Oral care implement having multi-component handle

Information

  • Patent Grant
  • 10226118
  • Patent Number
    10,226,118
  • Date Filed
    Tuesday, December 23, 2014
    9 years ago
  • Date Issued
    Tuesday, March 12, 2019
    5 years ago
Abstract
An oral care implement having a multi-component handle is disclosed. In one aspect, the oral care implement comprises: a handle comprising a first component constructed of a first material and a second component constructed of a second material; the first component comprising: first, second and third depressions formed into an outer surface of the first component; and a first through-hole extending from a floor of the second depression to a floor of the third depression, the first through-hole extending through sidewalls of the first depression; and the second component comprising: a first portion disposed within the first depression, a second portion disposed within the second depression, and a third portion disposed within the first depression; and the first, second and third portions connected together to form an integral mass of the second material.
Description
BACKGROUND

Oral care implements, such as toothbrushes, are mass-produced articles and must therefore allow cost-effective production. Toothbrushes made of a single plastic component and multiple plastic components, which are produced for example by two component injection molding processes, are known. In the latter case, known toothbrushes generally comprise two parts: a first part made of a hard plastic material, for example polypropylene; and a second part made of an elastomeric material, for example a thermoplastic elastomer. Typically, the first part, which is made of the hard plastic material, forms the structural portion of the handle and has a recess or channel formed therein. This recess is filled with the resilient plastic material, thereby forming the second part which acts as a gripping surface or cover.


The hard plastic and the elastomeric plastic are generally selected so that they bond with one another at the surface where the two plastic parts touch. In comparison with a toothbrush made of only one plastic material, this provides greater scope for design.


A need exists for an oral care implement, and method of manufacturing the same, that has a handle having greater design flexibility, is more cost-effective to mass produce, and/or affords comfort and control to the user during use.


BRIEF SUMMARY

Exemplary embodiments according to the present disclosure are directed to oral care implements having a multi-component handle.


In one embodiment, the invention can be an oral care implement comprising: a handle extending from a proximal end to a distal end along a longitudinal axis; a head at the distal end of the handle; the handle comprising a first component constructed of a first material and a second component constructed of a second material; the first component comprising: first, second and third longitudinally elongated depressions formed into an outer surface of the first component, the first, second and third longitudinally elongated depressions circumferentially spaced-apart from one another about the longitudinal axis; and a first through-hole extending from the second longitudinally elongated depression to the third longitudinally elongated depression, the first through-hole extending through the first longitudinally elongated depression; and the second component comprising: a first lobe portion disposed within the first longitudinally elongated depression, a second lobe portion disposed within the second longitudinally elongated depression, and a third lobe portion disposed within the first longitudinally elongated depression; and the first, second and third lobe portions connected together to form an integral mass of the second material.


In another embodiment, the invention can be an oral care implement comprising: a handle extending from a proximal end to a distal end along a longitudinal axis; a head at the distal end of the handle; the handle comprising a first component constructed of a first material and a second component constructed of a second material; the first component comprising: a body portion; and first, second and third longitudinal ribs extending from the body portion toward the proximal end of the handle; and the second component comprising: a first portion disposed between the first and third longitudinal ribs, a second portion disposed between first and second longitudinal ribs, and a third portion disposed between the second and third ribs.


In yet another embodiment, the invention can be a method of forming an oral care implement comprising: a) forming a first component of a first material, the first component comprising first, second and third longitudinally elongated depressions formed into an outer surface of the first component, the first, second and third longitudinally elongated depressions circumferentially spaced-apart from one another about a longitudinal axis of the first component, and a first through-hole extending from a floor of the second longitudinally elongated depression to a floor of the third longitudinally elongated depression, the first through-hole extending through sidewalls of the first longitudinally elongated depression; and b) forming a second component of a second material on the first component, the second component comprising a first lobe portion disposed within the first longitudinally elongated depression, a second lobe portion disposed within the second longitudinally elongated depression, and a third lobe portion disposed within the first longitudinally elongated depression, the first, second and third lobe portions connected together to form an integral mass of the second material.


In a further embodiment, the invention can be an oral care implement comprising: a handle comprising a first component constructed of a first material and a second component constructed of a second material; the first component comprising: first, second and third depressions formed into an outer surface of the first component; and a first through-hole extending from a floor of the second depression to a floor of the third depression, the first through-hole extending through sidewalls of the first depression; and the second component comprising: a first portion disposed within the first depression, a second portion disposed within the second depression, and a third portion disposed within the first depression; and the first, second and third portions connected together to form an integral mass of the second material.


Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a rear perspective view of an oral care implement according to an embodiment of the present invention;



FIG. 2 is a front perspective view of the oral care implement of FIG. 1;



FIG. 3 is a front view of the oral care implement of FIG. 1;



FIG. 4 is a front perspective of the oral care implement of FIG. 1 with the handle in an exploded state;



FIG. 5 is a rear perspective of the oral care implement of FIG. 1 with the handle in an exploded state;



FIG. 6 is a front perspective view of a first component of the handle of the oral care implement of FIG. 1;



FIG. 7 is a rear perspective view of the first component of FIG. 6;



FIG. 8 is a right-side perspective view of a proximal portion of the first component of FIG. 6, wherein the left-side perspective view is a mirror image thereof;



FIG. 9 is a front perspective view of the proximal portion of the first component of FIG. 6;



FIG. 10 is a right-side view of a second component of the handle of the oral care implement of FIG. 1, the left-side view being a mirror image thereof;



FIG. 11 is a rear perspective view of the second component of FIG. 10;



FIG. 12 is a front perspective view of the second component of FIG. 10;



FIG. 13 is a longitudinal cross-sectional view of the oral care implement of FIG. 1 taken along view XIII-XIII of FIG. 3, wherein the tooth cleaning element assembly has been omitted;



FIG. 14 is transverse cross-sectional view of the oral care implement of FIG. 1 taken along view XIV-XIV of FIG. 3;



FIG. 15 is transverse cross-sectional view of the oral care implement of FIG. 1 taken along view XV-XV of FIG. 3;



FIG. 16 is transverse cross-sectional view of the oral care implement of FIG. 1 taken along view XVI-XVI of FIG. 3; and



FIG. 17 is transverse cross-sectional view of the oral care implement of FIG. 1 taken along view XVII-XVII of FIG. 3.





DETAILED DESCRIPTION

The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.


The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.


In the following description, the invention is discussed in terms of a manual toothbrush, and method of manufacturing the same, having the inventive multi-component handle. However, in other forms, the invention could be in the form of other oral care implements including a soft-tissue cleansing implement, an inter-proximal pick, a flossing tool, a plaque scraper, a powered toothbrush, or other ansate implement designed for oral care. It is also to be understood that other embodiments may exist, and that structural and functional modifications may be made without departing from the scope of the present invention.


Referring first to FIGS. 1-3 concurrently, a toothbrush 100 is illustrated according to one embodiment of the present invention. The toothbrush 100 generally comprises a handle 110 and a head 120. The handle 110 provides the user with a mechanism by which he/she can readily grip and manipulate the toothbrush 100. The handle 110 includes ergonomic features which provide a high degree of control for the user while maintaining comfort. The head 120 is connected to a distal end 102 of the handle 110 and includes a set of teeth cleaning elements 130, which are generically illustrated.


Generally, the toothbrush 100 extends from a proximal end 101 (which is also the proximal end of the handle 110) to a distal end 103 along a longitudinal axis A-A (which is also the longitudinal axis of the handle 110). Conceptually, the longitudinal axis A-A is a reference line that is generally coextensive with the three-dimensional center line of the handle 110 (and the body of the head 120). Because the handle 110 is a non-linear structure (as can be seen in FIGS. 1 and 2) in the illustrated embodiment, the longitudinal axis A-A for the toothbrush 100 (and the handle 110) is also non-linear in the illustrated embodiment. However, in certain other embodiments, the toothbrush 100 may have a simple linear arrangement and thus a substantially linear longitudinal axis A-A. As best visible in FIG. 14-17, the handle 110 has a generally elliptical transverse cross-sectional shape along its longitudinal length. Other transverse cross-sectional shapes can be used in other embodiments.


The head 120 is connected to the distal end 102 of the handle 110. As discussed in greater detail below, the head 120 and the handle 110 of the toothbrush 100 are preferably formed as a single-component integral structure using an injection molding process, which in the exemplified embodiment is the first component 200. More specifically, in the exemplified embodiment, the head 120 is integrally formed as part of the first component 200 of the handle 110. The first component 200 also comprises the neck 104 of the toothbrush 100. As exemplified, the neck 104 is a portion of the handle 110 of the toothbrush 100 that is narrowed relative to the head 120 and the gripping portion of the handle 110.


In other embodiments, the handle 110 and the head 120 may be formed as separate components which are operably connected at a later stage of the manufacturing process by any suitable technique known in the art, including without limitation thermal welding, sonic welding, a tight-fit assembly, a coupling sleeve, adhesion, or fasteners. Whether the head 120 is integrally formed as part of the first component 200 of the handle 110 or is a multi-piece assembly (including connection techniques) is not limiting of the present invention in all embodiments. Furthermore, other manufacturing techniques may be used in place of and/or in addition to injection molding to create the handle 110 and/or the head 120 (or components thereof), such as milling and/or machining.


The head 120 generally comprises a front surface 121 and a rear surface 122. The front surface 121 and the rear surface 122 of the head 120 can take on a wide variety of shapes and contours, none of which are limiting of the present invention. For example, the front and rear surfaces 121, 122 can be planar, contoured or combinations thereof. The front surface 121 and rear surface 122 are bound by a peripheral surface 123.


The set of tooth cleaning elements 130, which are generically illustrated as a block, are provided on and extend outward from the front surface 121 of the head 120 for cleaning contact with an oral surface, preferably teeth. While the set of tooth cleaning elements 130 is particularly suited for brushing teeth, the set of tooth cleaning elements 130 can also be used to clean oral soft tissue, such as a tongue, gums, or cheeks instead of or in addition to teeth. Common examples of “tooth cleaning elements” include, without limitation, filament bristles, fiber bristles, nylon bristles, spiral bristles, core-sheath bristles, rubber bristles, elastomeric protrusions, flexible polymer protrusions, co-extruded filaments, flag bristles, crimped bristles, anti-bacterial bristles and combinations thereof and/or structures containing such materials or combinations.


The set of tooth cleaning elements 130 can be connected to the head 120 in any manner known in the art. In the exemplified embodiment (see FIGS. 6 and 13), anchor free tufting (AFT) is used to mount the cleaning elements. In this embodiment, the body of the head 120 comprises a depression (or basin) 125 for receiving a cleaning element assembly that comprises a carrier plate to which the tooth cleaning elements 130 are connected prior to being coupled to the body of the head 120. The carrier plate is then positioned within the depression 125 and secured to the body of the head 120, such as by ultrasonic welding, thermal fusion, mechanical fit or adhesion. The bristles (or elastomeric elements) of the set of tooth cleaning elements 130 extend through the carrier. The free ends of the set of tooth cleaning elements 130 on one side of the carrier plate perform the cleaning function. The ends of the set of tooth cleaning elements 130 on the other side of the carrier plate are melted together by heat, thereby retaining the set of tooth cleaning elements 130 in place.


In other embodiments, the set of tooth cleaning elements 130 can be mounted to tuft blocks or sections by extending through suitable openings in the tuft blocks so that the base of the bristles is mounted within or below the tuft block. In still another embodiment, tuft holes may be formed in the body of the head and staples, or other anchors, can be used to secure the bristles tufts therein.


While not in the exemplified embodiment, the rear surface 122 of the head 120 may also comprise additional structures for oral cleaning, such as a soft tissue cleanser, in other embodiments. Such soft tissue cleansers are typically constructed of a thermoplastic elastomer (TPE) and include one or more projections, such as nubs and/or ridges, for engaging and massaging soft oral tissue, such as the tongue.


As shown in FIG. 3, the handle 110 can be conceptually delineated in longitudinal sections comprising a proximal section 115, a middle section 116 and a neck section 117. The proximal section 115 is the portion or segment of the handle 110 that generally fits comfortably within the palm of the user. The middle section 116 forms the portion or segment of the handle 110 that generally fits comfortably between the user's thumb and index finger. The neck portion 117 forms the portion or segment of the handle 110 that connects to the head 120.


The proximal section 115 longitudinally extends from the proximal end 101 of the toothbrush 100 to the middle section 116. The middle section 116 longitudinally extends from the proximal section 115 to the neck section 117. The neck section 117 extends from the middle section 116 to the head 120. While the head 120 is illustrated as being widened relative to the neck section 117 of the handle 110, the head 120 could in some constructions simply be a continuous extension or narrowing of the neck section 117 of the handle 110.


As discussed in greater detail below, the first component 200 is located within (and forms a part of) each of the proximal section 115, the middle section 116 and the neck section 117. The second component 300 is located within (and forms part of) each of the proximal section 115 and the middle section 116. Moreover, in the exemplified embodiment, the second and third components 300, 400 are not located within the neck section 117. The third component 400 is located within (and forms part of) the middle section 116. As exemplified, the third component is only located within (and forms part of) the middle section 116.


Referring now to FIGS. 4-5 concurrently, the handle 110 is illustrated in an exploded state so that its three components are visible. The three components of the handle 110 include a first component 200, a second component 300 and a third component 400. In certain embodiments, the first component 200 can be considered the frame or base structure of the handle 110, the second component 300 can be considered a cushioning or compressible structure, and the third component can be considered a thumb and finger grip body. While three components 200, 300, 400 are exemplified as forming the multi-component handle 110, in other embodiments of the multi-component handle 110 of the toothbrush 100, the third component 400 may be omitted if desired. In one such embodiment, the first component 200 can be modified to assume the volume of the omitted third component 400. In still another such embodiment, the second component 300 can be modified to assume the volume of the omitted third component 400. In still other embodiments, the multi-component handle 110 of the toothbrush 100 may further comprise one or more additional components (in addition to the first, second and third components 200, 300, 400).


In one embodiment, each of the first, second, and third components 200, 300, 400 is an integrally formed single-component structure. One suitable forming method for forming the first, second and third components 200, 300, 400 as integral structures is injection molding. Of course, in certain other embodiments, other forming techniques may be utilized, such as machining and/or milling. In one embodiment, the first component 200 is formed of a first material, the second component 300 is formed of a second material, and the third component 400 is formed of a third material. In certain embodiments, the first material is different than the second material. In other embodiments, each of the first, second and third materials are different from one another. In one embodiment, the first material has a first hardness durometer, the second material has a second hardness durometer, and the third material has a third hardness durometer, wherein the first hardness durometer is greater than the second hardness durometer and the second hardness durometer is greater than the third hardness durometer.


In the exemplified embodiment, the first material of which the first component 200 is constructed is a hard material. One suitable hard material is a hard plastic. Suitable hard plastics for formation of the first component 200 include, without limitation, polyethylene, polyethylene terephthalate, polypropylene (PP), polyamide, polyester, cellulosics, SAN, acrylic, ABS, BR or any other of the hard plastics used in toothbrush manufacture. As used herein, the term “plastic” may include a blend of different plastics or copolymers.


In the exemplified embodiment, the second material of which the second component 300 is constructed is a first elastomeric material, such as a thermoplastic elastomer (TPE). The first elastomeric material of the second component 300, in certain embodiments, has a hardness durometer in a range of A13 to A50 Shore hardness, although materials outside this range may be used. In one specific embodiment, the hardness durometer of the first elastomeric material of the second component 300 is A25 to A40 Shore hardness.


In the exemplified embodiment, the third material of which the third component 400 is constructed is a second elastomeric material, such as a thermoplastic elastomer (TPE). In certain embodiments, the second elastomeric material of the third component may have a hardness durometer in a range of A11 to A15 Shore hardness. Of course, materials outside this hardness range could be used. As an example, one potential first elastomeric material for the third component 400 can be styrene-ethylene/butylene-styrene (SEBS) manufactured by GLS Corporation. Nevertheless, other manufacturers can supply the SEBS material and other materials could be used.


In certain embodiments, the first component 200 is constructed of a first hard plastic and the second component 300 is constructed of a first elastomeric material that are chemically compatible with one another such that they form a chemical bond with each other during an injection molding process. Moreover, in certain embodiments, the third component 400 is constructed of a second elastomeric material that is chemically compatible with the first hard plastic of the first component 200 such that they also form a chemical bond with each other during an injection molding process.


In certain embodiments, the first material (such as the hard plastics discussed above) of which the first component 200 is constructed is opaque while the second material of which the second component 300 is constructed is transparent (or light transmissive). As used herein, the term “transparent” includes materials that are color tinted but still allow light to transmit therethrough. One suitable opaque hard plastic is opaque PP. However, opaque versions of the hard plastics listed above for the first component 200 may also be used. One suitable transparent elastomeric materials includes a transparent TPE.


Referring now to FIGS. 6-9 and 13-17 concurrently, the first component 200 and its structural cooperation with the second and third components 300, 400 will be described in greater detail. The first component 200 generally comprises a body portion 201 and a frame portion 202. The frame portion 202 comprises a first longitudinal rib 203, a second longitudinal rib 204, and a third longitudinal rib 205. The first, second and third longitudinal ribs 203-205 extend from the body portion 201 toward the proximal end 101 of the handle 110. As a result of the first, second and third longitudinal ribs 203-205: a first depression 206 is formed into an outer surface 209 of the first component 200 between the first and third longitudinal ribs 203, 205; a second depression 207 is formed into the outer surface 209 of the first component 200 between the first and second longitudinal ribs 203, 204; and a third depression 208 is formed into the outer surface 209 of the first component 200 between the second and third longitudinal ribs 204, 205. The first longitudinal rib 203 separates the first and second depressions 206, 207, the second longitudinal rib 204 separates the second and third depressions 207, 208, and the third longitudinal rib 205 separates the third and first depressions 208, 206.


The first, second and third depressions 206-208 are circumferentially spaced-apart from one another about the longitudinal axis A-A (see FIG. 15). The first depression 206 is located on the front side of the outer surface 209 of the first component 200. The second depression 207 is located on the right side of the outer surface 209 of the first component 200. The third depression 208 is located on the left side of the outer surface 209 of the first component 200. In certain other embodiments, the first, second and third depressions 206-208 may be located at different locations on the first component 200.


In the exemplified embodiment, each of the first, second and third depressions 206-208 are longitudinally elongated. In other embodiments, the first, second and third depressions 206-208 can take on other shapes and/or configurations.


The first component 200 further comprises a first through-hole 210 extending from a floor 211 of the second depression 207 to a floor 212 of the third depression 208. The first through-hole 210 extends through sidewalls 213, 214 of the first depression 206, thereby spatially connecting the first, second and third depressions 206-208. The first through-hole 210 forms a first gap 215 in the sidewall 214 of the first depression 216, thereby creating a first bridge portion 217 in the first longitudinal rib 203. The first through-hole 210 also forms a second gap 216 in the sidewall 213 of the first depression 216, thereby creating a second bridge portion 218 in the third longitudinal rib 205. The first gap 215 is located beneath the first bridge portion 217 and the second gap 216 is located beneath the second bridge portion 218. Each of the first and second bridge portions 217, 218 are arched in the exemplified embodiment. In certain other embodiments, each of the first and second bridge portions 217, 218 may be linear.


In the exemplified embodiment, the first component 200 further comprises a fourth depression 219 formed into the outer surface 209 of the first component 200. As exemplified, the fourth depression 219 is longitudinally elongated. In other embodiments, however, the fourth depressions 219 may take on other shapes and/or configurations. The first and fourth depressions 206, 219 are located on opposite sides of the outer surface 209 of the first component 200, which in the exemplified embodiment are the front side and rear side respectively.


The first component 200 also comprises a third through-hole 220 that extends from a floor 221 of the first depression 206 to a floor 222 of the fourth depression 219. The third through-hole 220 results in the first and fourth depressions 206, 219 being in spatial communication with one another. In the exemplified embodiment, the second longitudinal rib 204 branches into a first rib section 223 and a second rib section 224. The first rib section 223 converges with the first longitudinal rib 203 and the second rib section 224 converges with the third longitudinal rib 205. The fourth depression 219 is located between and formed by the first and second rib section 223, 224 of the second longitudinal rib 204. As can also be seen, the first and third longitudinal ribs 203, 25 also converge at the proximal end 101 of the handle 110. While the exemplified embodiment of the first component 200 comprises the fourth depression 219, the fourth depression 219 may be omitted in certain other embodiments.


The first component 200 further comprises a second through-hole 225 extending through the body portion 201 of the first component 200. As discussed in greater detail below, the second through-hole 225 is provided to receive the third component 400 in embodiments where such a third component 400 is desired. The second through-hole 225 extends from the front side of the outer surface 209 of the first component 200 to the rear side of the outer surface 209 of the first component 200. In the exemplified embodiment, the second through-hole has a cross-sectional area that tapers with increasing depth from the opposing front and rear sides of the outer surface 209 of the first component 200. As a result an apex edge 226 is formed that is embedded by the third component 400 within the handle 110. This structure assists with retaining the third component 400 within the second through-hole 225. In other embodiments, however, the cross-sectional area of the second through-hole 225 may be substantially constant, may be stepped, or may increase and/or decrease in a repetitive manner.


As exemplified, the first through-hole 210 extends transverse to the longitudinal axis A-A in a first transverse direction. The second through-hole 225 extends transverse to the longitudinal axis A-A in a second transverse direction that is substantially perpendicular to the first transverse direction. The third through-hole 220 extends longitudinally relative to the longitudinal axis A-A. In certain other embodiments, the first, second and third through-holes 210, 225, 220 may take on other orientations and/or arrangements.


Referring now to FIGS. 10-17 concurrently, the second component 300 and its structural cooperation with the first component 200 will be described in greater detail. The second component 300 generally comprises a first portion 301, a second portion 302, a third portion 303, and a fourth portion 304. In the exemplified embodiment, each of the first, second, third and fourth portions 301-304 are elongated lobe portions. In certain other embodiments, the first, second, third and fourth portions 301-304 may take on other shapes and configurations, such as polygonal, irregular-shaped, strip-like, or combinations thereof. The shape of the first, second, third and fourth portions 301-304, in the exemplified embodiment, corresponds to the shape (and volume) of the first, second, third and fourth depression 206-208, 219 respectively.


When the handle 110 of the toothbrush 100 is assembled, the first portion 301 of the second component 300 is disposed within the first depression 206 of the first component 200. The second portion 302 of the second component 300 is disposed within the second depression 207 of the first component 200. The third portion 303 of the second component 300 is disposed within the third depression 208 of the first component 200. The fourth portion 304 of the second component 300 is disposed within the fourth depression 219 of the first component 200. In the exemplified embodiment, each of the first, second, third and fourth portions 301-304 of the second component 300 are connected together to form an integral mass of the second material of which the second component 300 is constructed. The formation of such an integral mass is afforded by the existence of the first and third through-holes 210, 220 of the first component 200 which, as discussed above, result in all of the first, second, third and fourth depressions 206, 207, 208, 219 being in spatial communication with one another. As a result, the second material of which the second component 300 is constructed extends through the first and third through-holes 210, 220, thereby connecting each of the first, second, third and fourth portions 301-304 of the second component 300 together to form said integral mass. The second component 300 thus fills the first and third through-holes 210, 220 when the handle 110 of the toothbrush 100 is assembled (including the first and second gaps 216, 217.


Of note, the first portion 301 of the second component 300 comprises a collar section 305 that wraps around a rim 227 (FIG. 6) of the first component 200 that circumscribes the second-through hole 225. The rim 227 separates the collar section 305 of the second component 300 from the third component 400 when the handle 110 of the toothbrush 100 is assembled.


Turning now to FIGS. 1-2, 4-5 and 14 concurrently, the third component 400 will be described in greater detail. The third component 400 is a generally bulbous shaped body that bulges out of the second-through hole 225 of the first component 200. The third component 400 fills the second through-hole 225 of the first component 200 and, thus, takes on the shape of the second through-hole 225. The third component 400 has a convex front surface 471 and a convex rear surface 472, which resemble an oval or elliptical shape. The bulbous shape of the third component 400 enables the user to reliably roll and control the handle 110 between the thumb and index fingers during use. The third component 400 may also be non-bulging or have any number of shapes, such as circular, a true oval shape and the like.


In one preferred construction, the third component 400 has a multiplicity of finger grip protrusions 473 projecting from the front and rear surfaces 471, 472. The finger grip protrusions 473 provide a tactile feature to increase the friction on the user's finger surfaces and thus enhance the user's ability to grip the handle 110, particularly under wet conditions. The finger grip protrusions 473 are preferably provided in a desired conical or frusto-conical shape for improved grip performance. In other embodiments, other roughened surfaces and geometries could be used.


Referring now to FIGS. 1-3, each of the first, second, third and fourth portions 301-304 of the second component 300 have an outer surface 306-309 (respectively) that remain exposed when the handle 110 of the toothbrush 100 is fully assembled. In the exemplified embodiment, the outer surfaces 306-309 of the first, second, third and fourth portions 301-304 are isolated from one another by the outer surface 209 of the first component 200. This is achieved, at least in part, by each of the first, second and third longitudinal ribs 203-205 comprising a top surface 230-232 (which is a part of the outer surface 209) that remains exposed when the handle 110 is fully assembled. In other certain embodiments, the outer surfaces 306-309 of the first, second, third and fourth portions 301-304 may not be isolated from one another by the outer surface 209.


A method of manufacturing the toothbrush 100 according to one embodiment of the present invention will be described. The first component created in manufacturing the toothbrush 100 is the first component 200. To create the first component 200, a first mold is provided having a first mold cavity and at least one port/nozzle for injecting the first hard plastic in a liquefied state into the first mold cavity. In one embodiment, a single port is used to inject the liquefied first hard plastic, which may be an opaque PP. The first mold cavity has a volume that is sized and shaped to correspond to the first component 200 as described above and illustrated herein. The first mold may be two-part mold, as is known in the art. Once the first mold cavity is created/provided, liquefied first hard plastic is injected into the first mold so as to fill the first mold cavity. The liquefied first hard plastic is allowed to cool to an appropriate temperature so as to form the first component 200, as described above and illustrated herein, for further handling.


Once the first component 200 is created (and allowed to adequately cool for further handling), the first component 200 is supported by one or more clamping members that engage one or more points of contact on first component 200 with at least one set of arms.


Once the clamping member is properly supporting the first component 200, the first component 200 is positioned within a second mold cavity of a second mold. This positioning can be effectuated by either moving the first component 200 into the second mold cavity or by creating the second mold cavity about the first component 200 while supporting the first component 200 in a stationary manner, which can be accomplished by translating and mating multiple pieces of the second mold into position so that the second mold cavity is formed about the first component 200. The second mold cavity has a volume that is sized and shaped to correspond to the second component 300. One or more ports are present in the second mold for injecting the second hard plastic in a liquefied state into the second mold cavity. In one embodiment, a single port is used to inject the liquefied first elastomeric material.


Once the first component 200 is in proper position within the second mold cavity (and the second mold cavity is adequately sealed), the liquefied first elastomeric material (which may be a first TPE) is injected into the second mold cavity so as to fill the remaining volume of the second mold cavity that is not occupied by the first component 200. The liquefied first elastomeric material forms the second component 200 on (and within) the first component 200 (as described above).


The liquefied first elastomeric material is then allowed to cool to an appropriate temperature, thereby forming the second component 300 on (and within) the first component 200, as described above. The first component 200 and second component 300 collectively form a handle assembly. If the first and second plastics are selected so as to be chemically compatible with one another, the first elastomeric material of the second component 300 chemically bonds with the first hard plastic of the first component 400 during the injection molding process.


Once the handle assembly is sufficiently cool for further handling, at least the middle section 116 is positioned within a third mold cavity of a third mold. When in the third mold cavity, the second elastomeric material in a liquefied state is injected therein to fill the second through-hole 225, which is enclosed by an appropriate mold, via a port. The second elastomeric material, in one embodiment, chemically bonds with the first hard plastic of the first component 200 during this injection molding process.


In certain embodiments, the formation of the third component 400 within the second through-hole 225 of the first component 200 may be accomplished in the second mold, thereby eliminating the need for a third mold.


The inventive aspects discussed above may be practiced for a manual toothbrush or a powered toothbrush. In operation, the previously described features, individually and/or in any combination, may improve the control, grip performance, aesthetics and cost point of oral implements. Other constructions of toothbrush are possible. For example, the head 120 may be replaceable or interchangeable on the handle 110. The head 120 may include various oral surface engaging elements, such as inter-proximal picks, brushes, flossing element, plaque scrapper, tongue cleansers and soft tissue massages. While the various features of the toothbrush 100 work together to achieve the advantages previously described, it is recognized that individual features and sub-combinations of these features can be used to obtain some of the aforementioned advantages without the necessity to adopt all of these features in an oral care implement.


As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.


While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.

Claims
  • 1. An oral care implement comprising: a handle extending from a proximal end to a distal end along a longitudinal axis;a head at the distal end of the handle;the handle comprising a first component constructed of a first material and a second component constructed of a second material;the first component comprising: first, second and third longitudinally elongated depressions formed into an outer surface of the first component, the first, second and third longitudinally elongated depressions circumferentially spaced-apart from one another about the longitudinal axis; anda first through-hole extending from the second longitudinally elongated depression to the third longitudinally elongated depression, the first through-hole extending through the first longitudinally elongated depression; andthe second component comprising: a first lobe portion disposed within the first longitudinally elongated depression, a second lobe portion disposed within the second longitudinally elongated depression, and a third lobe portion disposed within the first third longitudinally elongated depression; andthe first, second and third lobe portions connected together to form an integral mass of the second material.
  • 2. The oral care implement according to claim 1 wherein the first through-hole extends from a floor of the second longitudinally elongated depression to a floor of the third longitudinally elongated depression, the first through-hole extending through opposing sidewalls of the first longitudinally elongated depression.
  • 3. The oral care implement according to claim 2 wherein the first through-hole extends transverse to the longitudinal axis.
  • 4. The oral care implement according to claim 1 wherein the first material is an opaque material and the second material is a transparent material.
  • 5. The oral care implement according to claim 1 wherein the first material is a first hard material and the second material is a first elastomeric material.
  • 6. The oral care implement according to claim 1 wherein the first component comprises the head.
  • 7. The oral care implement according to claim 1 wherein the first component further comprises: a body portion;a first longitudinal rib extending from the body portion toward the proximal end of the handle, the first longitudinal rib separating the first and second depressions;a second longitudinal rib extending from the body portion toward the proximal end of the handle, the second longitudinal rib separating the second and third depressions; anda third longitudinal rib extending from the body portion toward the proximal end of the handle, the third longitudinal rib separating the third and first depressions.
  • 8. The oral care implement according to claim 1 wherein the handle further comprises a third component constructed of a third material, the third component disposed in a second through-hole extending through the body portion of the first component, and wherein the third component is a grip body, the third material being a second elastomeric material.
  • 9. The oral care implement according to claim 1 wherein the first component further comprises a fourth longitudinally elongated depression formed into the outer surface of the first component, the first and fourth longitudinally elongated depressions located on opposite sides of the first component.
  • 10. The oral care implement according to claim 9 wherein the first component comprises a third through-hole extending from a floor in the first longitudinally elongated depression to a floor of the fourth longitudinally elongate depression.
  • 11. The oral care implement according to claim 9 wherein the second component comprises a fourth lobe portion disposed within the fourth longitudinally elongated depression, the first, second, third and fourth lobe portions connected together to form the integral mass of the second material.
  • 12. The oral care implement according to claim 1 wherein each of the first, second and third lobe portions comprises an outer surface that remains exposed on the handle, and wherein the outer surfaces of the first, second and third lobe portions are isolated from one another by the outer surface of the first component.
  • 13. An oral care implement comprising: a handle extending from a proximal end to a distal end along a longitudinal axis;a head at the distal end of the handle;the handle comprising a first component constructed of a first material and a second component constructed of a second material;the first component comprising: a body portion; andfirst, second and third longitudinal ribs extending from the body portion toward the proximal end of the handle; andthe second component comprising: a first portion disposed between the first and third longitudinal ribs, a second portion disposed between first and second longitudinal ribs, and a third portion disposed between the second and third ribs.
  • 14. The oral care implement according to claim 13 wherein the first longitudinal rib comprises a first bridge portion and the third longitudinal rib comprises a second bridge portion, and wherein a first gap exists beneath the first bridge portion and a second gap exists beneath the second bridge portion.
  • 15. The oral care implement according to claim 13 wherein the second longitudinal rib branches into a first rib section and a second rib section, the first rib section converging with the first longitudinal rib and the second rib section converging with the second longitudinal rib, and wherein the second component comprises a fourth portion disposed between the first and second rib sections.
  • 16. The oral care implement according to claim 13 wherein each of the first, second and third portions of the second component comprises an outer surface that remains exposed on the handle, and wherein the outer surfaces of the first, second and third portions are isolated from one another by an outer surface of the first component.
  • 17. The oral care implement according to claim 13 wherein each of the first, second and third longitudinal ribs comprise a top surface that remains exposed on the handle.
  • 18. The oral care implement according to claim 13 wherein the first component further comprises: a first depression formed between the third and first longitudinal ribs;a second depression formed between the first and second longitudinal ribs;a third depression formed between the second and third longitudinal ribs;a first through-hole extending from a floor of the second depression to a floor of the third depression, the first through-hole extending through opposing sidewalls of the first depression.
  • 19. The oral care implement according to claim 13 wherein the handle further comprises a third component constructed of a third material, the third component disposed in a second through-hole extending through the body portion of the first component; and wherein the third material is a second elastomeric material.
  • 20. An oral care implement comprising: a handle comprising a first component constructed of a first material and a second component constructed of a second material;the first component comprising: first, second and third depressions formed into an outer surface of the first component; anda first through-hole extending from a floor of the second depression to a floor of the third depression, the first through-hole extending through sidewalls of the first depression; andthe second component comprising: a first portion disposed within the first depression, a second portion disposed within the second depression, and a third portion disposed within the third depression; andthe first, second and third portions connected together to form an integral mass of the second material.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/072063 12/23/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2016/105368 6/30/2016 WO A
US Referenced Citations (238)
Number Name Date Kind
758764 MacLeod May 1904 A
846900 Bloom Mar 1907 A
1125532 Himmel Jan 1915 A
1901230 Palmer Mar 1933 A
1924152 Coney et al. Aug 1933 A
2161349 Hadden Jun 1939 A
2186005 Casto Jan 1940 A
2305461 Spyra Dec 1942 A
D273635 Stocchi May 1984 S
4517701 Stanford, Jr. May 1985 A
4958402 Weihrauch Sep 1990 A
5144712 Hansel et al. Sep 1992 A
5339482 Desimone et al. Aug 1994 A
5392483 Heinzelman et al. Feb 1995 A
5584690 Maassarani Dec 1996 A
5604951 Shipp Feb 1997 A
5628082 Moskovich May 1997 A
5651158 Halm Jul 1997 A
D390706 Hohlbein et al. Feb 1998 S
5735012 Heinzelman et al. Apr 1998 A
5746532 Megill et al. May 1998 A
5758383 Hohlbein Jun 1998 A
5781958 Meessmann et al. Jul 1998 A
5799353 Yamamoto et al. Sep 1998 A
5802656 Dawson et al. Sep 1998 A
5839149 Scheier et al. Nov 1998 A
D404205 Hohlbein Jan 1999 S
D404206 Hohlbein Jan 1999 S
5862559 Hunter Jan 1999 A
5863102 Waguespack et al. Jan 1999 A
5908038 Bennett Jun 1999 A
5915868 Frazell Jun 1999 A
5930860 Shipp Aug 1999 A
5946758 Hohlbein et al. Sep 1999 A
5967152 Rimkus Oct 1999 A
5970564 Inns et al. Oct 1999 A
5984935 Budei et al. Nov 1999 A
5991958 Hohlbein Nov 1999 A
6015293 Rimkus Jan 2000 A
6032313 Tsang Mar 2000 A
6041468 Chen et al. Mar 2000 A
6073299 Hohlbein Jun 2000 A
6088870 Hohlbein Jul 2000 A
D429887 Hohlbein et al. Aug 2000 S
6099780 Gellert Aug 2000 A
6131228 Chen et al. Oct 2000 A
6178583 Volpenhein Jan 2001 B1
6234798 Salazar et al. May 2001 B1
6276021 Hohlbein Aug 2001 B1
6292973 Moskovich et al. Sep 2001 B1
D450457 Hohlbein Nov 2001 S
D450929 Angelini et al. Nov 2001 S
6314606 Hohlbein Nov 2001 B1
D451286 Hohlbein Dec 2001 S
D456138 Hohlbein Apr 2002 S
D456139 Hohlbein Apr 2002 S
6370726 Kini et al. Apr 2002 B1
D457323 Hohlbein May 2002 S
6397425 Szczech et al. Jun 2002 B1
6408476 Cann Jun 2002 B1
6421867 Weihrauch Jul 2002 B1
D461313 Hohlbein Aug 2002 S
6442786 Halm Sep 2002 B2
6442787 Hohlbein Sep 2002 B2
D464133 Barnett et al. Oct 2002 S
6463618 Zimmer Oct 2002 B1
D474608 Hohlbein May 2003 S
6564416 Claire et al. May 2003 B1
6596213 Swenson Jun 2003 B2
6595087 Whalen et al. Jul 2003 B2
6599048 Kuo Jul 2003 B2
6601272 Stvartak et al. Aug 2003 B2
6658688 Gavney, Jr. Dec 2003 B2
D486649 Sprosta et al. Feb 2004 S
6687940 Gross et al. Feb 2004 B1
6749788 Holden et al. Jun 2004 B1
6766549 Klupt Jul 2004 B2
6792642 Wagstaff Sep 2004 B2
6820299 Gavney, Jr. Nov 2004 B2
6820300 Gavney, Jr. Nov 2004 B2
6859969 Gavney, Jr. et al. Mar 2005 B2
D503538 Desalvo Apr 2005 S
6886207 Solanki May 2005 B1
6889405 Ritrovato et al. May 2005 B2
6919038 Meyer et al. Jul 2005 B2
6957469 Davies Oct 2005 B2
D511249 Hohlbein Nov 2005 S
6972106 Huber et al. Dec 2005 B2
D513882 Hohlbein et al. Jan 2006 S
6983507 McDougall Jan 2006 B2
D514320 Hohlbein Feb 2006 S
D514812 Hohlbein et al. Feb 2006 S
6996870 Hohlbein Feb 2006 B2
D516819 Hohlbein Mar 2006 S
D517812 Hohlbein et al. Mar 2006 S
D517813 Hohlbein et al. Mar 2006 S
7007332 Hohlbein Mar 2006 B2
7020928 Hohlbein Apr 2006 B2
D520753 Hohlbein May 2006 S
7047591 Hohlbein May 2006 B2
7069615 Gavney, Jr. Jul 2006 B2
7073225 Ford Jul 2006 B1
D526487 Chenvainu et al. Aug 2006 S
7083756 Strahler Aug 2006 B2
7089621 Hohlbein Aug 2006 B2
D527528 Hohlbein Sep 2006 S
D528803 Hohlbein Sep 2006 S
D532202 Hohlbein Nov 2006 S
D532607 Hohlbein Nov 2006 S
7143462 Hohlbein Dec 2006 B2
7146675 Ansari et al. Dec 2006 B2
7168125 Hohlbein Jan 2007 B2
7181799 Gavney, Jr. et al. Feb 2007 B2
7182542 Hohlbein Feb 2007 B2
7213288 Hohlbein May 2007 B2
7219384 Hohlbein May 2007 B2
7273327 Hohlbein et al. Sep 2007 B2
D557504 Hohlbein Dec 2007 S
D557505 Hohlbein Dec 2007 S
7322067 Hohlbein Jan 2008 B2
D562560 Hohlbein Feb 2008 S
7331731 Hohlbein et al. Feb 2008 B2
7354112 Fischer et al. Apr 2008 B2
7383619 Gross et al. Jun 2008 B2
7386909 Hohlbein Jun 2008 B2
7415788 Little Aug 2008 B2
7458125 Hohlbein Dec 2008 B2
7472448 Hohlbein et al. Jan 2009 B2
7478959 Hohlbein Jan 2009 B2
7480955 Hohlbein et al. Jan 2009 B2
D589260 Hohlbein Mar 2009 S
7540844 Muser Jun 2009 B2
D598199 Russell et al. Aug 2009 S
D598654 Huang Aug 2009 S
D599556 Russell et al. Sep 2009 S
7614111 Moskovich et al. Nov 2009 B2
D609915 Erskine-Smith et al. Feb 2010 S
D612611 Brown, Jr. et al. Mar 2010 S
7712175 Blanchard et al. May 2010 B2
7721376 Hohlbein et al. May 2010 B2
7722274 Hohlbein et al. May 2010 B2
7735174 Hohlbein et al. Jun 2010 B2
D623415 Geiberger Sep 2010 S
7788756 Kraemer Sep 2010 B2
7845042 Moskovich et al. Dec 2010 B2
7854036 Georgi Dec 2010 B2
7937794 Huber et al. May 2011 B2
7954191 Hohlbein Jun 2011 B2
7958589 Braun et al. Jun 2011 B2
7975343 Hohlbein et al. Jul 2011 B2
7975346 Moskovch et al. Jul 2011 B2
7979947 Storkel et al. Jul 2011 B2
8032991 Lawless Oct 2011 B2
8042217 Sorrentino Oct 2011 B2
8046864 Baertschi et al. Nov 2011 B2
8060972 Geiberger et al. Nov 2011 B2
8083980 Huber et al. Dec 2011 B2
8239996 Garber et al. Aug 2012 B2
8307488 Pfenniger et al. Nov 2012 B2
8327492 Cann Dec 2012 B2
8332982 Braun et al. Dec 2012 B2
8332985 Solanki Dec 2012 B2
8382208 Baertschi et al. Feb 2013 B2
8448284 Gross et al. May 2013 B2
8448287 Ponzini et al. May 2013 B2
8458846 Schamberg et al. Jun 2013 B2
8484789 Claire-Zimmet et al. Jul 2013 B2
8500766 Jimenez et al. Aug 2013 B2
8528148 Brown, Jr. et al. Sep 2013 B2
8549691 Moskovich Oct 2013 B2
8595886 Edelstein et al. Dec 2013 B2
8601635 Goldman et al. Dec 2013 B2
8608251 Nirwing et al. Dec 2013 B2
8621698 Chenvainu et al. Jan 2014 B2
8631534 Blanchard et al. Jan 2014 B2
8732890 Mohr et al. May 2014 B2
8739351 Kling et al. Jun 2014 B2
8776302 Baertschi et al. Jul 2014 B2
8813292 Driesen et al. Aug 2014 B2
8813296 Rooney Aug 2014 B2
8990995 Jimenez Mar 2015 B2
9855692 Rooney Jan 2018 B2
10010164 Rooney Jul 2018 B2
20020017003 Kramer et al. Feb 2002 A1
20020138928 Calabrese Oct 2002 A1
20030163881 Driesen et al. Sep 2003 A1
20030178745 Scarabelli et al. Sep 2003 A1
20030178885 Weihrauch Sep 2003 A1
20040025275 Moskovich et al. Feb 2004 A1
20040107521 Chan et al. Jun 2004 A1
20040134007 Davies Jul 2004 A1
20050166343 Gavney, Jr. Aug 2005 A1
20050210612 Hohlbein et al. Sep 2005 A1
20060048314 Kressner Mar 2006 A1
20060048323 Rueb Mar 2006 A1
20060064827 Chan Mar 2006 A1
20060123574 Storkel et al. Jun 2006 A1
20060236477 Gavney, Jr. Oct 2006 A1
20060236478 Hohlbein et al. Oct 2006 A1
20060248667 Kraemer Nov 2006 A1
20070151058 Kraemer et al. Jul 2007 A1
20070169295 Winter et al. Jul 2007 A1
20070265555 Deng Nov 2007 A1
20070283517 Blanchard et al. Dec 2007 A1
20090007357 Meadows et al. Jan 2009 A1
20090038097 Geiberger Feb 2009 A1
20090158543 Lee Jun 2009 A1
20090255077 Mori et al. Oct 2009 A1
20100043162 Kling et al. Feb 2010 A1
20100058550 Ballmaier et al. Mar 2010 A1
20100088836 Kirchhofer et al. Apr 2010 A1
20100101037 Hilfiker et al. Apr 2010 A1
20100115724 Huang May 2010 A1
20100180392 Binet et al. Jul 2010 A1
20100223746 Mueller Sep 2010 A1
20100263149 Ballmaier et al. Oct 2010 A1
20100306941 Erskine-Smith et al. Dec 2010 A1
20110030160 Knutzen et al. Feb 2011 A1
20110047736 Jimenez et al. Mar 2011 A1
20110138560 Vitt et al. Jun 2011 A1
20110219558 Vitt et al. Sep 2011 A1
20110109149 Loetscher et al. Dec 2011 A1
20120034576 Mostafa Feb 2012 A1
20120192369 Mohr et al. Aug 2012 A1
20120255136 Jimenez et al. Oct 2012 A1
20130007968 Driesen et al. Jan 2013 A1
20130036566 Schlatter Feb 2013 A1
20130139338 Hess et al. Jun 2013 A1
20130269128 Jimenez Oct 2013 A1
20130276252 Xi Oct 2013 A1
20130291320 Kirchhofer et al. Nov 2013 A1
20130333126 Miller Dec 2013 A1
20140047656 Newman et al. Feb 2014 A1
20140158152 Kirchhofer et al. Jun 2014 A1
20140173838 Dickie et al. Jun 2014 A1
20140173853 Kirchhofer et al. Jun 2014 A1
20140298605 Ivory Oct 2014 A1
20140310901 Geiberger et al. Oct 2014 A1
Foreign Referenced Citations (94)
Number Date Country
71556 Oct 2003 AR
80042 Nov 2009 AR
7900283 Aug 2000 BR
DI 6601454-9 Apr 2006 BR
DI 6702593 Aug 2007 BR
DI 6805210-3 Nov 2008 BR
DI 6902120-1 May 2009 BR
DI 6903329-3 Aug 2009 BR
DI 6903330-7 Aug 2009 BR
DI 6904386 Nov 2009 BR
DI 7102178-7 Apr 2011 BR
30 2013 000448-1 Feb 2013 BR
DI 6401609-9 May 2014 BR
215110 Jun 1941 CH
3372860D Jun 2004 CN
3372861D Jun 2004 CN
2732059 Oct 2005 CN
300704339 Oct 2007 CN
201294969 Aug 2009 CN
201518876 Jul 2010 CN
201518877 Jul 2010 CN
201518880 Jul 2010 CN
201528796 Jul 2010 CN
201541995 Aug 2010 CN
201541996 Aug 2010 CN
201541997 Aug 2010 CN
201550827 Aug 2010 CN
301406316 Dec 2010 CN
301421505 Dec 2010 CN
201814085 May 2011 CN
201986933 Sep 2011 CN
301763519 Dec 2011 CN
30198826 May 2012 CN
302058056 Sep 2012 CN
302225957 Dec 2012 CN
302328863 Feb 2013 CN
202800555 Mar 2013 CN
103005839 Apr 2013 CN
203194906 Sep 2013 CN
203220069 Oct 2013 CN
203220073 Oct 2013 CN
203252150 Oct 2013 CN
302956580 Oct 2014 CN
19858102 Jun 2000 DE
202005009026 Oct 2005 DE
102006016939 May 2007 DE
102006005616 Aug 2007 DE
102006024874 Nov 2007 DE
202008016004 Feb 2009 DE
000366984-0001 Jul 2005 EM
000638028-0002 Dec 2006 EM
001975079-0005 Jan 2012 EM
002163675-0002 Jan 2013 EM
002163675-0003 Jan 2013 EM
002212522-0004 Apr 2013 EM
002212522-0012 Apr 2013 EM
002424069-0001 Mar 2014 EM
0716821 Jun 1996 EP
0769920 Sep 2003 EP
2810581 Dec 2014 EP
1063617 Nov 2006 ES
2010PDO000035-0019 Oct 2010 IT
H08164025 Jun 1996 JP
10042957 Aug 1996 JP
D1314270 Oct 2007 JP
20040032038 Apr 2004 KR
838174 Jun 2007 KR
20-2012-0005449 Jul 2012 KR
32553 Nov 2009 MX
36113 Apr 2011 MX
36650 Apr 2011 MX
55985 Jan 2005 RU
79787 Oct 2011 RU
80086 Nov 2011 RU
81915 Jun 2012 RU
WO199506420 Mar 1995 WO
WO199510959 Apr 1995 WO
WO1999023910 May 1999 WO
WO199955514 Nov 1999 WO
WO199965358 Dec 1999 WO
WO200049911 Aug 2000 WO
WO200117392 Mar 2001 WO
WO200129128 Apr 2001 WO
WO200145573 Jun 2001 WO
WO2001182741 Nov 2001 WO
WO2004043669 May 2004 WO
WO2005122827 Dec 2005 WO
WO2008017996 Feb 2008 WO
WO2011070549 Jun 2011 WO
WO2011075133 Jun 2011 WO
WO2012017923 Feb 2012 WO
WO2012115035 Aug 2012 WO
WO2012176741 Dec 2012 WO
WO2013031685 Mar 2013 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and the Written Opinion issued in International Application PCT/US2010/046806 dated Mar. 16, 2011.
International Search Report and the Written Opinion issued in International Application PCT/US2012/070760 dated Oct. 14, 2013.
International Search Report and the Written Opinion issued in International Application PCT/US2014/072063 dated Oct. 1, 2015.
Related Publications (1)
Number Date Country
20170347783 A1 Dec 2017 US