Oral irrigator appliance with radiant energy delivery for bactericidal effect

Information

  • Patent Grant
  • 10258442
  • Patent Number
    10,258,442
  • Date Filed
    Wednesday, September 21, 2011
    12 years ago
  • Date Issued
    Tuesday, April 16, 2019
    5 years ago
Abstract
An oral irrigator includes a base having a pump mechanism, a reservoir housed within the base and fluidically connected with the pump mechanism. A handle with a jet tip is connected with an outlet from the pump mechanism to receive a pressurized fluid stream from the reservoir to direct a fluid at a surface inside an oral cavity. The oral irrigator also includes a radiant energy source and delivery system for directing radiant energy at a surface inside an oral cavity.
Description
TECHNICAL FIELD

This technology relates to an oral irrigator, and more particularly to an oral irrigator including a radiant energy source to enhance the bacteria reducing effect.


BACKGROUND

An oral irrigator, also referred to as a dental water jet, includes generally a water reservoir supplying water to a pump, which in turn delivers water through a handle member having a tip structure, and into a user's mouth. The tip structure is sized and oriented to allow the user to direct the water stream against the user's teeth or gums as desired. The water stream may be continuous or pulsed. The reservoir of the oral irrigator may be positioned on a counter top, or may be hand held. Examples of such oral irrigators are described in U.S. Pat. Nos. 6,056,710 and 7,147,468 and U.S. Patent Application Publication No. 2008/0008979.


The effectiveness of existing oral irrigators is derived by the disruptive influence of the water stream on the bacteria found in the mouth. The bacteria is dislodged by the water stream and delivered out of the mouth (either swallowed or rinsed out).


The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.


SUMMARY

In one implementation, an oral irrigator for delivery radiant energy includes a base housing, a pump mechanism, a reservoir operably associated with the base housing and fluidically associated with the pump mechanism, a jet tip fluidically associated with the reservoir that directs a fluid at a surface inside an oral cavity; and a radiant energy source directing radiant energy at a surface inside an oral cavity. In one embodiment, the radiant energy source and the jet tip may be unitary to direct both the fluid and the radiant energy in generally the same direction. In another embodiment, the radiant energy source and the jet tip may be separate structures collocated on a single irrigation wand.


In an another implementation, the oral irrigator for delivering radiant energy may further include a radiant energy conduit that directs the radiant energy from the radiant energy source to the oral cavity. In one embodiment, the radiant energy conduit and a fluid conduit of the jet tip may be separate structures that together form the jet tip. In another embodiment, the radiant energy conduit and the fluid conduit may be unitary and form the jet tip to direct both the fluid and the radiant energy from the same terminal point in generally the same direction.


In a further implementation of an oral irrigator for delivering radiant energy, the radiant energy source and the jet tip may be separate structures or devices attached to the same base housing and able to be used individually.


In an alternate implementation, the oral irrigator may be a handheld device with the jet tip, the radiant energy source, and the reservoir in one body for easy maneuverability or use when traveling. The as in the previous implementations described, the radiant energy source may be separate from or unitary with the jet tip or the radiant energy may be directed from the radiant energy source through a radiant energy conduit that is either separate from or integral with a fluid conduit of the jet tip.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other features, details, utilities, and advantages of the present invention will be apparent from the following more particular written description of various embodiments of the invention as further illustrated in the accompanying drawings and defined in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an isometric view of an implementation of an oral irrigator including a jet tip emitting radiant energy.



FIG. 1B is an enlarged view of a terminal end of the jet tip of the oral irrigator shown in FIG. 1A.



FIG. 2A is an isometric view of an alternate implementation of an oral irrigator including a jet tip for emitting radiant energy.



FIG. 2B is an enlarged view of the terminal end of the jet tip of the oral irrigator shown in FIG. 2A.



FIG. 3 is an enlarged, fragmentary, isometric view of a jet tip of a further implementation of an oral irrigator, wherein the radiant energy source is in the handle and radiant energy is transmitted via a light tube to the terminal end of the jet tip.



FIG. 4A is an isometric view of an implementation of an oral irrigator for emitting radiant energy including a jet handle and tip for fluid discharge and a separate handle for radiant energy application.



FIG. 4B is an isometric view depicting the oral irrigator of FIG. 4A with the jet handle and tip removed from the base housing and reservoir unit.



FIG. 5A is an isometric view of an implementation of an oral irrigator for emitting radiant energy with a single jet handle and tip includes both a fluid conduit for directing fluid and an additional radiant energy conduit for directing radiant energy from collocated terminal ends.



FIG. 5B is an isometric view depicting the oral irrigator of FIG. 5A with the jet handle and tip removed from the base housing and reservoir unit and the radiant energy conduit of the oral irrigator activated.



FIG. 5C is an enlarged partial view of the collocated radiant energy conduit tip and jet tip of FIG. 5A.



FIG. 6A is a schematic diagram of a collocated fluid conduit and radiant energy conduit for an oral irrigator jet tip.



FIG. 6B is an isometric view of a molded lens system for focusing light energy into the radiant energy conduit of FIG. 6A.



FIG. 7 is a bar graph depicting the effects of an implementation of an oral irrigator with a radiant energy delivery system on undesirable black pigmented bacteria as opposed to desirable non-black pigmented bacteria in a typical oral cavity.



FIG. 8A is a side elevation view of an implementation of an oral irrigator jet tip that forms an integral radiant energy conduit.



FIG. 8B is a front elevation view of the oral irrigator jet tip of FIG. 8A.



FIG. 8C is a bottom plan view of the oral irrigator jet tip of FIG. 8A.



FIG. 8D is a cross section of the oral irrigator jet tip of FIG. 8B taken along lines A-A.



FIG. 9A is a graph depicting the incoherent irradiance measured at a detector imparted by an oral irrigator tip of the implementation of FIGS. 8A-8D in which the jet tip is formed as an integral radiant energy conduit and the radiant energy is transmitted without a corresponding water stream.



FIG. 9B is a detector image of the incoherent irradiance levels graphed in FIG. 9A.



FIG. 10A is a graph depicting the incoherent irradiance measured at a detector imparted by an oral irrigator tip of the implementation of FIGS. 8A-8D in which the jet tip is formed as an integral radiant energy conduit and the radiant energy is transmitted in conjunction with a corresponding water stream.



FIG. 10B is a detector image of the incoherent irradiance levels graphed in FIG. 10A.



FIG. 11A is a graph depicting the incoherent illuminance measured at a detector imparted by an oral irrigator tip of the implementation of FIGS. 8A-8D in which the jet tip is formed of a tube of PMMA and the radiant energy is transmitted without a corresponding water stream.



FIG. 11B is a detector image of the incoherent illuminance levels graphed in FIG. 11A.



FIG. 12 is a side elevation view of another implementation of an oral irrigator jet handle with a radiant energy source transmitted via a light guide positioned coaxially within a fluid conduit of the jet tip.



FIG. 13 is a cross-section view of the oral irrigator jet handle of FIG. 12 taken along line 13-13.



FIG. 14 is an isometric view of a light guide used in the jet handle of the oral irrigator of FIG. 12.



FIG. 15 is a cross-section view of the light guide of FIG. 14 taken along line 15-15.



FIG. 16 is an isometric view of a collimator used in the jet handle of the oral irrigator of FIG. 12.



FIG. 17 is a bottom plan view of the collimator of FIG. 16.



FIG. 18 is a side elevation view of the collimator of FIG. 16.



FIG. 19 is a cross-section view of the collimator of FIG. 16 taken along line 19-19 of FIG. 18.



FIG. 20 is a graph summarizing the efficacy comparison of surface mount radiant energy sources to radiant energy provided by fiber optic delivery on the various organisms presented in Tables 9A-16B.



FIG. 21A is an isometric view of an implementation of an oral irrigator including a radiant energy source disposed within a terminal end of a jet tip.



FIG. 21B is an enlarged view of the terminal end of the jet tip of the oral irrigator shown in FIG. 21A.



FIG. 22A is a cross-section view of the jet tip illustrated in FIG. 21B taken along line 22A-22A in FIG. 21B.



FIG. 22B is a cross-section view of the interface between the jet tip and the handle illustrated in FIG. 21A taken along line 22B-22B in FIG. 21A.



FIG. 23 is an isometric view of an embodiment of a removable radiant energy source removed from the jet tip.



FIG. 24 is a cross-section view of the radiant energy source illustrated in FIG. 23 taken along line 24-24 in FIG. 23.



FIG. 25 is an isometric view of another embodiment of a removable radiant energy source removed from the jet tip.



FIG. 26 is a cross-section view of the radiant energy source illustrated in FIG. 25 taken along line 26-26 in FIG. 25.





DETAILED DESCRIPTION

The technology disclosed herein pertains generally to the enhancement of the effectiveness of the traditional oral irrigator. In particular, the impact of the water stream from the jet tip is enhanced by the addition of a radiant energy source that also works to reduce the bacteria in a user's mouth without also using chemical additives. The wavelength of radiant energy is selected to closely match the adsorption peaks of certain black-pigmented oral bacteria. The radiant energy source may be located in any number of positions so long as it is directed at least partially into the user's oral cavity when the oral irrigator is used.



FIGS. 1A and 1B depict an implementation of an oral irrigator with a radiant energy delivery system 100. An oral irrigator 100 is shown having a base housing 102, which incorporates the pump powered by line voltage. A reservoir 104 having a lid sits atop the base housing 102 and serves to supply the water to the jet tip 110. The reservoir 104 is fluidically connected to the pump in order to pump water through a water line 111 to the jet handle 108. The jet tip 110 is fluidically connected to the jet handle 108 so that the pumped water flows through the jet tip 110. The jet tip 110 has a terminal end 114 that is positioned so as to cause the water stream to enter the oral cavity and flush bacteria therefrom.


The radiant energy, in this instance is in the form of a light emitting diode (LED) emitting light in the 350 to 450 nanometer range, preferably in the 375-415 nm range, and even more preferably in the 405-415 nm range, is configured relative to the terminal end 114 of the jet tip 110 so the radiant energy is generally directed in at least a similar direction as the water stream. However, in other embodiments the radiant energy may be in the form of a diode, such as a laser diode.


As shown in the embodiment of FIG. 1B, the radiant energy is created by five surface-mount LEDs 116 positioned around the terminal end 114 of the jet tip. Each of the surface-mount LEDs 116 are electrically connected to a power source, typically the same as the one that powers the pump in the base housing 102. In one embodiment, the electrical connections are wires extending from each LED 116 to a common wire, which then extends down the jet tip 110, along the handle 108, along the water line 111 to the base housing 102. In another embodiment, the common wire may be embedded in a sidewall of the jet tip 110 and further in a sidewall of the water line 111. In other embodiments, the LEDs 116 may be connected in series.


Controls 112 may be positioned on the handle 108 and/or base housing 102 to control the pressure and other characteristics of the water stream, as well as characteristics of the LEDs 116 (or other radiant energy sources) for example, activation, deactivation, intensity level, and activation time, among other options.



FIGS. 2A and 2B depict an alternative implementation of an oral irrigator 200 with a radiant energy delivery system. As in the prior figures, the oral irrigator 200 is composed of a base housing 202, a fluid reservoir 204, a lid 206, a handle 208, a jet tip 210, and one or more controls or actuators 212. In this implementation a single LED 216 is attached to one side of the terminal end 214 of the jet tip 210. The LED 216 is mounted on a shoulder 218 formed on the terminal end 214 of the jet tip 210. This design makes the terminal end 214 of the jet tip 210 a slightly larger in one dimension compared to a standard jet tip. The LED 216 is energized by lead wires contained or enveloped within the wall of jet tip 210. In other embodiments, the LED 216 may be a surface mount configuration that connects with a receptacle formed in the shoulder 218 or otherwise on the terminal end 214 of the jet tip 210.


In an alternative implementation as shown in FIG. 3, the radiant light source may be positioned remote from the terminal end 314 of the jet tip 310 and directed along the jet tip 310 for use. For example, as shown in FIG. 3, the radiant light source of the oral irrigator 300 is positioned on the handle 308 with the radiant energy transmitted to the terminal end 314 of the jet tip 310 by a radiant energy conduit 322, e.g., a light tube. The energy 322 may be terminated at a location 324 at or adjacent the terminal end 314 of the jet tip 310. Alternatively, the termination location 324 of the radiant energy conduit 322 at a length shorter or longer than the terminal end 314 of the jet tip 310. In the embodiment of FIG. 3, the oral irrigator 300′ is a handheld configuration with the reservoir 304′ mounted to the handle 308′. The radiant energy source may be mounted in the handle 308′ and powered by the portable power supply (e.g., a rechargeable battery) contained within the handle 308′. In this example, the handle 308′ acts as a base, and includes a water pump mechanism and a control switch. The power source powers the pump mechanism and the radiant energy source. The control switch controls the power to the pump mechanism and/or the radiant energy source to actuate or deactivate the respective function. These functions may also be controlled by separate control switches.


In various implementations, the radiant energy conduit 322 may be a light tube made of glass or plastic and may also include or be formed of optical fibers. In one embodiment, the light tube may be formed of poly(methyl methacrylate) (PMMA). In another embodiment, the light tube may be formed as a glass or plastic fiber-optic light injector. The embodiments of FIGS. 3A and 3B allow the light source to be positioned remote from the terminal end 314 of the jet tip 310 to allow an LED, laser diode or other energy source to be used and to reduce exposure of the light source to moisture and physical impact with the user's oral cavity or other objects.


The radiant energy conduit 322 may also be aimed to cast the radiant energy in the same direction as the jet tip 310 to converge at the same location as the water stream exiting the jet tip 310, or the radiant energy may be directed generally in the same direction or in a different direction if desired. The radiant energy conduit 322 may also be selectively positionable to allow the user to adjust the position. The radiant energy may be directed or focused to shine in the same area of impact of the water jet in order to take advantage of the water jet lifting away the gum from the tooth and allowing the radiant energy to reach bacteria below the gum line.



FIGS. 4A-4D depict another implementation of an oral irrigator 400 in which a water jet handle 408 operates to provide a water stream 418, while a separate delivery wand 420 operates to provide the application of radiant light through a radiant energy conduit 422. The base 402 of the oral irrigator 400 supports a reservoir 404 covered by a lid 406 and a storage recess 407 for holding the handle 408 and the wand 420. The water jet handle 408 includes a jet tip 410 and a water line 411 communicating fluid from the pump to the jet tip 410 (as described above). Controls 412 on the base 402 and the water jet handle 408 allow some control of the characteristics of the water stream.


Still referring to FIGS. 4A-B, the radiant energy delivery wand 420 is provided for directing the radiant energy through the radiant energy conduit 422 into the user's oral cavity. The separate energy delivery wand 420 is connected to a power source at the base 402 by a power cord 421. In an alternate embodiment, the energy delivery wand 420 may be battery powered and not require a cord 421. The energy delivery wand 420 may include a switch 412 for controlling the status of the radiant energy, for example, activation and deactivation, and may also function to set the intensity level of the radiant energy.


The water jet handle 408 may be removed from the storage recess 407 in the base 402 and extended for use by the user to direct the water stream 418 into the user's mouth as depicted in FIG. 4C. The energy delivery wand 420 may similarly be removed from the storage recess 407 in the base 402 and extended for use by the user to direct the radiant energy through the radiant energy conduit 422 into the user's mouth as shown in FIG. 4D.



FIGS. 5A-5C depict another implementation of an oral irrigator 500. The oral irrigator 500 includes a base 502 for supporting a reservoir 504 having a lid 506 and a single jet handle 508. The jet handle 508 includes a jet tip 510 formed as a fluid conduit for directing a flow of water out of a terminal end 514 of the jet tip 510. The jet handle 508 also includes radiant energy source 524 positioned near the terminal end 514 of the jet tip 510. The radiant energy source 524 is positioned to direct light in at least generally the same direction of the terminal end 514 of the jet tip 510. In this example, the radiant energy source 524 is positioned at the end of a second conduit 522 running along the length of the water conduit 510. An electrical wire 521 runs along the second conduit 522, in this case within the interior cavity of the second conduit 522, to provide power to the radiant energy source 524 positioned at the tip of the second conduit 522 as best shown in FIG. 5C.


As shown in FIGS. 5-5C, the jet handle 508 includes a switch 512 to control the water flow through the first water conduit 510. The same switch 512 may also control the activation, deactivation, and intensity condition of the radiant energy source 524. Alternately, each may be controlled by a switch 512 positioned elsewhere on the unit, for example, on the base 502. The use of this oral irrigator device 500 may allow a user separate use of the water jet tip 510 and radiant energy source 524, or may allow the simultaneous use thereof.


In each of the above embodiments (as well as further embodiments below), the radiant energy sources may be suitably constructed to activate when the water flow is actuated, or may be controlled by sensors to actuate when positioned in a relatively dark space (such as the inside of a user's mouth), or may be controlled by a timer to help insure sufficient radiant energy is imparted to the bacteria in the user's mouth.



FIG. 6A schematically depicts an alternate embodiment of a jet tip with a water conduit 610 separate from a corresponding radiant energy conduit 622. The water conduit 610 and the energy conduit 622 generally follow parallel paths and are mounted adjacent each other. The terminal end 614 of the water conduit 610 is at approximately the same distance from the handle as the distal end 628 of the energy conduit 622. In this embodiment, the energy conduit is a glass or plastic shaft or cylinder, or possibly a fiber optic light injector that transmits radiant energy from a light source at a proximal end 626 of the energy conduit 622 to the distal end 628 of the light conduit 622. FIG. 6B depicts two commonly available molded acrylic fiber light injectors 624 from Fraen Corporation.


In some embodiments, LEDs may be used as a source for the radiant energy. Exemplary LEDs may include, for example, Nichia 5POA (375 nm), Nichia 59013 (365 nm), or Xicon 351-3314-RC LEDs. In some implementations, suitable wavelengths for effective radiant energy have been found between 350-450 nm, preferably between 375-415 nm, even more preferably between 405-415 nm. In one exemplary implementation, a UV-1WS-L2 LED from Prolight Opto Technology Corporation was used to provide light at desired wavelengths. Another way to characterize effective radiant energy is by intensity. The effective intensity required will depend on the species of microbe. Minimum effective intensities generally range from 2-50 J/cm.


The following tables present test results from the use of various LEDs and other light sources for varying amounts of time on various common types of bacteria that inhabit the oral cavity to determine the bactericidal effects. The Legend indicates the types of bacteria used in the experiments, the types of LEDs used, and an explanation of the meaning of the results. In the first experiment of Table 1, bacteria cultures were exposed to the light sources for periods of 2 minutes and 60 minutes. In the experiments of Tables 2, 3, and 4, bacteria cultures were exposed to the light sources for periods of 5 seconds, 30 seconds, 1 minute, 2 minutes, and 60 minutes. As indicated in the Legend, an IE or “Ineffective” entry means bacterial growth was observed in the culture without apparent inhibition, i.e., the incident light did not kill the bacteria. In contrast, an E or “Effective” entry indicates that while live bacteria remain in the culture, the bacteria were killed in the illuminated area.












Legend for Tables 1-4

















NG = No growth on plate - invalid data point



IE = “Ineffective” - Bacterial growth on plate but no inhibition



zones



E = “Effective” - Bacteria growth on plate but bacteria killed



in area illuminated



Bacteria 1 Porphyromonas Gingivalis ATCC 33277



Bacteria 2 Prevotella Intermedia ATCC 25611



Bacteria 3 Prevotella Nigrescens ATCC 33563



Bacteria 4 Prevotella Melaningena ATCC 25845










led 1
Nichia 59013 - 365 nm



led 2
Mouser UV Xicon Led Lamps Taiwan




PN-351-3314-RC



led 3
Blue - Sunbright 470 nm-ssp-Ix6144A7uc



led 4
Nichia - 5poa-375 nm



led 5
White - Sunbright-ssp-Ix6144A9UC



led 6
UV Florescent-JKL



led 7
FOX-uv



led 8
IR vcsel

















TABLE 1







Bacteria 1











Light Source
2 min
60 min







Control
IE
IE (poor)



Black Light
IE



Germicidal
E
E



filter 1
IE ?



filter 2
IE ?



led 1
IE ?
E



led 2
IE ?
E



led 3
IE ?
?



led 4
IE ?
?



led 5
IE



led 6
IE



led 7
IE



led 8
IE

















TABLE 2







Bacteria 2












Light Source
5 sec
30 sec
60 sec
2 min
60 min





Control
IE
IE
IE
IE
IE


Black Light



IE
E


Germicidal
E
E
E
E
E


filter 1



IE
E


filter 2



IE
E


led 1
IE
E (partial)
IE
E
E


led 2
IE
IE
IE
E
E


led 3
IE
IE
IE
IE
E


led 4
E
E
E
E
E


led 5



IE
E


led 6



IE
IE


led 7



IE
E


led 8
















TABLE 3







Bacteria 3












Light Source
5 sec
30 sec
60 sec
2 min
60 min





Control
IE
IE
IE
IE
IE


Black Light



IE
E


Germicidal
E
E
E
E
E


filter 1



IE
E


filter 2



IE
E


led 1
IE
IE
E
E
E


led 2
IE
IE
IE
E
E


led 3
IE
IE
IE
IE
E


led 4
IE
E
E
E
E


led 5



IE
E


led 6



IE
IE


led 7



IE
E


led 8



IE
IE
















TABLE 4







Bacteria 4












Light Source
5 sec
30 sec
60 sec
2 min
60 min





Control
IE
IE
IE
IE
IE


Black Light



IE
IE


Germicidal
E
E
E
E
E


filter 1



IE
IE


filter 2



IE
IE


led 1
IE
IE
E (partial)
E
E


led 2
IE
IE
IE
IE
E


led 3
IE
IE
IE
E ?
E ?


led 4
IE
E
E
E ?
E ?


led 5



IE
E


led 6



IE
IE


led 7



IE
IE


led 8



IE
IE









In addition to the experimental testing above, another series of tests of radiant energy sources was performed to determine the effects of alternate energy sources. In the experiments of Tables 5, 6, 7, and 8, bacteria cultures were exposed to the light sources for periods of 5 seconds, 30 seconds, 1 minute, 2 minutes, and 60 minutes. As in the prior experiments, an IE or “Ineffective” entry means bacterial growth was observed in the culture without apparent inhibition. In contrast, an E or “Effective” entry indicates that while live bacteria remain in the culture, the bacteria were killed in the illuminated area.









TABLE 5







Light Effects on Porphyromonas Gingivalis














Source


Light
5
30
2
5


(nm)
Configuration
Plate
#
sec
sec
min
min





405
30E leaded
A
1
IE
IE
IE
IE


420
15E leaded
A
2
IE
IE
IE
IE



(5) Nichia 590 a
A
3
IE
IE
IE
IE



(4) 0603 surface mount
A
4
IE
IE
IE
IE


395
L300 CUV Ledtronics
B
1
IE
IE
IE
IE


395
L120 CUV Ledtronics
B
2
IE
IE
IE
IE


405
SPL300CUV
B
3
IE
IE
IE
IE


405
L200CUV
B
4
IE
IE
IE
IE


375
Nichia into 2 mm fiber
C
1
IE
IE
IE
IE



broken into 1 mm
C
2
IE
IE
IE
IE



module 1 mm
C
3
IE
IE
IE
IE


420
15E leaded
C
4
IE
IE
IE
IE


375
Nichia into 1 mm fiber
C
5
IE
IE
IE
IE


408
18E into 1 mm
C
6
IE
IE
IE
IE


375
nichia into 1 mm
C
7
IE
IE
IE
IE


394
filtered sunlight
S
1
IE
IE
IE
IE


400
filtered sunlight
S
2
IE
IE
IE
IE


405
filtered sunlight
S
3
IE
IE
IE
IE


410
filtered sunlight
S
4
IE
IE
IE
IE


415
filtered sunlight
S
5
IE
IE
IE
IE


254
Sterilizing wand
W
1
IE
E
E
E
















TABLE 6







Light Effects on Prevotella Intermedia














Source


Light
5
30
2
5


(nm)
Configuration
Plate
#
sec
sec
min
min





405
30E leaded
A
1
IE
E
IE
E


420
15E leaded
A
2
IE
IE
IE
IE



(5) Nichia 590 a
A
3
IE
IE
E
E



(4) 0603 surface mount
A
4
IE
IE
IE
IE


395
L300 CUV Ledtronics
B
1
IE
E
E
E


395
L120 CUV Ledtronics
B
2
IE
E
E
E


405
SPL300CUV
B
3
IE
E
E
E


405
L200CUV
B
4
IE
E
E
E


375
Nichia into 2 mm fiber
C
1
IE
IE
IE
IE



broken into 1 mm
C
2
IE
IE
IE
IE



module 1 mm
C
3
IE
E
E
E


420
15E leaded
C
4
IE
IE
IE
IE


375
Nichia into 1 mm fiber
C
5
IE
IE
IE
IE


408
18E into 1 mm
C
6
IE
IE
IE
IE


375
nichia into 1 mm
C
7
IE
IE
IE
IE


394
filtered sunlight
S
1
IE
IE
IE
IE


400
filtered sunlight
S
2
IE
IE
IE
IE


405
filtered sunlight
S
3
IE
IE
IE
IE


410
filtered sunlight
S
4
IE
IE
IE
IE


415
filtered sunlight
S
5
IE
IE
IE
IE


254
Sterilizing wand
W
1
E
E
E
E
















TABLE 7







Light Effects on Prevotella Nigrescens














Source


Light
5
30
2
5


(nm)
Configuration
Plate
#
sec
sec
min
min





405
30E leaded
A
1
E
E
E
E


420
15E leaded
A
2
IE
IE
IE
IE



(5) Nichia 590 a
A
3
E
E
E
E



(4) 0603 surface mount
A
4
IE
IE
E
E


395
L300 CUV Ledtronics
B
1
E
E
E
E


395
L120 CUV Ledtronics
B
2
E
E
E
E


405
SPL300CUV
B
3
E
E
E
E


405
L200CUV
B
4
E
E
E
E


375
Nichia into 2 mm fiber
C
1
IE
IE
E
E



broken into 1 mm
C
2
IE
IE
IE
IE



module 1 mm
C
3
E
E
E
E


420
15E leaded
C
4
E
E
E
E


375
Nichia into 1 mm fiber
C
5
IE
IE
E
E


408
18E into 1 mm
C
6
IE
IE
IE
IE


375
nichia into 1 mm
C
7
IE
IE
E
E


394
filtered sunlight
S
1
IE
IE
E
E


400
filtered sunlight
S
2
IE
IE
E
E


405
filtered sunlight
S
3
IE
IE
IE
E


410
filtered sunlight
S
4
IE
IE
IE
E


415
filtered sunlight
S
5
IE
IE
IE
E


254
Sterilizing wand
W
1
E
E
E
E
















TABLE 8







Light Effects on Prevotella Melaningena














Source


Light
5
30
2
5


(nm)
Configuration
Plate
#
sec
sec
min
min





405
30E leaded
A
1
IE
IE
E
E


420
15E leaded
A
2
IE
IE
IE
IE



(5) Nichia 590 a
A
3
IE
E
E
E



(4) 0603 surface mount
A
4
IE
IE
IE
IE


395
L300 CUV Ledtronics
B
1
IE
IE
E
E


395
L120 CUV Ledtronics
B
2
IE
E
E
E


405
SPL300CUV
B
3
IE
IE
E
E


405
L200CUV
B
4
E
E
E
E


375
Nichia into 2 mm fiber
C
1
IE
IE
IE
IE



broken into 1 mm
C
2
IE
IE
IE
IE



module 1 mm
C
3
IE
IE
E S
E


420
15E leaded
C
4
IE
IE
IE
IE


375
Nichia into 1 mm fiber
C
5
IE
IE
IE
IE


408
18E into 1 mm
C
6
IE
IE
IE
IE


375
nichia into 1 mm
C
7
IE
IE
IE
IE


394
filtered sunlight
S
1
IE
IE
IE
IE


400
filtered sunlight
S
2
IE
IE
IE
IE


405
filtered sunlight
S
3
IE
IE
IE
IE


410
filtered sunlight
S
4
IE
IE
IE
IE


415
filtered sunlight
S
5
IE
IE
IE
IE


254
Sterilizing wand
W
1
IE
E
E
E









These studies indicate that UV and near-UV light is effective in killing select periodontal pathogens. While shorter wavelength UV radiation is an extremely effective germicide, the mechanism of destruction in UV radiation below 300 nm is to destroy DNA in cells. (See, e.g., Soukos, N. S. et al., Phototargeting oral black-pigmented bacteria, Antimicrobial Agents and Chemotherapy, (April 2005) pp. 1391-96.) This mechanism is not selective and therefore the user's tissue cells could be destroyed as well. In contrast, by using higher wavelengths of light, e.g., between 350-450 nanometers, undesirable, black-pigmented bacteria can be destroyed without affecting the health of adjacent oral tissue. Wavelengths between 350-450 nm, and especially between 405-415 nm, are very effective bactericides by exciting endogenous porphyrins within the black-pigmented bacteria while leaving oral tissue unharmed. FIG. 7 is a bar graph showing the effectiveness of a 405 nm light source on black-pigmented bacteria compared to non-black-pigmented bacteria, which is actually healthy to have in the oral cavity. The undesirable black-pigmented bacteria are killed relatively quickly (in some cases under 5 seconds) while the desirable bacteria remains unharmed. This selective killing when used on a daily basis causes a beneficial, long-term shift in the ratio of desirable to undesirable bacteria as the desirable bacteria are allowed to grow and take the place previously occupied by the undesirable bacteria. This results in a lasting benefit to the user's oral health beyond what would be indicated by the one-time kill efficacy.


In embodiments using a light tube 622 as a radiant energy conduit as in FIG. 6A to direct the radiant energy from an energy source 624, the light tube 622 may be formed from plastic or glass fibers with a transmissive core and optionally a thin sheathing a material that has a lower refractive index, e.g., Mitsubishi Eska acrylic fibers sheathed with fluorine polymer, or similar glass fibers. Molded light tubes from acrylic polymers are common in many manufactured products. One example is the glowing speedometer needle of most modern automobiles. Fiber optic light injectors could also be used as light tubes. In another implementation, a molded light injector, e.g., as commercially produced by Fraen Corporation, may be used to direct light from an LED into an optical fiber or molded light tube.


Additional tests were performed to gauge the efficacy of various light sources on a number of common oral bacteria and other organisms commonly found in the oral cavity. Results of these tests are set forth below in Tables 9A-16B and are summarized in Table 17. In each table pair, the first table designated “A” shows the results of various exposures using a fiber optic radiant energy source. In the second tables of the pairs designated “B”, results of various exposures using a radiant energy source mounted at the tip of the device are presented. In the tables, a “+” indicates no inhibition of the organism to the light source, a “W” indicates a weak inhibition of the organism to the light source, and a “−” indicates an inhibition of the organism to the light source.


Tables 9A-9B depict the results of exposure of Porphyromonas gingivalis ATCC 33277 (PG-1) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). PG-1 is an anaerobic black pigmented bacteria associated with periodontal disease. In Table 9A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. PG-1 is one of the most resistant organisms, but testing shows first kills in some experiments within between 60 and 120 seconds of exposure. In Table 9B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 9A







PG-1 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





PG-1
A
 5 Sec






PG-1
A
15 Sec






PG-1
A
30 Sec






PG-1
A
60 Sec






PG-1
A
 2 Min
+


w


PG-1
A
15 min
+

+
no data


PG-1
A
45 Min
+

+
no data
















TABLE 9B







PG-1 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





PG-1
B
 5 Sec






PG-1
B
15 Sec






PG-1
B
30 Sec






PG-1
B
60 Sec






PG-1
B
 2 Min






PG-1
B
15 min
+


+


PG-1
B
45 Min
+
+
+
+









Tables 10A-10B depict the results of exposure of Prevotella melaninogenica ATCC 258465 (PM-2) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). PM-2 is an anaerobic black pigmented bacteria associated with periodontal disease. In Table 10A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 10B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 10A







PM-2 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





PM-2
A
 5 Sec






PM-2
A
15 Sec






PM-2
A
30 Sec


+
w


PM-2
A
60 Sec


+
+


PM-2
A
 2 Min
+

+
+


PM-2
A
15 min
+

+
no data


PM-2
A
45 Min
+

+
no data
















TABLE 10B







PM-2 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





PM-2
B
 5 Sec






PM-2
B
15 Sec
w





PM-2
B
30 Sec
+


w


PM-2
B
60 Sec
+
w

+


PM-2
B
 2 Min
+
+

+


PM-2
B
15 min
+
+
+
+


PM-2
B
45 Min
+
+
+
+









Tables 11A-11B depict the results of exposure of Porphyromonas Intermedia ATCC 25611 (PI-1) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). PI-1 is an anaerobic black pigmented bacteria associated with periodontal disease. Comments in literature and the experimentation conducted herein suggests that PI-1 tends to be more susceptible to UV and less susceptible to antibiotics than P. Ginvivalis. In Table 11A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 11B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 11A







PI-1 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





PI-1
A
 5 Sec
+

+
+


PI-1
A
15 Sec
+

+
+


PI-1
A
30 Sec
+

+
+


PI-1
A
60 Sec
+

+
+


PI-1
A
 2 Min
+

+
+


PI-1
A
15 min
+

+
+


PI-1
A
45 Min
+

+
+
















TABLE 11B







PI-1 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





PI-1
B
 5 Sec
+


+


PI-1
B
15 Sec
+
+
+
+


PI-1
B
30 Sec
+
+
+
+


PI-1
B
60 Sec
+
+
+
+


PI-1
B
 2 Min
+
+
+
+


PI-1
B
15 min
+
+
+
+


PI-1
B
45 Min
+
+
+
+









Tables 12A-12B depict the results of exposure of Porphyromonas Nigrescens ATCC 33563 (PN-1) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). PN-1 is an anaerobic black pigmented bacteria associated with periodontal disease. Comments in literature and the experimentation conducted herein suggests that PN-1 tends to be more susceptible to UV and less susceptible to antibiotics than P. Ginvivalis. In Table 12A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 12B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 12A







PN-1 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





PN-1
A (BA)
 5 Sec
+

+
+


PN-1
A (BA)
15 Sec
+

+
+


PN-1
A (BA)
30 Sec
+

+
+


PN-1
A (BA)
60 Sec
+

+
+


PN-1
A (BA)
 2 Min
+

+
+


PN-1
A (BA)
15 min
+

+
no data


PN-1
A (BA)
45 Min
+

+
no data
















TABLE 12B







PN-1 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 nm
mount





PN-1
B (BA)
 5 Sec
+
w

+


PN-1
B (BA)
15 Sec
+
+
w
+


PN-1
B (BA)
30 Sec
+
+
+
+


PN-1
B (BA)
60 Sec
+
+
+
+


PN-1
B (BA)
 2 Min
+
+
+
+


PN-1
B (BA)
15 min
+
+
+
+


PN-1
B (BA)
45 Min
+
+
+
+









Tables 13A-13B depict the results of exposure of Streptococcus mutans ATCC 25175 (STR-54) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). STR-54 is a gram-positive, facultatively anaerobic bacteria commonly found in the human oral cavity. In Table 13A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 13B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 13A







STR-54 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





Str-54
A (BA)
 5 Sec






Str-54
A (BA)
15 Sec






Str-54
A (BA)
30 Sec






Str-54
A (BA)
60 Sec






Str-54
A (BA)
 2 Min
+


+


Str-54
A (BA)
15 min
+

w
no data


Str-54
A (BA)
45 Min
+

+
no data
















TABLE 13B







STR-54 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





Str-54
B (BA)
 5 Sec






Str-54
B (BA)
15 Sec






Str-54
B (BA)
30 Sec






Str-54
B (BA)
60 Sec






Str-54
B (BA)
 2 Min
w





Str-54
B (BA)
15 min
w

w



Str-54
B (BA)
45 Mm
+

w
w









Tables 14A-14B depict the results of exposure of Lactobacillus casei ATCC 393 (LB-2) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). LB-2 is a stain agent common in milk and dairy products and is associated with carries formation. In Table 14A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 14B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 14A







LB-2 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





LB-2
A (BA)
 5 Sec






LB-2
A (BA)
15 Sec






LB-2
A (BA)
30 Sec






LB-2
A (BA)
60 Sec






LB-2
A (BA)
 2 Min






LB-2
A (BA)
15 min






LB-2
A (BA)
45 Min
+

+
no data
















TABLE 14B







LB-2 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





LB-2
B (BA)
 5 Sec






LB-2
B (BA)
15 Sec






LB-2
B (BA)
30 Sec






LB-2
B (BA)
60 Sec






LB-2
B (BA)
 2 Min






LB-2
B (BA)
15 min






LB-2
B (BA)
45 Min
+












Tables 15A-15B depict the results of exposure of Actinobacillus actinomycetemcomitans ATCC 33384 (AA-1) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). AA-1 is a bacteria associated with periodontal disease. In Table 15A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 15B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 15A







AA-1 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
Light
2 mm
2 mm





AA-1
A (BA)
 5 Sec






AA-1
A (BA)
15 Sec






AA-1
A (BA)
30 Sec






AA-1
A (BA)
60 Sec






AA-1
A (BA)
 2 Min


+
+


AA-1
A (BA)
15 min
+

+
no data


AA-1
A (BA)
45 Min
+

+
no data
















TABLE 15B







AA-1 with Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





AA-1
B (BA)
 5 Sec






AA-1
B (BA)
15 Sec






AA-1
B (BA)
30 Sec






AA-1
B (BA)
60 Sec






AA-1
B (BA)
 2 Min
w





AA-1
B (BA)
15 min
+


+


AA-1
B (BA)
45 Min
+
+
+
+









Tables 16A-16B depict the results of exposure of Fusobacterium Nucleatum ATCC (FU-3) to various light sources for periods of time between 5 seconds and 45 minutes (900 seconds). FU-3 is a key component of periodontal plaque due to its abundance and its ability to coaggregate with other species in the oral cavity. In Table 16A, results of exposure to no light, and fiber optic sources of white light, Fl Pro Light-2 mm, and AWP Pro Light-2 mm are depicted. In Table 116B, results of exposure to tip mounted light sources at dominant wavelengths of 400 nm (two samples), 590 nm, and a surface mount white light are presented.









TABLE 16A







FU-3 with Fiber Optic Source
















White

FI Pro
AWP Pro





light-
No
Light-
Light-


Organism
Plate
Time
3 mm
light
2 mm
2 mm





FU-3
A (BA)
 5 Sec






FU-3
A (BA)
15 Sec






FU-3
A (BA)
30 Sec






FU-3
A (BA)
60 Sec






FU-3
A (BA)
 2 Min
+





FU-3
A (BA)
15 min
+

+
no data


FU-3
A (BA)
45 Min
+

+
no data
















TABLE 16B







FU-3 With Tip Mounted Source



















Surface


Organism
Plate
Time
400 nm
400 nm
590 A
mount





FU-3
B (BA)
 5 Sec






FU-3
B (BA)
15 Sec






FU-3
B (BA)
30 Sec






FU-3
B (BA)
60 Sec






FU-3
B (BA)
 2 Min
+





FU-3
B (BA)
15 min
+


w


FU-3
B (BA)
45 Min
+

w
+









Table 17 presented as FIG. 20 depicts a graph summarizing the efficacy comparison of surface mount radiant energy sources to radiant energy provided by fiber optic delivery on the various organisms presented above in Tables 9A-16B.


In yet another implementation depicted in FIGS. 8A-8D, an integral jet tip 810 forms the water conduit 815 within a molded light tube 822. This configuration allows the jet tip 810 to be smaller closer in size to a standard, non-light emitting tip used on a standard oral irrigator appliance. The one piece all molded design can be produced more economically than multipart designs using a molded water conduit jet tip with an optical fiber or other light tube attached. Further, the coaxial construction allows the tip to be rotated relative to the handle and feature what is not practical in non-coaxial designs.


As shown in FIGS. 8A-8D, the jet tip 810 is composed in part of a radiant energy module 824 at a proximal end 826 of the jet tip 810 that shines light into a molded acrylic fiber light injector 830, which in turn focuses this light into the entrance of the molded light tube 822 of the jet tip 810. The light injector 830 is fixed within an opening in a proximal end of a manifold 842 while the light tube 822 is removably inserted within a distal end 828 of the manifold 842. The light injector 830 and the light tube 822 are separated within the manifold 842 by a gap that forms a disk shaped plenum 850 in fluid communication with both the water conduit 815 and a water channel 848 in a water inlet 844 formed as an integral part of or mounted on a sidewall of the manifold 842. The water inlet 844 may form a nipple 846 for attachment of a water line to introduce water from an oral irrigator reservoir into the manifold 842. A distal seal 852, e.g., an O-ring, is located within the manifold 842 to seal against the outer surface of the light tube 822 and prevent water leakage. Similarly, a proximal seal 854, e.g., another O-ring, is located within the manifold 842 to seal against the outer surface of the light injector 830 and prevent water leakage.


The light tube 822 may be further retained within the manifold 842 by a clasp 834 or other retention mechanism. As shown in FIGS. 8A, 8B, and 8C, a spring-tensioned clasp 834 may toggle about a hinge 836 mounted on the manifold 842. The clasp 834 may be formed as a claw 838 on the distal end of the clasp 834 to interface with a retention surface 840 formed on the outer wall of the light tube 822. The retention surface 840 may be formed as an annular bulge or shelf surrounding the outer wall of the light tube 822 in order to allow the jet tip 810 to be oriented in any direction when inserted into the manifold 842. While not shown in FIGS. 8A-8D, the retention surface 840 may be located along the light tube 822 such that it also interfaces with the distal end of the manifold 842 to indicate that the light tube 822 is fully inserted within the manifold 842 and thereby prevent over-insertion that would prevent formation of the plenum 850.


At the proximal end 826 of the light tube 822, radiant energy is transmitted from the light injector 830 to the light tube 822 and water is also introduced from the plenum 850 into the water conduit 815 formed in the light tube 822. When the plenum 850 is filled with water, the light injector 830 also transmits light into the water as it travels through the water conduit 815. The water in the water conduit 815 thus also provides an additional light conducting structure as well as the cleaning jet of water when emitted from the distal end 828 of the light tube 822. This cylindrical discharged jet stream is substantially laminar and further acts as light tube for the radiant energy. The edges of the laminar stream are bordered by air, which aids in the internal reflection of the light within the water stream, thereby providing tightly focused beam of UV light to the tooth surface. Additionally, the distal end 828 of the light tube 822 may be beveled, faceted, curved, or otherwise configured to focus the radiant energy exiting the light tube 822 to enter the water stream to further enhance the focused beam of light. The water jet further acts to lift the gum tissue away from the tooth surface allowing germicidal light to access the UV photosensitive black-pigmented anaerobic bacteria beneath the gum line.


In an alternate embodiment, a system of lenses may be used to focus light into the end of the light tube 822 rather the molded light injector 830. In other embodiments, the molded light injector 830 could be replaced by a straight glass or plastic rod with a polished end placed in close proximity the light emitting die of the radiant energy module 824. While functional, in some embodiments, such as those utilizing a LED as the radiant energy source, a disadvantage of this design is that the radiant energy module 824 must be obtained in a non standard configuration in order to allow the end of such a glass or plastic rod to be placed in the required close proximity. Further, there is a decrease in efficiency as the analysis below suggests.


The effectiveness of the oral irrigator device with integral radiant energy delivery system of FIGS. 8A-8D, utilizing a LED as the radiant energy module 824, is shown in the computer simulation report of FIGS. 9A-11B. These reports also demonstrate the focusing ability of the light carrying water stream. In the first configuration presented in FIGS. 9A and 9B, A 1×1 mm, 405 nm LED was used as the light source. The jet tip 810 was tapered and curved with 1 mm water gap in the plenum 850. Water was in the water conduit 815 of the jet tip 810, but was not flowing to extend to the tooth surface. The target/detector size was 30×30 mm and was placed 5 mm from distal end 828 of the jet-tip 810. A mask with a hole was placed near the end of the jet-tip 810, to eliminate scattered energy. Fresnel and absorption losses are considered. The LED power is “set” to 100 watts. The incoherent irradiance plot shown in FIG. 9A is in Watts/m2. In this experiment, 55.8 watts reaches the detector. The peak irradiance measured at the center of the target was 8.5×105 Watts/m2. The highest irradiance calculated for a single location was 1.1290×106 Watts/m2. The energy spot as shown in FIG. 9B is approximately 11.8 mm diameter, where >10% of the total energy output was imparted to the peak location.


The results of a second configuration are presented in FIGS. 10A and 10B. The radiant energy source 724 and the jet tip configuration are the same as the configuration corresponding to FIGS. 9A and 9B, but in this experiment, the water stream was flowing and extended to target/detector as it would be in actual use. In this experiment, 56.8 watts reached the detector. The peak irradiance measured at the center of the target was 2.5×106 Watts/m2, which is three (3) times that of the configuration represented in FIGS. 9A and 9B. The energy spot as shown in FIG. 10B is more focused at approximately 9.8 mm diameter, where >10% of the total energy output was imparted to the peak location. This experiment is demonstrative of the enhancement of the bactericidal effect if the water stream is also used to focus the radiant energy on the oral tissue.


The results of a third configuration are presented in FIGS. 11A and 11B. The light source 724 and the jet tip configuration are the same as the configuration corresponding to FIGS. 9A and 9B, except that the light injector optic was replaced by a simple cylinder formed of PMMA. Also, as in the first configuration, water was in the water conduit 815 of the jet tip 810, but was not flowing to extend to the tooth surface. In this experiment, 29 watts reached the detector. Also in this experiment, the energy at the detector was measured in illuminance rather than irradiance to provide an alternate method of quantizing the effectiveness. The peak illuminance measured at the center of the target was 2.6×105 lm/m2 of energy. The highest illuminance calculated for a single location was 3.48×105 lm/m2. The energy spot as shown in FIG. 11B is less focused at approximately 17 mm diameter, where >10% of the total energy output was imparted to the peak location.



FIGS. 12-19 depict another implementation of jet handle 908 for use with an oral irrigator system to provide a combination of a fluid stream and radiant energy to an oral cavity. As shown in FIGS. 12 and 13, a jet tip 910 extends from the distal end of the jet handle 908 and a fluid conduit 948 connects the jet handle 908 to a pump and fluid reservoir in the base unit (not shown). In addition, a control wire may also extend between the jet handle 908 and the base unit to allow the user to control the pump, the radiant energy source, or both, via one or more actuators 912 located on the jet handle 908. A retention cap 918 holds the jet tip 910 together with the jet handle 908 and allows for removal and replacement of the jet tip 910 as necessary.


The jet tip 910 is provided as a hollow conduit with a proximal end 926 that is received within the jet handle 908 and a distal end 928 that tapers slightly in diameter as compared to the proximal end 926. A light guide 922 extends coaxially within the lumen of the jet tip 910. The light guide receives the radiant energy from a light source (as further described below) and, as a result of an index of refraction of the material forming the light guide 922, the light energy is internally reflected within the light guide 922 such that it does not escape until it reaches the distal end 928. The light guide 922 is of a smaller outer diameter than the diameter of the lumen of the jet tip 910 and similarly tapers in diameter. The space between the outer surface of the light guide 922 and the inner diameter of the jet tip 910 forms a fluid channel 920. In operation, the fluid pumped by the oral irrigator exits the jet tip 910 through an outlet 914 on the distal end 914. At this location, the light energy exits the light guide 922 and is carried within the fluid stream exiting the jet tip 910. The fluid stream is laminar in form and similarly internally reflects the light exiting the light guide 922 to deliver the radiant energy to the same location as the fluid stream.



FIGS. 14 and 15 show the light guide 922 independently and in greater detail. A plurality of bumps 924 is formed on an outer surface of the light guide 922. The bumps 924 are provided frictionally fit the light guide 922 within the jet tip 910 and to maintain uniform spacing between the outer surface of the light guide 922 and the inner wall of the jet tip 910 to provide the fluid channel 920 within the jet tip 910. There is no set number of or location for the bumps 924 required. As shown in FIG. 14, the bumps may be spaced at various distances longitudinally as well as locations circumferentially. Also, as shown in FIG. 15, the outer surface 922′ of the light guide 922 is larger at the proximal end and tapers toward the distal end. This is evident in the differing radii of the bumps 924″ at the base of the light guide 922 as compared to the bumps 924′ further distally along the light guide 922. In the embodiment shown, locations for the bumps 924 were selected to ensure the water channel 920 remains open along the entire length of the jet tip 910. It is desirable to minimize the number of bumps 924 on the light guide to minimize the obstacles within the fluid channel 920 and to optimize the internal reflection of the light within the light guide 922.


A light source 916, e.g., an LED emitting light at a desired wavelength or over a desired bandwidth or a laser diode, is mounted within the jet handle 908 below the proximal end of the jet tip 910. A heat sink 956, e.g., an aluminum block, may be held in compression with the light source 916 by a spring bias 958 in order to cool the light source 916 when in operation. A collimator 930 is mounted between the light source 916 and the proximal end of the light guide 922. The collimator 930 is shown in greater detail in FIGS. 16-19. The proximal end of the collimator 930 functions as a collector having a concave surface 944 that transitions into a convex surface 946 to collect and focus the light from the light source 916. In exemplary embodiments, the radius of the sidewalls of the collimator 930 may be between 0.5-1.5 degrees. In the embodiment of FIGS. 16-19, the radius is approximately 0.68 degrees. The distal end of the collimator is formed as a lens with a flat base 942 and a distally extending conical sidewall 940 that may be between 20°-30° for best effect. In the embodiment of FIGS. 16-19, the angle of the conical sidewall 940 with respect to the base 942 is approximately 23.7 degrees. However, depending on the light source 916 used, e.g., a diode, LED or other light source, the collimator may be modified to accommodate the varying light intensities and/or lens structures.


A superstructure extends above the distal end of the collimator 930 forming a circumferential flange 932 and a plurality of tabs 934. In the embodiment shown, three tabs 934 are spaced equidistantly around the output lens of the collimator 930 to define a plenum 950 for receipt of fluid from the fluid conduit 948 and injection of the fluid into the water channel 920. A vertical boss 936 is formed on an inner wall of each of the tabs 934 for interfacing with the proximal end of the jet tip 910. A proximal seal 952, e.g. an O-ring, is positioned upon the distal side of the flange 932 to seal the plenum 950 area with respect to an internal housing structure. A lip 938 may extend between each of the tabs 934 adjacent the flange 932 to aid in maintaining the position of the proximal seal 952 when placed under pressure. The spring bias 958 also provides a sealing pressure on the collimator 930 to assist in sealing the plenum 950. A distal seal 954, e.g., and O-ring, is positioned on the distal ends of the tabs 934 to engage with an internal housing structure and an outer wall of the jet tip 910 to provide a sidewall seal for the distal end of the plenum 950.


In operation, the jet handle of the embodiment of FIGS. 12-19 flows fluid through the fluid conduit 948 into the plenum 950, and within the water channel 920 in the jet tip 910. When the light source 916 is activated, the light energy is collected by the collimator 930 for a focused output through the plenum and into the proximal end of the light guide 922. The light travels through the light guide 922 and exits the distal end where it is within the water stream exiting the outlet 914 of the jet tip 910. A combination of a pressurized water stream and effective radiant energy is thus delivered simultaneously and coaxially at a common location within the oral cavity.



FIGS. 21A and 21B depict another implementation of jet handle 1008 for use with an oral irrigator system to provide a combination of a fluid stream and radiant energy to an oral cavity. An oral irrigator 1000 is shown having a base housing 1002, which incorporates the pump powered by line voltage. A reservoir 1004 having a lid sits atop the base housing 1002 and serves to supply the water to the jet tip 1010. The reservoir 1004 is fluidically connected to the pump in order to pump water through a water line 1011 to the jet handle 1008. The jet tip 1010 is fluidically connected to the jet handle 1008 so that the pumped water flows through the jet tip 1010. For example, as can be seen in the cross-section view of FIG. 22A, the jet tip 1010 may include a fluid channel 1024 and an electrical channel 1022. These channels 1022, 1024 may be similar to the water conduit 610 and the energy conduit 622, respectively, as shown in FIG. 6A. The fluid channel 1024 provides a fluid lumen or pathway from the handle 1008 through the jet tip 1010, and the electrical channel 1022 provides a pathway for electrical wiring and/or other devices within the jet tip 1010.


The jet tip 1010 has a tip head 1014 that is positioned so as to cause the water stream to enter the oral cavity and flush bacteria therefrom. A top portion 1032 of the tip head 1014 may slope upwards to form a conical shape in a center area of the top portion 1032. In some embodiments as shown, the wall of the conical area may be slightly concave. An outlet aperture 1016 of the jet tip 1010 of the tip head 1014 may be formed within the center and apex of the conical area. In this embodiment, the outlet aperture 1016 may thus be slightly raised above other areas of the top portion 1032. The conical area of the top portion 1032 increases the total length of the outlet aperture 1016 as it extends through the conical portion into the inner cavity of the tip head 1014. However, it should be noted that the top portion 1032 may be formed in a variety of other shapes and the shape illustrated in FIGS. 21A-22A is merely one embodiment. The outlet aperture 1016 provides an exit for fluid and/or radiant energy from the jet tip 1010. In some embodiments the tip head 1014 of the jet tip 1010 may form the outer housing of a radiant energy source package. In these embodiments, the tip head 1014 along with the package housed within may be removable from the jet tip 1014.


The outlet aperture 1016 may have separate pathways for fluid and radiant energy, or the pathways may be combined, such that the fluid and the radiant energy are combined together to exit the jet tip 1010. For example, as shown in FIG. 22A, illustrating a cross-section view of the jet tip 1010, the tip head 1014 of the jet tip 1010 may house a laser diode 1018 (e.g., Violet Laser Diode No. NDHV4313D available from Nichia Corporation, Tokushima-Ken, Japan) as a radiant energy source positioned to direct radiant energy within a fluid inlet 1017 exiting the outlet aperture 1016. Thus, in some embodiments, the fluid travels from the reservoir 1004 to the outlet aperture 1016 in the jet tip 1010 to combine with the radiant energy produced from the laser diode 1018 housed within the jet tip 1010.


In some implementations the laser diode 1018 produces a light beam directed into the outlet aperture 1016. These implementations allow the fluid traveling from the reservoir 1004 via the fluid channel 1024 and through the fluid inlet 1017 to carry the radiant energy into a user's mouth. As the fluid impacts the gum line, it displaces the gums and other tissue, allowing the radiant energy to be directed to bacteria and other organisms within a user's mouth. And as discussed above with respect to other embodiments, radiant energy may kill numerous varieties and amounts of bacteria that may be present in a person's mouth.


The fluid channel 1024 provides a path for fluid to flow from the reservoir 1014 to the outlet aperture 1016. The electrical channel 1022 provides a path for electrical wires or other forms of electrical communication between the laser diode 1018 and a power source (e.g., line voltage, batteries). In other implementations, the electrical channel 1022 may house a fiber optic cable or other light transmission mechanism. The electrical channel 1022 and the fluid channel 1024 may be substantially parallel to each other and may be sealed off from each other. This helps prevent fluid from entering the electrical channel 1022 and potentially damaging the electrical communication elements disposed within the electrical channel 1022. In some implementations the fluid channel 1024 and the electrical channel 1022 may have substantially the same dimensions, however, in other implementations they may have different dimensions. For example, the electrical channel 1022 may only need to accommodate thin wires and thus may be smaller in diameter than the fluid channel 1024.


The fluid channel 1024 and the electrical channel 1022 may be separated by a median 1023 that acts as a boundary between the two channels 1022, 1024, sealing them off from each other. The median 1023 may terminate at the outer housing of the laser diode 1018. In this implementation, the housing or other portions of the laser diode 1018 may act to seal fluid from the fluid channel 1024 from entering the electrical channel 1022.


The electrical channel 1022 may terminate adjacent a base of the laser diode 1018. For example, as shown in FIGS. 22A and 22B, the laser diode 1018 may include connector pins 1050, prongs, inputs, receptacles, or the like for making an electrical connection to connect the laser diode 1018 to a power source 1058. As shown in the figures, the pins 1050 connect to lead wires 1052 that travel through the electrical channel 1022 in the jet tip 1010 to connect with a power source. The electrical connection between the jet tip 1010 and a power source in the handle 1008 or base housing 1002 may be direct as with a plug connection or indirect, e.g., via inductive coupling. For example, the handle 1008 may include a first inductive coil 1060 (i.e., coiled or wound conductive wiring) and the lead wires 1052 may terminate in the base of the jet tip 1010 at a second inductive coil 1062 with similar coiled or wound wires. The first inductive coil 1060 may receive electricity from a battery 1058, wired power source, or the like, to induce a voltage in the second coil 1062. The second coil 1062 then may be connected either directly or indirectly to the laser diode 1018. Additionally, one or both of the inductive coils 1060, 1062 may be wrapped around a ferromagnetic core 1064, 1066 (e.g., a pot core as available from Magnetics, Inc., Pittsburgh, Pa.) to assist in the inductive coupling between the two coils.


Implementations utilizing an inductive power coupling may be beneficial as corrosion or electrical shorts between the power source and the laser diode 1018 may be reduced. This is because the inductive power coupling does not require a physical connection between the first coil and the second coil. Thus the first coil in the jet tip 1010 may be completely sealed within the electrical channel 1022 and no water or other fluid can reach the wires. No electrical connections have to be physically detached in order for the jet tip 1010 to removed or replaced, thus substantially preventing fluid and/or air from contacting the electrical lead wires, connectors, or the laser diode 1018. Likewise, within the handle 1008, the lead wires and the power source 1058 (if within the handle 1008) may be isolated from the water flow to prevent corrosion and electrical shorting.


The electrical connection area of the laser diode 1018 may be covered by an end plug 1020 that seats within an opening defining a cavity within the tip head 1014. The end plug 1020 substantially covers and encases the electrical connections between the laser diode 1018 and the electrical connection, thus preventing the connection from being damaged by fluid, user movements, or the like. The end plug 1020 may also help secure the laser diode 1018 to the jet tip 1010. For example, the end plug 1020 may include a fastener or have a snap fit connection to secure the laser diode 1018 to the jet tip 1010. The end plug 1014 may further define an annular channel 1054 within an external wall of the end plug 1020 to receive an O-ring to provide a fluid-tight seal for the cavity in the tip head 1014, thus protecting the electrical connection with the radiant energy source.


In some implementations, the laser diode 10180r it may be integrated into the jet tip 1010 while in other implementations it may be a separate element that may attach to the end of the jet tip 1010. In still other implementations, the laser diode 1018 may be located within the handle 1008. In these implementations, the electrical channel 1022 may include a fiber optic cable or the like (see e.g., the energy conduit 610 illustrated in FIG. 6A) to transmit the radiant energy from the laser diode 1018 into the tip head 1014 of the jet tip 1010. These implementations may be used if the laser diode 1018 is a laser diode, for example, as the radiant energy emitted from a laser diode may be substantially collimated light rather than omnidirectional light that may scatter in many angles. Thus, most of the energy may be directed out of the outlet aperture 1016 of the jet tip 1010, rather than inwards or in other directions along the path between the laser diode 1018 and the tip head 1014 of the jet tip 1010.


It should be noted that the laser diode 1018 may be any element that can produce radiant energy, such as a LED, laser diode, or possibly an incandescent source. However, in embodiments utilizing a laser diode, a heat sink or other heat dissipating device may be omitted or substantially reduced in size as laser diodes may generate less heat than a LED or other radiant energy sources. Additionally, although a laser diode may not produce as much light as a LED, the light or beam emitted from a laser diode may be substantially collimated as it is produced in a substantially narrow beam or cone and thus actually direct up to 10 times more light energy into the water stream output from the jet tip 1010 as compared to other, scattering radiant energy sources. This may be beneficial as the narrower the beam, the more radiant energy may be directed into the fluid stream after exiting the laser diode 1018 (versus scattering or reflecting in various directions), and thus more energy may be directed into a user's mouth.


Also, in some embodiments, the laser diode 1018 may be placed near or within a fluid flow path from the jet tip 1010 and thus may utilize the fluid flow as a method of cooling and the heat sink may be omitted or reduced in size. Additionally, the laser diode 1018 may include a lens, collimator, or other energy directing/condensing elements. In these embodiments, the laser diode 1018 may be placed farther away from the outlet aperture 1016, as the light may be substantially focused to prevent scattering or reflection in various directions.


In the exemplary embodiment of FIG. 22A, a spherical lens 1038 is supported above the laser diode 1018 in a fluid pocket 1040 by a lens mount 1042. The lens mount 1042 may hold the spherical lens 1038 above a light emitting region 1048 of the laser diode 1018 and below the outlet aperture 1016. In some embodiments, the lens mount 1042 may include a skirt which surrounds an outer portion of the laser diode 1018, securing the spherical lens 1038 in place. The lens mount 1042 may be integrally formed with the spherical lens 1038 (e.g., as a molded polycarbonate, acrylic, thermoplastic, or thermoset structure) or the lens mount 1042 may be separate from the spherical lens 1038. Also, it should be noted that the lens mount 1042 may be omitted in favor of a molded structure as part of the tip head 1014 that holds the spherical lens 1038 in position.


Further, the lens mount 1042 may act as a heat sink for the laser diode 1018. The lens mount 1042 may be substantially surrounded by fluid and may assist in the dissipation of heat produced by the laser diode 1018 or other radiant energy source. For example, as the fluid travels around the spherical lens 1038 and the lens mount 1042 the heat produced by the laser diode 1018 may be transferred through the lens mount 1042 and the spherical lens 1038 and imparted to the fluid in the fluid pocket 1040 exiting the jet tip 1010. In these implementations, a heat sink or other heat-dissipating device may be omitted from the laser diode 1018, as the fluid may act to substantially reduce the heat produced from the spherical lens diode 1026. However, in other implementations, a heat sink or other device may be used either in combination with or instead of fluid-cooling the laser diode 1018, e.g., if the lens mount 1042 and the spherical lens 1038 are poor heat conductors.


Additionally, in some embodiments, the lens mount 1042 may act as a seal to substantially prevent fluid from the fluid channel 1024 and fluid pocket 1040 from coming in contact with the laser diode 1018 and/or the pins 1050. In the exemplary embodiment shown in FIG. 22A, the skirt portion of the lens mount 1042 extends downwards and intersects the median 1023. The lens mount 1042 may be fixed to the laser diode 1018, the median 1023, and inner surfaces of the tip head 1014 with an adhesive, e.g., a heat-resilient and waterproof adhesive. By using a waterproof adhesive to connect the lens mount 1042, fluid may travel from the fluid inlet 1017, around the lens mount 1042 in the fluid pocket 1040, and to the outlet aperture 1016 without leaking across the median 1023 or behind the laser diode 1018 to the electrical connections, thereby protecting against shorts and corrosion.


The spherical lens 1038 acts to focus the light from the light emitting region 1048 and direct it towards the outlet aperture 1016. While the lens is depicted as spherical in this embodiment, the lens may be formed in other shapes, e.g., cylindrical, conical, or concave or convex disks, depending upon the output of the radiant energy source and focal distances required by the tip configuration. In some embodiments, the spherical lens 1038 may sit substantially in the middle of the lens mount 1042. The spherical lens 1038 may be formed of a molded acrylic or other plastic, glass, or other similar refractive materials.


The fluid pocket 1040 is formed under the top portion 1032 of the tip head 1014 between the upper surface of the spherical lens 1038 and the outlet aperture 1016. The fluid area 1040 acts as a combination location, and fluid from the jet tip 1010 may be combined with the radiant energy from the laser diode 1018 further collimated by the spherical lens 1038 is entrained within the water flowing through the fluid pocket 1040 and exiting the outlet aperture 1016. The fluid pocket 1040 may also act to help cool the laser diode 1018 and/or the spherical lens 1038, as discussed above. The dimensions of the fluid pocket 1040, particularly the distance between the bottom surface of the top portion 1032 and the top surface of the spherical lens 1038, may be altered depending on the strength and/or light collimation desired. For example, the shorter the distance between the spherical lens 1038 and the outlet aperture 1016, the more collimated the radiant energy may be as it exits the outlet aperture 1016. This is because in some instances, fluid surrounded by plastic or other materials may not be as an effective light guide as fluid surrounded by air, and more light may be reflected at an angle that escapes the fluid stream exiting the outlet aperture 1016 the farther the light and fluid must travel.



FIG. 23 illustrates a second embodiment of the radiant energy source and FIG. 24 illustrates a cross-section view of the radiant energy source illustrated in FIG. 23. In this embodiment, the radiant energy source may be a removable laser diode package 2026. In this embodiment, an outer housing 2024 includes a main body 2028 and a top portion 2032. The main body 2028 and the top portion 2032 may be inserted into a cavity within the jet tip to form the terminal end or head of the jet tip. Thus, the diode package 2026 may be removable from the jet tip. However, in other embodiments, the diode package 2026 may be integrated within the jet tip. Additionally, in this embodiment, the end plug of the tip head may be integral with the jet tip to form a bottom part of a cavity into which the diode package 2026 is inserted. The end plug portion may house electrical receptacles for receiving the pins 2030 of the diode package 2026.


The housing 2024 may be cylindrically shaped and house or encase the components of the removable laser diode package 2026. The cylindrical outer wall of the main body 2028 defines a water channel aperture 2036 near the upper portion of the main body 2028 before transitioning to the top portion 2032. The water channel aperture 2036 fluidly connects the diode package 2026 and the water channel in the jet tip, allowing water from the reservoir to be transmitted to the outlet aperture 2016. The size and/or diameter of the water channel aperture 2036 may be varied depending on the desired fluid flow volume/pressure out of the jet tip. For example, the larger the diameter of the water channel aperture 2036, the more fluid may flow from the jet tip to the outlet aperture 2016.


The top portion 2032 extends from a top edge of the main body 2028 and covers the main body 2028. As can be seen from FIG. 23, the top portion 2032 includes the outlet aperture 2016 at its center apex. As discussed above, the outlet aperture 2016 provides an exit for fluid and radiant energy. In some embodiments, the top portion 2032 and the main body 2028 may be integrated with the jet tip, and in other embodiments they may be a separate housing for the diode package 2026 that is removable from the jet tip 2010.


A semiconductor laser diode 2034 extends from a bottom end of the main body 2028. The laser diode 2034 is electrically connected to the power source. Several connection pins 2030 extend from the base of the laser diode 2034 to connect the diode 2034 to the power wires or other electrical connection. There may be two, three, or more pins 2030, depending on the diode used. For example, in some embodiments, in addition to electrical connections, one of the pins 2030 may be used to provide a feedback signal from the diode package 2026 to a computer or processor. In some implementations, feedback may not be desired and thus additional pins 2030 beyond electrical contacts, may be omitted. Further, the pins 2030 may be inserted into a receiving receptacle, outlet or the like. For example, the tip head of the jet tip may have connection receptacles into which the pins of the diode package 2026 may be plugged. Such an embodiment allows the pins 2030 of a diode package 2026 to be quickly connected and disconnected to the jet tip 2026.


In the embodiment shown in FIGS. 23 and 24, a barrel-shaped lens 2038 is located in front of a light emitting region 2048 of the laser diode 2034. The barrel lens 2038 may further collimate the light as it is emitted from the laser diode 2034 and focus the emitted light into a more coherent beam. The barrel lens 2038 may be mounted above the laser diode 2034 and slightly below the inner surface of the top portion 2032 of the outer housing 2024, under the outlet aperture 2016. In these implementations, the barrel lens 2038 may focus light into a water stream in the outlet aperture 2016 and minimize light reflection off the top portion 2032 outside or around the outlet aperture 2016.


In some embodiments, the barrel lens 2038 may be generally cylindrical with curved end walls, and positioned such that the longer sides of the barrel lens 2038 are substantially parallel to the main body 2028. Other implementations of collimating lenses may also be used. The barrel lens 2038 may be glass or another material (e.g., acrylic, polycarbonate, crystal) with appropriate refractive qualities. The barrel lens 2038 may be spaced farther away from the outlet aperture 2016 than other lenses or embodiments of the radiant energy source 2018 because of the collimating effects. However, in other implementations, the barrel lens 2038 may be spaced in varying distances from the outlet aperture 2016. Additionally, in some embodiments, the barrel lens 2038 may be omitted, or may be replaced with another shaped lens as discussed previously above.


The barrel lens 2038 may be secured in place above the laser diode 2034 and below the outlet aperture 2016 via a sealing plug 2046. The sealing plug 2046 seals the laser diode 2034 and the pins 2030 from contact with the fluid. The sealing plug 2046 may be formed as a generally cylindrical body defining a central axial lumen 2050. In this exemplary embodiment, a bottom end of the axial lumen 2050 may be sized to accept the outer diameter of the laser diode 2034. However, a diameter of a top end of the axial lumen 2050 may be larger to create an annular space 2054 around the barrel lens 2038. The axial lumen 2050 of the sealing plug 2046 may further have an intermediate stepped area that receives and holds the barrel lens 2038 in axial alignment with the light emitting region 2048 of the laser diode 2034.


An inlet aperture 2056 may also be formed within a sidewall of the sealing plug 2046 in the top end forming the annular space 2054 that aligns with the water channel 2036 in the main wall 2028 of the housing 2024, which further aligns with and seals against the median and the water channel in the jet tip (not shown) This allows fluid flow from the fluid channel in the jet tip to enter the annular space 2054 and fill the fluid pocket 2040 between the sealing plug 2036 and the inner wall of the top portion 2032 of the housing 2024 before exiting through the outlet aperture 2016. As the fluid exits the outlet aperture 2016, the radiant energy from the laser diode 2034 is directed by the barrel lens 2038 where it is entrained within the exiting fluid stream by refraction of the light at the interface of the water stream and the air once the water stream leaves the outlet aperture 2016. In these embodiments, the fluid transports and/or directs the radiant energy into the user's mouth for application at the location of the fluid jet spray.


In this exemplary embodiment, the sealing plug 2046 further defines an annular recess 2052 in the outer wall of the sealing plug 2046 adjacent the bottom portion of the axial lumen. An O-ring 2044 or other sealing mechanism may be placed within the annular recess 2052 to seal the sealing plug 2046 against the inner wall of the housing 2024 and preventing fluid from reaching the electrical connection between the pins 2030 and the receptacles within the head of the jet tip.


In some embodiments, the sealing plug 2046 may also act as a heat sink, removing heat from the laser diode 2034. The material used for the sealing plug 2046 (e.g., aluminum or another metal) may be chosen to conduct heat away from the laser diode 2034 and transfer the heat to the fluid in the fluid pocket 2040 that surrounds portions of the sealing plug whereby the heat may be dissipated.



FIGS. 25 and 26 illustrate a third embodiment of a radiant energy source in the form of a laser diode package 3026. In this embodiment, a laser diode 3034 is mounted within a housing 3024 may be used, and a lens or the like may be omitted. As shown in FIGS. 27 and 28, the housing has a main body 3028 and a top portion 3032 in substantially the same conical form as the embodiment of FIG. 22A. However, in this embodiment, the laser diode package 3026 is not an integrally formed structure within the tip head of the jet tip, but is instead a removable and replaceable unit that can be pressed or snapped within a cavity formed in the tip head. A fluid connecting aperture 3036 is formed within the main body 3028 of the housing 3024 and is aligned to fluidly connect with the water channel in the jet tip. The laser diode 3034 of this exemplary embodiment has two pins 3030 that extend from the bottom of the laser diode 3034 to connect with receptacles in the cavity in the head of the jet tip.


In this exemplary embodiment, the laser diode 3034 is used without a lens. A typical laser diode 3034 produces a substantially collimated, narrow beam of radiant energy from a small light emitting region 3048, and thus the lens and other collimating devices may be omitted. As the light exits the light emitting region 3048 it passes through the fluid pocket 3040 is entrained with fluid exiting the outlet aperture 3016. The fluid surrounded by the air after exiting the outlet aperture 3016 then acts as a light/radiant energy guide, transporting the radiant energy into a user's mouth. In this exemplary embodiment, the fluid in the fluid pocket 3040 is in direct and substantial contact with the laser diode 3034 and may provide sufficient cooling of the laser diode 3034 that a heat sink may be omitted.


As a collimator or lens is omitted in this embodiment, the distance between the outlet aperture 3016 and the light emitting region 3048 may be reduced to ensure a maximum amount of light energy reaches the user's oral tissue. The length of the exit aperture 3016 may also be chosen to maximize the light energy entrained within the exiting fluid flow. As shown in FIG. 26, it may be desirable that the combined distance of the length of the exit aperture and the space between the inner wall of the top portion 3032 and the light emitting region 3048 is shorter than the distance at which the radial dispersion of the light beam is greater than the diameter of the outlet aperture 3016. This is because the wall of the outlet aperture 3016 is often more reflective than the fluid/air interface and creates angles of reflection that are greater than the fluid/air interface can refract and thus more light energy may escape the stream of water. In some instances, if water is used as the fluid within the jet tip 3010, water surrounded by plastic may not be as good of a guide for the radiant energy as water surrounded by air. The angled arrows shown in the outlet aperture 3016 in FIG. 26 indicate the light emitted from the laser diode 3034 has traveled through the outlet aperture 3016 without hitting the sidewalls and will thus be internally refracted within the fluid stream for delivery to the user's oral tissue.


Additionally, the laser diode 3034 may be substantially sealed in the diode package 3026 so as to prevent fluid from coming into contact with the connection pins 3030 extending from the bottom of the laser diode 3034. In the embodiment shown in FIG. 26, the main portion 3028 of the housing 3024 defines a stepped cavity 3052. The laser diode 3034 is similarly stepped such that a narrower diameter portion extends upward into the fluid pocket 3040 while a larger diameter lower portion is substantially the same as the inner diameter of the lower portion of the main portion 3028 of the housing. An O-ring 3050 or other sealing mechanism may be placed in the stepped cavity between the step of the laser diode 3034 and the step of the main portion 3028 of the housing to create a seal that prevents fluids within the fluid pocket 3040 from compromising the electrical connection between the pins 3030 and the corresponding receptacles in the head of the jet tip.


It should be noted that various features illustrated with respect to the various laser diode embodiments may be implemented in other embodiments. For example, the different types of lenses (including with respect to shapes and materials) may be used with multiple housing configurations, regardless of whether the housing is part of a removable package or is integrally formed as part of the head of the jet tip. Further, laser diodes may be used as the radiant energy source within any of the other embodiments illustrated throughout the disclosure, e.g., within the embodiments illustrated in FIGS. 4A-4B.


All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. The exemplary drawings are for purposes of illustration only and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary.


The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. In particular, it should be understood that the described technology may be employed independent of a personal computer. Other embodiments are therefore contemplated. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.

Claims
  • 1. An oral irrigator comprising: a fluid reservoir;a pump in fluid communication with the fluid reservoir;a handle in fluid communication with the pump;a jet tip in fluid communication with the handle, wherein the jet tip includes a fluid conduit therein and the fluid conduit has a proximal end adjacent to the handle and an opposite distal end terminating at a nozzle aperture configured to expel a stream of fluid onto a surface inside an oral cavity;a radiant energy source disposed within the distal end of the fluid conduit and upstream of the nozzle aperture; anda fluid pocket defined within the fluid conduit at least partially between the radiant energy source and the nozzle aperture, wherein the radiant energy source is in fluid communication with the fluid pocket.
  • 2. The oral irrigator of claim 1, wherein the radiant energy source further comprises a laser diode configured to emit radiant energy from an emitting region.
  • 3. The oral irrigator of claim 1, wherein the radiant energy source generates radiant energy between 350-450 nm.
  • 4. The oral irrigator of claim 1, wherein the radiant energy source generates radiant energy between 375-415 nm.
  • 5. The oral irrigator of claim 1, wherein the radiant energy source generates radiant energy between 405-415 nm.
  • 6. The oral irrigator of claim 1, wherein the nozzle aperture defines a diameter smaller than a diameter of the fluid conduit.
  • 7. The oral irrigator of claim 1, wherein: the nozzle aperture is defined by a sidewall; andthe radiant energy source is used without a lens and is positioned within the distal end of the fluid conduit and upstream of the nozzle aperture such that radiant energy emitted from the radiant energy source travels through the nozzle aperture without hitting the sidewall.
  • 8. An oral irrigator comprising: a pump mechanism;a reservoir in fluid communication with the pump mechanism;a jet tip in fluid communication with the pump mechanism and including a fluid conduit with a distal end terminating at a narrowing nozzle aperture, wherein the jet tip is configured to direct fluid pumped from the reservoir by the pump mechanism through the nozzle aperture as a fluid stream at a surface inside an oral cavity;a laser diode housed within the distal end of the fluid conduit upstream of the nozzle aperture and configured to generate a coherent stream of radiant energy at a surface inside the oral cavity; anda fluid pocket defined within the fluid conduit at least partially between the laser diode and the nozzle aperture, wherein the laser diode is in fluid communication with the fluid pocket.
  • 9. The oral irrigator of claim 8, wherein the laser diode and jet tip are of unitary construction to direct both the fluid and the radiant energy in generally the same direction.
  • 10. The oral irrigator of claim 8, wherein the laser diode is mounted within a removable package for operable coupling with the jet tip.
  • 11. The oral irrigator of claim 8, wherein the reservoir, the pump mechanism, the jet tip, and the laser diode are integrated as a generally unitary combination.
  • 12. The oral irrigator of claim 8, wherein the jet tip further comprises a fluid channel having a terminal end for directing a stream of the fluid therefrom; andthe laser diode is positioned adjacent the terminal end of the fluid channel to direct the radiant energy in generally the same direction as the fluid stream.
  • 13. The oral irrigator of claim 8, wherein the laser diode is configured to direct radiant energy into the fluid stream exiting an outlet of the jet tip.
  • 14. The oral irrigator of claim 13, wherein the radiant energy is substantially internally reflected within the fluid stream.
  • 15. The oral irrigator of claim 8, wherein the laser diode generates radiant energy between 350-450 nm.
  • 16. The oral irrigator of claim 8, wherein the laser diode generates radiant energy between 375-415 nm.
  • 17. The oral irrigator of claim 8, wherein the laser diode generates radiant energy between 405-415 nm.
  • 18. The oral irrigator of claim 8, wherein the fluid stream is substantially laminar.
  • 19. An oral irrigator comprising: a fluid reservoir;a pump in fluid communication with the fluid reservoir;a jet tip including a nozzle aperture, wherein the jet tip is configured to direct fluid pumped from the fluid reservoir by the pump onto a surface inside an oral cavity through the nozzle aperture;a fluid conduit providing a fluid pathway from the pump through the nozzle aperture of the jet tip, wherein the fluid conduit is defined by an interior surface of the jet tip;a fluid pocket defined within the fluid conduit adjacent to the nozzle aperture; anda radiant energy source disposed at least partially within the fluid pocket upstream of the nozzle aperture.
  • 20. The oral irrigator of claim 19, wherein the nozzle aperture is defined at a terminal end of the jet tip; andthe radiant energy source is disposed between the pump and the nozzle aperture of the jet tip.
  • 21. The oral irrigator of claim 19, wherein at least two adjacent sides of the radiant energy source are in fluid communication with the fluid pocket.
  • 22. The oral irrigator of claim 19 further comprising a handle, wherein the jet tip is fluidically connected to the handle.
  • 23. The oral irrigator of claim 22, wherein the jet tip is removably coupled to the handle.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority pursuant to 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/385,554, filed 22 Sep. 2010 and titled “Oral Irrigator Appliance with Radiant Energy Delivery for Bactericidal Effect,” the disclosure of which is hereby incorporated herein by reference in its entirety. This application is also a continuation-in-part patent application of U.S. patent application Ser. No. 12/729,076, filed 22 Mar. 2010 and titled “Oral Irrigator Appliance with Radiant Energy Delivery for Bactericidal Effect,” which claims the benefit of priority pursuant to 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/162,126, filed 20 Mar. 2009 and titled “Oral Irrigator Appliance with Radiant Energy Delivery for Bactericidal Effect,” the disclosures of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (682)
Number Name Date Kind
555588 Spencer Mar 1896 A
1278225 Schamberg Sep 1918 A
1452258 Smith Apr 1923 A
1464419 Gill Aug 1923 A
1480310 Smith Jan 1924 A
1498267 Hachman Jun 1924 A
1602742 Bennet Oct 1926 A
1650686 Binks Nov 1927 A
1669889 Andrews et al. May 1928 A
1681320 Bergl et al. Aug 1928 A
1933454 Sidney Oct 1933 A
1940111 Austin Dec 1933 A
D93019 Hose Aug 1934 S
1977782 Roy Oct 1934 A
2107686 Bramsen et al. Feb 1938 A
2421498 Guedel Jun 1947 A
D159872 Skold Aug 1950 S
2531730 Henderson Nov 1950 A
2595666 Hutson May 1952 A
2669233 Friend Feb 1954 A
2794437 Tash Jun 1954 A
2709227 Foley et al. May 1955 A
2733713 Kabnick Feb 1956 A
2783919 Ansell Mar 1957 A
2870932 Davis Jan 1959 A
2984452 Hooper May 1961 A
3089490 Goldberg May 1963 A
3096913 Jousson Jul 1963 A
3144867 Trupp et al. Aug 1964 A
D202041 Burzlaff Aug 1965 S
3209956 McKenzie Oct 1965 A
3216619 Richards et al. Nov 1965 A
3225759 Drapen et al. Dec 1965 A
3227158 Mattingly Jan 1966 A
3266623 Poferl Aug 1966 A
3297558 Hillquist Jan 1967 A
D208778 Koch Oct 1967 S
D209202 Fulton et al. Nov 1967 S
D209203 Mattingly et al. Nov 1967 S
D209204 St. Clair et al. Nov 1967 S
D209395 Gilbert Nov 1967 S
D210018 Mattingly et al. Jan 1968 S
D210019 Johnson et al. Jan 1968 S
3370214 Aymar Feb 1968 A
3391696 Woodward Jul 1968 A
3393673 Mattingly et al. Jul 1968 A
3400999 Goldstein Sep 1968 A
3418552 Holmes Dec 1968 A
3420228 Kalbfeld Jan 1969 A
3425410 Cammack Feb 1969 A
3453969 Mattingly Jul 1969 A
3465751 Powers Sep 1969 A
3467286 Ostrowsky Sep 1969 A
D215920 McCarty et al. Nov 1969 S
3487828 Troy Jan 1970 A
3489268 Meierhoefer Jan 1970 A
3495587 Freedman Feb 1970 A
3496933 Lloyd Feb 1970 A
3499440 Gibbs Mar 1970 A
3500824 Gilbert Mar 1970 A
3501203 Falk Mar 1970 A
3502072 Stillman Mar 1970 A
3517669 Buono et al. Jun 1970 A
D218270 Soper Aug 1970 S
3522801 Robinson Aug 1970 A
3532221 Kaluhiokalani et al. Oct 1970 A
3536065 Moret Oct 1970 A
3537444 Garn Nov 1970 A
3538950 Porteners Nov 1970 A
3547110 Balamuth Dec 1970 A
3561433 Kovach Feb 1971 A
D220334 Mackay et al. Mar 1971 S
3570525 Borsum Mar 1971 A
3572375 Rosenberg Mar 1971 A
3578884 Jacobson May 1971 A
D220996 Irons Jun 1971 S
3583609 Oppenheimer Jun 1971 A
3590813 Roszyk Jul 1971 A
3608548 Lewis Sep 1971 A
3612045 Dudas Oct 1971 A
D222862 Cook Jan 1972 S
3636947 Balamuth Jan 1972 A
3651576 Massa Mar 1972 A
3669101 Kleiner Jun 1972 A
3703170 Ryckman, Jr. Nov 1972 A
3718974 Buchtel et al. Mar 1973 A
3747595 Grossan Jul 1973 A
3768472 Hodosh et al. Oct 1973 A
3771186 Moret et al. Nov 1973 A
3783364 Gallanis et al. Jan 1974 A
3809506 Malcosky May 1974 A
3809977 Balamuth et al. May 1974 A
3811432 Moret May 1974 A
3820532 Eberhardt et al. Jun 1974 A
3827147 Condon Aug 1974 A
3837166 Hiraoka Sep 1974 A
3840795 Roszyk et al. Oct 1974 A
3847145 Grossan Nov 1974 A
3854209 Franklin et al. Dec 1974 A
3863628 Vit Feb 1975 A
3871560 Crippa Mar 1975 A
3874506 Hill et al. Apr 1975 A
3911796 Hull et al. Oct 1975 A
3912125 Acklin Oct 1975 A
3943628 Kronman et al. Mar 1976 A
3959883 Walls et al. Jun 1976 A
3973558 Stouffer et al. Aug 1976 A
3977084 Sloan Aug 1976 A
4001526 Olson Jan 1977 A
4004302 Hori Jan 1977 A
4007739 Bron et al. Feb 1977 A
4013227 Herrera Mar 1977 A
4022114 Hansen, III May 1977 A
4052002 Stouffer et al. Oct 1977 A
D246667 Mackay et al. Dec 1977 S
D246668 Mackay et al. Dec 1977 S
4060870 Cannarella Dec 1977 A
4075761 Behne et al. Feb 1978 A
4078558 Woog et al. Mar 1978 A
4089079 Nicholson May 1978 A
4094311 Hudson Jun 1978 A
4108167 Hickman et al. Aug 1978 A
4108178 Betush Aug 1978 A
4109650 Peclard Aug 1978 A
4122845 Stouffer et al. Oct 1978 A
4133971 Boyd et al. Jan 1979 A
4135501 Leunissan Jan 1979 A
4141352 Ebner et al. Feb 1979 A
4144646 Takemoto et al. Mar 1979 A
4149315 Page, Jr. et al. Apr 1979 A
4154375 Bippus May 1979 A
4160383 Rauschenberger Jul 1979 A
4171572 Nash Oct 1979 A
4182038 Fleer Jan 1980 A
4200235 Monschke Apr 1980 A
4201200 Hubner May 1980 A
4210380 Brzostek Jul 1980 A
4215476 Armstrong Aug 1980 A
4219618 Leonard Aug 1980 A
4227878 Lohn Oct 1980 A
4229634 Hickman et al. Oct 1980 A
4236889 Wright Dec 1980 A
D258097 Wistrand Feb 1981 S
4248589 Lewis Feb 1981 A
4249899 Davis Feb 1981 A
4257458 Kondo et al. Mar 1981 A
4262799 Perrett Apr 1981 A
4266934 Pernot May 1981 A
4276023 Phillips et al. Jun 1981 A
4276880 Malmin Jul 1981 A
4302186 Cammack et al. Nov 1981 A
4303064 Buffa Dec 1981 A
4303070 Ichikawa et al. Dec 1981 A
4306862 Knox Dec 1981 A
4315741 Reichl Feb 1982 A
4319568 Tregoning Apr 1982 A
4331422 Heyman May 1982 A
4337040 Cammack et al. Jun 1982 A
4340365 Pisanu Jul 1982 A
4340368 Lococo Jul 1982 A
D266117 Oberheim Sep 1982 S
4353694 Pelerin Oct 1982 A
4363626 Schmidt et al. Dec 1982 A
4365376 Oda et al. Dec 1982 A
4370131 Banko Jan 1983 A
4374354 Petrovic et al. Feb 1983 A
4382167 Maruyama et al. May 1983 A
4382786 Lohn May 1983 A
D270000 Ketler Aug 1983 S
4396011 Mack et al. Aug 1983 A
4412823 Sakai et al. Nov 1983 A
4416628 Cammack Nov 1983 A
4442830 Markau Apr 1984 A
4442831 Trenary Apr 1984 A
4452238 Kerr Jun 1984 A
4454866 Fayen Jun 1984 A
4512769 Kozam et al. Apr 1985 A
4517962 Heckele May 1985 A
4531912 Schuss et al. Jul 1985 A
4531913 Taguchi Jul 1985 A
4534340 Kerr et al. Aug 1985 A
4552130 Kinoshita Nov 1985 A
4561214 Inoue Dec 1985 A
D283374 Cheuk-Yiu Apr 1986 S
4585415 Hommann Apr 1986 A
4591777 McCarty et al. May 1986 A
4592728 Davis Jun 1986 A
4602906 Grunenfelder Jul 1986 A
4607627 Leber et al. Aug 1986 A
4613074 Schulze Sep 1986 A
4619009 Rosenstatter Oct 1986 A
4619612 Weber et al. Oct 1986 A
4629425 Detsch Dec 1986 A
4636198 Stade Jan 1987 A
4642037 Fritchman Feb 1987 A
4644937 Hommann Feb 1987 A
4645488 Matukas Feb 1987 A
4647831 O'Malley et al. Mar 1987 A
4648838 Schlachter Mar 1987 A
4650475 Smith et al. Mar 1987 A
4655198 Hommann Apr 1987 A
4669453 Atkinson et al. Jun 1987 A
4672953 DiVito Jun 1987 A
4673396 Urbaniak Jun 1987 A
D291354 Camens Aug 1987 S
4716352 Hurn et al. Dec 1987 A
4749340 Ikeda et al. Jun 1988 A
4770632 Ryder et al. Sep 1988 A
D298565 Kohler, Jr. et al. Nov 1988 S
4783321 Spence Nov 1988 A
4787845 Valentine Nov 1988 A
4787847 Martin et al. Nov 1988 A
4798292 Hauze Jan 1989 A
4803974 Powell Feb 1989 A
4804364 Dieras et al. Feb 1989 A
4810148 Aisa et al. Mar 1989 A
4818229 Vasile Apr 1989 A
4820152 Warrin et al. Apr 1989 A
4821923 Skorka Apr 1989 A
4824368 Hickman Apr 1989 A
4826431 Fujimura May 1989 A
4827551 Maser et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4854869 Lawhorn Aug 1989 A
4861340 Smith et al. Aug 1989 A
4862876 Lih-Sheng Sep 1989 A
4864918 Martin Sep 1989 A
4869720 Chernack Sep 1989 A
4880382 Moret et al. Nov 1989 A
4886452 Lohn Dec 1989 A
4900252 Liefke et al. Feb 1990 A
4902225 Lohn Feb 1990 A
4903687 Lih-Sheng Feb 1990 A
4906187 Amadera Mar 1990 A
4907744 Jousson Mar 1990 A
4915304 Campani Apr 1990 A
4925450 Imonti et al. May 1990 A
4928675 Thornton May 1990 A
4930660 Porteous Jun 1990 A
4941459 Mathur Jul 1990 A
4950159 Hansen Aug 1990 A
4958629 Peace et al. Sep 1990 A
4958751 Curtis et al. Sep 1990 A
4959199 Brewer Sep 1990 A
4961698 Vlock Oct 1990 A
4966551 Betush Oct 1990 A
4969874 Michel et al. Nov 1990 A
4973246 Black Nov 1990 A
4973247 Varnes et al. Nov 1990 A
4973250 Milman Nov 1990 A
4975054 Esrock Dec 1990 A
4979503 Chernack Dec 1990 A
4979504 Mills Dec 1990 A
4989590 Baum et al. Feb 1991 A
4998880 Nerli Mar 1991 A
5013241 Von Gutfeld et al. May 1991 A
5014884 Wunsch May 1991 A
5019054 Clement et al. May 1991 A
5027798 Primiano Jul 1991 A
5029576 Evans, Sr. Jul 1991 A
5033617 Hartwein et al. Jul 1991 A
5033961 Kankler et al. Jul 1991 A
D318918 Hartwein Aug 1991 S
5046486 Grulke et al. Sep 1991 A
5049071 Davis et al. Sep 1991 A
5060825 Palmer et al. Oct 1991 A
5061180 Wiele Oct 1991 A
5062795 Woog Nov 1991 A
5064168 Raines et al. Nov 1991 A
D322314 Ohbayashi Dec 1991 S
5071346 Domaas Dec 1991 A
5082115 Hutcheson Jan 1992 A
5082443 Lohn Jan 1992 A
5085317 Jensen et al. Feb 1992 A
5086756 Powell Feb 1992 A
5095893 Rawden, Jr. Mar 1992 A
5098291 Curtis et al. Mar 1992 A
5098676 Brooks, Jr. Mar 1992 A
5100319 Baum Mar 1992 A
5117871 Gardner et al. Jun 1992 A
5125835 Young Jun 1992 A
5127831 Bab Jul 1992 A
5142723 Lustig et al. Sep 1992 A
5150841 Silvenis et al. Sep 1992 A
5172810 Brewer Dec 1992 A
5173273 Brewer Dec 1992 A
5183035 Weir Feb 1993 A
5197458 Ito et al. Mar 1993 A
5197460 Ito et al. Mar 1993 A
5199871 Young Apr 1993 A
5203697 Malmin Apr 1993 A
5203769 Clement et al. Apr 1993 A
5204004 Johnston et al. Apr 1993 A
5208933 Lustig et al. May 1993 A
5215193 Dennis Jun 1993 A
5218956 Handler et al. Jun 1993 A
5220914 Thompson Jun 1993 A
5228646 Raines Jul 1993 A
5230624 Wolf et al. Jul 1993 A
5232687 Geimer Aug 1993 A
5235968 Woog Aug 1993 A
5241714 Barry Sep 1993 A
5246367 Ito et al. Sep 1993 A
5252064 Baum et al. Oct 1993 A
D341200 Yoshimoto Nov 1993 S
5257933 Jousson Nov 1993 A
5261448 Furuya et al. Nov 1993 A
D341943 Si-Hoe Dec 1993 S
5267586 Jankavaara Dec 1993 A
5269684 Fischer Dec 1993 A
5281137 Jousson Jan 1994 A
5281139 Frank et al. Jan 1994 A
5282745 Wiltrout et al. Feb 1994 A
5286192 Dixon Feb 1994 A
5286201 Yu Feb 1994 A
5295832 Evans Mar 1994 A
5297962 O'Connor et al. Mar 1994 A
D346212 Hosl Apr 1994 S
5301381 Klupt Apr 1994 A
5302123 Bechard Apr 1994 A
5317691 Traeger May 1994 A
5321865 Kaeser Jun 1994 A
5323770 Ito et al. Jun 1994 A
5331704 Rosen et al. Jul 1994 A
5344317 Pacher et al. Sep 1994 A
5346677 Risk Sep 1994 A
5349896 Delaney Sep 1994 A
D351892 Wolf et al. Oct 1994 S
5360338 Waggoner Nov 1994 A
5368548 Jousson Nov 1994 A
5370534 Wolf et al. Dec 1994 A
D354168 Hartwein Jan 1995 S
D354559 Knute Jan 1995 S
5378149 Stropko Jan 1995 A
5380201 Kawata Jan 1995 A
D356864 Woog Mar 1995 S
5399089 Eichman et al. Mar 1995 A
D358883 Vos May 1995 S
5456672 Diederich et al. Oct 1995 A
5465445 Yeh Nov 1995 A
5467495 Boland et al. Nov 1995 A
5468148 Ricks Nov 1995 A
5470305 Arnett et al. Nov 1995 A
5474450 Chronister Dec 1995 A
5474451 Dalrymple et al. Dec 1995 A
5476379 Disel Dec 1995 A
5484281 Renow et al. Jan 1996 A
5487877 Choi Jan 1996 A
5490779 Malmin Feb 1996 A
5505916 Berry, Jr. Apr 1996 A
D369656 Vos May 1996 S
D370125 Craft et al. May 1996 S
5525058 Gallant et al. Jun 1996 A
5526841 Detsch et al. Jun 1996 A
5540587 Malmin Jul 1996 A
5547374 Coleman Aug 1996 A
D373631 Maeda et al. Sep 1996 S
5554014 Becker Sep 1996 A
5554025 Kinsel Sep 1996 A
5556001 Weissman et al. Sep 1996 A
5564629 Weissman et al. Oct 1996 A
D376893 Gornet Dec 1996 S
D377091 Scott, Sr. Dec 1996 S
5613259 Craft et al. Mar 1997 A
5616028 Hafele et al. Apr 1997 A
5626472 Pennetta May 1997 A
5634791 Matsuura et al. Jun 1997 A
5636987 Serfaty Jun 1997 A
5640735 Manning Jun 1997 A
D382407 Craft et al. Aug 1997 S
5653591 Loge Aug 1997 A
5659995 Huffman Aug 1997 A
5667483 Santos Sep 1997 A
D386576 Wang et al. Nov 1997 S
5683192 Kilfoil Nov 1997 A
5685829 Allen Nov 1997 A
5685851 Murphy et al. Nov 1997 A
5697784 Hafele et al. Dec 1997 A
D388612 Stutzer et al. Jan 1998 S
D388613 Stutzer et al. Jan 1998 S
D389091 Dickinson Jan 1998 S
5709545 Johnston et al. Jan 1998 A
D390934 McKeone Feb 1998 S
5716007 Nottingham et al. Feb 1998 A
5718668 Arnett et al. Feb 1998 A
5746595 Ford May 1998 A
5749726 Kinsel May 1998 A
5759502 Spencer et al. Jun 1998 A
5779471 Tseng et al. Jul 1998 A
5779654 Foley et al. Jul 1998 A
5795153 Rechmann Aug 1998 A
5796325 Lundell et al. Aug 1998 A
5833065 Burgess Nov 1998 A
5836030 Hazeu et al. Nov 1998 A
D402744 Zuege Dec 1998 S
5851079 Horstman et al. Dec 1998 A
D403511 Serbinski Jan 1999 S
D406334 Rosenthal et al. Mar 1999 S
5876201 Wilson et al. Mar 1999 A
D408511 Allen et al. Apr 1999 S
5901397 Häfele et al. May 1999 A
5934902 Abahusayn Aug 1999 A
D413975 Maeda Sep 1999 S
D416999 Miyamoto Nov 1999 S
D417082 Classen et al. Nov 1999 S
5993402 Sauer et al. Nov 1999 A
6030215 Ellion et al. Feb 2000 A
6038960 Fukushima et al. Mar 2000 A
6039180 Grant Mar 2000 A
6041462 Marques Mar 2000 A
6047429 Wu Apr 2000 A
D424181 Caplow May 2000 S
D425615 Bachman et al. May 2000 S
D425981 Bachman et al. May 2000 S
6056548 Neuberger et al. May 2000 A
6056710 Bachman et al. May 2000 A
D426633 Bachman et al. Jun 2000 S
6089865 Edgar Jul 2000 A
6116866 Tomita et al. Sep 2000 A
6120755 Jacobs Sep 2000 A
6124699 Suzuki et al. Sep 2000 A
D434500 Pollock et al. Nov 2000 S
6159006 Cook et al. Dec 2000 A
6164967 Sale et al. Dec 2000 A
D435905 Bachman et al. Jan 2001 S
D437049 Hartwein Jan 2001 S
6193512 Wallace Feb 2001 B1
6193932 Wu et al. Feb 2001 B1
6199239 Dickerson Mar 2001 B1
6200134 Kovac Mar 2001 B1
D439781 Spore Apr 2001 S
6217835 Riley et al. Apr 2001 B1
D441861 Hafliger May 2001 S
6230717 Marx et al. May 2001 B1
6233773 Karge et al. May 2001 B1
6234205 D'Amelio et al. May 2001 B1
6237178 Krammer et al. May 2001 B1
6247929 Bachman et al. Jun 2001 B1
6280190 Hoffman Aug 2001 B1
D448236 Murray Sep 2001 S
6293792 Hanson Sep 2001 B1
D449884 Tobin et al. Oct 2001 S
6299419 Hunklinger Oct 2001 B1
D453453 Lun Feb 2002 S
D455201 Jones Apr 2002 S
D455203 Jones Apr 2002 S
6363565 Paffrath Apr 2002 B1
D457949 Krug May 2002 S
D464799 Crossman et al. Oct 2002 S
6468482 Frieze et al. Oct 2002 B1
6475173 Bachman et al. Nov 2002 B1
6485451 Roberts et al. Nov 2002 B1
6497375 Srinath et al. Dec 2002 B1
6497572 Hood et al. Dec 2002 B2
D468422 McCurrach Jan 2003 S
6502584 Fordham Jan 2003 B1
D470660 Schaber Feb 2003 S
6532837 Magussen, Jr. Mar 2003 B1
6558344 McKinnon et al. May 2003 B2
6561808 Neuberger et al. May 2003 B2
D475346 McCurrach et al. Jun 2003 S
D476743 D'Silva Jul 2003 S
6589477 Frieze et al. Jul 2003 B1
6602071 Ellion et al. Aug 2003 B1
6632091 Cise et al. Oct 2003 B1
D482451 Page et al. Nov 2003 S
6640999 Peterson Nov 2003 B2
6647577 Tam Nov 2003 B2
6659674 Carlucci et al. Dec 2003 B2
6663386 Moelsgaard Dec 2003 B1
6669059 Mehta Dec 2003 B2
D484971 Hartwein Jan 2004 S
6681418 Bierend Jan 2004 B1
D486573 Callaghan et al. Feb 2004 S
6689078 Rehkemper et al. Feb 2004 B1
6699208 Bachman et al. Mar 2004 B2
6719561 Gugel et al. Apr 2004 B2
D489183 Akahori et al. May 2004 S
6739782 Rehkemper et al. May 2004 B1
6740053 Kaplowitz May 2004 B2
D490899 Gagnon Jun 2004 S
D491728 Jimenez Jun 2004 S
D492996 Rehkemper et al. Jul 2004 S
6758845 Weckwerth Jul 2004 B1
6761324 Chang Jul 2004 B2
6766549 Klupt Jul 2004 B2
D495142 Berde Aug 2004 S
D495143 Berde Aug 2004 S
6779216 Davies et al. Aug 2004 B2
6783004 Rinner Aug 2004 B1
6783505 Lai Aug 2004 B1
6796796 Segal Sep 2004 B2
6808331 Hall et al. Oct 2004 B2
D498643 Pryor, Jr. et al. Nov 2004 S
6814259 Foster et al. Nov 2004 B1
D499885 Xi Dec 2004 S
6835181 Hippensteel Dec 2004 B2
D500599 Callaghan Jan 2005 S
6836917 Blaustein et al. Jan 2005 B2
6837708 Chen et al. Jan 2005 B2
6884069 Goldman Apr 2005 B2
6902337 Kuo Jun 2005 B1
6907879 Drinan et al. Jun 2005 B2
D509585 Kling et al. Sep 2005 S
D513638 Pan Jan 2006 S
D515215 Wang Feb 2006 S
D522652 Massey Jun 2006 S
7080980 Klupt Jul 2006 B2
D529661 Schmidt Oct 2006 S
D530010 Luettgen et al. Oct 2006 S
7117555 Fattori et al. Oct 2006 B2
D532570 Vizcarra Nov 2006 S
7131838 Suzuki et al. Nov 2006 B2
D533720 Vu Dec 2006 S
7147468 Snyder et al. Dec 2006 B2
D538474 Sheppard et al. Mar 2007 S
D548334 Izumi Aug 2007 S
D550097 Lepoitevin Sep 2007 S
D553980 VerWeyst Oct 2007 S
7276035 Lu Oct 2007 B2
7314456 Shaw Jan 2008 B2
D563674 Beedham Mar 2008 S
D565175 Boyd et al. Mar 2008 S
7344510 Yande Mar 2008 B1
D565713 Gao Apr 2008 S
7367803 Egeresi May 2008 B2
D574952 Boyd et al. Aug 2008 S
7414337 Wilkinson et al. Aug 2008 B2
D577198 Jimenez et al. Sep 2008 S
D577814 Seki et al. Sep 2008 S
D581279 Oates Nov 2008 S
7455521 Fishburne, Jr. Nov 2008 B2
7469440 Boland et al. Dec 2008 B2
D585132 Pukall Jan 2009 S
D588262 Pukall Mar 2009 S
7500584 Schutz Mar 2009 B2
D590492 Powell Apr 2009 S
D592748 Boulton May 2009 S
D595136 Canamasas Puigbo Jun 2009 S
D601694 Rocklin Oct 2009 S
D601697 Sobeich et al. Oct 2009 S
D603708 Handy Nov 2009 S
D608430 Slothower Jan 2010 S
7670141 Thomas et al. Mar 2010 B2
7677888 Halm Mar 2010 B1
D613550 Picozza et al. Apr 2010 S
D621949 Seki et al. Aug 2010 S
D622928 Griebel Sep 2010 S
D623376 Griebel Sep 2010 S
D625105 Winkler Oct 2010 S
D625406 Seki et al. Oct 2010 S
7814585 Reich Oct 2010 B1
D629884 Stephens Dec 2010 S
7857623 Grez Dec 2010 B2
7862536 Chen et al. Jan 2011 B2
7878403 Hennick et al. Feb 2011 B2
7959597 Baker et al. Jun 2011 B2
D640872 Nanda Jul 2011 S
D648539 Wai Nov 2011 S
D648941 Leung Nov 2011 S
D651805 Hay Jan 2012 S
D653340 Goerge et al. Jan 2012 S
8113832 Snyder et al. Feb 2012 B2
D655380 Taylor Mar 2012 S
D658381 Gebski May 2012 S
D658538 Korzeniowski May 2012 S
8220726 Qiu et al. Jul 2012 B2
D666912 Kawai Sep 2012 S
8256979 Hilscher et al. Sep 2012 B2
D668339 Luoto Oct 2012 S
D669169 Washington et al. Oct 2012 S
8297534 Li et al. Oct 2012 B2
D670958 Picozza et al. Nov 2012 S
D671637 Gebski et al. Nov 2012 S
D672018 Bucher Dec 2012 S
8366024 Leber Feb 2013 B2
8403577 Khoshnevis Mar 2013 B2
8418300 Miller et al. Apr 2013 B2
D686311 Mori Jul 2013 S
D694378 Bates Nov 2013 S
D694398 Taylor Nov 2013 S
D700343 Liu Feb 2014 S
D702819 Garland Apr 2014 S
D702821 Garland Apr 2014 S
D707350 Woodard Jun 2014 S
8801667 Taylor Aug 2014 B2
D717547 Adriaenssen Nov 2014 S
D719737 Adriaenssen Dec 2014 S
D731640 Kim et al. Jun 2015 S
9050157 Boyd et al. Jun 2015 B2
D740936 Kim et al. Oct 2015 S
D747464 Taylor Jan 2016 S
D773822 Sikora Dec 2016 S
D782657 Williams Mar 2017 S
D798059 McGarry Jul 2017 S
D799217 Massee Oct 2017 S
20020090252 Hall et al. Jul 2002 A1
20020108193 Gruber Aug 2002 A1
20020119415 Bailey Aug 2002 A1
20020152565 Klupt Oct 2002 A1
20030060743 Chang Mar 2003 A1
20030098249 Rollock May 2003 A1
20030162146 Shortt et al. Aug 2003 A1
20030204155 Egeresi Oct 2003 A1
20030213075 Hui et al. Nov 2003 A1
20040045107 Egeresi Mar 2004 A1
20040076921 Gofman et al. Apr 2004 A1
20040122377 Fischer et al. Jun 2004 A1
20040126730 Panagotacos Jul 2004 A1
20040180569 Chiou Oct 2004 A1
20040209222 Snyder et al. Oct 2004 A1
20050004498 Klupt Jan 2005 A1
20050049620 Chang Mar 2005 A1
20050064371 Soukos et al. Mar 2005 A1
20050101894 Hippensteel May 2005 A1
20050102773 Obermann et al. May 2005 A1
20050144745 Russell Jul 2005 A1
20050177079 Pan Aug 2005 A1
20050271531 Brown et al. Dec 2005 A1
20060010624 Cleland Jan 2006 A1
20060021165 Boland et al. Feb 2006 A1
20060026784 Moskovich et al. Feb 2006 A1
20060057539 Sodo Mar 2006 A1
20060078844 Goldman et al. Apr 2006 A1
20060079818 Yande Apr 2006 A1
20060207052 Tran Sep 2006 A1
20070082316 Zhadanov et al. Apr 2007 A1
20070082317 Chuang Apr 2007 A1
20070113360 Tsai May 2007 A1
20070202459 Boyd et al. Aug 2007 A1
20070203439 Boyd et al. Aug 2007 A1
20070254260 Alden Nov 2007 A1
20080189951 Molema et al. Aug 2008 A1
20080213719 Giniger et al. Sep 2008 A1
20080253906 Strong Oct 2008 A1
20080307591 Farrell et al. Dec 2008 A1
20090070949 Sagel et al. Mar 2009 A1
20090071267 Mathus et al. Mar 2009 A1
20090082706 Shaw Mar 2009 A1
20090124945 Reich et al. May 2009 A1
20090139351 Reichmuth Jun 2009 A1
20090163839 Alexander Jun 2009 A1
20090188780 Watanabe Jul 2009 A1
20090281454 Baker et al. Nov 2009 A1
20100010524 Barrington Jan 2010 A1
20100015566 Shaw Jan 2010 A1
20100049177 Boone, III Feb 2010 A1
20100190132 Taylor et al. Jul 2010 A1
20100209870 Thomas et al. Aug 2010 A1
20100239998 Snyder et al. Sep 2010 A1
20100261134 Boyd et al. Oct 2010 A1
20100261137 Boyd et al. Oct 2010 A1
20100266980 Boyd et al. Oct 2010 A1
20100326536 Nan Dec 2010 A1
20100330527 Boyd et al. Dec 2010 A1
20110027749 Syed Feb 2011 A1
20110076090 Wu et al. Mar 2011 A1
20110097683 Boyd et al. Apr 2011 A1
20110139826 Hair et al. Jun 2011 A1
20110144588 Taylor et al. Jun 2011 A1
20110184341 Baker et al. Jul 2011 A1
20110307039 Cornell Dec 2011 A1
20120021374 Cacka et al. Jan 2012 A1
20120064480 Hegemann Mar 2012 A1
20120077145 Tsurukawa Mar 2012 A1
20120179118 Hair Jul 2012 A1
20120189976 McDonough et al. Jul 2012 A1
20120277663 Millman et al. Nov 2012 A1
20120277677 Taylor et al. Nov 2012 A1
20120277678 Taylor et al. Nov 2012 A1
20120279002 Sokol et al. Nov 2012 A1
20120295220 Thomas et al. Nov 2012 A1
20130089832 Lee Apr 2013 A1
20140106296 Woodard et al. Apr 2014 A1
20140193774 Snyder et al. Jul 2014 A1
20140259474 Sokol et al. Sep 2014 A1
20140272782 Luettgen et al. Sep 2014 A1
20140352088 Wu Dec 2014 A1
20150147717 Taylor et al. May 2015 A1
20150173850 Garrigues et al. Jun 2015 A1
20160151133 Luettgen et al. Jun 2016 A1
20170239132 Luettgen et al. Aug 2017 A1
Foreign Referenced Citations (37)
Number Date Country
851479 Sep 1970 CA
502817 Feb 1971 CH
655237 Apr 1987 CH
204049908 Dec 2014 CN
1466963 May 1969 DE
1566490 Nov 1970 DE
2019003 Nov 1971 DE
2409752 Sep 1975 DE
2545936 Apr 1977 DE
2714876 Oct 1978 DE
2910982 Feb 1980 DE
3346651 Jul 1985 DE
0023672 Jul 1980 EP
0515983 Feb 1992 EP
0515983 Dec 1992 EP
1825827 Aug 2007 EP
2556954 Jun 1985 FR
2654627 May 1991 FR
838564 Jun 1960 GB
1182031 Feb 1970 GB
2018605 Oct 1979 GB
2237505 May 1991 GB
2-134150 Apr 1990 JP
2009-39455 Feb 2009 JP
20120126265 Nov 2012 KR
WO95016404 Jun 1995 WO
0110327 Feb 2001 WO
WO0119281 Mar 2001 WO
WO04021958 Mar 2004 WO
WO04039205 May 2004 WO
2004060259 Jul 2004 WO
WO2004062518 Jul 2004 WO
WO2008070730 Jun 2008 WO
2008157585 Dec 2008 WO
WO2013095462 Jun 2013 WO
2013124691 Aug 2013 WO
WO2014145890 Sep 2014 WO
Non-Patent Literature Citations (22)
Entry
US RE27,274 E, 01/1972, Mattingly (withdrawn)
Waterpik SinuSense, Website: http://www.insightsbyapril.com/2012/03/waterpik-natural-remedy-for-sinus.html, retrieved on May 31, 2012.
International Search Report, PCT/US2011/052795, 10 pages, dated Jan. 17, 2012.
The Right Tool, Electron Fusion Devices, Inc., 2 pages, at least as early as Feb. 1991.
Japanese Packaging, 2 pages, at least as early as Dec. 2002.
Japanese Instruction Brochure, 2 pages, at least as early as Dec. 2002.
Brochure: Woog International, “You have a 98% chance of getting gum disease. Unless you read this.”, Lancaster, Pennsylvania, Feb. 1987.
Brochure: Woog International, “We put the control of home dental care back into the hands of the professional”, Lancaster, Pennsylvania, Feb. 1987.
Brochure: Woog International, “Products at a Glance: Home Dental Care System” Woog Orajet, at least as early as Dec. 18, 1998.
Website: http://www.just4teeth.com/product/Panasonic/Panasonic_Portable_Irrigator.htm, 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.videodirectstore.com/store/merchant.mv?Screen=PROD&Product_Code=EW1′ . . . , 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.products.consumerguide.com/cp/family/review/index.dfm/id/18742, 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.racekarteng.com/images/walbroparts.gif and http://www.muller.net/mullermachine/docs/walbro1.html, 4 pages, at least as early as Jun. 20, 2003.
International Search Report, Application No. PCT/US2010/028180, 2 pages, dated May 18, 2010.
Waterpik WP 350W Oral Irrigator. Dentist.net. Copyright date 2013. Date accessed: Mar. 30, 2017, 2 pages <http://www.dentalhoo.com/waterpik-wp350.asp>.
IPik Portable Oral Irrigator. AliExpress. Date reviewed: Oct. 5, 2016. <https://www.allexpress.com/...e-Oral-Care-Product-Nasal-Irrigator-Tooth-Flosser-Water/1525541997.html?aff_platform=aaf&cpt=1490913714609&sk=yfAeyJa&aff_trace_key=c5a300c4f02e46d08c042f5292e1762f-1490913714609-07517-yfAeyJa>, 18 pages.
Brite Leafs Professional Portable 2-in-1 Nasal Sinus & Oral Irrigator. Brite Leafs. Copyright date 2012, <http://www.briteleafs.com/product6.html> , 1 page.
Ali Express. Date reviewed: Jan. 12, 2017. <https://www.aliexpress.com/item/Cordless-Water-Floss-Portable-Oral-Irrigator-Dental-Water-Flosser-Waterpic-Whatpick-Dental-Water-Pic-Whater-Pick/32769416341.html?spm=2114.40010308.4.75.Owuzfj>.
Suvo. “Helical Gears vs Spur Gears—Advantages and Disadvantages Compared.” Brighthub Engineering, Aug. 18, 2010, www.brighthubengineering.com/manufacturing-technology/33535-helical-gears-vs-spur-gears/., 7 pages.
Waterpik ADA Accepted WP-663, posted at amazon.com, earliest date reviewed on Feb. 6, 2014, [online], acquired on Feb. 12, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Accepted-WP-663-Aquarius-Flosser/dp/B072JFYXSY/ref=cm_cr_arp_d_product_top?ie=UTF88dh=1> (Year: 2014).
Waterpik Classic Professional Water Flosser, WP-72, posted at amazon.com, earliest date reviewed on Mar. 5, 2016, [online], acquired on Feb. 23, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Classic-Professional-Flosser-WP-72/dp/B00HFQQOU6/ref=cm_cr_arp_d_product_top?ie=UTF8> (Year: 2016).
Waterpik Complete Care 5.0 Toothbrush, posted at amazon.com, earliest date reviewed on Mar. 14, 2016, [online], acquired on Feb. 23, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Complete-Toothbrush-Water-Flosser/dp/B01CRZ939Y/ref=cm_cr arp_d_product_top?ie=UTF8> (Year: 2016).
Related Publications (1)
Number Date Country
20120045730 A1 Feb 2012 US
Provisional Applications (2)
Number Date Country
61385554 Sep 2010 US
61162126 Mar 2009 US
Continuation in Parts (1)
Number Date Country
Parent 12729076 Mar 2010 US
Child 13238243 US