Oral hygiene device

Information

  • Patent Grant
  • 8631532
  • Patent Number
    8,631,532
  • Date Filed
    Wednesday, July 25, 2012
    12 years ago
  • Date Issued
    Tuesday, January 21, 2014
    11 years ago
Abstract
An oral cleaning tool for an electric oral hygiene device is disclosed. The oral cleaning tool includes a housing having a head section with a head cavity for accommodating a movable oral cleaning head and a neck section with a neck cavity and a handle coupling section; a first magnetic coupling element including at least a permanent magnet or a magnetizable element being provided in the neck section for mechanical handle drive shaft connection by magnetic interaction. The first magnetic coupling element is mounted at a motion transmitter, the motion transmitter extending inside the neck cavity to the head cavity, the motion transmitter arranged so as to be movable in a linear or longitudinal direction. The motion transmitter is coupled with the oral cleaning head, the oral cleaning head arranged so as to oscillate in a rotational direction.
Description
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of European Patent Convention Application No. 11006106.6, filed Jul. 25, 2011, the substance of which is incorporated by reference in its entirety herein.


FIELD OF THE INVENTION

The present disclosure is directed to an attachment section for an oral hygiene device, a handle section for an oral hygiene device and an oral hygiene device.


BACKGROUND OF THE INVENTION

It is known that electric oral hygiene devices, in particular electric toothbrushes, may have detachably mounted replacement attachments such as a replacement brush head of an electric toothbrush. It is further known that the coupling between the attachment and an handle of the oral hygiene device may be by mechanical means such as a snap hook provided at the attachment that snaps into a groove provided at the handle. Mechanical couplings often have a certain clearing or gap between the coupling partners due to tolerances between the coupling partners. Such clearings or gaps have the tendency to generate unwanted rattling noise during operation of the device.


It is therefore a desire to provide an improved coupling between an attachment section of an oral cleaning tool and a handle section of an oral hygiene device and in particular an attachment section of an oral cleaning tool and a handle section that enable such improved coupling.


SUMMARY OF THE INVENTION

In one embodiment, an oral cleaning tool for an electric oral hygiene device is provided. The oral cleaning tool includes a housing having a head section with a head cavity for accommodating a movable oral cleaning head and a neck section with a neck cavity and a handle coupling section; a first magnetic coupling element including at least a permanent magnet or a magnetizable element being provided in the neck section for mechanical handle drive shaft connection by magnetic interaction. The first magnetic coupling element is mounted at a motion transmitter, the motion transmitter extending inside the neck cavity to the head cavity, the motion transmitter arranged so as to be movable in a linear or longitudinal direction. The motion transmitter is coupled with the oral cleaning head, the oral cleaning head arranged so as to oscillate in a rotational direction.


In another embodiment, a handle section of an electric oral hygiene device is provided. The handle section includes a linear drive including a drive shaft for oscillation along a longitudinal axis or in a longitudinal direction of the handle at which a second magnetic coupling element is arranged, having at least a permanent magnet which protrudes from the handle and that is embedded with respect to at least three sides thereof in a hard and/or soft plastic handle body and a further mechanical oral cleaning tool coupling section that is arranged to provide independent coupling with the oral cleaning tool.


These and other features, aspects and advantages of specific embodiments will become evident to those skilled in the art from a reading of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments set forth in the drawings are illustrative in nature and not intended to limit the invention defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 is a perspective view onto an oral hygiene device in the form of an electric toothbrush;



FIG. 2 is a sideways longitudinal cross-sectional cut through an example attachment section;



FIG. 3 is a transverse longitudinal cross-sectional cut through the attachment section shown in FIG. 2;



FIG. 4 is a longitudinal cross sectional cut through an example handle section;



FIG. 5 is a longitudinal cut through a top portion of an example oral hygiene device;



FIGS. 6A-6D show four example configurations of first and second magnetic coupling elements;



FIG. 7 show simulation results for the force between the coupling partners of the four configurations shown in FIG. 6A-6D;



FIG. 8 is a cross sectional cut through a top portion of a drive shaft of an example handle section;



FIG. 9 is a cross sectional cut through a top portion of a drive shaft of an example handle section;



FIG. 10 is a cross sectional cut through a top portion of a drive shaft of a further example handle section;



FIG. 11 is a cross sectional cut through a lower portion of a motion transmitter of an example attachment section;



FIG. 12A is a side view depiction of an example embodiment of an attachment section as proposed with the attachment housing being transparent;



FIG. 12B is a depiction of the embodiment of an attachment section as shown in FIG. 12A, but seen from the backside (the front side being the side where the functional element is mounted); and



FIG. 12C is a longitudinal cut through the attachment section shown in FIGS. 12A and 12B seen from the backside of the attachment section.





DETAILED DESCRIPTION OF THE INVENTION

The following text sets forth a broad description of numerous different embodiments of the present disclosure. The description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. It will be understood that any feature, characteristic, component, composition, ingredient, product, step or methodology described herein can be deleted, combined with or substituted for, in whole or part, any other feature, characteristic, component, composition, ingredient, product, step or methodology described herein. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims. All publications and patents cited herein are incorporated herein by reference.


One aspect of the present disclosure is concerned with a connection, in particular a detachable connection, between an attachment section and a handle section of an (in particular electric) oral hygiene device where at least one connection (in particular a connection established between movably mounted parts that are driven during operation and are intended for transferring motion from a motor in the handle section to a functional element in the attachment section) between the attachment section and the handle section is realized as a magnetic coupling. Mechanical couplings in general have inherently tolerance-based clearances or gaps between the coupling partners so that the coupling partners may move relatively to each other when the respective connection is established between parts being driven during operation. Such a mechanical connection is then prone to generate unwanted noise during operation. A magnetic coupling can inherently be designed with less clearance so that a magnetic coupling is likely to produce less noise.


In some embodiments, an attachment section as proposed comprises a first magnetic coupling element that has at least a permanent magnet or a magnetizable element. The first magnetic coupling is arranged for establishing a magnetic connection with a second magnetic coupling element provided in a handle section in an attached state.


In some embodiments, an attachment section may additionally comprise an attachment housing, a functional element mounted for driven motion at the attachment housing and a motion transmitter. The motion transmitter may on one end be coupled to the functional element to transfer motion to the functional element and on another end may be equipped with the first magnetic coupling element. The motion transmitter may in particular extend in a cavity formed inside of the attachment housing. In some embodiments, the functional element may be a working element such as a brush head for cleaning teeth. In some embodiments, the attachment housing may have a first coupling structure intended for establishing a further connection with a second coupling structure provided at the handle section.


On one hand, a magnetizable element (e.g. a magnetizable steel or iron element) can be realized relatively cheap, and an attachment section intended for disposal after some period of use may then be realized relative cheap. This is in particular interesting in cases where the costs of a permanent magnet would be in the same order as the costs of the whole attachment section. On the other hand, a permanent magnet in the attachment section together with a permanent magnet in the handle section can provide for a higher coupling strength then a permanent magnet and magnetizable element combination at the same construction volume.


In some embodiments, the first magnetic coupling element comprises a protective cover that protects the first magnetic coupling element from corrosion or abrasion. In such embodiments, the protective cover may be abrasion resistant to the extent that during a typical lifetime of the attachment section the protective cover stays intact. As an oral hygiene device is used in a wet environment and typically with abrasive and/or corrosive chemicals such as mouth rinses or toothpaste, a thin coating such as e.g. a 10 micrometer thick gold coating may be abraded within a rather short period. A protective cover made of an about 20 μm thick or more, optionally about 30 μm or more, further optionally 40 μm or more, even further optionally about 50 μm or more metal layer, ceramic layer, glass layer or abrasion-resistant plastic or resin layer can be used. In some embodiments, the protective cover may have a thickness of 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, 100 μm or more, 150 μm or more or 200 μm or more, and/or any thickness within or including the values provided above or any ranges including or within the values provided above. In some embodiments, the protective cover is realized as an essentially cup-shaped element that may be mounted by gluing, press-fitting, crimping, shrink-fitting, stamping, welding, snapping or any combination thereof. The protective cover is, in some particular embodiment, realized as a plate or disk that may be glued to the magnetic coupling element. In some embodiments, a protective cover is used that is manufactured in a deep-drawing, punch-drawing or thermoforming process.


In general, the protective cover may be designed to be abrasion resistant for a temporary period which corresponds to a typical period of use of the attachment section. The typical period of use may be about three months with three a switch-on periods of two to four minutes per day, hence the operation use period may be around 540 minutes to around 1.080 minutes. However, the protective cover may be designed to be abrasion resistant for longer or for shorter periods of time. In particular, in some embodiments, a protective cover may be used that is abrasion resistant for much longer than 1.080 minutes, e.g. 2.000 minutes, 4.000 minutes, 10.000 minutes or even longer.


In some embodiments, the first magnetic coupling element is at least partly accommodated in a recess or cavity provided in the motion transmitter. In some embodiments, the motion transmitter may comprise a holder element in which the first magnetic coupling element is at least partly accommodated. In some embodiments, the motion transmitter may comprise a rod element, in particular a rod element made from metal such as stainless steel. Such a metal rod is likely to provide a stability not provided by a motion transmitter that is completely made of a plastic material. The rod element may in some embodiments be pivot mounted at the functional element, in particular at a mounting location that is offset from an axis around which the functional element will be driven during operation. Alternatively or additionally, the rod element may be pivot mounted at a holder element, e.g. a holder element as mentioned above that has a recess that at least partly accommodated the first magnetic coupling element. The pivot mounting of the rod element is likely to support relative movement between the rod element and the functional element or the holder element, respectively.


In some embodiments, the attachment section, the protective cover, the first magnetic coupling element and/or the motion transmitter has a centering structure that is intended for at least supporting the centering of the first magnetic coupling element with the second magnetic coupling element during an attachment process.


In some embodiments, the first magnetic coupling element may have at least one indentation or a groove that is filled with plastic material, in particular with injection molded plastic material. E.g. the holder element mentioned above may be made in a plastic injection molding step with the first magnetic coupling element being an insert element. Then, a manufacturing step of e.g. snapping the first magnetic coupling element into a holder element can be discarded with and further, the injection molding step may lead to lower clearances or gaps between the first magnetic coupling element and the holder element then in case of a later mounting of these two parts.


In an embodiment, the attachment section is arranged such that the motion transmitter is mounted free of any return force elements that would influence the behavior of a resonant drive provided in the handle section with a further spring. As springs typically have tolerances, a spring in the attachment section that is intended for coupling with a drive shaft of a resonant drive in a handle section could contribute to the spring-mass system that determines the resonance frequency of the resonant drive. Additionally, a spring in the attachment section may also produce additional noise in operation due to the tolerance needed for mounting of the spring. In some embodiments, a handle section for connection, optionally detachable connection with an attachment section as proposed above comprises a second magnetic coupling element arranged at a drive shaft, which second magnetic coupling element is arranged for establishing a magnetic connection with a first magnetic coupling element provided at the attachment section and a second coupling structure for establishing a connection, in particular a mechanical connection (e.g. a force-fit or form-fit connection) with a first coupling structure provided at the attachment section, in particular at the attachment housing. The second magnetic coupling element may comprise at least a permanent magnet or a magnetizable element.


In at least some embodiments, a handle section as proposed comprises a linear drive (i.e. a resonant drive providing a linear reciprocal movement or a DC motor having a gear for converting a rotational motion into a oscillatory linear motion) for driving the drive shaft into a linear oscillation in a longitudinal direction (generally parallel to a longitudinal axis of the drive shaft or coinciding with a longitudinal axis of the drive shaft). In some embodiments, the linear drive may provide via the drive shaft a linear oscillatory motion amplitude in a range of between about ±0.1 mm to about ±2.0 mm, in particular in arrange of between about ±0.5 mm to about ±1.5 mm, optionally in a range of between about ±0.75 mm to about ±1.25 mm, further optionally in a range of between about ±0.9 mm to about ±1.1 mm and even further optionally a linear oscillatory motion amplitude of about ±1.0 mm. In some embodiments, the attachment section comprises a gear assembly that converts the linear motion provided by the drive shaft and transferred to the motion transmitter into a oscillatory rotation having a maximum angular deflection in a range of between ±5 degrees to ±40 degrees, in particular in a range of between about ±10 degrees to ±30 degrees, optionally in a range of between about ±15 degrees to about ±25 degrees, and further optionally of about ±20 degrees (where the angular deflection is measured in an unloaded state of the functional element).


The longitudinal axis as referred to in all embodiments generally extends along a longitudinal or lengthwise dimension of the drive shaft or is parallel to a longitudinal axis of the drive shaft or coincides with a longitudinal axis of the drive shaft. The drive shaft means the drive shaft of the motor or extensions of that.


In an embodiment, the second magnetic coupling element may have a protective cover that protects the second magnetic coupling element from corrosion. The protective cover may be abrasion resistant to the extent that during a typical lifetime of the handle section the protective cover stays intact. As an oral hygiene device is used in a wet environment and typically with abrasive and/or corrosive chemicals such as mouth rinses or toothpaste, a thin coating such as e.g. a 10 micrometer thick tin coating may be abraded within a rather short period. A protective cover made of an about 20 μm thick or more, optionally about 30 μm or more, further optionally 40 μm or more, even further optionally about 50 μm or more metal layer, ceramic layer, glass layer or abrasion-resistant plastic or resin layer may be better suitable. In some embodiments, the protective cover may have a thickness of 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, 100 μm or more, 150 μm or more or 200 μm or more and/or any and/or any thickness within or including the values provided above or any ranges including or within the values provided above. The protective cover may be realized as an essentially cup-shaped element that may be mounted by gluing, press-fitting, crimping, shrink-fitting, stamping, welding, snapping or any combination thereof. The protective cover is, in a particular embodiment, realized as a plate or disk that may be glued to the magnetic coupling element. The protective cover for the second magnetic coupling may be configured similarly to the protective cover described heretofore with regard to the first magnetic coupling.


In an embodiment, the second magnetic coupling element is at least partly accommodated in a recess provided in the drive shaft. In an embodiment, the handle section, the protective cover, the second magnetic coupling element and/or the drive shaft may have a centering structure that is intended for at least supporting the centering of the first magnetic coupling element with the second magnetic coupling element during an attachment process.


In some embodiments, an oral hygiene device may comprise at least an attachment section as proposed and that may further comprise a handle section having a second magnetic coupling element and a second coupling structure for establishing a connection with the first coupling structure provided at the attachment section. In some embodiments, an oral hygiene device may comprise at least an attachment section as proposed and further a handle section in accordance with a handle section as proposed in a previous paragraph above. In some embodiments, the handle section comprises a drive having a drive shaft that is arranged to provide a linear oscillating motion during operation and the contact faces of the magnetic coupling elements are arranged essentially perpendicular to the linear movement direction.


In some embodiments, as will be explained in more detail further below, the magnetic coupling between the first and the second magnetic coupling elements is designed to at least partially decouple in case of a pull-off force imposed on the magnetic connection that is beyond a threshold force. Such an at least partial decoupling of the magnetic coupling partners is then likely to interrupt the motion transfer and to generate noise, which can be noticed by a user, who is then informed about a too high load.


As an example, in case of the oral hygiene implement being an electric toothbrush and the attachment being a replaceable brush head having as a functional element a bristle carrier mounted for oscillatory rotation, a magnetic coupling between a motor in a handle section of the oral hygiene device and a motion transmitter in the attachment section should be in a coupled state for typical pull-off forces that occur during operation (i.e. brushing of teeth in an example case). Typical pull-off forces that occur during brushing between the first and second magnetic coupling elements may in particular be generated due to friction between treatment elements (e.g. bristles) mounted on the carrier and hard or soft tissue in the oral cavity (e.g. the teeth or the gums). This friction increases with the pressure force with which the functional element (e.g. brush head) is applied onto the hard or soft tissue (e.g. the teeth). Typical applied pressure force values may lay in a range of between about 1.5 Newton (N) and about 3.5 N (pressure forces below this range are typically either not used or do not lead to a proper treatment result and pressure values above this range may potentially lead to discomfort and even injuries), in particular in a range of between about 2 N and 3 N. For the above oscillatory rotating brush heads it has been found that the pull-off force that acts at the magnetic coupling may then be above about 5 N and in particular above about 6 N and further particularly in a range of between about 6.5 N to about 8.0 N. Higher pull-off forces may then be due to a too high pressure force applied by the user or due to bristles getting stuck in between teeth. In both cases, it may be reasonable that the magnetic coupling is arranged to decouple at a pull-off force above the maximally occurring and allowed pull-off force. Firstly, it may support to indicate to the user that a too high pressure force is applied as the decoupling may be noticeable to the user. Secondly, such decoupling is likely to reduce pain that may occur in case stuck bristles are pulled out of between the teeth when the magnetic coupling would withstand higher pull-off forces. In both cases it is likely that the decoupling leads to an improved protection of hard and soft tissue against abrasion and other kind of damage. Thus, a threshold force may be set to 5 N, 5.5 N, 6 N, 6.5 N, 7 N, 7.5 N, 8 N, 8.5 N, 9 N, 9.5 N, or 10 N, where in particular the threshold force may be set to a value of at least about 6.5 N, in another embodiment at least about 7 N, further in another embodiment at least about 7.5 N and in yet another embodiment at least about 8 N. As will be seen further below, the threshold force can in particular be set by designing the magnetic coupling accordingly, for example, by choosing the dimensions of the first and second magnetic coupling elements, choosing the respective materials from which the first and second coupling elements are made, or choosing a gap between the first and second magnetic coupling elements. While it is here proposed to design the magnetic coupling in a manner that the magnetic coupling decouples in case a pull-off force is applied above a threshold force, the above example was experimentally derived for bristle carriers mounted for driven oscillatory rotation at the attachment housing. While it is not excluded that other functional elements may result in the same threshold force, another threshold force value may be found as preferred based on experimental investigation with other functional elements or for another intended oral hygiene application, e.g. tongue cleaning or gum massaging.


In some embodiments, the attachment section has a first magnetic coupling element that comprises a magnetizable element, which may in particular be made from stainless steel so that a further protective cover could be discarded with, which magnetizable element fits into a cylinder of at least about 4.5 mm diameter and of at least about 4.5 mm length. In another embodiment, the diameter may be at least about 5.0 mm, in another embodiment, at least about 5.5 mm. In another embodiment, the length may be at least about 5.5 mm, and in another embodiment, at least about 6.5 mm.


In some embodiments, the handle section has a second magnetic coupling element that include a permanent magnet, in particular made of NdFeB, which permanent magnet fits into a cylinder of at least about 4.5 mm diameter and of at least about 4.5 mm length. In another embodiment, the diameter may be at least about 5.0 mm, in a further embodiment at least about 5.5 mm. In another embodiment, the length may be at least about 5.0 mm, and in another embodiment at least about 5.5 mm.


In some embodiments, the motion transmitter is non-detachably connected with the attachment section, in particular with a functional element mounted for driven movement.


In the following, a detailed description of several example embodiments will be given. It is noted that all features described in the present disclosure, whether they are disclosed in the previous description of more general embodiments or in the following description of example embodiments, even though they may be described in the context of a particular embodiment, are of course meant to be disclosed as individual features that can be combined with all other disclosed features as long as this would not contradict the gist and scope of the present disclosure. In particular, all features disclosed for either one of the first or second magnetic coupling elements may also be applied to the other one.



FIG. 1 is a perspective depiction of an example embodiment of an oral hygiene device 1, here realized as an electric toothbrush. The oral hygiene device 1 comprises a handle section 200 and an attachment section 100. Here, the attachment section 100 is realized as a detachable brush section. The attachment section 100 has a functional element 130, here realized as a brush head, which functional element 130 is movably mounted at an attachment housing 150 such that the functional element 130 can be driven into an oscillatory rotation (as shown with double arrow 21) around a rotation axis R that may be perpendicular to the longitudinal axis L of the attachment section 100. Instead of being realized as an electric toothbrush, the oral hygiene device may be realized as an (electric) tongue scraper, an (electric) flossing device, an (electric) interdental cleaner etc. The attachment section may then accordingly be realized as a tongue scraper section, a flossing section, an interdental cleaning section etc. The functional element may the accordingly be realized as a tongue scraper head, a flossing head, an interdental cleaning head etc.



FIG. 2 is a lateral cross sectional cut through the attachment section 100 taken along a longitudinal axis of the attachment section 100. The attachment section 100 comprises the attachment housing 150 and the functional element 130, which is movably attached to the attachment housing 150.


The functional element 130 may comprise a carrier element 131 on which a plurality of cleaning elements 133 may be mounted for cleaning and massaging parts of the oral cavity such as teeth and gums. The carrier element 131 may be mounted to the attachment housing 150 via a mounting axle 132 for driven oscillatory rotation around a rotation axis R that may be essentially perpendicular to the longitudinal axis (reference numeral L in FIG. 1) of the attachment section 100.


The attachment section 100 may further comprise a motion transmitter 110 disposed within a cavity 159 formed within the attachment housing 150. The motion transmitter 110 may be functionally connected with the functional element 130 as will be explained in more detail with reference to FIG. 3. Generally and applicable to all embodiments, “functionally connected” shall mean a connection that is not intended to be disconnected and that shall enable that motion transmitted via the motion transmitter is transferred to the functional element. The motion transmitter 110 is arranged for transmission of a linear oscillatory movement to the functional element 130, which linear oscillatory motion may be generally parallel to the longitudinal axis of the attachment section 100 (as indicated by double arrow A). Such a linear oscillatory motion may be provided by a drive shaft of a handle section when the attachment section 100 is in an attached state, as will be explained in more detail with reference to FIG. 5.


The motion transmitter 110 may comprise a recess 112 realized as a blind hole provided at a first end 110A that is proximal to the opening of the cavity 159, which opening at the end of the attachment section 100 (i.e. the first end 110A of the motion transmitter 110 is distal to the functional element 130). A first magnetic coupling element 120 is disposed in the recess 112. Generally and, as mentioned above for all the described features, applicable for all embodiments, the first magnetic coupling element 120 may be realized as a permanent magnet or a magnetizable element such as a block of magnetizable iron or steel. Typically, austenitic steel is not magnetizable, while martensitic or ferritic steel typically is magnetizable. The first magnetic coupling element 120 has a coupling side 121 that is oriented towards the opening provided at the distal end of the attachment section 100. Generally and applicable to all embodiments, the coupling side 121 may be retracted from the opening at the end of the attachment housing intended for coupling with a handle section so that the magnetic connection is established at a longitudinal position inside of the attachment housing, in particular where this longitudinal location is retracted by a value lying in the range of between about 0.5 cm to about 5.0 cm, e.g. 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm, 4.0 cm, 4.5 cm or any other value lying in the mentioned range from the end of the attachment housing and the length of the attachment housing may be in the range of between about 3.0 cm to about 10.0 cm.


The first magnetic coupling element 120 may be secured to the motion transmitter 110 in any suitable manner. For example, the first magnetic coupling element 120 may be glued to the motion transmitter 110, it may be snapped into a recess, it may be secured by injection molding at least a part of the motion transmitter over it or it may be secured by other means as will be explained further below.


In some example embodiments, the first magnetic coupling element is realized as a magnetizable iron or steel element. In case the first magnetic coupling element is realized by a corrosive material such as iron or a NdFeB material (from which relatively strong permanent magnets can be made), at least the coupling side of the first magnetic coupling element may have a protective cover to protect the first magnetic coupling element from corrosion.


The protective cover may be realized as a coating, a top cover, a cap or a cup, as will be explained in more detail further below. Generally and applicable to all embodiments, any protective cover applied to a first or second magnetic coupling element may lead to a distance between the first and second magnetic coupling elements in the attached state and thus to a reduction in the effective coupling force between the first and second magnetic coupling elements, so that a cover thickness of about or less than 0.5 mm, optionally about or less than 0.4 mm, further optionally of about or less than 0.3 mm, even further optionally of about or less than 0.2 mm, and yet even further optionally of about or less than 0.1 mm per cover could be chosen. In other embodiments, the protective cover may comprise a thickness as described previously. In the shown embodiment, the first magnetic coupling element 120 is glued into the recess. It may have an anti-corrosive coating applied to the coupling side 121 or a protective cover that may be glued over the coupling side 121. In the shown embodiment, it would be sufficient to secure a disc-shaped protective cover onto the coupling side 121 of the first magnetic coupling element 120 as the other sides of the first magnetic coupling element 120 are protected by the surrounding material of the motion transmitter 110.


Generally and applicable to all embodiments, the first magnetic coupling element 120 may be realized as a cylindrical element having its cylinder axis essentially oriented parallel to the longitudinal axis of the attachment section 100, where the diameter of the cylinder may be chosen to be about or larger than about 2 mm, in another embodiment about or larger about 3 mm, further in another embodiment about or larger than about 4 mm, even further in another embodiment about or larger than about 5 mm, and yet even further in another embodiment about or larger than about 6 mm, and/or any number or range including or within the values provided. The cylinder element may have any suitable height. In example embodiments, the height may be chosen to be about or larger than about 2 mm, in another embodiment about or larger than about 3 mm, in another embodiment about or larger than about 4 mm, in another embodiment about or larger than about 5 mm, and yet in another embodiment about or larger than about 6 mm, and/or any number or range including or within the values provided. In some example embodiments, the height of the first magnetic coupling element may be chosen as large as the diameter. In other embodiments, the second magnetic coupling element may be designed to have any suitable shape. In such a case, the smallest possible cylinder into which such a first magnetic coupling element fits may have a diameter and a height as stated above.


In some example embodiments, the first magnetic coupling 120 is realized as a permanent magnet. In a case in which the attachment section 100 is a disposable attachment section intended for detachable attachment to a handle section 200 of an oral hygiene device, material costs may be considered as one important aspect. Realizing the first magnetic coupling element 120 and the second magnetic coupling element as permanent magnets may lead to a relatively high coupling force, while realizing the first magnetic coupling element 120 as a magnetizable element such as an iron or steel element reduces the material costs of the attachment section 100.


The attachment section 100 as shown in FIG. 2 may further comprise an insert element 151 that is snapped into the attachment housing 150 thereby forming part of the attachment housing 150. The insert element 151 may be equipped with a first coupling structure 152 intended for establishing a further coupling (i.e. a coupling different to the magnetic coupling that will be established by the first magnetic coupling element 120) with a handle section of an oral hygiene device in an attached state. In the shown example embodiment, the first coupling structure 152 is realized by mechanical coupling means such as snap hooks or spring elements for clamping projections provided at the handle section. In other example embodiments, the first coupling structure 152 may be realized by a further magnetic coupling element. The longitudinal positions where the magnetic connection is established and where the further connection (e.g. mechanical connection) is established may be separated, in particular by a distance lying in a range of between about 0.5 cm to about 3.0 cm.



FIG. 3 is a transverse longitudinal cross-sectional cut through the example attachment section shown in FIG. 2, where the viewing direction is towards the cleaning elements. As can be seen from FIG. 3, the motion transmitter 110 is coupled to the functional element by a coupling pin 111 provided at a second end 110B of the motion transmitter 110. The coupling pin 111 establishes a coupling with a coupling section 134 provided at the carrier element 131 at a position that is eccentric with respect to the rotation axis defined by the mounting axle 132. When the motion transmitter 110 is driven into a linear oscillatory movement as indicated by double arrow A, then the carrier element 131 will be driven into an oscillatory rotation around the rotation axis. As will also be explained further below, in some embodiments, the motion transmitter 110 is not associated with any return force element such as a biasing spring that would bias the motion transmitter into a defined rest position whenever the motion transmitter is not being driven.



FIG. 4 shows a longitudinal cut through a schematic handle section 200. In the shown example embodiment, the handle section 200 comprises a drive shaft 210 that functions as a movable motor part of a resonant linear drive 260, which linear drive 260 is disposed within the handle housing 250. During operation, the linear drive 260 provides for a linear oscillatory movement of the drive shaft 210 as is indicated by double arrow B. In the shown example embodiment, the drive shaft 210 may be prolonged by an extender element 219 that thus forms a part of the drive shaft 210. The extender element 219 can provide an increase in diameter with respect to the diameter of the drive shaft 210. A recess 211 may be provided in the extender element 219 for accommodating a second magnetic coupling element 220. Instead of being accommodated in the extender element 219, the second magnetic coupling element 220 may of course be directly secured at the drive shaft 210 or the drive shaft may be made at least at its tip portion from a permanent magnetic material, which tip would then form the second magnetic coupling element 220. The second magnetic coupling element 220 has a coupling side 221 intended for getting into contact with the respective coupling side 121 (shown in FIG. 2) of the first magnetic coupling element 120 (shown in FIG. 2) of the attachment section when being attached. The coupling side of the first magnetic coupling element and the coupling side of the second magnetic coupling element may be flat or may at least partly be negatives of each other. Generally and applicable to all embodiments, the second magnetic coupling element 220 may be realized as a cylindrical element having its cylinder axis essentially oriented parallel to the longitudinal axis of the drive shaft, where the diameter of the cylinder may be chosen to be about or larger than 2 mm, optionally about or larger than 3 mm, further optionally about or larger than 4 mm, even further optionally about or larger than 5 mm, and yet even further optionally about or larger than 6 mm or any individual number within or any ranges including or within the values provided. Any suitable height of the cylinder element may be chosen. For example, the height may be chosen to be about or larger than 2 mm, optionally about or larger than 3 mm, further optionally about or larger than 4 mm, even further optionally about or larger than 5 mm, and yet even further optionally about or larger than 6 mm. In some example embodiments, the height may be chosen as large as the diameter. In other embodiments, the second magnetic coupling element may be designed to have any suitable shape. In such a case, the smallest possible cylinder into which such a second magnetic coupling element fits may have a diameter and a height as stated above.


Generally, the handle section comprises a handle housing at which a second coupling structure intended for establishing a connection with the first coupling structure provided at the attachment section is realized. In the shown example embodiment, the handle section 200 has a handle housing 250 comprising a top handle housing section 250A intended for coupling with the attachment section and a lower handle housing section 250B intended to be gripped by a user's hand. Here, the top handle housing 250A section comprises a top part 251 at which a second coupling structure 252 may be realized, The second coupling structure 252 can form a further connection, with the first coupling structure 152 (shown in FIG. 2) of the attachment section.


In some embodiments, the second coupling structure 252 and the first coupling structure may establish a coupling which is different than the connection established by the first magnetic coupling and the second magnetic coupling or the coupling may be similar. For example, the coupling established by the first coupling structure and the second coupling structure may comprise a mechanical lock, magnetic lock, the like, or combinations thereof. In some embodiments having a top housing section 250A and a lower housing section 250B, the top housing section 250A may be arranged for driven motion, e.g. the top housing section 250A may perform an oscillatory rotation around the longitudinal axis, a longitudinal linear vibration, and/or a linear reciprocation along a direction which is generally parallel to a longitudinal axis of the drive shaft during operation. In such embodiments, the attachment housing that is coupled to the top housing section 250A performs a first motion during operation, e.g. rotation around the longitudinal axis, longitudinal linear vibration, and/or the linear reciprocation while the motion transmitter may drive the functional element into a second motion. The first and second motions are described further with regard to FIG. 5. In some embodiments, the top housing section 250A is not driven and remains stationary with respect to the lower housing section 250B.



FIG. 5 shows a longitudinal cross sectional cut of an attachment section 100 and a top housing section of a handle section 200 in an attached state. It is shown that the first and second magnetic coupling elements 120 and 220 have established a magnetic connection that couples the drive shaft 210 of the handle section 200 with the motion transmitter 110 of the attachment section 100 such that during operation, a linear reciprocation of the drive shaft 210 as indicated by double arrow B will be transferred to the functional element 130 via the motion transmitter 110. In some embodiments, as the transmitted motion is a linear reciprocation, the magnetic coupling does not need to transmit a rotational movement so that flat coupling sides of the first and second magnetic coupling elements are suitable.


Further, the first and second coupling structures 152 and 252 have established a second connection between the attachment housing 150 and the handle housing 250 such that the attachment section 100 is fixed with respect to the handle housing 250. For those embodiments where the top housing section is driven in an oscillatory rotation around the longitudinal axis, a longitudinal linear vibration, and/or a linear reciprocation along a direction which is generally parallel to a longitudinal axis of the handle 200, the movement of the top housing section is transmitted to the attachment housing via the connection provided between the first and second coupling structures 152 and 252.


As had been said before, the motion transmitter 110 may be mounted free of any return force element. It is known to use a return force element for a motion transmitter provided in an attachment section in case a mechanical connection is to be established between motion transmitter and drive shaft, as then essentially the coupling force needs first to be overcome during the attachment process. Without a return force element, the motion transmitter would potentially be pushed away in the attachment process and the mechanical coupling may not become easily established. For the described magnetic coupling, the first and second magnetic coupling elements will attract each other when the attachment section is attached to the handle section and the motion transmitter will then be moved towards to drive shaft so that the magnetic coupling is established without the need to first overcome any resistance. In particular for a handle section comprising a resonant drive, where the resonant frequency is dependent on the spring-mass system including a return-force element such as a spring acting on the motion transmitter, tolerances in the spring would lead to variations in the resonance frequency of the resonant drive for different attachments. Besides this, discarding a return force element supports a cost efficient manufacture.


Generally and applicable to all embodiments, the first and second magnetic coupling elements 120 and 220 may each be realized as a permanent magnet or a permanent magnet arrangement or as a magnetizable element such as an iron or steel element or an arrangement of such elements. Any kind of permanent magnet material could be used, e.g. the high energy materials SmCo or NdFeB, either realized as sintered elements or plastic-bonded elements, or any hard ferrite could be utilized such as sintered strontium ferrite. Plastic-bonded permanent magnet elements tend to have a relatively low magnetic flux density when compared with e.g. sintered permanent magnets. Sintered NdFeB magnets have a relatively high magnetic flux density but are also relatively expensive and are prone to corrosion. Hard ferrite magnets are relatively inexpensive and as ceramic materials less prone to corrosion but have only a limited magnetic flux density. In case that one of the first or second magnetic coupling elements is realized as a magnetizable element, the other one of the first or second magnetic coupling elements is to be realized as a permanent magnet or permanent magnet arrangement. Permanent magnets are widely available e.g. from IBS Magnet, Berlin, Germany.


In some embodiments, at least one of the first or second magnetic coupling elements is made of or consists at least partially of NdFeB material, in particular of sintered NdFeB material. In some of these embodiments, the second magnetic coupling element provided in the handle section is made of or consists at least partially of the sintered NdFeB material. The latter allows for realizing the first magnetic coupling element as a relatively cheap magnetizable element such as an iron or steel element or by an arrangement of such elements.


Corrosion-prone permanent magnets like sintered NdFeB magnets may typically be available from a supplier with a thin anti-corrosive coating such as a tin or nickel coating. Unfortunately, toothpaste may abrade these standard coatings rather quickly during operation. Hence, it may then be necessary to equip these permanent magnets with a low-abrasive and anti-corrosive cover to withstand the conditions during operation of an oral hygiene device. Various materials may be chosen for the cover such as low-abrasive plastic materials (e.g. for making a deep-drawn plastic cup), ceramics, metal foils, glass etc.


Some permanent magnet materials such as NdFeB have a low operating temperature such as 60 degrees Celsius, which operating temperature is also dependent on the particular dimensions of the permanent magnet. For such permanent magnets, an anti-corrosive protection may not be applied by a plastic injection process during which temperatures of 200 degrees Celsius and more may occur as then the permanent magnet may lose its magnetization. The protective cover may be applied by casting (e.g. of a resin), gluing (e.g. of a metal, ceramic, or glass disc), snapping, welding etc. as was already mentioned.


The magnetic coupling established by the first and second coupling elements should withstand a typical pull-off force applied at the functional element as was explained above so that the magnetic coupling is not separated when such a force is applied. In example embodiments, a typical pull-off force applied at the functional element may be up to 10 Newton, i.e. the magnetic coupling should withstand a pull-off force up to a threshold value of about 10 Newton, optionally of up to about 9 Newton, further optionally of up to about 8 Newton, even further optionally of up to about 7 Newton, yet further optionally of up to about 6 Newton, yet even further optionally of up to about 5 Newton, and even more optionally of up to about 4 Newton or any value within or including the values provided.



FIGS. 6A to 6D show four different example configurations S1 to S4 of first and second magnetic coupling elements. FIG. 7 shows simulation results for the effective force that exists between the coupling partners in the coupled state where the results are shown for various values of a gap between the first and second magnetic coupling element, which gap reflects a protective cover on one or both of the magnetic coupling elements.



FIG. 6A shows a first configuration S1 of a first magnetic coupling element 410A being a cylindrical NdFeB permanent magnet and a second magnetic coupling element 420A being a stainless steel cylinder. The diameter d1 of the NdFeB permanent magnet 410A was set to 5 mm in the simulations and the height h1 was set to 5 mm. The diameter d2 of the stainless steel element was set to 5 mm and its height h2 was set to 4.5 mm. An arrow 419A indicates the magnetization direction of the permanent magnet that was here set to be along the longitudinal cylinder axis. The total height of the magnetic coupling arrangement is thus 9.5 mm plus gap thickness.



FIG. 6B shows a second configuration S2, where the only difference to the first configuration S1 shown in FIG. 1 is the magnetization direction 419B of the first magnetic coupling element 410B that is chosen to be perpendicular to the longitudinal cylinder axis.



FIG. 6C shows a third configuration S3 of a first magnetic coupling element 410C and a second magnetic coupling element 420C. The second magnetic coupling element 420C is again assumed to be a stainless steel element, but here having a height of 3.5 mm. The first magnetic coupling element 410C consists of a NdFeB permanent magnet having a height of 5 mm and a diameter of 3.5 mm. The NdFeB permanent magnet is glued into a cup-shaped iron container that has an outer diameter of 5 mm and an inner diameter of 4 mm. The iron container consists of a hollow iron cylinder 4104C and a disc-shaped back iron 4103C. The disc-shaped back iron 4103C has a diameter of 5 mm and a height of 1.5 mm Overall height of the magnetic coupling arrangement is thus again 9.5 mm plus gap thickness. The magnetization direction of the NdFeB permanent magnet 4101C is indicated by arrow 419C and is assumed to be along the longitudinal cylinder axis.



FIG. 6D shows a fourth configuration S4, where the second magnetic coupling element 420D is as in the third configuration S3 a stainless steel cylinder having a height of 3.5 mm and a diameter of 5 mm. The first magnetic coupling element 410D consists of a first and a second half-cylindrical NdFeB permanent magnet 4101D and 4102D that are oppositely magnetized in longitudinal direction as is indicated by the magnetization arrows 4191D and 4192D, respectively. The cylinder formed by the two half-cylindrical NdFeB permanent magnets has a height of 5 mm and a diameter of 5 mm. On the backside, the two half-cylindrical NdFeB permanent magnets are concluded by a back iron 4103D having a disc-like shape, the disc having a height of 1.5 mm and a diameter of 5 mm Overall height is again 9.5 mm plus gap thickness.


In the simulations that were performed it was assumed that the remanence of the NdFeB permanent magnet material is 1370 mTesla. The properties of stainless steel 1.4021 were calibrated against measurements.



FIG. 7 shows simulation results for the four configurations S1, S2, S3, and S4 described above with reference to FIGS. 6A to 6D. The abscissa indicates the gap between the flat coupling sides of the first and second magnetic coupling elements in millimeters. Gap material was assumed to be air. The ordinate indicates the force between the first and second magnetic coupling elements in the coupled state in Newton. It can be seen that configuration S4 generally leads to the highest threshold force value of the pull-off force that the magnetic coupling can withstand, e.g. at 0.1 mm gap configuration S4 leads to a threshold force value of about 7.3 Newton at which the first and second magnetic coupling elements would decouple. The other configurations lead to a coupling force of about 3.4 to 4.9 Newton at a gap of 0.1 mm.



FIG. 8 is a schematic cross sectional cut through the top portion of a drive shaft 510 with a second magnetic coupling element 520. In the embodiment shown, the second magnetic coupling element 520 is glued into a protection cover 525 having a generally cup-shaped form. The protection cover 525 has a on its top side, where a first magnetic coupling element 620 indicated by a dashed line would approach the second magnetic coupling element 520 during the attachment procedure, a centering structure 526 realized by a raised edge such that a depression 527 is formed into which the first magnetic coupling element 620 fits. The raised edge 526 may be tapered towards the approaching first magnetic coupling element 620 to support the centering function. While the magnetic coupling as such already has a certain self-centering function, a centering structure supports the centering procedure and can avoid misalignments between the first and second magnetic coupling elements. As has been stated before, the first and second magnetic coupling elements could be interchanged with respect to the features described, e.g. FIG. 8 may show an example embodiment of a first magnetic coupling element.


Here, the protection cover is realized by a cup that fully accommodates the second magnetic coupling element 520 and that at least partly extends over the drive shaft 510. In such an embodiment, the second magnetic coupling element 520 needs not additionally be secured to the drive shaft 510 as the glue layer 524 fixes the drive shaft 510 and the second magnetic coupling element 520. The thickness d3 of the glue layer 524 and of the protection cover 525 should be chosen as low as possible to avoid reduction of the possible coupling force (see FIG. 7). As a matter of fact, the coupling side 521 does not need to be glued to the protection cover as the side glue layer suffices to establish a fixed connection. The thickness d3 could be chosen to be about or lower than 0.2 mm, optionally to be about or lower than 0.15 mm, further optionally to be about or lower than 0.1 mm and even further optionally to be about or lower than 0.05 mm or any number within and/or any range within or including the values provided. The material of the protective cover could be a plastic material, a ceramic, a glass, or a (in particular non-magnetizable) metal. In an effort to reduce the thickness of the glue layer 524 and the protective cover, embodiments, are contemplated where the glue layer exists only on the sides of the drive shaft 510 and the second magnetic coupling element 520 but not in between a coupling side 521 of the second magnetic coupling element 520 and a bottom face 531 of the protective cover.


A protective cover made of magnetizable material would in the example shown in FIG. 8 lead to a magnetic short circuit between magnetic north pole and magnetic south pole of the permanent magnet and the achievable force between the magnetic coupling elements would be reduced.



FIG. 9 is a schematic depiction of another embodiment showing the top portion of a drive shaft 510A that has a recess 511A that accommodates a second magnetic coupling element 520A. Bend wall portions 512A fix the second magnetic coupling element in the recess 511A. Prior to introducing the second magnetic coupling element 520A into the recess 511A, the wall portions 512A may have been straight to allow insertion of the second magnetic coupling element 520A into the recess 511A. Then, the wall portions 512A may have been bent, e.g. using a forming stamp, such that the second magnetic coupling element 520A is fixed in the recess. A protective cover 525A may cover the remaining opening so that the second magnetic coupling element 520A is protected from corrosion. The protective cover 525A may be a resin or any suitable material as described heretofore. In case that the top portion of the drive shaft 510A is made of a (non-magnetizable) metal or low-abrasive other material that can be formed in the stamping process, the protective layer 525A is effectively protected from being abraded and thus does here not necessarily need to have high abrasion-resistance.



FIG. 10 is a schematic depiction of another embodiment showing of the top portion of a drive shaft 510B and of a first magnetic coupling element 620B. The drive shaft 510B has a recess 511B that accommodates a second magnetic coupling element 520B, which second magnetic coupling element 520B extends above the drive shaft 510B such that a step-like structure 526B is achieved. A protective cover 525B that may be realized as a deep drawn plastic cup may be glued with a glue layer 524B over the extending top of the second magnetic coupling element 520B and a top part of the drive shaft 510B. The first magnetic coupling element 620B may comprise a depression 626B that is adapted to the step-like structure 526B so that the step-like structure 526B and the depression 626B cooperate to support the centering of the first and second magnetic coupling elements 620B and 520B in the attachment process. Similar to the embodiment shown in FIG. 8, the glue layer 524B may be absent between a coupling side 521B and a bottom face 531B of the protective cover 525B in an effort to reduce the gap width between the first magnetic coupling element and the second magnetic coupling element. For those embodiments where the first magnetic coupling comprise a protective cap/cover, similar arrangements may be provided.



FIG. 11 is a schematic depiction of the lower portion of a motion transmitter 610C in which a recess 611C is provided that accommodates a first magnetic coupling element 620C. The recess 611C may be equipped with snap noses 612C (here realized with a 90 degrees undercut on their backside) so that the first magnetic coupling element 620C that has respective depressions is (non-detachably) secured at the motion transmitter 610C by mechanical means, here realized as snap means. On their frontside (side which is closer to the handle than the backside), the snap noses 612C may be tapered such that the first magnetic coupling element 620C may be pushed into position (snapped) during manufacturing. The motion transmitter may be realized as a plastic part while the first magnetic coupling element 620B may be realized as a non-corrosive steel part.


In other embodiments, the protective cover realized as a cup similar to the shown embodiment could be secured at the drive shaft by e.g. crimping, shrink-fitting, welding, or snapping.



FIGS. 12A, 12B, and 12C show various views of another example embodiment of an attachment section as proposed. Identical parts have the same reference numerals in these three views. Reference is made in the following to all three FIGS. 12A, 12B, and 12C. Not all reference numerals are repeated in all figures.


An attachment section 700 has an attachment housing 750, a functional element 730 realized as a brush head mounted at the attachment housing 750 for driven oscillatory rotation around a rotation axis R1, which rotation axis R1 is essentially perpendicular to a longitudinal extension direction of the attachment section 700. The attachment section 700 further comprises a motion transmitter 710 that extends in a cavity 759 formed inside of the attachment housing 750.


The functional element 730 (here: brush head) has a carrier element 731 on which cleaning elements such as bristle tufts may be mounted. The carrier element 731 may comprise a coupling element 731A that in particular may be an integral part of the carrier element 731. The carrier element 731 may be mounted at the attachment housing 750 by means of a fixation element 738 so that it cannot be easily detached from the attachment housing 750.


The motion transmitter 710 may comprise a holder element 712 and a rod element 716. The holder element 712 may at least partly accommodate a first magnetic coupling element 720 in a recess 711 at a first end 710A of the motion transmitter 710. The rod element 716 may in particular be made from metal such as stainless steel and may optionally be made from a metal wire. A metal rod element may provide a higher rigidity and elasticity than a respective motion transmitter part made of plastic material. A motion transmitter may be made completely as a single integral part from plastic material due to the higher ductility of plastic compared to metal. The rod element 716 may have a first coupling part 716A that is pivot-mounted at the holder element 712 and a second coupling part 716B that is pivot mounted at a coupling section 739 provided at the coupling element 731A of the carrier element 731. At least one of the first or second coupling parts 716A, 716B of the rod element 716 may be a bent rod section that may extend into a bore or blind hole in the holder element 712 or the coupling element 731A, respectively. As can be particularly be seen in FIG. 12C, the first magnetic coupling element 720 may have at least an indentation or groove 729 that is filled with injection molded plastic 714, i.e. the first magnetic coupling element 720 may have been directly overmolded with the holder element 712. This direct overmolding step in the manufacturing leads to minimal gaps or clearances between the first magnetic coupling element 720 and the holder element 712. Generally and applicable to all embodiments, the first magnetic coupling element may be directly overmolded with at least a part of the motion transmitter and a depression present at the first magnetic coupling element may be filled with injection molded plastic material such that the first magnetic coupling element is fixedly secured at this injection molded part of the motion transmitter.


The holder element 712 has protrusions 713 extending in the longitudinal extension direction at the edge of a contact surface 721 of the first magnetic coupling element 720, which protrusions may be tapered radially outwards such that these protrusions form a centering structure that at least supports the centering of the magnetic connection between the first magnetic coupling element 720 and a second magnetic coupling element at a handle section during the attachment of the attachment section 700. The centering functionality also performs in an attached state when the first and second magnetic coupling elements have decoupled due to a too high pull-off force and the high pull-off force has vanished so that the first and second magnetic coupling elements couple again due to the magnetic force acting between them. In particular in cases where one of the first and second magnetic coupling elements is a magnetizable element, a self centering force as between two permanent magnets is not present and an additional centering structure supports to center the two coupling partners and thus to optimize the coupling force.


In some embodiments, cleaning elements arranged on the attachment section may be made from a soft plastic material such as rubber or a thermoplastic elastomer (TPE) or may be made from more rigid plastic material such as polyamide (e.g. PA 6.12). Cleaning elements may have any kind of suitable height, which height may be chosen to lie between about 0.2 mm (e.g. for tongue cleaner structures) and about 30 mm, where a typical length of a cleaning element may lie in the range of between about 2.0 mm to about 15.0 mm, in another embodiment between about 5.0 mm and about 11.0 mm Cleaning elements may have any suitable diameter, which diameter may be chosen to lie in a range of between about 0.2 mm to about 20 mm, and in another embodiment in a range of between about 0.5 mm to about 8.0 mm.


Additionally, it should be noted that the cleaning elements may comprise any suitable cleaning element and/or may comprise elements which are utilized for massaging gums, cleaning the tongue, providing chemistry to an area of the oral cavity, e.g. antimicrobial agents, malodor agents, flavor agents, anti-plaque agents, anti-gingivitis agents, whitening agents, or the like.


For example, in some embodiments, the cleaning elements may comprise tufts. The tufts may comprise a plurality of individual filaments which are securely attached to the head. Such filaments may be polymeric and may include, for example, polyamide or polyester. The longitudinal and cross sectional dimensions of the filaments of the invention and the profile of the filament ends can vary. Additionally, the stiffness, resiliency and shape of the filament end can vary. Some examples of suitable dimensions include a length between about 3 mm to about 15 mm, or any individual number within the range. Additionally, the filaments may include a substantially uniform cross-sectional dimension of between about 100 to about 350 microns, or any individual number within the range. The tips of the filaments may be any suitable shape, examples of which include a smooth tip, a rounded tip, tapered tip, a pointed tip. In some embodiments, the filaments may include a dye which indicates wear of the filaments as described in U.S. Pat. No. 4,802,255. Some examples of suitable filaments for use with the brush are described in U.S. Pat. No. 6,199,242. Other suitable examples of bristles include textured bristles, e.g., single and multicomponent bristles (e.g., bristles formed by coextruding different polymers), crimped bristles, gum massaging bristles, bristles of varying configurations (e.g., bristles having multiple lumens), and/or combinations thereof.


Other suitable examples of cleaning elements include those described in U.S. Patent Application Publication Numbers 2002/0059685; 2005/0000043; 2004/0177462; 2005/0060822; 2004/0154112; U.S. Pat. Nos. 6,151,745; 6,058,541; 6,041,467; 6,553,604; 6,564,416; 6,826,797; 6,993,804; 6,453,497; 6,993,804; 6,041,467; and U.S. patent application Ser. Nos. 12/008,073, filed on Jan. 8, 2008, entitled, “TOOTHBRUSHES” and 60/928,012, filed on May 7, 2007, entitled “ORAL HYGIENE IMPLEMENTS”, all of which are herein incorporated by reference in their entirety. Additionally, any suitable arrangement of cleaning elements may be utilized. Some suitable examples include those described in U.S. Pat. Nos. 5,836,769; 6,564,416; 6,308,367; 6,108,851; 6,058,541; and 5,396,678.


In addition to bristles and/or bristle tufts, the cleaning elements may also include elastomeric structures, foams, combinations thereof, and the like. For example, the cleaning elements may comprise elastomeric fins as described in U.S. Pat. No. 6,553,604 and U.S. Patent Application Publication No. 2007/0251040A1. As yet another example, the cleaning elements may comprise elastomeric cup shaped elements as described in U.S. Patent Publication No. 2004/0154112A1. In some embodiments, the cleaning elements may comprise a combination of elastomeric elements and bristles. As an example, a combination of fins and bristles may be utilized, a combination of an elastomeric cup(s) and bristles may be utilized, and/or combinations of elastomeric elements either alone or in combination with bristles may be utilized. Combinations of elastomeric cleaning elements are described in U.S. Patent Publication No. 2009/0007357A1.


The cleaning elements and/or massaging elements may be attached to the head in any suitable manner. Conventional methods include stapling, anchor free tufting, and injection mold tufting. For those cleaning elements that comprise an elastomer, these elements may be formed integral with one another, e.g. having an integral base portion and extending outward therefrom or discretely. The elastomer elements may be injection molded in the head.


In addition to the cleaning elements described heretofore, the head may comprise a soft tissue cleanser constructed of any suitable material. Some examples of suitable material include elastomeric materials; polypropylene, polyethylene, etc; the like, and/or combinations thereof. The soft tissue cleanser may comprise any suitable soft tissue cleansing elements. Some examples of such elements as well as configurations of soft tissues cleansers on a toothbrush are described in U.S. Patent Application Nos. 2006/0010628; 2005/0166344; 2005/0210612; 2006/0195995; 2008/0189888; 2006/0052806; 2004/0255416; 2005/0000049; 2005/0038461; 2004/0134007; 2006/0026784; 20070049956; 2008/0244849; 2005/0000043; 2007/140959; and U.S. Pat. Nos. 5,980,542; 6,402,768; and 6,102,923.


Additionally, for those embodiments comprise elastomer elements on a first side of the head and a second side of the head, the second side being opposite the first side, the elastomer elements of both sides of the head may be unitarily formed. For example, the head sans the elastomeric elements may comprise openings therethrough which can allow elastomeric material to flow from the first side of the head to the second side of the head.


Materials for manufacturing at least a part such as the housing of the handle section or the housing of the attachment section may be any suitable plastic or non-plastic material, where typical plastic materials may comprise at least one from the group consisting of polypropylene (PP), thermoplastic elastomer (TPE), polyoxymethlylene (POM), a blend of polyester and polycarbonate such as Xylex available from SABIC, Saudi Arabia, acrylonitrile styrene acrylateor (ASA), polybutylene terephthalate (PBT). Instead of plastic, metal, glass, or wood may also be chosen as material for making at least a part of the attachment section.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. An oral cleaning tool for an electric oral hygiene device, comprising: a housing having a head section with a head cavity for accommodating a movable oral cleaning head and a neck section with a neck cavity and a handle coupling section;a first magnetic coupling element including at least a permanent magnet or a magnetizable element being provided in the neck section for mechanical handle drive shaft connection by magnetic interaction;wherein the first magnetic coupling element is mounted at a motion transmitter, the motion transmitter extending inside the neck cavity to the head cavity, the motion transmitter arranged so as to be movable in a linear or longitudinal direction, and wherein the motion transmitter is coupled with the oral cleaning head, the oral cleaning head arranged so as to oscillate in a rotational direction.
  • 2. The oral cleaning tool according to claim 1, wherein the first magnetic coupling element, the motion transmitter and the oral cleaning head are arranged and coupled so as to be drivable with an operation frequency of from about 140 to about 180 Hz.
  • 3. The oral cleaning tool according to any claim 1, wherein the first magnetic coupling element is a two component part including a metal and/or a ferrous composition that is mounted or in-molded in a plastic element.
  • 4. The oral cleaning tool according to any claim 1, wherein the first magnetic coupling element has a protective cover that covers at least a coupling side of the first magnetic coupling element that is arranged for establishing a magnetic connection.
  • 5. The oral cleaning tool according to claim 4, wherein the protective cover is a cup that is mounted by gluing, press-fitting, crimping, shrink-fitting, welding, or snapping or any combination thereof.
  • 6. The oral cleaning tool according to any claim 4, wherein the protective cover has a thickness of less than about 0.2 mm at the coupling side of the first magnetic coupling element.
  • 7. The oral cleaning tool according to claim 1, wherein the first magnetic coupling element is provided with a uncovered or blank surface of a coupling side of the first magnetic coupling element that is arranged for establishing a magnetic connection.
  • 8. The oral cleaning tool according to claim 1, wherein the motion transmitter is a rod element.
  • 9. The oral cleaning tool according to claim 8, wherein the rod element is pivotable mounted with either the movable oral cleaning head or with the first magnetic coupling element.
  • 10. The oral cleaning tool according to claim 8, wherein the first magnetic coupling element and/or the motion transmitter or rod element are provided contact free and spaced in the neck cavity relative to an inner housing wall of the neck, so that the first magnetic coupling element is able to laterally align with its coupling partner of a handle.
  • 11. The oral cleaning tool according to claim 1, further comprising a centering structure with either a tapered protruding side wall or a tapered recessed side wall for mechanical connection of the housing independent from the mechanical connection provided by the first magnetic coupling element.
Priority Claims (1)
Number Date Country Kind
11006106 Jul 2011 EP regional
US Referenced Citations (325)
Number Name Date Kind
2798241 Cohen Jul 1957 A
3109619 Krug et al. Nov 1963 A
3220039 Dayton et al. Nov 1965 A
3417417 Rhodes Dec 1968 A
3461874 Martinez Aug 1969 A
3496500 Romary Feb 1970 A
3571544 Sheehan Mar 1971 A
3782799 Hansen Jan 1974 A
3796850 Moreland, II et al. Mar 1974 A
3802420 Moffat et al. Apr 1974 A
3810147 Lichtblau May 1974 A
3904841 Swatman Sep 1975 A
4156620 Clemens May 1979 A
4274070 Thiene Jun 1981 A
4333197 Kuris Jun 1982 A
4349814 Akehurst Sep 1982 A
4352098 Stephen et al. Sep 1982 A
4365376 Oda et al. Dec 1982 A
4371118 Sontheimer et al. Feb 1983 A
4374354 Petrovic et al. Feb 1983 A
4413199 Fischer Nov 1983 A
4420851 Wiener Dec 1983 A
4492574 Warrin et al. Jan 1985 A
4502497 Siahou Mar 1985 A
4506400 Klein Mar 1985 A
4514172 Behringer Apr 1985 A
4523083 Hamilton Jun 1985 A
4546266 Zenick et al. Oct 1985 A
4595849 Cuenoud Jun 1986 A
4595850 Woog Jun 1986 A
4603448 Middleton et al. Aug 1986 A
4682584 Pose Jul 1987 A
4698869 Mierau et al. Oct 1987 A
4704602 Asbrink Nov 1987 A
4716614 Jones et al. Jan 1988 A
4736207 Siikarla et al. Apr 1988 A
4820152 Warrin et al. Apr 1989 A
4827550 Graham et al. May 1989 A
4845796 Mosley Jul 1989 A
4878679 Plank et al. Nov 1989 A
4900252 Liefke et al. Feb 1990 A
4910634 Pipkorn Mar 1990 A
4914376 Meyer Apr 1990 A
5014794 Hansson May 1991 A
5065137 Herman Nov 1991 A
5072164 Prius et al. Dec 1991 A
5099536 Hirabayashi Mar 1992 A
5165131 Staar Nov 1992 A
5168186 Yashiro Dec 1992 A
5184959 Oryhon et al. Feb 1993 A
5189751 Giuliani Mar 1993 A
5217478 Rexroth Jun 1993 A
5233323 Burkett et al. Aug 1993 A
5259083 Stansbury, Jr. Nov 1993 A
5263218 Giuliani et al. Nov 1993 A
5269794 Rexroth Dec 1993 A
5274735 Okada Dec 1993 A
5289604 Kressner Mar 1994 A
5305492 Giuliani et al. Apr 1994 A
5309590 Giuliani et al. May 1994 A
5337435 Krasner et al. Aug 1994 A
5341534 Serbinski et al. Aug 1994 A
5355544 Dirksing Oct 1994 A
5367599 Okada Nov 1994 A
5378153 Giuliani et al. Jan 1995 A
5381576 Hwang Jan 1995 A
5392028 Pichl Feb 1995 A
5404608 Hommann Apr 1995 A
5448792 Wiedemann et al. Sep 1995 A
5476384 Giuliani et al. Dec 1995 A
5502861 Spieler et al. Apr 1996 A
5504959 Yukawa et al. Apr 1996 A
5524312 Tan et al. Jun 1996 A
5544382 Giuliani et al. Aug 1996 A
5561881 Klinger et al. Oct 1996 A
5576693 Tyren et al. Nov 1996 A
5577285 Drossler Nov 1996 A
5613259 Craft et al. Mar 1997 A
5617503 Fronen et al. Apr 1997 A
5617601 McDougall Apr 1997 A
5673451 Moore et al. Oct 1997 A
5693042 Boiarski et al. Dec 1997 A
5700146 Kucar Dec 1997 A
5732432 Hui Mar 1998 A
5749885 Sjostrom et al. May 1998 A
5760580 Tyren Jun 1998 A
5781955 Hendricks Jul 1998 A
5784742 Giuliani et al. Jul 1998 A
5799356 Kawashima Sep 1998 A
5812065 Schrott et al. Sep 1998 A
5815872 Meginniss, III et al. Oct 1998 A
5836030 Hazeu et al. Nov 1998 A
5864288 Hogan Jan 1999 A
5888031 Buck et al. Mar 1999 A
5897315 Nakayama et al. Apr 1999 A
5934908 Woog et al. Aug 1999 A
5939983 Rudell et al. Aug 1999 A
5943723 Hilfinger et al. Aug 1999 A
5955799 Amaya et al. Sep 1999 A
5974615 Schwarz-Hartmann et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
5998965 Carlucci et al. Dec 1999 A
6017354 Culp et al. Jan 2000 A
6021538 Kressner et al. Feb 2000 A
6029303 Dewan Feb 2000 A
6043646 Jansseune Mar 2000 A
6098288 Miyagawa et al. Aug 2000 A
6133701 Gokturk et al. Oct 2000 A
6140723 Matsui et al. Oct 2000 A
6140802 Lundell et al. Oct 2000 A
6163258 Rudell et al. Dec 2000 A
6177870 Lian et al. Jan 2001 B1
6193510 Tsimerman Feb 2001 B1
6195828 Fritsch Mar 2001 B1
6202242 Salmon et al. Mar 2001 B1
6212052 Heuer et al. Apr 2001 B1
6227853 Hansen et al. May 2001 B1
6234051 Bareggi May 2001 B1
6265789 Honda et al. Jul 2001 B1
6322573 Murayama Nov 2001 B1
6326884 Wohlrabe Dec 2001 B1
6353956 Berge Mar 2002 B1
6359559 Rudell et al. Mar 2002 B1
6367108 Fritsch et al. Apr 2002 B1
6389633 Rosen May 2002 B1
6422566 Rudell et al. Jul 2002 B1
6441571 Ibuki et al. Aug 2002 B1
6446294 Specht Sep 2002 B1
6453497 Chiang et al. Sep 2002 B1
6498456 Ettes et al. Dec 2002 B2
6517348 Ram Feb 2003 B1
6531873 Wohlrabe Mar 2003 B1
6536068 Yang et al. Mar 2003 B1
6538402 Gokturk et al. Mar 2003 B2
6545576 Marchini et al. Apr 2003 B1
6590763 Kishimoto Jul 2003 B2
6611780 Lundell et al. Aug 2003 B2
6623698 Keo Sep 2003 B2
6636135 Vetter Oct 2003 B1
6648641 Viltro et al. Nov 2003 B1
6716028 Rahman et al. Apr 2004 B2
6731213 Smith May 2004 B1
6734795 Price May 2004 B2
6735802 Lundell et al. May 2004 B1
6750747 Mandell et al. Jun 2004 B2
6754928 Rosen Jun 2004 B1
6760945 Ferber et al. Jul 2004 B2
6766824 Taylor Jul 2004 B2
6792640 Levy Sep 2004 B2
6798169 Stratmann et al. Sep 2004 B2
6811399 Rahman et al. Nov 2004 B2
6813793 Eliav Nov 2004 B2
6845537 Wong Jan 2005 B2
6850167 Rosen Feb 2005 B2
6859968 Miller et al. Mar 2005 B2
6868919 Manschitz et al. Mar 2005 B1
6873067 Ichii et al. Mar 2005 B2
6889401 Fattori et al. May 2005 B2
6891287 Moret May 2005 B2
6895630 Tini May 2005 B2
6899538 Matoba May 2005 B2
6918300 Grez et al. Jul 2005 B2
6952855 Lev et al. Oct 2005 B2
6954961 Ferber et al. Oct 2005 B2
6958553 Ichii et al. Oct 2005 B2
6964076 Zhuan Nov 2005 B2
6966093 Eliav et al. Nov 2005 B2
6973694 Schutz et al. Dec 2005 B2
7011520 Rahman et al. Mar 2006 B2
7024717 Hilscher et al. Apr 2006 B2
7067945 Grez et al. Jun 2006 B2
7086111 Hilscher et al. Aug 2006 B2
7117555 Fattori et al. Oct 2006 B2
7120960 Hilscher et al. Oct 2006 B2
7140058 Gatzemeyer et al. Nov 2006 B2
7174972 Kristen et al. Feb 2007 B2
7194862 Sattinger Mar 2007 B2
7207080 Hilscher et al. Apr 2007 B2
7248892 White et al. Jul 2007 B2
7258546 Beier et al. Aug 2007 B2
7258747 Vago et al. Aug 2007 B2
7288863 Kraus Oct 2007 B2
7307397 Izumi et al. Dec 2007 B2
7313422 White et al. Dec 2007 B2
7315098 Kunita et al. Jan 2008 B2
7334283 Kunita et al. Feb 2008 B2
7373170 White et al. May 2008 B2
7376439 White et al. May 2008 B2
7386904 Fattori Jun 2008 B2
7392059 White et al. Jun 2008 B2
7409741 Dworzan Aug 2008 B2
7411511 Kennish et al. Aug 2008 B2
7422582 Malackowski et al. Sep 2008 B2
7430776 Eliav Oct 2008 B2
7431682 Zeiler et al. Oct 2008 B2
7443058 Shimizu et al. Oct 2008 B2
7443059 Kobayashi et al. Oct 2008 B2
7448108 Gatzemeyer et al. Nov 2008 B2
7469703 France et al. Dec 2008 B2
7474018 Shimizu et al. Jan 2009 B2
7474065 Kraus Jan 2009 B2
7493669 Miller et al. Feb 2009 B2
7495358 Kobayashi et al. Feb 2009 B2
7520016 Kressner Apr 2009 B2
7521840 Heim Apr 2009 B2
7535135 Kardeis et al. May 2009 B2
7552497 Gatzemeyer et al. Jun 2009 B2
7562121 Berisford et al. Jul 2009 B2
7621015 Hilscher et al. Nov 2009 B2
7624467 Hilscher et al. Dec 2009 B2
7627922 Miller et al. Dec 2009 B2
7636976 Banning Dec 2009 B2
7646117 Shimizu et al. Jan 2010 B2
7654271 Wyatt et al. Feb 2010 B2
7661172 Hilscher et al. Feb 2010 B2
7673360 Hilscher et al. Mar 2010 B2
7676875 Cho Mar 2010 B2
7687944 Benning et al. Mar 2010 B2
7698771 Gall Apr 2010 B2
7712174 Shimizu et al. May 2010 B2
7750532 Heim Jul 2010 B2
7770251 Hilscher et al. Aug 2010 B2
7774886 Hilscher et al. Aug 2010 B2
7784136 Gatzemeyer et al. Aug 2010 B2
7784144 Renault Aug 2010 B2
7810199 Kressner Oct 2010 B2
7827644 Eliav Nov 2010 B2
7845039 Chan et al. Dec 2010 B2
7849549 Hegemann et al. Dec 2010 B2
7861348 Chan Jan 2011 B2
7861349 Hilscher et al. Jan 2011 B2
7876003 Bax Jan 2011 B2
7877832 Reinbold Feb 2011 B2
7887559 Deng et al. Feb 2011 B2
7979938 Lilley et al. Jul 2011 B2
7979939 Hilscher et al. Jul 2011 B2
8015648 Hall Sep 2011 B2
8020238 Eliav et al. Sep 2011 B2
8021065 Lou Sep 2011 B2
8032964 Farrell et al. Oct 2011 B2
8032965 Asada et al. Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8089227 Baertschi et al. Jan 2012 B2
8143817 Izumi et al. Mar 2012 B2
8181301 Hilscher et al. May 2012 B2
8185991 Kressner May 2012 B2
8218711 Neyer Jul 2012 B2
8264105 Bax Sep 2012 B2
8288970 Miller et al. Oct 2012 B2
8314586 Lumbantobing et al. Nov 2012 B2
8317424 Chenvainu et al. Nov 2012 B2
8336155 Crossman et al. Dec 2012 B2
8341791 Iwahori et al. Jan 2013 B2
20020084707 Tang Jul 2002 A1
20020088068 Levy et al. Jul 2002 A1
20020127512 Chen et al. Sep 2002 A1
20020196113 Rudd et al. Dec 2002 A1
20030017874 Jianfei et al. Jan 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030097723 Li May 2003 A1
20030115694 Pace Jun 2003 A1
20040060137 Eliav Apr 2004 A1
20040068811 Fulop et al. Apr 2004 A1
20040123409 Dickie Jul 2004 A1
20040128778 Wong Jul 2004 A1
20040191724 Rahman et al. Sep 2004 A1
20040255409 Hilscher et al. Dec 2004 A1
20050011022 Kwong Jan 2005 A1
20050011023 Chan Jan 2005 A1
20050037316 Sholder Feb 2005 A1
20050102776 Mathur May 2005 A1
20050128051 Dickinson et al. Jun 2005 A1
20050235438 Motohashi et al. Oct 2005 A1
20050271531 Brown, Jr. et al. Dec 2005 A1
20050272001 Blain et al. Dec 2005 A1
20050278877 Akridge et al. Dec 2005 A1
20060027246 Wilkinson Feb 2006 A1
20060032006 Brown et al. Feb 2006 A1
20060048315 Chan et al. Mar 2006 A1
20060048797 Jung et al. Mar 2006 A1
20060145871 Donati et al. Jul 2006 A1
20070000079 Mori et al. Jan 2007 A1
20070130705 Chan et al. Jun 2007 A1
20070234493 Hilscher et al. Oct 2007 A1
20080020351 Hilscher et al. Jan 2008 A1
20080022470 Hilscher et al. Jan 2008 A1
20080022501 Hilscher et al. Jan 2008 A1
20080022503 Hilscher et al. Jan 2008 A1
20080028549 Hilscher et al. Feb 2008 A1
20080032265 Hilscher et al. Feb 2008 A1
20080034515 Hilscher et al. Feb 2008 A1
20080083075 Dickie Apr 2008 A1
20080102419 Sauter et al. May 2008 A1
20080196735 Wyatt et al. Aug 2008 A1
20080254407 Benning et al. Oct 2008 A1
20080293009 Winston Nov 2008 A1
20090177125 Pilcher et al. Jul 2009 A1
20090183324 Fischer et al. Jul 2009 A1
20090211043 Kressner Aug 2009 A1
20090241276 Hall et al. Oct 2009 A1
20090243520 Kashiwabara et al. Oct 2009 A1
20090320221 Masuko Dec 2009 A1
20100132139 Jungnickel Jun 2010 A1
20100301783 Luckel et al. Dec 2010 A1
20100306934 Headstrom Dec 2010 A1
20110005015 Iwahori et al. Jan 2011 A1
20110041268 Iwahori et al. Feb 2011 A1
20110080122 Klemm et al. Apr 2011 A1
20110107531 Ye May 2011 A1
20110138551 Stopler et al. Jun 2011 A1
20110181208 Murata Jul 2011 A1
20110181209 Murata Jul 2011 A1
20110181211 Murata Jul 2011 A1
20110203061 Takahashi et al. Aug 2011 A1
20110248085 Hilscher et al. Oct 2011 A1
20110252584 Jousma et al. Oct 2011 A1
20110258793 Jousma et al. Oct 2011 A1
20110273153 Lepper et al. Nov 2011 A1
20120036665 Cho Feb 2012 A1
20120042742 Utsch et al. Feb 2012 A1
20120066848 Klemm et al. Mar 2012 A1
20120151698 Schaefer et al. Jun 2012 A1
20120198635 Hilscher et al. Aug 2012 A1
20130025079 Jungnickel et al. Jan 2013 A1
20130029289 Utsch et al. Jan 2013 A1
Foreign Referenced Citations (175)
Number Date Country
2005100387 May 2005 AU
688 537 Nov 1997 CH
2048697 Dec 1989 CN
2124686 Dec 1992 CN
2149877 Dec 1993 CN
1098888 Feb 1995 CN
2332378 Aug 1999 CN
1520788 Jan 2004 CN
1778278 Nov 2004 CN
1778279 Nov 2004 CN
1843305 Apr 2005 CN
1846651 Apr 2005 CN
183043 Sep 2006 CN
200980058 Nov 2007 CN
201055092 May 2008 CN
201403746 Oct 2008 CN
201295301 Dec 2008 CN
201187899 Jan 2009 CN
101427944 May 2009 CN
201341578 Nov 2009 CN
20151881 Jul 2010 CN
2413524 Oct 1975 DE
2826008 Jun 1983 DE
3708801 Sep 1988 DE
4036373 Nov 1990 DE
3936714 May 1991 DE
3937852 May 1991 DE
4012413 Oct 1991 DE
4036479 May 1992 DE
42 01 027 Jul 1992 DE
3880015 Sep 1993 DE
4422086 Jun 1994 DE
4305013 Aug 1994 DE
19506129 Feb 1995 DE
19518935 May 1995 DE
94 11 158 Aug 1995 DE
29608164 May 1996 DE
19627752 Jul 1996 DE
19628574 Mar 1997 DE
19545324 Jun 1997 DE
1196 03 851 Aug 1997 DE
29608167 Sep 1997 DE
29709865 Oct 1997 DE
198 03 311 Aug 1999 DE
29915858 Sep 1999 DE
198 40 684 Mar 2000 DE
19832607 May 2000 DE
199 13 945 Sep 2000 DE
19921677 Nov 2000 DE
19923104 Nov 2000 DE
10001502 Mar 2001 DE
10026513 May 2001 DE
201 12 320 Oct 2001 DE
19953651 Oct 2001 DE
10135257 Feb 2002 DE
10045353 Mar 2002 DE
10045067 Apr 2002 DE
10101163 Jul 2002 DE
4243219 Dec 2002 DE
10153863 May 2003 DE
10154946 May 2003 DE
102 47 698 Apr 2004 DE
10 2004 029 684 Dec 2005 DE
10 2005 045 800 Apr 2007 DE
197 27 018 Apr 2007 DE
024992 Jun 1984 EP
046169 Aug 1984 EP
0085795 Mar 1987 EP
285915 Dec 1988 EP
0300345 Jan 1989 EP
0435329 Jul 1991 EP
440051 Aug 1991 EP
391967 Aug 1992 EP
294548 Apr 1993 EP
624079 Oct 1993 EP
634151 Mar 1994 EP
787469 Aug 1997 EP
848921 Jun 1998 EP
1 231 706 Aug 2002 EP
1267664 Jun 2004 EP
1379149 Aug 2004 EP
1244373 Jul 2006 EP
1 696 539 Aug 2006 EP
1 737 110 Dec 2006 EP
1 733 700 Aug 2010 EP
2 262 083 Dec 2010 EP
2832298 May 2003 FR
1167444 Oct 1969 GB
1246564 Sep 1974 GB
2082713 Mar 1982 GB
2117230 Oct 1983 GB
2146893 May 1985 GB
2376758 Dec 2002 GB
2 412 014 Sep 2005 GB
1989083268 Mar 1989 JP
04-087127 Mar 1992 JP
04-269906 Sep 1992 JP
05-269024 Oct 1993 JP
06-01413 Jan 1994 JP
07-123600 May 1995 JP
07-177932 Jul 1995 JP
07-194862 Aug 1995 JP
08-000358 Jan 1996 JP
08-066325 Mar 1996 JP
08-117030 May 1996 JP
1996187125 Jul 1996 JP
08-275961 Oct 1996 JP
09-252843 Sep 1997 JP
1998005041 Jan 1998 JP
10-127346 May 1998 JP
10-243688 Sep 1998 JP
28-62873 Mar 1999 JP
199113638 Apr 1999 JP
11-318951 Nov 1999 JP
2000-253639 Sep 2000 JP
2001-37788 Feb 2001 JP
2001-197676 Jul 2001 JP
2001346816 Dec 2001 JP
2001-346816 Dec 2001 JP
2002045379 Feb 2002 JP
2002306867 Oct 2002 JP
2002320399 Oct 2002 JP
2003250233 Sep 2003 JP
2003348888 Dec 2003 JP
2004007890 Jan 2004 JP
2006-280830 Oct 2006 JP
2007-000693 Jan 2007 JP
1998137040 May 2008 JP
2009-100523 May 2009 JP
2010-035315 Feb 2010 JP
2010-125263 Jun 2010 JP
2003-0091408 Dec 2003 KR
10-2005-0043071 May 2005 KR
10-2007-0034649 Mar 2007 KR
10-0752601 Aug 2007 KR
10-2007-0107198 Nov 2007 KR
20-2008-0004243 Oct 2008 KR
10-2009-106306 Oct 2009 KR
C1030139 Oct 2005 NL
2 077 349 Jul 1993 RU
2 129 826 May 1999 RU
531 401 Mar 2009 SE
749380 Jul 1980 SU
1542539 Feb 1990 SU
WO 9106258 May 1991 WO
WO 95033419 Dec 1995 WO
WO 9724079 Oct 1997 WO
WO 9824527 Jun 1998 WO
WO-9836703 Aug 1998 WO
WO 9855274 Oct 1998 WO
WO 9920202 Apr 1999 WO
WO 99053562 Oct 1999 WO
WO 0039768 Jul 2000 WO
WO 0042584 Jul 2000 WO
WO 0047128 Aug 2000 WO
WO 0074591 Dec 2000 WO
WO 0108591 Feb 2001 WO
WO 0132052 May 2001 WO
WO 0147392 Jul 2001 WO
WO 0191603 Dec 2001 WO
WO 02093881 Jan 2002 WO
WO 02071972 Sep 2002 WO
WO 02083257 Oct 2002 WO
WO 02098315 Dec 2002 WO
WO 03054771 Jul 2003 WO
WO 2005096882 Oct 2005 WO
WO 2008015616 Feb 2008 WO
WO 2008019864 Feb 2008 WO
WO 2008098107 Aug 2008 WO
WO 2010106522 Sep 2010 WO
WO 2010106850 Sep 2010 WO
WO 2010143156 Dec 2010 WO
WO 2011044858 Apr 2011 WO
WO 2011077289 Jun 2011 WO
WO 2011077290 Jun 2011 WO
Non-Patent Literature Citations (60)
Entry
U.S. Appl. No. 11/888,152, filed Jul. 31, 2007, Hilscher et al.
Office Action from U.S. Appl. No. 10/872,075, dated Mar. 24, 2006.
Office Action from U.S. Appl. No. 10/872,075, dated May 15, 2007.
Office Action from U.S. Appl. No. 10/872,075, dated Jun. 4, 2009.
Office Action from U.S. Appl. No. 10/872,075, dated Aug. 1, 2006.
Office Action from U.S. Appl. No. 10/872,075, dated Oct. 31, 2007.
Office Action from U.S. Appl. No. 10/872,075, dated Dec. 10, 2008.
Office Action from U.S. Appl. No. 10/872,075, dated Dec. 27, 2006.
Office Action from U.S. Appl. No. 11/888,386, dated Dec. 3, 2009.
Office Action from U.S. Appl. No. 09/811,080, dated Feb. 3, 2004.
Office Action from U.S. Appl. No. 09/811,080, dated Oct. 1, 2004.
Office Action from U.S. Appl. No. 10/241,274, dated Jan. 14, 2005.
Office Action from U.S. Appl. No. 10/241,274, dated Sep. 1, 2006.
Office Action from U.S. Appl. No. 10/662,237, dated Feb. 18, 2005.
Office Action from U.S. Appl. No. 10/871,469, dated Jan. 9, 2007.
Office Action from U.S. Appl. No. 10/871,469, dated Jul. 25, 2006.
Office Action from U.S. Appl. No. 10/871,469, dated Aug. 24, 2005.
Office Action from U.S. Appl. No. 10/871,469, dated Dec. 27, 2007.
Office Action from U.S. Appl. No. 10/872,016, dated Feb. 7, 2006.
Office Action from U.S. Appl. No. 10/872,016, dated 02/23/20079.
Office Action from U.S. Appl. No. 10/872,016, dated Mar. 7, 2008.
Office Action from U.S. Appl. No. 10/872,016, dated Apr. 10, 2009.
Office Action from U.S. Appl. No. 10/872,016, dated Jun. 24, 2005.
Office Action from U.S. Appl. No. 10/872,016, dated Jul. 10, 2006.
Office Action from U.S. Appl. No. 10/872,016, dated Sep. 20, 2006.
Office Action from U.S. Appl. No. 10/872,016, dated Nov. 9, 2009.
Office Action from U.S. Appl. No. 11/257,603, dated Jan. 18, 2007.
Office Action from U.S. Appl. No. 11/257,603, dated Mar. 21, 2008.
Office Action from U.S. Appl. No. 11/257,603, dated May 15, 2007.
Office Action from U.S. Appl. No. 11/257,603, dated Aug. 30, 2007.
Office Action from U.S. Appl. No. 11/257,603, dated Sep. 20, 2006.
Office Action from U.S. Appl. No. 11/257,603, dated Nov. 25, 2008.
Office Action from U.S. Appl. No. 11/763,338, dated Mar. 24, 2009.
Office Action from U.S. Appl. No. 11/763,338, dated Jul. 10, 2008.
Office Action from U.S. Appl. No. 11/763,338, dated Dec. 4, 2008.
Office Action from U.S. Appl. No. 11/888,212, dated Mar. 17, 2009.
Office Action from U.S. Appl. No. 11/888,212, dated Mar. 21, 2008.
Office Action from U.S. Appl. No. 11/888,250, dated Jun. 30, 2008.
Office Action from U.S. Appl. No. 11/888,251, dated Mar. 17, 2009.
Office Action from U.S. Appl. No. 11/888,251, dated Mar. 21, 2008.
Office Action from U.S. Appl. No. 11/888,386, dated Mar. 3, 2009.
Office Action from U.S. Appl. No. 11/890,083, dated Mar. 16, 2009.
PCT Search Report for PCT/EP 01/02844, dated Aug. 8, 2001.
PCT Search Report for PCT/EP 01/02862, dated Jul. 31, 2001.
PCT Search Report for PCT/EP 02/01724, dated Jul. 17, 2002 for U.S. Appl. No. 10/241,274.
Finkenzeller, Laus, “RFID-Handbuch, Grundlagen und praktische Anwendungen induktiver Funkanlagen, Transponder und kontaktloser Chipkarten” [Trans: “RFID Handbook. Fundamentals and Practical Applications to Inductive Radio Communications, Transponders and Contactless Chip Cards”], Carl Hanser Verlag Munchen, 2nd Edtiion, Chapter 3, pp. 29-58 w/title page and Impressum. Contents pp. vii-xviii, and Appendices 15.2 “Standards” and 15.3 “Literature” on pp. 393-406.
Herzer, Gieselher, “Der grosse Lauschangriff auf Ladendiebe” [transl. “The great surveillance of shoplifters”] in Physikalische Blaetter [transl: Physics Letters] vol. 57, (2001), No. 5, pp. 43-48.
Package rear and bottom panels of Bausch & Lomb Interplak Model PB-4B, marked ©1990 (color copy, 1 sheet).
Color photographs of Bausch & Lomb “Interplak” Model PB-6 style Handpiece with waterproof electronic travel protection switch (believed circa 1992 on sale in the United States) (6 views).
Package rear and bottom panels of Bausch & Lomb Interplak Model PB-6, marked © 1992 (color copy, 1 sheet).
Product use instructions to Bausch & Lomb Interplak travel-style “Voyager” model TK-2 marked © 1991 (6 photocopies sheets containing cover and pp. 1-10).
“RFID Made Easy” Handbook by EM Microelectronic-Marin SA, 2074 Marin, Switzerland, copr 2000 and dated Mar. 2001,, Rev. C/350, pp. 1-33.
Use instructions to Braun D5 electric toothbrush Type 4726 on sale in US, circa 1991, including description of “Travel lock” switch.
Color photographs of Bausch & Lomb “Interplak” Model PB-4B style Handpiece with travel protection switch and Toothbrush attachment (handpiece stamped “1D IA”, believed circa 1992 on sale in the United States) (2 sheets with 7 views).
PCT International Search Report dated Nov. 2, 2011.
European Search Report for EP 11 00 6065 dated Feb. 27, 2012.
Pct Search Report for PCT/IB2012/053780 dated Jun. 21, 2012.
PCT International search Report dated Oct. 28, 2011 for Z-8585Q.
PCT International Search Report for PCT/IB2011/053665 Z8572MQ dated Nov. 23, 2012.
PCT International Search Report for PCT/IB2012/053804—Z-8597MQ dated Nov. 29, 2012.
Related Publications (1)
Number Date Country
20130029290 A1 Jan 2013 US