The present disclosure relates generally to health and personal hygiene equipment and more particularly, to oral irrigators.
Oral irrigators typically are used to clean a user's teeth and gums by discharging a pressurized fluid stream into a user's oral cavity. The fluid impacts the teeth and gums to remove debris. Countertop oral irrigator units include a large reservoir that connects to a base unit housing a pump and other internal components. The reservoir on these types of units may be wide and cumbersome for a user to remove to refill, such that both a user's hands might be needed to manipulate the reservoir. In addition, these units may have multiple adjustment levers and knobs, which may contribute to a larger footprint. In some cases, the fluid tube coupling the base unit to the oral irrigator handle may become inadvertently tangled and have a look that is unorganized and unpleasing to a user when the irrigator handle is stored. The fluid tube may also interfere with the storage of the oral irrigator.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the disclosure is to be bound.
The present disclosure provides an oral irrigator with magnetic attachment, as described below and defined in the accompanying claims. In one embodiment, an oral irrigator assembly may include a base including a pressure assembly, a pump assembly, a motor assembly, and a cradle. The pressure assembly may include a control valve and may be fluidly connected to the pump assembly. The motor assembly may be electrically connected to the pump assembly. The oral irrigator assembly may include a reservoir with a lid adjustably coupled to the reservoir, the reservoir positioned adjacent to the base and fluidly coupled to the pressure assembly. The oral irrigator assembly may include a control assembly with a push button at least partially surrounded by a rotating or sliding knob. The push button may be configured to engage a power button to electrically connect the motor assembly to the pump assembly. The knob may be coupled to the control valve. The oral irrigator assembly may include an oral irrigator handle fluidly coupled to the pump assembly, the pressure assembly, and the reservoir. The oral irrigator handle may be adjustably coupled to the base at the cradle.
Another embodiment of the present disclosure includes an oral irrigator assembly. The oral irrigator assembly may include a base unit and an oral irrigator handle. The base unit may include a first positioning feature. The oral irrigator handle may include a second positioning feature. The second positioning feature of the oral irrigator handle may correspond with the first positioning feature of the base unit to removably couple the oral irrigator handle to the base unit. The oral irrigator handle may be removably coupled to the base unit at any one of a plurality of desired positions relative to the base unit.
Another embodiment of the present disclosure includes a control assembly for an oral irrigator assembly. The control assembly may include a first element arranged to selectively alter a first operating state of the oral irrigator assembly. The control assembly may include a second element arranged to rotate at least partially about the first element to selectively alter a second operating state of the oral irrigator assembly.
Another embodiment of the present disclosure includes an oral irrigator assembly. The oral irrigator assembly may include a base including a pressure assembly, a fluid reservoir removably coupled to the base, an oral irrigator handle fluidly coupled to the fluid reservoir and the pressure assembly, and a control assembly including a push button at least partially surrounded by a knob. The oral irrigator handle may be adjustably coupled to the base via a magnetic attachment. The push button may be arranged to engage a power button to turn the oral irrigator assembly on and off. The knob may be coupled to the pressure assembly to adjust at least one of a pressure and a volume of a fluid expelled through the oral irrigator handle upon movement of the knob.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present disclosure as defined in the claims is provided in the following written description of various embodiments of the disclosure and illustrated in the accompanying drawings.
In some examples, an oral irrigator assembly may include a control assembly having first and second elements operable to alter first and second operating states of the oral irrigator assembly. The first and second elements may be positioned for compact operation. For example, the second element may be arranged to rotate at least partially about the first element to reduce the overall size of the control assembly compared to some traditional designs. The first element may control a first function of the oral irrigator assembly. The second element may control a second function of the oral irrigator assembly. The first element may be a push button. The second element may be a rotating or sliding knob. The push button may be selectively depressed to turn the oral irrigator assembly on and off. The oral irrigator assembly may include a control valve coupled to the knob. Selective movement of the knob may vary the volume and/or pressure of a fluid expelled through an oral irrigator handle. The first and second elements may move in first and second directions. For instance, the first element may move axially along an axis about which the second element at least partially rotates. Alternatively, the first and second elements may move axially along generally orthogonal directions.
In some examples, the oral irrigator handle may include a homing feature that assists a user in positioning the oral irrigator handle adjacent to a base unit. In one example, the homing feature of the oral irrigator handle may assist a user in positioning the handle within or adjacent a cradle extending from the base unit. The cradle may include a complementary homing feature such that the handle easily aligns to a correct position adjacent to the cradle, such as cantilevered off an end face of the cradle. In this manner, the homing features may make placement of the handle in a correct position easier for the user.
In addition to facilitating easy placement of the handle in a correct position, the homing feature(s) may also allow the base unit to include a slimmer profile compared to some traditional designs. For instance, some traditional designs include a C-clamp type structure to hold an oral irrigator handle. The homing feature(s) of the present disclosure, however, allow the traditional C-clamp holding structure to be removed from the base unit, thereby allowing the base unit to have a more compact shape. The homing feature(s) may also allow greater freedom in designing the oral irrigator handle. For example, without the need of designing the handle to fit within a C-clamp type structure, the handle may be designed with shapes that are more aesthetically appealing and/or more comfortable to, and/or easier to manipulate by, a user compared to traditional designs. In particular, the handle may be more uniform in cross-section with less taper along its length compared to traditional designs.
The homing features may be any suitable mechanism or assembly operable to quickly and easily couple the oral irrigator handle to the base unit. For example, the homing features may include complimentary magnetic materials or devices to magnetically couple the oral irrigator handle to the base unit in one or more relative positions. The magnetic materials or devices may be positioned such that magnetic attachment of the oral irrigator handle to the base unit automatically aligns the oral irrigator handle relative to the base unit. For instance, the magnetic coupling of the oral irrigator handle to the base unit may vertically align the oral irrigator handle along the base unit. Additionally or alternatively, the magnetic coupling of the oral irrigator handle to the base unit may position the oral irrigator handle at one or more predetermined or desired vertical positions relative to the base unit. For instance, the magnetic coupling of the oral irrigator handle to the base unit may position the oral irrigator handle in one of a plurality of set positions along the base unit. Alternatively, the magnetic coupling of the oral irrigator handle to the base unit may position the oral irrigator handle at any desired position along the base unit based on user preference. In such examples, the positioning of the oral irrigator handle may be restrained only by the size of the homing features themselves. For example, the homing features may define minimum and maximum spacing relative to the base unit, with the oral irrigator handle able to be positioned at any location within the minimum and maximum positions.
Referring to
With continued reference to
In some examples, the lid 116 may include structure operable releasably hold the adjustable portion 128 in an open position. For example, as shown in
The reservoir 114 may be formed with two opposing generally planar sides 136, 138 that are generally normal to a generally planar front face 140 that opposes a generally planar rear face 142. In some examples, the sides 136, 138 have a width that is smaller than a width of each of the front face 140 and the rear face 142. A bottom 137 of the reservoir 114 may be configured with a sealable port 139 to couple to a valve assembly 144 to fluidly connect the reservoir 114 with a pressure assembly and a pump assembly in the base 102, as described more fully below.
The tube nest 110 may also have a channel 230 formed in a lower portion thereof, the tube nest 110 extending downward from the tube recess 124. The channel 230 may have a width and depth that is larger than the diameter of the tube 108 shown in
A portion of the front 228 of the protrusion 222 may be formed as the cradle 118. The cradle 118 may have a concave shape that curves away from the front 228 and towards the rear 226 of the protrusion 222. In some examples, the cradle 118 may be formed with attachment or securing devices to help position or temporarily secure the oral irrigator handle 106 so that it is adjacent the cradle 118 when stored by a user. In some examples, the cradle 118 may be formed from a magnetic material to help secure or position the oral irrigator handle 106. In some examples, the oral irrigator handle 106 has a complementary attachment, securing, or homing device to releasably position or secure the oral irrigator handle 106 at least partially within or adjacent to the cradle 118.
With reference to
The first and second magnet devices 240, 242 may be arranged to removably couple the oral irrigator handle 106 to the base 102 at any one of a plurality of desired positions relative to the base 102. In particular, the first and second magnet device 240, 242 may removably couple the oral irrigator handle 106 to the base 102 at any one of a plurality of vertically adjacent positions relative to the base 102. For instance, the first and second magnet devices 240, 242 may be arranged to position the oral irrigator handle 106 at a desired spacing above the extension 103 of the base 102. This may allow a user to couple the oral irrigator handle 106 to the base 102 at a desired vertical position based on user preference. For instance, the protrusion 222 may be coupled to the oral irrigator handle 106 at any position along the length of the oral irrigator handle 106 to allow user positioning of the oral irrigator handle 106 nearer or further away from the extension 103 as desired. In this manner, a user may position the oral irrigator handle 106 nearer the extension 103 to reduce a height of the oral irrigator assembly 100, which may allow the oral irrigator assembly 100 to be positioned or stored in smaller spaces compared to traditional designs, such as underneath a shelf or within a cabinet, among others.
In some examples, the magnetic composition of the interior face 234 and/or the ribs 238 may allow for the oral irrigator handle 106 to be magnetically attracted to the cradle 118 when the oral irrigator handle 106 is positioned near the cradle 118. For example, the oral irrigator handle 106 may include a complimentary or corresponding magnetic coupling device, such as a magnet or a magnetic material, that magnetically couples the oral irrigator handle 106 to the cradle 118. In some examples, the stronger pull of the interior face 234 may assist the user in properly positioning the oral irrigator handle 106 within or adjacent to the cradle 118. In some examples, the complementary attachment or securing devise of the oral irrigator handle 106 may be positioned so that the oral irrigator handle 106 may always be stored in a set position or a plurality of positions. This may allow the user easier access as the oral irrigator handle 106 is generally stored in the correct position that allows for the user to easily grasp the handle and remove it from the cradle 118.
A first leg 320 and a second leg 322 may extend from the rear face 330 away from the front face 324 of the push button 302. The first and second legs 320, 322 may each have a tab 334 on an end thereof that is distal the rear face 330. Each tab 334 may extend away from its associated leg 320 or 322. For instance, the tabs 334 may extend in a direction perpendicular to the first and second legs 320, 322 and away from a central axis 380. For example, depending on the particular application, the tabs 334 may extend away from each other, in a direction radially away from the central axis 380, or the like. The first and second legs 320, 322 may be shaped similar to, or different from, each other. For instance, the first leg 320 may be longer than the second leg 322, or vice-versa. Each tab 334 may act as a detent to position the push button 302 within the control assembly 112.
A cylindrically shaped bias element 326 and cylindrically shaped central core 328 may also extend from the rear face 330 away from the front face 324. The central core 328 may have a diameter that is smaller than the diameter of the bias element 326. The central core 328 may be a hollow cylinder centered about the central axis 380. The central core 328 may have a first end 344 adjacent the rear face 330, and a second end 346 opposite the first end 344, and an outside surface 348 and an inside surface 350. The second end 346 may also be beveled on an inner edge.
The bias element 326 may have a diameter that is smaller than a diameter of the front face 324 and the rear face 330. The bias element 326 is cylindrically shaped with an upper arc portion 335 located above the first and second legs 320, 322 and a lower arc portion 336 located below the first and second legs 320, 322. The upper arc portion 335 may have a stabilizer 342 adjacent the rear face 330 and extending away from the front face 324. The stabilizer 342 may be formed from a plurality of ribs and protrusions extending away from the rear face 330. A connector 340 extends from the stabilizer 342 to connect the stabilizer 342 to the middle of a flexible arcuate finger 338. The connector 340 may be single protrusion or extrusion. The flexible finger 338 may be a portion of a cylinder with a resting diameter that is configured to flex radially outward to a larger diameter when the flexible finger 338 contacts a seat of the knob 306, as explained below. The flexible finger 338 may be formed with two arcuate band-shaped portions connected to each other at their respective ends. The lower arc portion 336 may be similarly shaped and function similarly to the upper arc portion 335. For example, the lower arc portion 336 may include a stabilizer 343 connected to a flexible finger 339 by a connector 341 in a manner similar to that described above. Though the bias element 326 is shown and described as a molded in biasing structure, in some examples, the bias element 326 may be a spring coupled to the push button 302. For instance, depending on the particular application, the bias element 326 may be a metal spring extending around the central core 328, such as annularly spaced from the central core 328.
The outer ring 360 may be connected to the central core 366 through the web 368 and seat 384. The web 368 and the seat 384 may be somewhat orthogonal to the outer ring 360. The seat 384 may be shaped as an annular ring, with a proximal mating face 386 and a distal mating face 388 opposite the proximal mating face 386. The seat 384 may be convexly shaped, and shallowly curve away from the center of the oral irrigator assembly 100. In some examples, the proximal mating face 386 may form an angle that is less than 90 degrees with the abutting wall 364. The seat 384 may connect to the abutting wall 364 of the outer ring 360 at a step 390. An inner portion of the seat 384 may connect with the web 368.
In some examples, the web 368 may connect the seat 384 to an outer surface 376 of the central core 366. In some examples, the web 368 may be a plurality of spokes, each with an inner edge 392 adjacent to the central core 366 and an outer edge 394 adjacent to the seat 384. The spokes may taper in width from the seat 384 to the central core 366. For example, the inner edge 392 may have a length that is shorter than the length of the outer edge 394. Similar to the seat 384, the web 368 may also be convexly shaped, and shallowly curve away from the center of the oral irrigator assembly 100. In the example of
The central core 366 may be cylindrically shaped, with the outer surface 376 and an interior surface 378. The central core may have a front edge 372 that is proximal to the leading edge 363 of the outer ring 360, and a rear edge 374 opposite that of the front edge 372. In some examples, an annular seat 398 is formed in the outer surface 376 near the rear edge 374. The annular seat 398 may be formed as a recessed area that encompasses the circumference of the central core 366.
A plurality of alignment tabs 370 may extend inward from the interior surface 378 towards the central axis 380. In some examples, the alignment tabs 370 are spaced apart in pairs about a circumference of the interior surface 378, such that a spacing between a first tab and a second tab is equal to the spacing between a third tab and a fourth tab, but the spacing between the first and the third tabs and the second and fourth tabs is larger than between the first and second tabs. The paired tabs 370 may be used to align the coupling link 308 within the control assembly 112, as further described herein.
The outer portion of the bezel 310 may be formed by the perimeter wall 404. As shown, the perimeter wall 404 may include a base mating face 400 and a rear face 402 opposite the base mating face 400. The cross-sectional view of
The outer perimeter of the perimeter wall 404 may be generally annularly shaped except near a top portion that increases in diameter to form a tab 405 with an alignment slot 406. The alignment slot 406 may be formed in the upper portion of the perimeter wall 404, proximal to the reservoir 114 of the oral irrigator assembly 100. The alignment slot 406 may be used to align the rotational position of the bezel 310 with respect to the base 102.
The outer wall 410 may extend orthogonally from the base mating face 400 of the perimeter wall 404 and away from the rear face 402. The outer wall 410 may connect the knob mating wall 408 to the perimeter wall 404. At the intersection of the outer wall 410 and the knob mating wall 408, a lip 420 may be formed.
The knob mating wall 408 may be generally orthogonal to the outer wall 410. The knob mating wall 408 may have a proximal face 412 and a distal face 414. The knob mating wall 408 may be annularly shaped, with an outer perimeter formed at the outer wall 410 and an inner perimeter formed by the curved support walls 418 and the connecting nubs 416. The knob mating wall 408 may be curved with an angle that mirrors the angle of the web 368 and seat 384 of the knob 306.
A plurality of leg receiving ports 422 may be formed within the knob mating wall 408 and include an aperture that extends between the proximal face 412 and the distal face 414. The leg receiving ports 422 may also extend orthogonally from the proximal face 412 and away from the distal face 414. In some examples, the leg receiving ports 422 may have a cross-sectional shape that is generally rectangular, similar to the shape shown in
In some examples, the leg receiving ports 422 may have an inner edge proximal to a central bore 424 formed by the curved support walls 418 and connecting nubs 416. The inner edge of the leg receiving ports 422 may curve outward from the central bore 424, similar to the shape of the curved support walls 418. In some examples, the leg receiving ports 422 are spaced equally about the central bore 424.
The central bore 424 may be formed through the proximal face 412 and the distal face 414 of the knob mating wall 408. The curved support walls 418 and connecting nubs 416 may extend orthogonally from the distal face 414 and away from the proximal face 412. The curved support walls 418 may have a generally constant thickness and may be curved about the central axis 380. The connecting nubs 416 may taper in thickness from a larger width adjacent the distal face 414 to a smaller width with distance away from the distal face 414. At opposite distal edge of the connecting nubs 416, a detent 426 may be formed. The detent 426 may be a raised feature that extends inwardly from the connecting nub 416 and towards the central axis 380.
With reference to
The various components of the pressure assembly 502 will now be described. As shown in
The pressure assembly 502 is located downstream of the reservoir valve actuator 524, and may have a pressure valve inlet 526 located upstream of a pressure valve 528, and a pressure valve outlet 530 located downstream of the pressure valve 528. The pressure valve 528 is configured with a spring that allows the pressure valve 528 to move up and down (towards and away from the reservoir 114) within the pressure assembly housing 506 when a vacuum is applied to the pressure valve 528.
The pressure assembly housing 506 may be fluidly connected to the control valve 318. The pressure assembly housing 506 may have a diverter inlet 532 located downstream of the pressure valve 528 and a diverter outlet located upstream of the pressure valve 528 but downstream of the pressure valve inlet 526. A portion of the control valve 318 may be rotatably positioned within the pressure assembly housing 506 and positioned adjacent the valve face plate 316. The rotatable position of the control valve 318 with respect to the valve face plate 316 allows a fluid pathway to be selectively formed between the diverter inlet 532 and the diverter outlet 534. The pressure assembly 502 may be fluidly connected to the pump assembly 500.
As shown in
The motor assembly 504 is shown in
As shown in
With continued reference to
As shown in
The control valve 318 may be positioned adjacent to and between the diverter inlet 532 and the diverter outlet 534 of the pressure assembly housing 506. The valve face plate 316 may be positioned adjacent to the pressure assembly housing 506 that surrounds a portion of the control valve 318. The coupling link 308 may be positioned within an extending cylinder portion of the control valve 318.
As shown in
The push button 302 may then be assembled to the knob 306 and the bezel 310. The push button 302 may be aligned so that the first leg 320 is positioned to a front of the oral irrigator assembly 100 and the second leg 322 is positioned to a rear of the oral irrigator assembly 100. The first leg 320 and second leg 322 may be inserted into the respective one of the arcuate openings of the spaces 385 created between the web 368, the seat 384, and the central core 366 of the knob 306 and then through the leg receiving ports 422 of the bezel 310. The tabs 334 present on the end of each leg 320, 322 may help prevent the push button 302 from being separated from the knob 306 and bezel 310, as the tabs 334 may engage with the distal face 414 of the knob mating wall 408 of the bezel 310.
The knurled knob 304 may be coupled to the knob 306 about the knurled knob mounting surface 362. The knurled knob 304 may be adjustably fixed to the knob 306 by a press fit formed by the interaction of the ribs 382 extending away from the knurled knob mounting surface 362 and contacting the inside surface of the knurled knob 304.
The coupling link 308 may be positioned between the knob 306 and the control valve 318. The fingers 313 on one of the bulbous ends 311 align with the tabs 370 of the knob 306. The fingers 313 on the opposite bulbous end 311 may then align with two notches in the control valve 318. The alignment of the legs with the knob 306 and the control valve 318 effectively couples the knob 306 with the control valve 318. When a user rotates the knob 306, the control valve 318 is also rotated in the same direction and the same rotational distance.
The position of the push button 302 within the bezel 310 may align the first leg 320 of the push button 302 with the button 312. The button 312 may be physically coupled with the switch 314, and the switch 314 is then physically coupled to the valve face plate 316. The switch 314 may then be electrically coupled to the motor 522. The motor assembly 504, the pump assembly 500 and the pressure assembly 502 may then be positioned within the base 102, with the control assembly 112 being positioned mounted on an exterior of the base 102.
The tube 108 may be connected to the oral irrigator handle 106. The tube 108 may then be wrapped around the tube nest 110 when the oral irrigator handle 106 is in a stored position. In some examples, the tube recess 124 formed by the tube nest 110 and the base 102 may allow for a portion of the tube 108 wrapped around the tube nest 110 to be contained within the tube recess 124. Additionally or alternatively, the tube routing aperture 122 may allow for a portion of the tube 108 adjacent the oral irrigator handle 106 to hang below the oral irrigator handle 106 and not contact the base 102. For example, when the oral irrigator handle 106 is coupled to the base 102 at the tube nest 110, a portion of the tube 108 adjacent to the oral irrigator handle 106 may be received within the tube routing aperture 122 to allow proper alignment of the oral irrigator handle 106 within the cradle 118 without structural interference between the tube 108 and the base 102.
Operation of the oral irrigator assembly 100 will now be described. To begin, the user may remove the reservoir 114 from the assembly 100, and open the adjustable lid 116 to fill the reservoir 114 with fluid. The user may then close the adjustable lid 116 and couple the reservoir 114 to the oral irrigator assembly 100. The reservoir valve actuator 524 may engage the valve assembly 144 of the reservoir 114 to allow fluid stored within the reservoir 114 to flow into and through the pressure assembly 502, into and through the pump assembly 500, and through the tube 108 into the oral irrigator handle 106.
A user may engage the control assembly 112 to turn the oral irrigator assembly 100 off and on, and to also adjust the pressure and/or volume of fluid that may be supplied to the oral irrigator handle 106 and eventually released from the oral irrigator handle 106 through the jet tip 107. To turn the oral irrigator assembly 100 on and off, a user may contact the front face 324 of the push button 302 to force or depress the push button 302 towards the base 102 of the oral irrigator assembly 100. The push button 302 may be moved with respect to the control assembly 112 when the user exerts a force on the push button 302 that is greater than the bias force provided by the bias element 326.
The flexible fingers 338, 339 may be configured to flex to a larger diameter when the fingers 338, 339 contact the seat 384 of the knob 306. For instance, the sloped shape of the seat 384 may force the fingers 338, 339 apart to allow the push button 302 to be moved horizontally axially inward with respect to the knob 306.
The movement of the push button 302 may then allow the first leg 320 to contact the button 312, which may then activate the switch 314 to selectively turn on or off the oral irrigator assembly 100. The biased design of the push button 302 allows it to return to its resting position with respect to the control assembly 112 when the user releases contact on the push button 302. When the push button 302 is engaged, an electrical connection is made through the switch 314, which connects an electrical circuit to activate the motor 522. The motor 522 begins to rotate, which rotates the drive shaft 520. The rotation of the drive shaft 520 rotates the driver gear 518, which in turn rotates the driven gear 516. The ratio of the diameters of the driver gear 518 and the driven gear 516 determines the rotational speed change from the driver gear 518 to the driven gear 516. The rotation of the driven gear 516 causes the eccentric lobe 512 to eccentrically rotate about the driven shaft 514, which moves the connecting rod 510 eccentrically laterally back and forth, towards and away from the control assembly 112.
The lateral movement of the connecting rod 510 moves the piston 540 in the same lateral movement back and forth within the cylinder 542. This piston 540 movement causes an alternating vacuum or negative pressure and a positive pressure. The negative pressure is enough to move the pressure valve 528 within the pressure assembly housing 506 downward to allow fluid to flow through the pressure valve 528 and the pressure valve outlet 530. The positive pressure moves the pressure valve 528 to position the pressure valve 528 so that fluid may not flow in through the pressure valve 528 and through the pressure valve outlet 530. The piston 540 movement allows for a pulsed flow to be supplied through the tube 108 and into the oral irrigator handle 106.
The rotation of the knob 306 may control the pressure and/or volumetric flow of a fluid out of the oral irrigator handle 106. In some examples, the leg receiving ports 422 of the bezel 310 may provide a limit as to the rotation in one direction or an opposite direction of the knob 306 about the bezel 310. A user may rotate the knurled knob 304 to rotate the knob 306 about the bezel 310. The knob 306 may be rotated in a clockwise direction until the web 368 of the knob 306 contacts the leg receiving port 422 of the bezel 310 that is surrounding the first leg 320. Similarly, the knob 306 may be rotated in a counter clockwise direction until the web 368 contacts the leg receiving port 422 surrounding the second leg 322.
When the knob 306 is rotated in a first direction, the rotation of the knob 306 causes the rotation of the coupling link 308, which causes the rotation of the control valve 318. The rotation of the control valve 318 may cause a fluid pathway to be formed between the control valve 318 and the valve face plate 316 to fluidly connect the diverter inlet 532 with the diverter outlet 534. The creation of this fluid pathway may allow for a volume of fluid flowing from the reservoir 114 and through the pressure assembly 502 to be siphoned away from the pressure valve outlet 530, through the control valve 318, and back through the pressure valve 528. The size of the fluid pathway may be dependent on the position of the control valve 318 adjacent the valve face plate 316. A large fluid pathway may result in a decreased volume and pressure of the fluid that exits the pressure valve outlet 530 and is eventually transmitted through the oral irrigator handle 106. A small fluid pathway may divert a smaller volume of water away from the pressure valve outlet 530, such that the volume and pressure of the fluid that exits the pressure valve outlet 530 is not substantially decreased.
With reference to
In some examples, the oral irrigator handle 106 may be adjusted to a vertical positon that positions the portion of the tube 108 adjacent the oral irrigator handle 106 within the tube routing aperture 122. The temporary location of the portion of the tube 108 adjacent the oral irrigator handle 106 may allow for the oral irrigator handle 106 to be moved to a vertical position that is lower with respect to the base 102 than with a base without a tube routing aperture 122. This ability to adjust the vertical location of the oral irrigator handle 106 with respect to the base 102 may also allow for a user to more easily access the reservoir 114 to remove the reservoir 114 from the base 102 to refill it with a fluid in preparation for use.
In some examples, the shape of the reservoir 114 may better help a user to grasp the reservoir 114 with one hand. For example, the reservoir 114 may have a narrow width that may be more amenable to a user grasping with one hand, as opposed to a bulky reservoir which would require a user to use both hands to grasp the reservoir. A user may grasp the reservoir 114 with one hand when removing the reservoir 114 for refilling or when assembling the reservoir 114 back with the oral irrigator assembly 100 in preparation for use or storage. To grasp the reservoir, the user may place his or her fingers on the planar face 140 or 142 and his or her thumb on the opposite planar face 140 or 142 and apply inward pressure.
In some examples, the location of the tube recess 124 may allow for a user to more easily store a portion of the tube 108 when the oral irrigator assembly 100 is not in use. For instance, the flexible tube 108 may be easily wrapped around the tube nest 110 and be partially stored within the tube recess 124.
A design for an oral irrigator assembly 100, 1600 has been described herein. It should be noted that any of the features in the various examples and embodiments provided herein may be interchangeable and/or replaceable with any other example or embodiment. As such, the discussion of any component or element with respect to a particular example or embodiment is meant as illustrative only.
It should be noted that although the various examples discussed herein have been discussed with respect to oral irrigators, the devices and techniques may be applied in a variety of applications, such as, but not limited to, toothbrushes, washing devices, showerheads, sink apparatus, and the like.
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the examples of the disclosure, and do not create limitations, particularly as to the position, orientation, or use of the disclosure unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined and the like) are to be construed broadly and may include intermediate members between the connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
In some instances, components are described by reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the embodiments are not limited to components which terminate immediately beyond their point of connection with other parts. Thus the term “end” should be broadly interpreted, in a manner that includes areas adjacent rearward, forward of or otherwise near the terminus of a particular element, link, component, part, member or the like.
In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation but those skilled in the art will recognize the steps and operation may be rearranged, replaced or eliminated without necessarily departing from the spirit and scope of the present disclosure. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the broad understanding of the embodiments as defined in the appended claims.
This application claims the benefit under 35 U.S.C. § 119(e) of the earlier filing date of U.S. Provisional Patent Application No. 62/434,993 filed 15 Dec. 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
555588 | Spencer | Mar 1896 | A |
1278225 | Schamberg | Sep 1918 | A |
1452258 | Smith | Apr 1923 | A |
1464419 | Gill | Aug 1923 | A |
1480310 | Smith | Jan 1924 | A |
1498267 | Hachman | Jun 1924 | A |
1602742 | Bennet | Oct 1926 | A |
1650686 | Binks | Nov 1927 | A |
1669889 | Andrews et al. | May 1928 | A |
1681320 | Bergl et al. | Aug 1928 | A |
1933454 | Sidney | Oct 1933 | A |
1940111 | Austin | Dec 1933 | A |
D93019 | Hose | Aug 1934 | S |
1977782 | Roy | Oct 1934 | A |
2107686 | Bramsen et al. | Feb 1938 | A |
D159872 | Skold | Aug 1950 | S |
2531730 | Henderson | Nov 1950 | A |
2595666 | Hutson | May 1952 | A |
2669233 | Friend | Feb 1954 | A |
2709227 | Foley et al. | May 1955 | A |
2733713 | Kabnick | Feb 1956 | A |
2783919 | Ansell | Mar 1957 | A |
2794437 | Tash | Jun 1957 | A |
2870932 | Davis | Jan 1959 | A |
2984452 | Hooper | May 1961 | A |
3089490 | Goldberg | May 1963 | A |
3096913 | Jousson | Jul 1963 | A |
3144867 | Trupp et al. | Aug 1964 | A |
D202041 | Burzlaff | Aug 1965 | S |
3209956 | McKenzie | Oct 1965 | A |
3216619 | Richards et al. | Nov 1965 | A |
3225759 | Drapen et al. | Dec 1965 | A |
3227158 | Mattingly | Jan 1966 | A |
3266623 | Poferl | Aug 1966 | A |
3297558 | Hillquist | Jan 1967 | A |
D208778 | Koch | Oct 1967 | S |
D209202 | Fulton et al. | Nov 1967 | S |
D209203 | Mattingly et al. | Nov 1967 | S |
D209204 | St. Clair et al. | Nov 1967 | S |
D209395 | Gilbert | Nov 1967 | S |
D210018 | Mattingly et al. | Jan 1968 | S |
D210019 | Johnson et al. | Jan 1968 | S |
3370214 | Aymar | Feb 1968 | A |
3391696 | Woodward | Jul 1968 | A |
3393673 | Mattingly et al. | Jul 1968 | A |
3400999 | Goldstein | Sep 1968 | A |
3418552 | Holmes | Dec 1968 | A |
3420228 | Kalbfeld | Jan 1969 | A |
3425410 | Cammack | Feb 1969 | A |
3453969 | Mattingly | Jul 1969 | A |
3465751 | Powers | Sep 1969 | A |
3467083 | Mattingly | Sep 1969 | A |
3467286 | Ostrowsky | Sep 1969 | A |
D215920 | McCarty et al. | Nov 1969 | S |
3487828 | Troy | Jan 1970 | A |
3489268 | Meierhoefer | Jan 1970 | A |
3495587 | Freedman | Feb 1970 | A |
3496933 | Lloyd | Feb 1970 | A |
3499440 | Gibbs | Mar 1970 | A |
3500824 | Gilbert | Mar 1970 | A |
3501203 | Falk | Mar 1970 | A |
3502072 | Stillman | Mar 1970 | A |
3517669 | Buono et al. | Jun 1970 | A |
D218270 | Soper | Aug 1970 | S |
3522801 | Robinson | Aug 1970 | A |
3532221 | Kaluhiokalani et al. | Oct 1970 | A |
3536065 | Moret | Oct 1970 | A |
3537444 | Garn | Nov 1970 | A |
3538950 | Porteners | Nov 1970 | A |
3547110 | Balamuth | Dec 1970 | A |
3561433 | Kovach | Feb 1971 | A |
D220334 | Mackay et al. | Mar 1971 | S |
3570525 | Borsum | Mar 1971 | A |
3572375 | Rosenberg | Mar 1971 | A |
3578884 | Jacobson | May 1971 | A |
D220996 | Irons | Jun 1971 | S |
3583609 | Oppenheimer | Jun 1971 | A |
3590813 | Roszyk | Jul 1971 | A |
3597846 | Weiss | Aug 1971 | A |
3608548 | Lewis | Sep 1971 | A |
D222862 | Cook | Jan 1972 | S |
3636947 | Balamuth | Jan 1972 | A |
3651576 | Massa | Mar 1972 | A |
3669101 | Kleiner | Jun 1972 | A |
3703170 | Ryckman, Jr. | Nov 1972 | A |
3718974 | Buchtel et al. | Mar 1973 | A |
3747595 | Grossan | Jul 1973 | A |
3768472 | Hodosh et al. | Oct 1973 | A |
3771186 | Moret et al. | Nov 1973 | A |
3783364 | Gallanis et al. | Jan 1974 | A |
3809506 | Malcosky | May 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3811432 | Moret | May 1974 | A |
3820532 | Eberhardt et al. | Jun 1974 | A |
3827147 | Condon | Aug 1974 | A |
3837166 | Hiraoka | Sep 1974 | A |
3840795 | Roszyk et al. | Oct 1974 | A |
3847145 | Grossan | Nov 1974 | A |
3854209 | Franklin et al. | Dec 1974 | A |
3863628 | Vit | Feb 1975 | A |
3871560 | Crippa | Mar 1975 | A |
3874506 | Hill et al. | Apr 1975 | A |
3912125 | Acklin | Oct 1975 | A |
3943628 | Kronman et al. | Mar 1976 | A |
3959883 | Walls et al. | Jun 1976 | A |
3973558 | Stouffer et al. | Aug 1976 | A |
3977084 | Sloan | Aug 1976 | A |
4001526 | Olson | Jan 1977 | A |
4004302 | Hori | Jan 1977 | A |
4007739 | Bron et al. | Feb 1977 | A |
4013227 | Herrera | Mar 1977 | A |
4052002 | Stouffer et al. | Oct 1977 | A |
D246667 | Mackay et al. | Dec 1977 | S |
D246668 | Mackay et al. | Dec 1977 | S |
4060870 | Cannarella | Dec 1977 | A |
4075761 | Behne et al. | Feb 1978 | A |
4078558 | Woog et al. | Mar 1978 | A |
4094311 | Hudson | Jun 1978 | A |
4108167 | Hickman et al. | Aug 1978 | A |
4108178 | Betush | Aug 1978 | A |
4109650 | Peclard | Aug 1978 | A |
4122845 | Stouffer et al. | Oct 1978 | A |
4133971 | Boyd et al. | Jan 1979 | A |
4135501 | Leunissan | Jan 1979 | A |
4141352 | Ebner et al. | Feb 1979 | A |
4144646 | Takemoto et al. | Mar 1979 | A |
4149315 | Page, Jr. et al. | Apr 1979 | A |
4154375 | Bippus | May 1979 | A |
4160383 | Rauschenberger | Jul 1979 | A |
4171572 | Nash | Oct 1979 | A |
4182038 | Fleer | Jan 1980 | A |
4200235 | Monschke | Apr 1980 | A |
4201200 | Hubner | May 1980 | A |
4210380 | Brzostek | Jul 1980 | A |
4215476 | Armstrong | Aug 1980 | A |
4219618 | Leonard | Aug 1980 | A |
4227878 | Lohn | Oct 1980 | A |
4229634 | Hickman et al. | Oct 1980 | A |
4236889 | Wright | Dec 1980 | A |
D258097 | Wistrand | Feb 1981 | S |
4248589 | Lewis | Feb 1981 | A |
4249899 | Davis | Feb 1981 | A |
4257458 | Kondo et al. | Mar 1981 | A |
4262799 | Perrett | Apr 1981 | A |
4266934 | Pernot | May 1981 | A |
4276023 | Phillips et al. | Jun 1981 | A |
4276880 | Malmin | Jul 1981 | A |
4302186 | Cammack | Nov 1981 | A |
4303064 | Buffa | Dec 1981 | A |
4303070 | Ichikawa et al. | Dec 1981 | A |
4306862 | Knox | Dec 1981 | A |
4315741 | Reichl | Feb 1982 | A |
4319568 | Tregoning | Mar 1982 | A |
4331422 | Heyman | May 1982 | A |
4337040 | Cammack et al. | Jun 1982 | A |
4340365 | Pisanu | Jul 1982 | A |
4340368 | Lococo | Jul 1982 | A |
D266117 | Oberheim | Sep 1982 | S |
4353694 | Pelerin | Oct 1982 | A |
4363626 | Schmidt et al. | Dec 1982 | A |
4365376 | Oda et al. | Dec 1982 | A |
4370131 | Banko | Jan 1983 | A |
4374354 | Petrovic et al. | Feb 1983 | A |
4382167 | Maruyama et al. | May 1983 | A |
4382786 | Lohn | May 1983 | A |
D270000 | Ketler | Aug 1983 | S |
4396011 | Mack et al. | Aug 1983 | A |
4412823 | Sakai et al. | Nov 1983 | A |
4416628 | Cammack | Nov 1983 | A |
4442830 | Markau | Apr 1984 | A |
4442831 | Trenary | Apr 1984 | A |
4452238 | Kerr | Jun 1984 | A |
4454866 | Fayen | Jun 1984 | A |
4512769 | Kozam et al. | Apr 1985 | A |
4517962 | Heckele | May 1985 | A |
4531912 | Schuss et al. | Jul 1985 | A |
4531913 | Taguchi | Jul 1985 | A |
4534340 | Kerr et al. | Aug 1985 | A |
4552130 | Kinoshita | Nov 1985 | A |
4561214 | Inoue | Dec 1985 | A |
D283374 | Cheuk-Yiu | Apr 1986 | S |
4585415 | Hommann | Apr 1986 | A |
4591777 | McCarty et al. | May 1986 | A |
4592728 | Davis | Jun 1986 | A |
4602906 | Grunenfelder | Jul 1986 | A |
4607627 | Leber et al. | Aug 1986 | A |
4613074 | Schulze | Sep 1986 | A |
4619009 | Rosenstatter | Oct 1986 | A |
4619612 | Weber et al. | Oct 1986 | A |
4629425 | Detsch | Dec 1986 | A |
4636198 | Stade | Jan 1987 | A |
4642037 | Fritchman | Feb 1987 | A |
4644937 | Hommann | Feb 1987 | A |
4645488 | Matukas | Feb 1987 | A |
4647831 | O'Malley et al. | Mar 1987 | A |
4648838 | Schlachter | Mar 1987 | A |
4650475 | Smith et al. | Mar 1987 | A |
4655198 | Hommann | Apr 1987 | A |
4669453 | Atkinson et al. | Jun 1987 | A |
4672953 | DiVito | Jun 1987 | A |
4673396 | Urbaniak | Jun 1987 | A |
D291354 | Camens | Aug 1987 | S |
4716352 | Hurn et al. | Dec 1987 | A |
4749340 | Ikeda et al. | Jun 1988 | A |
4770632 | Ryder et al. | Sep 1988 | A |
D298565 | Kohler, Jr. et al. | Nov 1988 | S |
4783321 | Spence | Nov 1988 | A |
4787845 | Valentine | Nov 1988 | A |
4787847 | Martin et al. | Nov 1988 | A |
4798292 | Hauze | Jan 1989 | A |
4803974 | Powell | Feb 1989 | A |
4804364 | Dieras et al. | Feb 1989 | A |
4810148 | Aisa et al. | Mar 1989 | A |
4818229 | Vasile | Apr 1989 | A |
4820152 | Warrin et al. | Apr 1989 | A |
4821923 | Skorka | Apr 1989 | A |
4824368 | Hickman | Apr 1989 | A |
4826431 | Fujimura et al. | May 1989 | A |
4827551 | Maser et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4854869 | Lawhorn | Aug 1989 | A |
4861340 | Smith et al. | Aug 1989 | A |
4862876 | Lih-Sheng | Sep 1989 | A |
4869720 | Chernack | Sep 1989 | A |
4880382 | Moret et al. | Nov 1989 | A |
4886452 | Lohn | Dec 1989 | A |
4900252 | Liefke et al. | Feb 1990 | A |
4902225 | Lohn | Feb 1990 | A |
4903687 | Lih-Sheng | Feb 1990 | A |
4906187 | Amadera | Mar 1990 | A |
4907744 | Jousson | Mar 1990 | A |
4915304 | Campani | Apr 1990 | A |
4925450 | Imonti et al. | May 1990 | A |
4928675 | Thornton | May 1990 | A |
4930660 | Porteous | Jun 1990 | A |
4941459 | Mathur | Jul 1990 | A |
4950159 | Hansen | Aug 1990 | A |
4958629 | Peace et al. | Sep 1990 | A |
4958751 | Curtis et al. | Sep 1990 | A |
4959199 | Brewer | Sep 1990 | A |
4961698 | Vlock | Oct 1990 | A |
4966551 | Betush | Oct 1990 | A |
4969874 | Michel et al. | Nov 1990 | A |
4973246 | Black | Nov 1990 | A |
4973247 | Varnes et al. | Nov 1990 | A |
4973250 | Milman | Nov 1990 | A |
4975054 | Esrock | Dec 1990 | A |
4979503 | Chernack | Dec 1990 | A |
4979504 | Mills | Dec 1990 | A |
4989590 | Baum et al. | Feb 1991 | A |
4998880 | Nerli | Mar 1991 | A |
5013241 | Von Gutfeld et al. | May 1991 | A |
5014884 | Wunsch | May 1991 | A |
5019054 | Clement et al. | May 1991 | A |
5027798 | Primiano | Jul 1991 | A |
5029576 | Evans, Sr. | Jul 1991 | A |
5033617 | Hartwein et al. | Jul 1991 | A |
5033961 | Kandler et al. | Jul 1991 | A |
D318918 | Hartwein | Aug 1991 | S |
5046486 | Grulke et al. | Sep 1991 | A |
5049071 | Davis et al. | Sep 1991 | A |
5060825 | Palmer et al. | Oct 1991 | A |
5061180 | Wiele | Oct 1991 | A |
5062795 | Woog | Nov 1991 | A |
5064168 | Raines et al. | Nov 1991 | A |
D322314 | Ohbayashi | Dec 1991 | S |
5071346 | Domaas | Dec 1991 | A |
5082115 | Hutcheson | Jan 1992 | A |
5082443 | Lohn | Jan 1992 | A |
5085317 | Jensen et al. | Feb 1992 | A |
5086756 | Powell | Feb 1992 | A |
5095893 | Rawden, Jr. | Mar 1992 | A |
5098291 | Curtis et al. | Mar 1992 | A |
5098676 | Brooks, Jr. | Mar 1992 | A |
5100319 | Baum | Mar 1992 | A |
5117871 | Gardner et al. | Jun 1992 | A |
5125835 | Young | Jun 1992 | A |
5127831 | Bab | Jul 1992 | A |
5142723 | Lustig et al. | Sep 1992 | A |
5150841 | Silvenis et al. | Sep 1992 | A |
5172810 | Brewer | Dec 1992 | A |
5173273 | Brewer | Dec 1992 | A |
5183035 | Weir | Feb 1993 | A |
5197458 | Ito et al. | Mar 1993 | A |
5197460 | Ito et al. | Mar 1993 | A |
5199871 | Young | Apr 1993 | A |
5203697 | Malmin | Apr 1993 | A |
5203769 | Clement et al. | Apr 1993 | A |
5204004 | Johnston et al. | Apr 1993 | A |
5208933 | Lustig et al. | May 1993 | A |
5215193 | Dennis | Jun 1993 | A |
5218956 | Handler et al. | Jun 1993 | A |
5220914 | Thompson | Jun 1993 | A |
5228646 | Raines | Jul 1993 | A |
5230624 | Wolf et al. | Jul 1993 | A |
5232687 | Geimer | Aug 1993 | A |
5235968 | Woog | Aug 1993 | A |
5241714 | Barry | Sep 1993 | A |
5246367 | Ito et al. | Sep 1993 | A |
5252064 | Baum et al. | Oct 1993 | A |
D341200 | Yoshimoto | Nov 1993 | S |
5257933 | Jousson | Nov 1993 | A |
5261448 | Furuya et al. | Nov 1993 | A |
D341943 | Si-Hoe | Dec 1993 | S |
5267586 | Jankavaara | Dec 1993 | A |
5269684 | Fischer | Dec 1993 | A |
5281137 | Jousson | Jan 1994 | A |
5281139 | Frank et al. | Jan 1994 | A |
5282745 | Wiltrout et al. | Feb 1994 | A |
5286192 | Dixon | Feb 1994 | A |
5286201 | Yu | Feb 1994 | A |
5295832 | Evans | Mar 1994 | A |
5297962 | O'Connor et al. | Mar 1994 | A |
D346212 | Hosl | Apr 1994 | S |
5301381 | Klupt | Apr 1994 | A |
5302123 | Bechard | Apr 1994 | A |
5317691 | Traeger | May 1994 | A |
5321865 | Kaeser | Jun 1994 | A |
5323770 | Ito et al. | Jun 1994 | A |
5331704 | Rosen et al. | Jul 1994 | A |
5344317 | Pacher et al. | Sep 1994 | A |
5346677 | Risk | Sep 1994 | A |
D351892 | Wolf et al. | Oct 1994 | S |
5360338 | Waggoner | Nov 1994 | A |
5368548 | Jousson | Nov 1994 | A |
5370534 | Wolf et al. | Dec 1994 | A |
D354168 | Hartwein | Jan 1995 | S |
D354559 | Knute | Jan 1995 | S |
5378149 | Stropko | Jan 1995 | A |
5380201 | Kawata | Jan 1995 | A |
D356864 | Woog | Mar 1995 | S |
5399089 | Eichman | Mar 1995 | A |
D358883 | Vos | May 1995 | S |
5430262 | Matsui | Jul 1995 | A |
5456672 | Diederich et al. | Oct 1995 | A |
5465445 | Yeh | Nov 1995 | A |
5467495 | Boland et al. | Nov 1995 | A |
5468148 | Ricks | Nov 1995 | A |
5470305 | Arnett et al. | Nov 1995 | A |
5474450 | Chronister | Dec 1995 | A |
5474451 | Dalrymple et al. | Dec 1995 | A |
5476379 | Disel | Dec 1995 | A |
5484281 | Renow et al. | Jan 1996 | A |
5487877 | Choi | Jan 1996 | A |
5490779 | Malmin | Feb 1996 | A |
5505916 | Berry, Jr. | Apr 1996 | A |
D369656 | Vos | May 1996 | S |
D370125 | Craft et al. | May 1996 | S |
5525058 | Gallant et al. | Jun 1996 | A |
5526841 | Detsch et al. | Jun 1996 | A |
5540587 | Malmin | Jul 1996 | A |
5547374 | Coleman | Aug 1996 | A |
D373631 | Maeda et al. | Sep 1996 | S |
5554014 | Becker | Sep 1996 | A |
5554025 | Kinsel | Sep 1996 | A |
5556001 | Weissman et al. | Sep 1996 | A |
5564629 | Weissman et al. | Oct 1996 | A |
D376893 | Gornet | Dec 1996 | S |
D377091 | Scott, Sr. | Dec 1996 | S |
5613259 | Craft et al. | Mar 1997 | A |
5616028 | Hafele et al. | Apr 1997 | A |
5626472 | Pennetta | May 1997 | A |
5634791 | Matsuura et al. | Jun 1997 | A |
5636987 | Serfaty | Jun 1997 | A |
5640735 | Manning | Jun 1997 | A |
D382407 | Craft et al. | Aug 1997 | S |
5653591 | Loge | Aug 1997 | A |
5659995 | Hoffman | Aug 1997 | A |
5667483 | Santos | Sep 1997 | A |
D386576 | Wang et al. | Nov 1997 | S |
5683192 | Kilfoil | Nov 1997 | A |
5685829 | Allen | Nov 1997 | A |
5685851 | Murphy et al. | Nov 1997 | A |
5697784 | Hafele et al. | Dec 1997 | A |
D388612 | Stutzer et al. | Jan 1998 | S |
D388613 | Stutzer et al. | Jan 1998 | S |
D389091 | Dickinson | Jan 1998 | S |
5709545 | Johnston et al. | Jan 1998 | A |
D390934 | McKeone | Feb 1998 | S |
5716007 | Nottingham et al. | Feb 1998 | A |
5718668 | Arnett et al. | Feb 1998 | A |
5746595 | Ford | May 1998 | A |
5749726 | Kinsel | May 1998 | A |
5759502 | Spencer et al. | Jun 1998 | A |
5779471 | Tseng et al. | Jul 1998 | A |
5779654 | Foley et al. | Jul 1998 | A |
5795153 | Rechmann | Aug 1998 | A |
5796325 | Lundell et al. | Aug 1998 | A |
5833065 | Burgess | Nov 1998 | A |
5836030 | Hazeu et al. | Nov 1998 | A |
D402744 | Zuege | Dec 1998 | S |
5851079 | Horstman et al. | Dec 1998 | A |
D403511 | Serbinski | Jan 1999 | S |
D406334 | Rosenthal et al. | Mar 1999 | S |
5876201 | Wilson et al. | Mar 1999 | A |
D408511 | Allen et al. | Apr 1999 | S |
5901397 | Häfele et al. | May 1999 | A |
5934902 | Abahusayn | Aug 1999 | A |
D413975 | Maeda | Sep 1999 | S |
D416999 | Miyamoto | Nov 1999 | S |
D417082 | Classen et al. | Nov 1999 | S |
5993402 | Sauer et al. | Nov 1999 | A |
6030215 | Ellion et al. | Feb 2000 | A |
6038960 | Fukushima et al. | Mar 2000 | A |
6039180 | Grant | Mar 2000 | A |
6047429 | Wu | Apr 2000 | A |
D424181 | Caplow | May 2000 | S |
D425615 | Bachman et al. | May 2000 | S |
D425981 | Bachman et al. | May 2000 | S |
6056548 | Neuberger et al. | May 2000 | A |
6056710 | Bachman et al. | May 2000 | A |
D426633 | Bachman et al. | Jun 2000 | S |
6089865 | Edgar | Jul 2000 | A |
6116866 | Tomita et al. | Sep 2000 | A |
6120755 | Jacobs | Sep 2000 | A |
6124699 | Suzuki et al. | Sep 2000 | A |
D434500 | Pollock et al. | Nov 2000 | S |
6159006 | Cook et al. | Dec 2000 | A |
6164967 | Sale et al. | Dec 2000 | A |
D435905 | Bachman et al. | Jan 2001 | S |
D437049 | Hartwein | Jan 2001 | S |
6193512 | Wallace | Feb 2001 | B1 |
6193932 | Wu et al. | Feb 2001 | B1 |
6199239 | Dickerson | Mar 2001 | B1 |
6200134 | Kovac | Mar 2001 | B1 |
D439781 | Spore | Apr 2001 | S |
6217835 | Riley et al. | Apr 2001 | B1 |
D441861 | Hafliger | May 2001 | S |
6233773 | Karge et al. | May 2001 | B1 |
6234205 | D'Amelio et al. | May 2001 | B1 |
6237178 | Krammer et al. | May 2001 | B1 |
6247929 | Bachman et al. | Jun 2001 | B1 |
6280190 | Hoffman | Aug 2001 | B1 |
D448236 | Murray | Sep 2001 | S |
6293792 | Hanson | Sep 2001 | B1 |
D449884 | Tobin et al. | Oct 2001 | S |
D453453 | Lun | Feb 2002 | S |
D455201 | Jones | Apr 2002 | S |
D455203 | Jones | Apr 2002 | S |
6363565 | Paffrath | Apr 2002 | B1 |
D457949 | Krug | May 2002 | S |
D464799 | Crossman et al. | Oct 2002 | S |
6468482 | Frieze et al. | Oct 2002 | B1 |
6475173 | Bachman et al. | Nov 2002 | B1 |
6485451 | Roberts et al. | Nov 2002 | B1 |
6497375 | Srinath et al. | Dec 2002 | B1 |
6497572 | Hood et al. | Dec 2002 | B2 |
6502584 | Fordham | Jan 2003 | B1 |
D470660 | Schaber | Feb 2003 | S |
6532837 | Magussen, Jr | Mar 2003 | B1 |
6558344 | McKinnon et al. | May 2003 | B2 |
6561808 | Neuberger et al. | May 2003 | B2 |
D475346 | McCurrach et al. | Jun 2003 | S |
D476743 | D'Silva | Jul 2003 | S |
6589477 | Frieze et al. | Jul 2003 | B1 |
6602071 | Ellion et al. | Aug 2003 | B1 |
6632091 | Cise et al. | Oct 2003 | B1 |
D482451 | Page et al. | Nov 2003 | S |
6640999 | Peterson | Nov 2003 | B2 |
6647577 | Tam | Nov 2003 | B2 |
6659674 | Carlucci et al. | Dec 2003 | B2 |
6663386 | Moelsgaard | Dec 2003 | B1 |
6669059 | Mehta | Dec 2003 | B2 |
D484971 | Hartwein | Jan 2004 | S |
6681418 | Bierend | Jan 2004 | B1 |
D486573 | Callaghan et al. | Feb 2004 | S |
6689078 | Rehkemper et al. | Feb 2004 | B1 |
6699208 | Bachman et al. | Mar 2004 | B2 |
6719561 | Gugel et al. | Apr 2004 | B2 |
D489183 | Akahori et al. | May 2004 | S |
6739782 | Rehkemper et al. | May 2004 | B1 |
6740053 | Kaplowitz | May 2004 | B2 |
D490899 | Gagnon | Jun 2004 | S |
D491728 | Jimenez | Jun 2004 | S |
D492996 | Rehkemper et al. | Jul 2004 | S |
6761324 | Chang | Jul 2004 | B2 |
6766549 | Klupt | Jul 2004 | B2 |
D495142 | Berde | Aug 2004 | S |
D495143 | Berde | Aug 2004 | S |
6779216 | Davies et al. | Aug 2004 | B2 |
6783004 | Rinner | Aug 2004 | B1 |
6783505 | Lai | Aug 2004 | B1 |
6796796 | Segal | Sep 2004 | B2 |
6808331 | Hall et al. | Oct 2004 | B2 |
D498643 | Pryor | Nov 2004 | S |
6814259 | Foster et al. | Nov 2004 | B1 |
D499885 | Xi | Dec 2004 | S |
6835181 | Hippensteel | Dec 2004 | B2 |
D500599 | Callaghan | Jan 2005 | S |
6836917 | Blaustein et al. | Jan 2005 | B2 |
6837708 | Chen et al. | Jan 2005 | B2 |
6884069 | Goldman | Apr 2005 | B2 |
6902337 | Kuo | Jun 2005 | B1 |
6907879 | Drinan et al. | Jun 2005 | B2 |
D509585 | Kling et al. | Sep 2005 | S |
D513638 | Pan | Jan 2006 | S |
D515215 | Wang | Feb 2006 | S |
D522652 | Massey | Jun 2006 | S |
7080980 | Klupt | Jul 2006 | B2 |
D529661 | Schmidt | Oct 2006 | S |
D530010 | Luettgen et al. | Oct 2006 | S |
7117555 | Fattori et al. | Oct 2006 | B2 |
D532570 | Vizcarra | Nov 2006 | S |
7131838 | Suzuki et al. | Nov 2006 | B2 |
D533720 | Vu | Dec 2006 | S |
7147468 | Snyder et al. | Dec 2006 | B2 |
D538474 | Sheppard et al. | Mar 2007 | S |
D548334 | Izumi | Aug 2007 | S |
D550097 | Lepoitevin | Sep 2007 | S |
D553980 | VerWeyst | Oct 2007 | S |
7276035 | Lu | Oct 2007 | B2 |
7314456 | Shaw | Jan 2008 | B2 |
D565175 | Boyd et al. | Mar 2008 | S |
7344510 | Yande | Mar 2008 | B1 |
D565713 | Gao | Apr 2008 | S |
7367803 | Egeresi | May 2008 | B2 |
D574952 | Boyd et al. | Aug 2008 | S |
7414337 | Wilkinson et al. | Aug 2008 | B2 |
D577198 | Jimenez | Sep 2008 | S |
D577814 | Seki et al. | Sep 2008 | S |
D581279 | Oates | Nov 2008 | S |
7455521 | Fishburne, Jr. | Nov 2008 | B2 |
7469440 | Boland et al. | Dec 2008 | B2 |
D585132 | Pukall | Jan 2009 | S |
D588262 | Pukall | Mar 2009 | S |
7500584 | Schutz | Mar 2009 | B2 |
D590492 | Powell | Apr 2009 | S |
D592748 | Boulton | May 2009 | S |
D595136 | Canamasas Puigbo | Jun 2009 | S |
D601694 | Rocklin | Oct 2009 | S |
D601697 | Sobeich et al. | Oct 2009 | S |
D603708 | Handy | Nov 2009 | S |
D608430 | Slothower | Jan 2010 | S |
7670141 | Thomas et al. | Mar 2010 | B2 |
7677888 | Halm | Mar 2010 | B1 |
D613550 | Picozza et al. | Apr 2010 | S |
D621949 | Seki et al. | Aug 2010 | S |
D622928 | Griebel | Sep 2010 | S |
D623376 | Griebel | Sep 2010 | S |
D625406 | Seki et al. | Oct 2010 | S |
7814585 | Reich | Oct 2010 | B1 |
D629884 | Stephens | Dec 2010 | S |
7857623 | Grez | Dec 2010 | B2 |
7862536 | Chen et al. | Jan 2011 | B2 |
7959597 | Baker et al. | Jun 2011 | B2 |
D640872 | Nanda | Jul 2011 | S |
D648539 | Wai | Nov 2011 | S |
D651409 | Papenfu | Jan 2012 | S |
D651805 | Hay | Jan 2012 | S |
D653340 | Goerge et al. | Jan 2012 | S |
8113832 | Snyder et al. | Feb 2012 | B2 |
D655380 | Taylor | Mar 2012 | S |
D658381 | Gebski | May 2012 | S |
D658538 | Korzeniowski | May 2012 | S |
8220726 | Qiu et al. | Jul 2012 | B2 |
D666912 | Kawai | Sep 2012 | S |
8256979 | Hilscher et al. | Sep 2012 | B2 |
D668339 | Luoto | Oct 2012 | S |
D669169 | Washington et al. | Oct 2012 | S |
8297534 | Li et al. | Oct 2012 | B2 |
D670373 | Taylor et al. | Nov 2012 | S |
D670958 | Picozza et al. | Nov 2012 | S |
D671637 | Gebski et al. | Nov 2012 | S |
D672018 | Bucher | Dec 2012 | S |
8366024 | Leber et al. | Feb 2013 | B2 |
8403577 | Khoshnevis | Mar 2013 | B2 |
8403665 | Thomas et al. | Mar 2013 | B2 |
8408483 | Boyd et al. | Apr 2013 | B2 |
8418300 | Miller et al. | Apr 2013 | B2 |
D686311 | Mori | Jul 2013 | S |
D694378 | Bates | Nov 2013 | S |
D694398 | Taylor | Nov 2013 | S |
D700343 | Liu | Feb 2014 | S |
D702819 | Garland | Apr 2014 | S |
D702821 | Garland | Apr 2014 | S |
D707350 | Woodard | Jun 2014 | S |
D709183 | Kemlein | Jul 2014 | S |
D714929 | Kim et al. | Oct 2014 | S |
D714930 | Kim et al. | Oct 2014 | S |
D717412 | Bucher | Nov 2014 | S |
D717427 | Kim | Nov 2014 | S |
D718855 | Kim et al. | Dec 2014 | S |
D723387 | Fath | Mar 2015 | S |
D725770 | Kim et al. | Mar 2015 | S |
D731640 | Kim et al. | Jun 2015 | S |
D735305 | Obara | Jul 2015 | S |
D740936 | Kim et al. | Oct 2015 | S |
D745329 | Ong | Dec 2015 | S |
D746975 | Schenck | Jan 2016 | S |
D747464 | Taylor | Jan 2016 | S |
D754330 | Kim et al. | Apr 2016 | S |
D756122 | Taylor | May 2016 | S |
D764051 | Wang | Aug 2016 | S |
D766423 | Kim et al. | Sep 2016 | S |
D772396 | Kim et al. | Nov 2016 | S |
D772397 | Kim et al. | Nov 2016 | S |
D774651 | Kaib | Dec 2016 | S |
D776253 | Li | Jan 2017 | S |
D782326 | Fath | Mar 2017 | S |
D782656 | Au | Mar 2017 | S |
D786422 | Au | May 2017 | S |
9642677 | Luettgen et al. | May 2017 | B2 |
D788907 | Kim | Jun 2017 | S |
D797278 | Uchida | Sep 2017 | S |
D798440 | Kim | Sep 2017 | S |
D802119 | Kim | Nov 2017 | S |
D809650 | Kim | Feb 2018 | S |
20020090252 | Hall et al. | Jul 2002 | A1 |
20020108193 | Gruber | Aug 2002 | A1 |
20020119415 | Bailey | Aug 2002 | A1 |
20020152565 | Klupt | Oct 2002 | A1 |
20030060743 | Chang | Mar 2003 | A1 |
20030098249 | Rollock | May 2003 | A1 |
20030162146 | Shortt et al. | Aug 2003 | A1 |
20030204155 | Egeresi | Oct 2003 | A1 |
20030213075 | Hui et al. | Nov 2003 | A1 |
20040045107 | Egeresi | Mar 2004 | A1 |
20040076921 | Gofman et al. | Apr 2004 | A1 |
20040122377 | Fischer et al. | Jun 2004 | A1 |
20040126730 | Panagotacos | Jul 2004 | A1 |
20040180569 | Chiou | Oct 2004 | A1 |
20040209222 | Snyder | Oct 2004 | A1 |
20050049620 | Chang | Mar 2005 | A1 |
20050064371 | Soukos et al. | Mar 2005 | A1 |
20050101894 | Hippensteel | May 2005 | A1 |
20050102773 | Obermann et al. | May 2005 | A1 |
20050144745 | Russell | Jul 2005 | A1 |
20050177079 | Pan | Aug 2005 | A1 |
20050271531 | Brown et al. | Dec 2005 | A1 |
20060008373 | Schutz | Jan 2006 | A1 |
20060010624 | Cleland | Jan 2006 | A1 |
20060026784 | Moskovich et al. | Feb 2006 | A1 |
20060057539 | Sodo | Mar 2006 | A1 |
20060078844 | Goldman et al. | Apr 2006 | A1 |
20060079818 | Yande | Apr 2006 | A1 |
20060207052 | Tran | Sep 2006 | A1 |
20070082316 | Zhadanov et al. | Apr 2007 | A1 |
20070082317 | Chuang | Apr 2007 | A1 |
20070113360 | Tsai | May 2007 | A1 |
20070202459 | Boyd et al. | Aug 2007 | A1 |
20070203439 | Boyd et al. | Aug 2007 | A1 |
20070254260 | Alden | Nov 2007 | A1 |
20080189951 | Molema et al. | Aug 2008 | A1 |
20080213719 | Giniger et al. | Sep 2008 | A1 |
20080253906 | Strong | Oct 2008 | A1 |
20090070949 | Sagel et al. | Mar 2009 | A1 |
20090071267 | Mathus et al. | Mar 2009 | A1 |
20090082706 | Shaw | Mar 2009 | A1 |
20090124945 | Reich et al. | May 2009 | A1 |
20090139351 | Reichmuth | Jun 2009 | A1 |
20090163839 | Alexander | Jun 2009 | A1 |
20090184015 | Ruppert | Jul 2009 | A1 |
20090188780 | Watanabe | Jul 2009 | A1 |
20090281454 | Baker et al. | Nov 2009 | A1 |
20100010524 | Barrington | Jan 2010 | A1 |
20100015566 | Shaw | Jan 2010 | A1 |
20100049177 | Boone, III et al. | Feb 2010 | A1 |
20100084249 | Bandy et al. | Apr 2010 | A1 |
20100108476 | Trudeau | May 2010 | A1 |
20100190132 | Taylor et al. | Jul 2010 | A1 |
20100239998 | Snyder et al. | Sep 2010 | A1 |
20100261134 | Boyd et al. | Oct 2010 | A1 |
20100261137 | Boyd et al. | Oct 2010 | A1 |
20100326536 | Nan | Dec 2010 | A1 |
20100330527 | Boyd et al. | Dec 2010 | A1 |
20110027749 | Syed | Feb 2011 | A1 |
20110076090 | Wu et al. | Mar 2011 | A1 |
20110097683 | Boyd et al. | Apr 2011 | A1 |
20110139826 | Hair et al. | Jun 2011 | A1 |
20110144588 | Taylor et al. | Jun 2011 | A1 |
20110184341 | Baker et al. | Jul 2011 | A1 |
20110307039 | Cornell | Dec 2011 | A1 |
20120021374 | Cacka et al. | Jan 2012 | A1 |
20120045730 | Snyder et al. | Feb 2012 | A1 |
20120064480 | Hegemann | Mar 2012 | A1 |
20120077145 | Tsurukawa | Mar 2012 | A1 |
20120112018 | Barry | May 2012 | A1 |
20120141952 | Snyder et al. | Jun 2012 | A1 |
20120179118 | Hair | Jul 2012 | A1 |
20120189976 | McDonough et al. | Jul 2012 | A1 |
20120266396 | Leung | Oct 2012 | A1 |
20120277663 | Millman et al. | Nov 2012 | A1 |
20120277677 | Taylor et al. | Nov 2012 | A1 |
20120277678 | Taylor et al. | Nov 2012 | A1 |
20120279002 | Sokol et al. | Nov 2012 | A1 |
20120295220 | Thomas et al. | Nov 2012 | A1 |
20130089832 | Lee | Apr 2013 | A1 |
20130125327 | Schmid | May 2013 | A1 |
20130295520 | Hsieh | Nov 2013 | A1 |
20140106296 | Woodard et al. | Apr 2014 | A1 |
20140193774 | Snyder et al. | Jul 2014 | A1 |
20140259474 | Sokol et al. | Sep 2014 | A1 |
20140272769 | Luettgen et al. | Sep 2014 | A1 |
20140272782 | Luettgen et al. | Sep 2014 | A1 |
20140352088 | Wu | Dec 2014 | A1 |
20150004559 | Luettgen et al. | Jan 2015 | A1 |
20150147717 | Taylor | May 2015 | A1 |
20150173850 | Garrigues | Jun 2015 | A1 |
20150182319 | Wagner | Jul 2015 | A1 |
20160100921 | Ungar | Apr 2016 | A1 |
20160151133 | Luettgen et al. | Jun 2016 | A1 |
20170049530 | Cacka | Feb 2017 | A1 |
20170239132 | Luettgen et al. | Aug 2017 | A1 |
20170252251 | Williams et al. | Sep 2017 | A1 |
20180140400 | Hoshino | May 2018 | A1 |
20180168785 | Wagner et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
851479 | Sep 1970 | CA |
655237 | Apr 1986 | CH |
101825913 | Sep 2010 | CN |
203089435 | Jul 2013 | CN |
203829079 | Sep 2014 | CN |
204049908 | Dec 2014 | CN |
1466963 | May 1969 | DE |
2019003 | Nov 1971 | DE |
2409752 | Sep 1975 | DE |
2545936 | Apr 1977 | DE |
2714876 | Oct 1978 | DE |
2910982 | Feb 1980 | DE |
3346651 | Jul 1985 | DE |
0023672 | Jul 1980 | EP |
0515983 | Feb 1992 | EP |
1825827 | Aug 2007 | EP |
3323384 | May 2018 | EP |
2556954 | Jun 1985 | FR |
2654627 | May 1991 | FR |
838564 | Jun 1960 | GB |
1182031 | Feb 1970 | GB |
1456322 | Nov 1976 | GB |
2018605 | Oct 1979 | GB |
2-134150 | May 1990 | JP |
H02-134150 | May 1990 | JP |
11-56879 | Mar 1999 | JP |
2006140049 | Jun 2006 | JP |
2009-39455 | Feb 2009 | JP |
20120126265 | Nov 2012 | KR |
WO95016404 | Jun 1995 | WO |
0110327 | Feb 2001 | WO |
WO04021958 | Mar 2004 | WO |
WO04039205 | May 2004 | WO |
WO2004060259 | Jul 2004 | WO |
WO2004062518 | Jul 2004 | WO |
WO2008070730 | Jun 2008 | WO |
WO2008157585 | Dec 2008 | WO |
2010134051 | Nov 2010 | WO |
WO2013124691 | Aug 2013 | WO |
Entry |
---|
US RE27,274 E, 01/1972, Mattingly (withdrawn) |
The Right Tool, Electron Fusion Devices, Inc., 2 pages, at least as early as Feb. 1991. |
Japanese Packaging, 2 pages, at least as early as Dec. 2002. |
Japanese Instruction Brochure, 20 pages, at least as early as Dec. 2002. |
Brochure: Woog International, “You have a 98% chance of getting gum disease. Unless you read this.”, Lancaster, Pennsylvania, 5 pages, Feb. 1987. |
Brochure: Woog International, “We put the control of home dental care back into the hands of the professional”, Lancaster, Pennsylvania, 2 pages, Feb. 1987. |
Brochure: Woog International, “Products at a Glance: Home Dental Care System” Woog Orajet, 3 pages, at least as early as Dec. 18, 1998. |
Website: http://www.just4teeth.com/product/Panasonic/Panasonic_Portable_lrrigator.htm, 2 pages, at least as early as Jun. 20, 2003. |
Website: http://www.videodirectstore.com/store/merchant.mv?Screen=PROD&Product_Code=EW1'. . . , 2 pages, at least as early as Jun. 20, 2003. |
Website: http://products.consumerguide.com/cp/family/review/index.cfm/id/18742, 2 pages, at least as early as Jun. 20, 2003. |
Website: http://www.racekarteng.com/images/walbroparts.gif and http://www.muller.net/mullermachine/docs/walbro1.html, 4 pages, at least as early as Jun. 20, 2003. |
European Search Report, EPO Application No. 07250799.9, dated Jul. 5, 2007. |
European Search Report, EPO Application No. 07252693.2, 14 pages, dated Apr. 28, 2008. |
European Examination Report, EPO Application No. 07250799.9, dated Feb. 5, 2009. |
International Search Report, Application No. PCT/US2010/028180, 2 pages, dated May 18, 2010. |
International Search Report, PCT/US2010/060800, 2 pages, dated Feb. 11, 2011. |
International Search Report, PCT/US2011/052795, 10 pages, dated Jan. 17, 2012. |
Waterpik SinuSense Website: http://www.insightsbyapril.com/2012/03/waterpik-natural-remedy-for-sinus.html, 8 pages, retrieved on May 31, 2012. |
Website: https://www.waterpik.com/about-US/, 3 pages. |
Waterpik WP 350W Oral Irrigator. Dentist.net. Copyright date 2013. Date accessed: Mar. 30, 2017, 2 pages <http://www.dentalhoo.com/waterpik-wp350.asp>. |
IPik Portable Oral Irrigator. AliExpress. Date reviewed: Oct. 5, 2016. <https://www.allexpress.com/...e-Oral-Care-Product-Nasal-lrrigator-Tooth-Flosser-Water/1525541997.html?aff platform=aaf&cpt=1490913714609&sk=yfAeyJa&aff trace key=c5a300c4f02e46d08c042f5292e1762f-1490913714609-07517-yfAeyJa>, 18 pages. |
Brite Leafs Professional Portable 2-in-1 Nasal Sinus & Oral Irrigator. Brite Leafs. Copyright date 2012, <http://www.briteleafs.com/product6.html> , 1 page. |
AliExpress. Date reviewed: Jan. 12, 2017. <https://www.aliexpress.com/item/Cordless-Water-Floss-Portable-Oral-Irrigator-Dental-Water-Flosser-Waterpic-Whatpick-Dental-Water-Pic-Whater-Pick/32769416341.html?spm=2114.40010308.4.75.Owuzfj>. |
Suvo. “Helical Gears vs Spur Gears—Advantages and Disadvantages Compared.” Brighthub Engineering, Aug. 18, 2010, www.brighthubengineering.com/manufacturing-technology/33535-helical-gears-vs-spur-gears/., 7 pages. |
Waterpik ADA Accepted WP-663, posted at amazon.com, earliest date reviewed on Feb. 6, 2014, [online], acquired on Feb. 12, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Accepted-WP-663-Aquarius-Flosser/dp/B072JFVXSY/ref=cm_cr_arp_d_product_top?ie=UTF8&th=1>(Year: 2014). |
Waterpik Classic Professional Water Flosser, WP-72, posted at amazon.com, earliest date reviewed on Mar. 5, 2016, [online], acquired on Feb. 23, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Classic-Professional-Flosser-WP-72/dp/B00HFQQOU6/ref=cm_cr_arp_d_product_top?ie=UTF8>(Year: 2016). |
Number | Date | Country | |
---|---|---|---|
20180168784 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62434993 | Dec 2016 | US |