Toothbrushes are generally manufactured by forming a handle and a head via an injection molding process and then attaching bristles to the head of the toothbrush. The number of toothbrushes that can be manufactured in a given amount of time is limited by the number of bristle tufts that can be coupled to the head in the given amount of time. Machines that currently attach bristles to toothbrushes are capable of operating at a maximum speed of approximately 1000 tufts per minute. Conventional toothbrushes typically have around 30-40 bristle tufts on the head, such that conventional machines are able to attach the bristle tufts to approximately 25-30 toothbrushes per minute. In order to produce a desirable number of toothbrushes per minute, each toothbrush is limited in the number of tufts that it can have on the head. Thus, a need exists for a method of forming a bristle field for an oral care implement that expedites the process and potentially allows for more tufts to be provided on the head without compromising the quantity of toothbrushes produced in a given amount of time.
The present invention is directed to a method of forming a bristle field for an oral care implement. The method includes providing a bundle of bristles and aligning the bundle of bristles with an insertion opening in a guide member. Upon insertion into the guide member, the guide member divides the bundle of bristles into a plurality of bristle tufts. The guide member can be aligned with tuft holes on a head or head plate of an oral care implement so that the bundle of bristles can be inserted through the guide member and into the tuft holes. As a result, a single bundle of bristles can be used to mount a plurality of bristle tufts to the head or head plate.
In one aspect, the invention can be a method of forming a bristle field for an oral care implement, the method comprising: a) providing a bundle of bristles; b) aligning the bundle of bristles with an insertion opening in a first surface of a guide member, the guide member comprising at least one bristle distribution passageway comprising a funnel section and a plurality of delivery passageways, each of the delivery passageways extending from the funnel section and terminating in a delivery opening on a second surface of the guide member, wherein adjacent ones of the delivery passageways are separated from one another by a divider, the funnel section comprising the insertion opening, wherein the guide member is aligned with a head plate of the oral care implement such that each of the delivery openings is aligned with a different tuft hole of the head plate; and c) inserting the bundle of bristles through the bristle distribution passageway so that the bundle of bristles passes through the funnel section and is divided into a plurality of bristle tufts as a result of contact with the divider, each of the bristle tufts passing through a different one of the delivery passageways and into a different one of the tuft holes.
In another aspect, the invention can be a method of forming a bristle field for an oral care implement, the method comprising: a) providing a bundle of bristles; b) aligning the bundle of bristles with an insertion opening in a first surface of a head plate, the head plate comprising at least one bristle distribution passageway comprising a plurality of delivery passageways, each of the delivery passageways terminating in a delivery opening on a second surface of the head plate, wherein adjacent ones of the delivery passageways are separated from one another by a divider, each of the delivery passageways forming a tuft hole on the head plate; and c) inserting the bundle of bristles through the bristle distribution passageway so that the bundle of bristles is divided into a plurality of bristle tufts as a result of contact with the divider, each of the bristle tufts passing into a different one of the tuft holes on the head plate.
In yet another aspect, the invention can be a method of forming a bristle field for an oral care implement, the method comprising: a) providing a bundle of bristles; b) aligning the bundle of bristles with an insertion opening in a first surface of a guide member, the guide member comprising at least one bristle distribution passageway comprising a plurality of delivery passageways, each of the delivery passageways terminating in a delivery opening on a second surface of the guide member, wherein adjacent ones of the delivery passageways are separated from one another by a divider; c) aligning the guide member with a head plate of the oral care implement such that each of the delivery openings is aligned with a different tuft hole of the head plate; and d) inserting the bundle of bristles through the bristle distribution passageway so that the bundle of bristles is divided into a plurality of bristle tufts as a result of contact with the divider, each of the bristle tufts passing through a different one of the delivery passageways and into a different one of the tuft holes.
In a further aspect, the invention can be an oral care implement comprising: a handle; a head having a first surface, a plurality of tuft holes formed into the first surface of the head, each of the tuft holes having a diameter DTH, the tuft holes arranged in a tuft hole pattern such that a singular bounded area AB of the first surface can be selected that includes X number of tuft holes; and wherein X is an integer that is greater than or equal to 2, DTH is less than or equal to 1.1 mm, and X/AB is greater than or equal to 0.54.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
Referring first to
The oral care implement 100 extends from a proximal end 101 to a distal end 102 along a longitudinal axis A-A. The oral care implement 100 generally comprises a head 110 and a handle 120. The handle 120 is an elongated structure that provides the mechanism by which the user can hold and manipulate the oral care implement 100 during use. In the exemplified embodiment, the handle 120 is generically depicted having various contours for user comfort. Of course, the invention is not to be limited by the specific shape illustrated for the handle 120 in all embodiments and in certain other embodiments the handle 120 can take on a wide variety of shapes, contours, and configurations, none of which are limiting of the present invention unless so specified in the claims.
In the exemplified embodiment, the handle 120 is formed of a rigid plastic material, such as for example without limitation polymers and copolymers of ethylene, propylene, butadiene, vinyl compounds, and polyesters such as polyethylene terephthalate. Of course, the invention is not to be so limited in all embodiments and the handle 120 may include a resilient material, such as a thermoplastic elastomer, as a grip cover that is molded over portions of or the entirety of the handle 120 to enhance the gripability of the handle 120 during use. For example, portions of the handle 120 that are typically gripped by a user's palm during use may be overmolded with a thermoplastic elastomer or other resilient material to further increase comfort to a user. Furthermore, materials other than those noted above can be used including metal, wood, or any other desired material that has sufficient structural rigidity to permit a user to grip the handle 120 and manipulate the oral care implement 100 during toothbrushing.
The head 110 of the oral care implement 100 is coupled to the handle 120 and comprises a front surface 111 and an opposing rear surface 112. In the exemplified embodiment, the head 110 is formed integrally with the handle 120 as a single unitary structure using a molding, milling, machining, or other suitable process. In one particular embodiment, the handle 120 and the head 110 can be formed integrally during a single shot of an injection molding process. Thus, in the exemplified embodiment the oral care implement 100 may be considered to comprise a body 109 that includes the handle 120 and the head 110. However, in other embodiments the handle 120 and the head 110 may be formed as separate components which are operably connected at a later stage of the manufacturing process by any suitable technique known in the art, including without limitation thermal or ultrasonic welding, a tight-fit assembly, a coupling sleeve, threaded engagement, adhesion, or fasteners. Thus the head 110 may, in certain embodiments, be formed of any of the rigid plastic materials described above as being used for forming the handle 120, although the invention is not to be so limited in all embodiments and other materials that are commonly used during toothbrush head manufacture may also be used.
The oral care implement 100 also comprises a plurality of tooth cleaning elements 115 extending from the front surface 111 of the head 110. Where it does not conflict with the other disclosure provided herein, it should be appreciated that the term “tooth cleaning elements” may be used in a generic sense to refer to any structure that can be used to clean, polish, or wipe the teeth and/or soft oral tissue (e.g. tongue, cheek, gums, etc.) through relative surface contact. Common examples of “tooth cleaning elements” include, without limitation, bristle tufts, filament bristles, fiber bristles, nylon bristles, spiral bristles, rubber bristles, elastomeric protrusions, flexible polymer protrusions, combinations thereof and/or structures containing such materials or combinations. Thus, any combination of these tooth cleaning elements may be used within the tooth cleaning elements 115 in some embodiments. However, as described herein below, in certain embodiments one or more of the tooth cleaning elements 115 may be formed as tufts of bristles.
In embodiments that use elastomeric elements as one or more of the tooth cleaning elements 115, suitable elastomeric materials may include any biocompatible resilient material suitable for uses in an oral hygiene apparatus. To provide optimum comfort as well as cleaning benefits, the elastomeric material of any such tooth or soft tissue engaging elements may have a hardness property in the range of A8 to A25 Shore hardness. One suitable elastomeric material is styrene-ethylene/butylene-styrene block copolymer (SEBS) manufactured by GLS Corporation. Nevertheless, SEBS material from other manufacturers or other materials within and outside the noted hardness range could be used.
Referring now to
The head plate 130 comprises an upper surface 132 and a lower surface 133. Furthermore, the head plate 130 may comprise a plurality of tuft holes 131 formed therethrough such that the tuft holes 131 extend through the entirety of the head plate 130 from the upper surface 132 to the lower surface 133, and the tooth cleaning elements 115 may be mounted to the head plate 130 within the tuft holes 131. In certain specific embodiments, the tuft holes 131 have circular cross-sectional shapes with a diameter that is less than 1.2 mm. The technique for mounting the tooth cleaning elements 115 to the head 110 via the head plate 130 is generally known as anchor free tufting (AFT). Specifically, in AFT a plate or membrane (i.e., the head plate 130) is created separately from the head 110. The tooth cleaning elements 115 (such as bristles, elastomeric elements, and combinations thereof) are positioned into the head plate 130 so as to extend through the tuft holes 131 of the head plate 130.
The tooth cleaning elements 115 have anchor portions 116 and cleaning portions 117. The cleaning portions 117 form the free ends of the tooth cleaning elements 115 that protrude from the upper surface 132 of the head plate 130 to perform the cleaning function. Specifically, during toothbrushing the cleaning portions 117 of the tooth cleaning elements 115 are contacted against a user's teeth to scrub plaque from the user's teeth. The anchor portions 116 of the tooth cleaning elements 115 are located adjacent to the lower surface 133 of the head plate 130. After the tooth cleaning elements 155 are positioned within the tuft holes 131 so that the anchor portions 116 are positioned within and extend through the tuft holes 131 on the lower surface 133 of the head plate 130, the anchor portions 116 of the tooth cleaning elements are melted together by heat to be anchored in place. As the anchor portions 116 of the tooth cleaning elements 115 are melted together, a melt matte 106 is formed.
After the tooth cleaning elements 115 are secured to the head plate 130, the head plate 130 is secured to the head 110 such as by ultrasonic welding, as depicted in
In the embodiment of
The 82 separate and distinct tuft holes 131 and bristle tufts 118 is a greater number of tuft holes and bristle tufts than in conventional oral care implements, which typically include between 30 and 40 tuft holes on the head. This additional number of tuft holes is possible by creating the tuft holes 131 with a diameter D of less than 1.2 mm and by forming the bristle field using the technique described below with reference to
Referring briefly to
In some embodiments, after formation of the melt matte 216, a tissue cleanser 240 may be injection molded onto the rear surface of the head plate 230, thereby trapping the melt matte 206 between the tissue cleanser 240 and the rear surface of the head plate 230. Such a tissue cleanser 240 may be formed of a thermoplastic elastomer or other soft rubber-like material, and it may include nubs 241 as depicted in
Referring now to
When forming a bristle field for an oral care implement, a supply of bristles 300 is provided that includes a large number of bristles or bristle filaments that can be gathered into bristle tufts and then inserted into the toothbrush head or head plate. Thus, the first step in the method is to gather, select, or provide a bundle of bristles 301 from the supply of bristles 300. Each bundle of bristles 301 may be a “pick” or “tuft pick” as those terms are used in the toothbrush manufacturing art. In conventional bristle field forming techniques, each bundle of bristles 301 is equated to one bristle tuft on the toothbrush head or multiple bundles of bristles 301 are combined together to form one bristle tuft on the toothbrush head. Thus, the number of bristle tufts on the head is limited by the speed at which the bundles of bristles 301 can be selected from the supply of bristles 300 and inserted into the head. As a result, using conventional techniques, in order to meet quantity demands during toothbrush manufacture, toothbrushes have heretofore been limited in the number of bristle tufts that are on the head.
In accordance with the present invention, the bundle of bristles 301 are inserted into the head 110 or head plate 130 of the oral care implement 100 through an intermediary guide member 400. The details of the guide member 400 will be described with particular reference to
Still referring to
The bristle distribution passageway 410 is divided into the plurality of delivery passageways 412 by a plurality of dividers 413. Each of the delivery passageways 412 extends from the funnel section 411 and terminates in a delivery opening 414 on the second surface 402 of the guide member 400. Specifically, in the exemplified embodiment adjacent ones of the delivery passageways 412 are separated from one another by one of the dividers 413. In the exemplified embodiment, four dividers 413 are provided in the bristle distribution passageway 410 to divide the bristle distribution passageway 410 into five delivery passageways 412. However, the invention is not to be so limited and any of one or more of the dividers 413 may be used to divide the bristle distribution passageway 410 into two or more delivery passageways 412.
In the exemplified embodiment, the dividers 413 have a tapered section 415 (only some of which are labeled to avoid clutter) such that the dividers 413 taper to a tip or point 416 (only some of which are labeled to avoid clutter) that is located near or adjacent to the insertion opening 403. In the exemplified embodiment, the tips 416 are positioned within the funnel section 411 and spaced a small distance from the insertion opening 403. However, the tips 416 may be located at the insertion opening 403 or otherwise in other embodiments. Furthermore, although described herein as having tapered sections 415 and tips 416, the exact shape of the dividers 413 is not to be limiting in all embodiments and the tapered section 415 may be omitted in some embodiments. However, tapering the dividers 413 to form tips 416 near the insertion opening 403 facilitates the separation/division of the bundle of bristles 301 into distinct bristle tufts 118 as discussed below.
Still referring to
Referring to
The guide member 400 can either be aligned with the head plate 130 prior to inserting the bundle of bristles 301 into the insertion opening 403 of the guide member 400 or after the bundle of bristles 301 has been inserted into the insertion opening 403 of the guide member 400. However, it may be desirable to align the guide member 400 with the head plate 130 before the bristle tufts 118 begin to protrude through the delivery openings 414 in the second surface 402 of the guide member 400. When aligning the guide member 400 with the head plate 130, it may be important to align the delivery openings 414 of the guide member 400 with the tuft holes 131 in the head plate 130 so that as the bristle tufts 118 proceed through the delivery openings 414, the bristle tufts 118 enter into the tuft holes 131.
Thus, the bundle of bristles 301 is inserted through the insertion opening 403 of the guide member 403 and is divided into a plurality of bristle tufts 118 that are each positioned within a different one of the delivery passageways 412 of the guide member 400. The head plate 130 is either aligned with the guide member 403 at this stage, or prior to insertion of the bundle of bristles 301 into the insertion opening 403 of the guide member 400. The bristle tufts 118 are then pushed through the delivery passageways 412 of the guide member 400 until the bristle tufts 118 extend through the delivery openings 414 on the second surface 402 of the guide member 400. As the bristle tufts 118 extend through the delivery openings 414, the bristle tufts 118 pass into the tuft holes 131 of the head plate 130 (see
Referring to
After the melt matte 106 is formed, the guide member 400 can be separated or pulled away from the head plate 130, which will allow the head plate 130 with the bristle tufts 118 mounted thereto to remain (see
Thus, using the technique described herein, a plurality of the bristle tufts 118 can be formed with one bundle of bristles 301. Thus, with one movement of a toothbrush tufting machine, the bundle of bristles 301 can be selected from the supply of bristles 300 and inserted into the guide member 400 to form a plurality of distinct bristle tufts 118 on a head 110 or head plate 130 of an oral care implement 100. In the past, the machine would grab one bundle of bristles and insert that bundle of bristles into the head or head plate, and then grab another bundle of bristles and insert that bundle of bristles into the head or head plate, each bundle of bristles forming one distinct bristle tuft in its own distinct tuft hole. Using the techniques described herein, several distinct bristle tufts 118 can be mounted within several distinct tuft holes 131 within the head 110 or head plate 131 using one bundle of bristles 301. Thus, multiple distinct bristle tufts 118 can be mounted to the head 110 or head plate 131 in the same amount of time that it conventionally takes to mount one bristle tuft to a head or head plate.
Using the techniques described herein, oral care implements 100 can be manufactured with more distinct bristle tufts without compromising the output or quantity of oral care implements 100 made in a given period of time. Alternatively, oral care implements 100 can be manufactured with the same number of bristle tufts as with conventional oral care implements, except the quantity of oral care implements manufactured will increase. Specifically, the number of bristles in the bundle of bristles 301 (or pick) can be selected to be equal to the number of bristles in five distinct bristle tufts in conventional oral care implements. Then, when using the guide member 400, the five distinct bristle tufts of similar bristle density to conventional toothbrushes can be formed with the single bundle of bristles 301.
In one embodiment, the guide member 400 can be omitted and the head plate itself can take on the structure of the guide member 400 as described herein. Specifically, the head plate 130 may include the insertion opening, the bristle distribution passageway, the delivery passageways, and the dividers. In such an embodiment, the delivery passageways will form the tuft holes in the head plate 130. Thus, as the bundle of bristles is inserted into the insertion opening, the dividers will separate the bundle of bristles into bristle tufts, each of which will be positioned within one of the delivery passageways that forms one of the tuft holes in the head plate 130. In such an embodiment, the insertion opening may be formed into either the upper 132 or lower surface 133 of the head plate 130.
Referring to
Specifically, each of
In certain embodiments, each of the plurality of tuft holes 531 has the diameter DTH. Furthermore, adjacent ones of the tuft holes 531 are spaced apart by a distance dATH. In one embodiment, the diameter DTH of the tuft holes 531 is between 1.0 mm and 1.2 mm, and more specifically between 1.05 mm and 1.15 mm, and still more specifically approximately 1.1 mm. In another embodiment, the diameter DTH of the tuft holes 531 is less than 1.1 mm. Although the diameter DTH is described herein with regard to the tuft holes 531, in certain embodiments the diameter of the bristle tufts positioned within the tuft holes 531 is substantially the same as the diameter DTH of the tuft holes 531. Furthermore, in one embodiment the distance dATH between adjacent ones of the tuft holes 531 is between 0.25 mm and 0.55 mm, more specifically between 0.3 mm and 0.5 mm, even more specifically between 0.35 mm and 0.45 mm, and still more specifically approximately 0.4 mm. Furthermore, the distance dC from the center of one tuft hole 531 to the center of an adjacent tuft hole 531 is between approximately 1.4 mm and 1.6 mm, and more specifically approximately 1.5 mm. In one specific embodiment DTH is approximately 1.1 mm, dC is approximately 1.5 mm, and dATH is approximately 0.4 mm. Although the distances dATH, dC are described herein as being between adjacent tuft holes 531, the distances dATH, dC can also be the distances between adjacent bristle tufts that are positioned within the tuft holes 531. Although these dimensions are only provided in
In each of
More than four, six, nine, and two of the tuft holes 531 can be provided within the respective bounded areas AB1, AB2, AB3, AB4 in certain embodiments by decreasing the diameter DTH of the tuft holes 531 or decreasing the distance dATH between the tuft holes 531. As noted above, each of the tuft holes 531 will be filled with a bristle tuft, and thus the ratio of the number of bristle tufts per mm2 on the head is the same as the ratio of the number of tuft holes per mm2 on the head. In the exemplified embodiment, the number of tuft holes 531 that fit within a particular area of the head is the number of full, not partial, tuft holes 531 that fit within that particular area. Thus, X is selected to be an integer. In other words, at least six full tuft holes 531 fit within the bounded area AB1, at least four full tuft holes 531 fit within the bounded area AB2, at least nine full tuft holes 531 fit within the bounded area AB3, and at least two full tuft holes 531 fit within the bounded area AB4 with no portion of any of the tuft holes 531 falling outside of the respective bounded area AB1, AB2, AB3, AB4.
The tuft holes 531 define a cumulative tuft hole area ACTH within each respective bounded area AB. Specifically, as one particular example, each of the tuft holes 531 may have a diameter of 1.1 mm and an area of 0.95 mm2. In the embodiment of
In each of embodiments of
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/061959 | 10/23/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/064401 | 4/28/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3136582 | Lorenz Locher | Jun 1964 | A |
4749233 | Weihrauch | Jun 1988 | A |
5033797 | Rueb | Jul 1991 | A |
5474366 | Strutt | Dec 1995 | A |
5535474 | Salazar | Jul 1996 | A |
5850660 | O'Halloran | Dec 1998 | A |
6021538 | Kressner et al. | Feb 2000 | A |
6314605 | Solanki et al. | Nov 2001 | B1 |
6588851 | Bible et al. | Jul 2003 | B1 |
6957468 | Driesen et al. | Oct 2005 | B2 |
9066579 | Hess et al. | Jun 2015 | B2 |
20030132661 | Sato et al. | Jul 2003 | A1 |
20040107521 | Chan et al. | Jun 2004 | A1 |
20070006410 | Kraemer | Jan 2007 | A1 |
20070271717 | Clos et al. | Nov 2007 | A1 |
20080012420 | Boucherie | Jan 2008 | A1 |
20100066154 | Boucherie | Mar 2010 | A1 |
20100263148 | Jimenez et al. | Oct 2010 | A1 |
20100275397 | Moskovich et al. | Nov 2010 | A1 |
20110030160 | Knutzen et al. | Feb 2011 | A1 |
20120013169 | Rees | Jan 2012 | A1 |
20140338140 | Ji | Nov 2014 | A1 |
20150130259 | Birk | May 2015 | A1 |
Number | Date | Country |
---|---|---|
101 08 339 | Aug 2002 | DE |
S61-280805 | Dec 1986 | JP |
2006-174905 | Jul 2006 | JP |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority issued in international application PCT/US2014/061959 dated Aug. 31, 2015. |
Number | Date | Country | |
---|---|---|---|
20170311711 A1 | Nov 2017 | US |