related materials, followed by standard lithography and dry etching processes.
In addition, some of the embodiments have additional technical features that may further help to solve the problems stated above:
i) Anti-refection coatings can be added to input and output surfaces of the PLC waveguides. This will further increase efficiency and minimize laser feedback; alternatively, sloped input facets can also reduce laser feedback and can increase efficiency if making use of Brewster angle effects for EELs.
ii) Several input facet coupling designs reduce alignment tolerance issues, including tapers or possibly inverse taper structures, lens type structures, and large rectangular guides, if a square emission cross-section is not required.
iii) Increasing the length in the output waveguide helps to dephase the waveguide modes; in the presence of multi-mode lasers, for example, with a broad bandwidth. This will decrease spatial transverse coherence at the waveguide output, helping to reduce speckle and coherent artifacts.
iv) The PLC is inverted and bonded to the same substrate as the LDs, which are also inverted, that is, ridge side down. This allows passive alignment of the LD emission points to the center of the waveguide inputs on the PLC.
v) Waveguides can be made from a number of materials including Si3N4, GaN, HfO2, LiNbO3, Ta2O5, Al2O3, AlN, and other etchable related higher refractive index materials.
While the primary application of the optoelectronic semiconductor device is in AR/VR glasses, it can be used for other applications requiring the combination of multiple EELs or VCSELs into a single output. In many cases, the AR/VR system of consideration is a scanning micro-electromechanical, MEM, mirror system.
According to at least one embodiment, the optoelectronic semiconductor device further comprises one or a plurality of second semiconductor lasers. Then at least one second semiconductor laser is configured to emit at least one second laser radiation. Together with the first semiconductor laser and with two different second semiconductor lasers, the optoelectronic semiconductor device can be an RGB device.
According to at least one embodiment, the multi-mode waveguide comprises at least two first branches configured to receive the first laser radiation and/or at least one second laser radiation. For example, for each one of the semiconductor lasers there is one first branch. Hence, there can be a one-to-one assignment between the first branches and the semiconductor lasers.
According to at least one embodiment, at least one furcation is configured to merge the first laser radiation with the at least one second laser radiation to get a merged laser radiation. In other words, the merged laser radiation comprises all of the first and second laser radiations. That is, the first and second laser radiations may be combined or unified by means of the at least one furcation.
According to at least one embodiment, the multi-mode waveguide comprises exactly one second branch on a side of the at least one furcation facing away from the first semiconductor laser and/or the at least one second semiconductor laser. The second branch is configured to emit the merged laser radiation.
Thus, the at least one first branch may be referred to as an input branch and the at least one second branch may be referred to as an output branch.
According to at least one embodiment, at least one semiconductor laser comprises a laser substrate and a semiconductor layer sequence as well as a first metallization. This may apply for each one of the first and/or second semiconductor lasers. For example, the semiconductor layer sequence is based on AlInGaN or on AlInGaP.
According to at least one embodiment, the semiconductor layer sequence and the first metallization are located on the same side of the laser substrate. For example, the first metallization protrudes beyond the assigned semiconductor layer sequence.
According to at least one embodiment, the first semiconductor laser and/or the at least one second semiconductor laser is an edge-emitting laser. Alternatively, VCSELs are used for the semiconductor lasers, or a combination of EELs and VCSELs.
According to at least one embodiment, the multi-mode waveguide comprises a substrate body and a guidance structure protruding from the substrate body. The guidance structure is configured to guide the first laser radiation and/or the at least one second laser radiation by means of internal total reflection. The guidance structure may be made of a material applied on the substrate body.
According to at least one embodiment, the multi-mode waveguide further comprises a second metallization. For example, the second metallization is configured for soldering.
According to at least one embodiment, the guidance structure and the second metallization are located on the same side of the substrate body. In particular, the substrate body is attached to the carrier so that the guidance structure and the second metallization face the carrier.
According to at least one embodiment, an emission region of the first and/or second semiconductor laser is located close to the carrier to level with the guidance structure. In other words, the semiconductor layer sequence faces the carrier. If the respective semiconductor laser comprises a growth substrate for the semiconductor layer sequence, the growth substrate is located on a side of the semiconductor layer sequence remote from the carrier.
According to at least one embodiment, seen in top view of the guidance structure, the second metallization is located laterally displaced relative to the guidance structure. The same may apply for the first metallization relative to a ridge waveguide of the respective semiconductor layer, if comprising such a ridge waveguide.
According to at least one embodiment, the second metallization projects beyond the guidance structure and is configured to adjust a distance of the guidance structure from the carrier. Alternatively or additionally, the first metallization projects beyond the semiconductor layer sequence and is configured to adjust a distance of the semiconductor layer sequence from the carrier.
According to at least one embodiment, the multi-mode waveguide is configured to merge red, green and blue laser radiation.
According to at least one embodiment, an output region of the multi-mode waveguide has an area of at most 30 μm×30 μm or of at most 20 μm×20 μm.
According to at least one embodiment, the multi-mode waveguide further comprises a scatter region configured to scatter the first laser radiation. For example, the scatter region is located on a side of at least one furcation remote from the first semiconductor laser. As an option, the scatter region can comprise a plurality of randomly distributed scatter centers.
According to at least one embodiment, seen in top view of the multi-mode waveguide, the at least one furcation is of S-shape so that the at least one furcation includes or is composed of a right-turning bend and of a left-turning bend.
It is possible that all the furcations are of the same design; alternatively, there can be furcations of different shapes. It is possible that the at least one furcation is of point-symmetric design.
According to at least one embodiment, the optoelectronic semiconductor device comprises a plurality of the furcations. The furcations can merge with the branches at different locations, or all the furcations merge at the same location in the multi-mode waveguide.
According to at least one embodiment, the multi-mode waveguide further comprises an input coupling structure facing the first and/or semiconductor laser. For example, the input coupling structure comprises at least one section in which the respective branch narrows in a direction away from the first semiconductor laser. Alternatively or additionally, the input coupling structure comprises at least one further section in which the respective branch broadens in a direction away from the first semiconductor laser.
According to at least one embodiment, the input coupling structure comprises an input face facing the first semiconductor laser, the input face is tilted relative to a longitudinal axis of the respective branch.
According to at least one embodiment, a number of branches facing the first semiconductor laser is smaller than or is equal to a number of branches located at a side of at least one furcation remote from the first semiconductor laser.
Glasses are additionally provided. The glasses preferably comprise at least one optoelectronic semiconductor device as indicated in connection with at least one of the above-stated embodiments. Features of the optoelectronic semiconductor device are therefore also disclosed for the glasses and vice versa.
In at least one embodiment, the glasses are configured for augmented reality or virtual reality applications. In particular, the glasses comprise one or a plurality of the optoelectronic semiconductor devices. Moreover, the glasses include at least one field of vision illuminated by the at least one optoelectronic semiconductor device.
An optoelectronic semiconductor device and glasses described herein are explained in greater detail below by way of exemplary embodiments with reference to the drawings. Elements which are the same in the individual figures are indicated with the same reference numerals. The relationships between the elements are not shown to scale, however, but rather individual elements may be shown exaggeratedly large to assist in understanding.
In the figures:
For example, the guidance structure 43 of the multi-mode waveguide 4 is applied on a low refractive index substrate body 44, typically glass or fused silica. Alternatively, the substrate can be, for example, silicon with at least a 1 μm thick layer of SiO2. Preferably, the SiO2 layer should have a thickness of at least 2 μm to ensure high confinement and to avoid losses from evanescent coupling into the silicon substrate which is also absorbing for visible wavelengths. The guidance structure 43 comprises the three input branches 41 through which the laser radiations L1, L2 are coupled via an input face 49 for each R, G, and B semiconductor laser 31, 32. The three guidance structures 41 make an S-bend where they fuse into a single region, called the combining region or furcation 40. The output branch 42 transmits the light from the combining region to an output facet.
To minimize losses, especially in the combining region, and to have a large angular coupling tolerance, it is desirable to have a high refractive index contrast between the guidance structure 43 and the substrate body 44. For example, the guidance structure 43 can be made from Si3N4 due to ease of wafer level processing and a refractive index of about 2.06, compared to fused silica for which the refractive index is about 1.46, at a wavelength of 520 nm.
As shown in
One disadvantage of the high index contrast is that the output emission angle is large and may be more difficult to collimate. One can also use a lower index waveguide material such as Al2O3 or a high index glass deposited on a low index glass substrate to reduce the output angle, but at the cost of reduced confinement and lower number of modes.
For example, the multi-mode waveguide 4 is provided with at least one second metallization 52. In particular, there can be one second metallization 52 along each side of the guidance structure 43 and/or along edges of the substrate bode 44, seen in top view, compare
As an option, a scatter region 46, also referred to as mode-mixing region, follows, which comprises, for example, a plurality of scatter centers 47 that can be fabricated lithographically. An additional propagation length LB in the output branch 42 is desirable to help dephase the modes into which the input light is scattered. The additional propagation length LB follows the scatter region 46. For example, the additional propagation length LB is at least 0.5 mm and/or at most 10 mm.
It is also possible to include a scatter region at the input facets or the output facet. However, if the input facet has a scattering region, this may help with some mode mixing, but may lead to additional losses. On the output side, it may diffuse the output pattern, but does not really accomplish mixing of waveguide modes.
That is, as is also possible in all other exemplary embodiments, the multi-mode waveguide 4 of
To fabricate a useful scatter region 46 without significant impact on waveguide efficiency, preferably the scatter region 46 has a strong forward scattering, but weak back-scattering to minimize losses. The mode-mixing can be accomplished by various approaches that are compatible with lithography methods, such as photolithography. In one example, sub-micron holes as the scatter centers 47 can be etched into the material of the guidance structure 43. Holes having diameters of between 0.3 μm to 0.5 μm, for example, will have strong forward directed scattering. For example, four such holes can be randomly aligned along the direction of propagation, and will induce multiple scattering in the forward direction that will appropriately scatter excitation of a particular superposition of modes from a given input LD position into all available output waveguide modes. Other approaches include random or perturbed wall features. Forming a diffusing surface on the LD input faces 49 can also be done.
The output facet of the second branch 42 is the source for the emitted light L used, for example, by an optical system that follows the semiconductor device 1 downstream, not illustrated. Typically, in particular seen in cross-section, the single output branch 42 should have the same dimensions as the input branches 41 to make sure that all modal excitation on the input branches 41 can be excited in the output branch 42. Making the output branch 42 with a narrower width W than the input branches 41 may result in reflection of energy for certain combinations of input semiconductor laser alignment, creating additional losses. This roughly couples a higher étendue source, due to all the possible semiconductor laser alignment configurations, to a smaller étendue optical system.
In
For example, a horizontal alignment tolerance is achieved by making a multi-mode rectangular waveguide input face 49 as shown in
For example, the emission region 30 of the semiconductor lasers 31, 32 is about 2 μm×1 μm. As with typical ridge waveguide lasers, the input beams L1, L2 would be polarized in the waveguide plane, that is, horizontally. A Si3N4 straight rectangular ridge waveguide is bounded by a silica substrate on the bottom and the other three surfaces by air, for example, compare
An LD coupling efficiency C is determined by the ratio of power within the waveguide 4 to the incident LD power, compare
In
For example, the numerical values provided in
In practical PLCs where the lateral dimensions of the LDs and/or COSAs have a lower limit of the spacing of the input branches or furcations, typical input furcation lengths would be on the order of at least 200 μm, and typically at least 500 μm. For example, if the furcation spacing were limited to 400 μm, the furcation lengths would be on the order of 1 mm in order to maintain the required bend angles.
In a further possible embodiment, the waveguide emission region is square, and not rectangular. Then, W=H applies. Typical widths W=3 μm. In this case, the coupling efficiency is almost constant over lateral variation of ±1.0 μm, concerning the positions of the semiconductor lasers 31, 32. The S-bend results for the combiner region 40 are close to the rectangular case, with θB<18° being preferred.
Otherwise, the same as for
According to
To achieve passive, highly accurate vertical alignment of the at least one emission point 30 and the vertical center of the waveguide input face 49, both the semiconductor lasers 31, 32 and the multi-mode waveguide 4 are flipped as shown in
Therefore, by adjusting the metallization thickness and/or bonding thickness of the PLC pads 52, one can precisely match the emission point 30 and the vertical center of the waveguide input face 49 during bonding. Only the flatness of the heat transfer carrier 2, which is, for example, of AlN, and consistency of the solder preform or bonding material thicknesses should be ensured.
Otherwise, the same as for
In
With respect to coherence issues in laser scanning AR/VR systems 10 in particular, coherent artifacts and speckle effects can degrade image quality. Coherent artifacts such as Newton ring formation can be caused by inter-optic reflections. For example, a relay optic that transmits a secondary image from a diffuser or micro-lens array plane to a waveguide combiner of the glasses may introduce such artifacts. Calculations based on paraxial Fourier optics indicate that the spatial field profiles formed at the emission region of the multi-mode waveguide 4 may not have any significant effect on these artifacts. Here, only the laser bandwidth and even spectral shape have a significant influence.
For speckle, three mechanisms may be important. The first is from the glasses waveguide combiner, not shown. If the observer's pupils are large enough to capture more than one bounce from said waveguide combiner, then one effectively has a double slit which will produce fine interference fringes in the retina. These will not wash out during scanning as they come from fixed interference points. A second contribution can be from errors in the fabrication of the gratings in 1D or 2D waveguide combiners. The inaccuracies lead to scattering which would have a speckle pattern appearance. A third potential mechanism is from an intermediate micro-lens array, MLA, or diffuser which expands the field-of-view to fill the waveguide combiner aperture.
The multi-mode waveguide 4 described herein could help alleviate some of these problems by making the near-field distribution spatially incoherent.
Otherwise, the same as for
In
In
In
According to
In
Each one of the guidance structures 43 of
Otherwise, the same as for
In
As shown in
In
According to
A second method to achieve similar performance advantages is to apply anti-reflection coatings to the input face 49 of each input branch 41. As each R, G, and B laser color will have different anti-reflection coating requirements, it is difficult to apply a single anti-reflection coating, such as a quarter-wave SiO2 layer on top of each waveguide input face 49, as they would all require different thicknesses. Therefore, a single multilayer coating with anti-reflection windows at each of the desired wavelengths is preferred.
In
According to
Otherwise, the same as for
In
In particular, the S-bend can be parametrized by Bézier curves, where the (x, y) location of the center of the waveguide is given by the following parametric formula, also referred to as Equation (1):
In Equation Zrror! Reference source not found., the curves are a function of four control points Pi=(xi, yi). The parameter t is varied from 0 to 1 to form the full curve. The coefficient
is the binomial coefficient of order n. The table in
The results show that geometric parameters have a very strong effect on combining efficiency, with only the longest S-bend showing high efficiency. Generally, one considers the minimum radius of curvature in the bend which can lead to loss of confinement and radiative loss. As shown in
Comparing the combining efficiency results in the table with ρmin does correlate with Tc but the difference in ρmin between the 80 μm and 120 μm simulations is very small and seems unlikely to explain the very large difference in Tc. In fact, the results quantitatively agree in order of magnitude with the simple calculations in
Therefore, in a first embodiment where the maximum wavelength is no more than 620 nm for a 3 μm wide Si3N4 waveguide on fused silica, the waveguide is specified by overlapping at least 2 branches, at least one having the parametric shape of an S-curve as specified by Equation Error! Reference source not found., with a bend angle θB<21.5° and a maximum slope θmax<30°. This should also constrain ρmin>58 μm. Of course, similar constraints can be found for other wavelengths and waveguide widths
Thus,
The data provided in
The components shown in the figures follow, unless indicated otherwise, exemplarily in the specified sequence directly one on top of the other. Components which are not in contact in the figures are exemplarily spaced apart from one another. If lines are drawn parallel to one another, the corresponding surfaces may be oriented in parallel with one another. Likewise, unless indicated otherwise, the positions of the drawn components relative to one another are correctly reproduced in the figures.
The optoelectronic semiconductor device described here is not restricted by the description on the basis of the exemplary embodiments. Rather, the optoelectronic semiconductor device encompasses any new feature and also any combination of features, which includes in particular any combination of features in the patent claims, even if this feature or this combination itself is not explicitly specified in the patent claims or exemplary embodiments.