Oral irrigator with variable output fluid characteristics

Information

  • Patent Grant
  • 10945912
  • Patent Number
    10,945,912
  • Date Filed
    Friday, May 5, 2017
    6 years ago
  • Date Issued
    Tuesday, March 16, 2021
    3 years ago
Abstract
An oral irrigator including a reservoir, a tip in fluid communication with the reservoir, a pump in fluid communication with the tip and the reservoir, where the motor drives the pump. The oral irrigator also includes a control module electrically coupled to the motor to vary an output of the motor. During a normal mode, the control module drives the motor to output a normal pulse rate, a normal flow rate, and a normal fluid pressure as the fluid exits the tip and during a massage mode, the control module drives the motor to output a massage pulse rate, a massage flow rate, and a massage fluid pressure as the fluid exits the tip. The massage pulse rate is lower than the normal pulse rate, the massage fluid pressure is lower than the normal fluid pressure, and the massage fluid pressure is lower than the normal fluid pressure.
Description
TECHNICAL FIELD

The present invention relates to health and personal hygiene equipment and methods of controlling such equipment. More particularly, the present invention relates to oral irrigators and methods of controlling such equipment.


BACKGROUND

Oral irrigators typically are used to clean a user's teeth and gums by discharging a pressurized fluid stream into a user's oral cavity. The fluid impacts the teeth and gums to remove debris. Often, some users may prefer one pressure level whereas others may prefer another pressure. However, typically, the pressure level may be determined by characteristics of the pump and motor and may not be variable between users. For example, certain flow characteristics, such as pressure, are determined by a mechanical valve, cavity or fluid passage size, or the like, which may not be altered based on particular user preferences and may be complicated to manufacture.


SUMMARY

One example may take the form of a handheld oral irrigator general includes an irrigating device, such as an oral irrigator or a nasal irrigator. The irrigating device includes a pump and a motor connected to the pump and configured to selectively drive the pump. Additionally, the irrigating device includes a massage module in communication with the motor. During a normal mode, the pump has a first pulse rate and during a massage mode, the massage module provides a massage control signal to the motor, causing the pump to have a second pulse rate.


Another example may take the form of a method for varying a pulse rate for an oral cleaning device. The method includes activating a motor connected to pump; determining by a processing element whether a massage mode should be activated; if the massage mode is activated, providing a massage signal to the motor, causing a massage pulse rate output by the pump; and if the massage mode is not activated, providing a normal signal to the motor, causing a normal pulse rate output by the pump.


Yet another example may take the form of an oral irrigator. The oral irrigator includes a reservoir defining a fluid cavity, a pump in fluid communication with the fluid cavity, and a motor connected to the pump and configured to selectively activate the pump. The oral irrigator may also include a handle in fluid communication with the pump and a signal generator in communication with the motor and configured to selectively vary a control signal provided to the motor to vary one or more output characteristics of the motor.


In another example, an oral irrigator including a reservoir, a tip in fluid communication with the reservoir, a pump in fluid communication with the tip and the reservoir, where the motor drives the pump is disclosed. The oral irrigator also includes a control module electrically coupled to the motor to vary an output of the motor. During a normal mode, the control module drives the motor to output a normal pulse rate, a normal flow rate, and a normal fluid pressure as the fluid exits the tip and during a massage mode, the control module drives the motor to output a massage pulse rate, a massage flow rate, and a massage fluid pressure as the fluid exits the tip. The massage pulse rate is lower than the normal pulse rate, the massage fluid pressure is lower than the normal fluid pressure, and the massage fluid pressure is lower than the normal fluid pressure.


In yet another example, an oral irrigation device including a fluid reservoir; a reciprocating pump in fluid communication with the fluid reservoir; a tip in fluid communication with the pump; a motor operably connected to the pump, wherein the motor drives the pump to pump fluid from the fluid reservoir to the tip; a mechanically adjustable valve that varies one or more fluid path characteristics of a flow path between the reservoir and the tip to change an outlet fluid pressure of fluid exiting the tip; and a processing element in electrical communication with the motor. The processing element varies performs the following operations: responsive to receiving a first user input, the processing element varies a voltage applied to the motor to vary a fluid output pressure of the fluid exiting the tip; and responsive to receiving a second user input, the processing element varies a frequency applied to the motor to vary a fluid pulse rate of the fluid exiting the tip.


While multiple examples are disclosed, still other examples of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative examples of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a front perspective view of an oral irrigator including a massage module.



FIG. 1B is a rear perspective view of the oral irrigator of FIG. 1A.



FIG. 2 is a front perspective view of a second example of an oral irrigator including a massage mode.



FIG. 3A is cross-section view of the oral irrigator taken along line 3A-3A in FIG. 1B.



FIG. 3B is a cross-section view of the oral irrigator taken along line 3B-3B in FIG. 1A.



FIG. 4A is a front perspective view of the oral irrigator with select components hidden for clarity.



FIG. 4B is a rear perspective view of the oral irrigator with select components hidden for clarity.



FIG. 5 is a simplified block diagram of the electrical components of the oral irrigator.



FIG. 6 is a simplified circuit diagram of the massage module.



FIG. 7A is a first example of an illustrative circuit schematic for an implementation of the electrical components of the oral irrigator.



FIG. 7B is a second example of an illustrative circuit schematic for an implementation of the electrical components of the oral irrigator.



FIG. 7C is a third example of an illustrative circuit schematic for an implementation of the electrical components of the oral irrigator.



FIG. 7D is an example of a switch control board for the oral irrigator.



FIG. 8A is diagram of a first control signal produced by the massage module.



FIG. 8B is a diagram of a second control signal produced by the massage module.



FIG. 8C is a diagram of a third control signal produced by the massage module.



FIG. 9A is a chart illustrating an example of pressure ranges for the oral irrigator during clean mode.



FIG. 9B is a chart illustrating an example of pressure ranges for the oral irrigator during massage mode.



FIG. 10 is a flow chart illustrating a method for operating the oral irrigator including the massage module.



FIG. 11 is a flow chart illustrating a method for dynamically adjusting the pressure and pulse rate of the oral irrigator using the massage module.





DETAILED DESCRIPTION OF THE INVENTION

Some examples of the present disclosure include an irrigating device, such as an oral irrigator, having a massage module. The massage module may be configured to vary one or more characteristics of a fluid stream to create a fluid flow that may massage a user's gums, as well as enhance user's comfort as the user cleans his or her teeth or gums. The oral irrigator may include a motor and a pump connected to and controlled by the motor. The pump is fluidly connected to a fluid supply and pumps fluid from the supply to an outlet (such as a tip). The massage module may also be in communication with the motor and may provide one or more control signals to the motor to vary one or more characteristics of the motor, such as speed, power, or torque. Because the motor is connected to the pump, as the massage module varies the speed or other characteristic of the motor, the output characteristics of the pump may be correspondingly varied. The output characteristics of the pump may be varied based on a fluid flow that may “massage” a user's gums, such as a pulsed output where the fluid pulses (the flow intermittently turns on an off). In another example, the massage module may vary the outlet fluid pressure of the oral irrigator during massage mode, e.g., may reduce the outlet pressure as compared to clean mode. In this example, the fluid pulse rate may remain substantially the same in both clean mode and massage mode or may also be varied along with the pressure.


In some examples, the oral irrigator may include a cleaning or normal mode and a massage mode. During the cleaning mode, the oral irrigator may include a relatively steady fluid flow or may include a fluid flow having a slight pulse (e.g., due to a mechanical characteristics of the pump). During the massage mode, the massage module may vary the fluid pulsing length and/or pressure. For example, the massage module may vary a control signal to selectively vary the power level provided the motor. In a specific implementation, the power may be selectively activated and deactivated, which may cause the motor to produce intermittent motion resulting in varying the output of the pump. The pump may be selectively activated to create a pulsating fluid flow through the oral irrigator outlet (e.g., the tip).


In one example, the pulses created by the massage module may be longer fluid pulse or breaks in the fluid stream as compared to the normal operation. The increase in pulse length causes the fluid stream to massage a user's gums, enhancing blood flow and providing an enjoyable experience to the user. This is because the pulses may be timed with recovery the gum tissues (e.g., timed to allow blood to flow back into the tissue between each fluid pulse), and provides therapeutic benefits to the gums.


The massage mode may vary one or more characteristics of the control signal based on user input. For example, the user may select the massage mode and may then vary the frequency, magnitude, or shape of the control signal, such as changing the shape of a voltage waveform or its frequency. In other examples, the massage mode may apply a predetermined signal to the motor. For example, a control signal may be determined for the massage mode and when the massage mode is activated by the user, the stored signal may be applied. In these examples, the oral irrigator may include a plurality of control signals that may correlate to different massage modes. In yet other examples, the oral irrigator may include stored signals that may be selected by a user for a predetermined pulsing effect, as well as may vary one or more signals to allow the user to dynamically variable the pulsing effect.


In addition to providing a massage mode, the massage module or another processing element of the oral irrigator may vary one or more output characteristics of the oral irrigator to provide feedback to a user. As a first example, the massage mode may be activated automatically one or more times during normal mode to indicate to a user to move to a different tooth or portion of the mount. As a second example, the massage mode may be activated after a predetermined time period in order to alert the user that a cleaning time (which may be set by the user or be preselected) has expired. As a third example, the massage mode may be activated automatically every time period, e.g., every 30 seconds the massage mode may be activated to provide a massaging feel interspersed with cleaning.


In other examples, the massage module may be used with other irrigating devices. For example, the massage mode may be implemented in a nasal irrigator and may vary the fluid flow rate and pressure to massage the user's nasal tissues. In these examples, the pulse rate and control signal may be varied as compared to the oral irrigator, but may still provide a massaging effect.


In yet other examples, the massage module may be used with other oral instruments to provide a massaging effect and/or to enhance cleaning. For example, the massage module may be incorporated into an electrically driven toothbrush. In this example, the massage module may vary the motor speed or power to vary vibrations or bristle movement.


DETAILED DESCRIPTION

With reference now to the figures, the oral irrigator will be discussed in more detail. FIG. 1A is a front perspective view of an oral irrigator including a massage mode. FIG. 1B is a FIG. 2 is a rear perspective view of the oral irrigator of FIG. 1A. With reference to FIGS. 1A and 1B, the oral irrigator 100 may include a base 102, a reservoir 104, and a handle 108. The base 102 may provide support for the reservoir 104 and the handle 108, as well as house many of the drive and power assembly components of the oral irrigator 100. For example, the base 102 may house a pump, control circuitry, and/or motor, which will be discussed in more detail below.


The base 102 may include a bottom support 128 and a cover 130. The bottom support 128 may provide support for one or more of the internal components of the oral irrigator 100 and the cover 102 may cover those components to conceal them, as well as provide protection for those components. The base 102 may include a plurality of feet 132a, 132b, 132c, and 132d to support the base 102 on a surface, such as a countertop or the like.


The base 102 may also include a clamp 134 or other structure to releasably support the handle 108. In some examples, the clamp 134 may be a C-clamp; however, other attachment mechanisms are envisioned. The base 102 may also include a hose cavity 136 or hose box that may receive and support the hose 118 in a collapsed position. For example, the hose cavity 136 may include one or more arms on which the hose 118 may be wrapped. The hose cavity 136 may be recessed into the cover 130, may be flush with the cover, or may extend outwards from the cover.


The oral irrigator 100 illustrated in FIGS. 1A and 1B is a countertop irrigator. However, in some examples, the oral irrigator 100 may be a handheld irrigator. FIG. 2 is a front perspective view of a second example of an oral irrigator. With reference to FIG. 2, in examples where the oral irrigator 100 is a handheld unit, the reservoir 104 and handle 106 may be connected together. The reservoir 104 may include a removable cavity that may refilled by a user and then reattached to the handle 106. Additionally, in these examples, the internal components of the irrigator 100, such as the motor, pump, and control circuitry, may be included within the handle 106 rather than a base unit. The description of the oral irrigation described below is generally directed to the oral irrigator illustrated in FIGS. 1A and 1B; however, it should be noted that the description is equally applicable to the oral irrigator 100 shown in FIG. 2, with the exception that the internal components of the base are included in the handle 106.



FIGS. 3A and 3B are cross-section views of the oral irrigator taken along lines 3A-3A and 3B-3B, respectively, in FIGS. 1A and 1B. With reference to FIGS. 4A and 4B, the reservoir 104 defines a cavity 105 to hold liquid that may be expelled trough a tip 114 connected to the handle 108. The reservoir 104 may include a lid 120 and may be removable from the base 102. In some examples, the oral irrigator 102 may be a handheld or more compact and the reservoir 104 may be incorporated into the handle 108 (e.g., a container attachable to the handle 108). The reservoir 104 may be substantially any size or shape and may be modified as desired, for example, as shown in FIG. 2, the reservoir is included as a cavity attached to the handle.


With reference again to FIGS. 1A and 1B, the handle 108 is movable relative to the base 102 and may be fluidly connected to the reservoir 104. For example, a hose 118 may fluidly connect the reservoir 104 to the handle 108 and tip 114. In examples where the reservoir 104 may be incorporated into the handle 108, the hose 118 may be internal to the handle 108 or may be omitted (e.g., a fluid pathway may be defined through a housing of the handle rather than a tube). In some examples, the handle 108 may include a plurality of internal components, such as a check valves, bypass valves, pause valves, or the like. In these examples, the handle 108 may be used to vary one or more characteristics of the fluid flow output by the tip, separate from or in addition with the features for controlling the fluid output within the base. As mentioned above, although a number of components, such as the pump, reservoir, etc., are discussed herein as being incorporated into the base, in certain examples these components may be included with the handle. For example, as shown in FIG. 2, a handheld oral irrigator may include a portable reservoir attached to the handle with a pump internal the handle. Accordingly, the discussion of any particular example for the handle and base is meant as illustrative only.


The tip 114 may be selectively removable from the handle 108. For example, an eject 126 button can selectively release the tip 144 from the handle 108. The tip 114 defines a fluid pathway that is fluidly connected to the hose 118. The tip 114 includes an outlet 122 from which fluid from the reservoir 104 may be expelled from the oral irrigator 100. The tip 114 may generally be configured to be inserted into a user's mouth and may expel fluid against a user's teeth, gums, tongue, etc. In some examples, the outlet 122 portion of the tip 144 may be shaped as a nozzle or may include a nozzle or other attachment connected thereto.


The oral irrigator 100 may include a plurality of control actuators 110, 112, 113, 124 to control one or more characteristics or parameters of the oral irrigator 100. For example, the control actuators 110, 112, 124 may activate/deactivate the oral irrigator 100, may vary a flow rate, a fluid pressure, a setting (e.g., slow, medium fast), and/or may activate a particular mode, e.g., massage mode. The number of control actuators 110, 112, 113, 124, as well as their structure, size, or shape may be varied as desired. For example, as shown in FIGS. 1A and 1B, the two control actuators 110, 112 on the base 102 are illustrated as rotatable knob or buttons; however, in other examples, the control actuators 110, 112, 113 may be switches, sliders, or the like.


A first control actuator 110 may be configured to vary a fluid pressure of fluid as it exits the tip 114. For example, the control actuator 110 may be connected to a valve that may selectively change the diameter or other fluid pathway characteristics of a fluid outlet or pathway between the reservoir 104 and the tip 114. As the diameter is varies, such as due to a user turning the control actuator 110, the outlet fluid pressure as fluid is expelled from the tip 114 may be selectively modified. As another example, the first control actuator 110 may activate a massage module to activate a massage mode for the oral irrigator 100.


A second control actuator 112 on the base may be configured to selectively power the oral irrigator 100. In other words, the second control actuator 112 may be a power button or knob to turn on the oral irrigator 100. Additionally, in some examples, the second control actuator 112 may activate one or more settings. As an example, the second control actuator 112 may activate and deactivate the oral irrigator 100, as well as select one or more settings, such as a massage mode, low pressure, high pressure, or the like.


A third control actuator 113 on the base may be configured to selectively activate massage mode. In some examples the third control actuator 113 may be positioned adjacent to the second control actuator 112 and may be a compressible button, rather than a knob. However, in other examples, the control actuator 113 may be a knob and may be located on the handle or other portions of the base 102.


In some examples, a fourth control actuator 124 may be disposed on the handle 108. The fourth control actuator 124 may selectively activate one or more settings or may act to pause the oral irrigator 100. By placing the control actuator 124 on the handle 108, the user may more easily change settings or pause the oral irrigator 100 while he or she is using the oral irrigator 100.


The various control actuators 110, 112, 113, 124 may be configured as desired and may change one or more settings or parameters of the oral irrigator 100. For example, any of the buttons 110, 112, 113, 124 may be configured to activate a massage mode for the oral irrigator 100.


The oral irrigator 100 may also include a plurality of lights 117a, 117b, which may be used to provide feedback to a user. For example, the lights 117a, 117b may illuminate, change color, or may pulse to indicate a current mode of the oral irrigator, a pressure level of the oral irrigator, or the like. In a specific example, a first light 117a is illuminated during normal mode and a second light 117b is illuminated during massage mode. See, for example, FIG. 7D.


With reference to FIG. 1B, the oral irrigator 100 may include a power cable 116 or port to receive a power cable. The power cable 116 may be configured to be received into an outlet or power source and may transfer power from a power source to the oral irrigator 100. It should be noted that the type of power cable 116 might be varied based on the power source for the oral irrigator 100. Alternatively, such as the oral irrigator shown in FIG. 2, the oral irrigator 100 may include an integrated power supply; such as one or more batteries, and in these cases the power cord 116 may be omitted or may be used to recharge the integrated power supply (rather than directly provide power to the oral irrigator 100). As will be discussed in more detail below, the power cord 116 may function to act as a power supply for the oral irrigator.


An illustrative example of the internal components of the oral irrigator 100 will now be discussed in further detail. FIGS. 4A and 4B are various perspective views of the oral irrigator 100 with select elements hidden for clarity. With reference to FIGS. 4A-4B the oral irrigator 100 may include a motor 142, a gear box 144, a pump 146, and a chassis 140 supporting the motor 142, gear box 144 and pump 146. A valve assembly 156 including a valve 158 may fluidly connect the reservoir 104 to the pump 146 and a valve fitting 152 may fluidly connect the pump 146 to the hose 118 (and thus the tip 114 and handle 108). Additionally, a check valve 167 may be positioned between the valve assembly 156 and the valve fitting 152. The check valve 167 may regulate fluid pressure of the oral irrigator 100. The oral irrigator 100 may also include a control circuitry 164 having a signal generator 166 in electrical communication with the motor 142.


With reference to FIGS. 3A and 4A, the motor 142 may be substantially any type of motor that may drive movement or create mechanical work sufficient to drive a pump. For example, the motor 142 may be a direct current motor, where the speed of the motor 142 may be controlled by a signal, such as a voltage signal. Control of the motor 142 will be discussed in more detail below.


With reference to FIGS. 3A and 4A, the motor 142 may include a drive shaft 143 (see FIG. 3A) that is connected to a gear shaft 147 and a drive gear 149. The drive gear 149 is connected to a piston 145 or other moveable element within the pump 146. The gear box 144 may cover the gear shaft 147, the drive gear 149, and other mechanical gears or linkage elements that may be used to connect the drive shaft 143 of the motor 144 to the pump 146. The linkage and gear elements may be varied as desired and may depend on the orientation of the motor and the pump relative to one another, the size or speed of the motor, and the like.


The pump 146 may be substantially any type of component that may pump fluid from one location to another. For example, the pump 146 may be a piston driven pump that may selectively push fluid from the reservoir 104 into the hose 118. However, many other pump types are envisioned. Some illustrate pump types include a diaphragm pump or a centrifugal pump. The pump 146 may include a pump body 169 and an inlet pump 165 received within the pump body 169. The first control actuator 110 may be connected to the pump 146 and may be attached to a bypass valve or other control valve (not shown). As discussed briefly above, the first control actuator 110 may selectively vary the pressure of fluid output from the pump 146 and may do so by varying the diameter of a fluid channel between the pump 146 and the tip 114.


With continued reference to FIGS. 3A-4B, the valve assembly 156 may be connected to the pump 146 and received into a bottom of the reservoir. The valve assembly 156 may include a valve 158 and one or more sealing members 160, 162, such as O-rings or sealing cups. The valve 158 may regulate fluid flow from the reservoir 104 into the pump 146. Accordingly, the valve 158 is in fluid communication with the reservoir 104 and provides fluid from the reservoir 104 into the pump 146.


The valve fitting 152 includes a fluid outlet 154 and fluidly connects the pump 146 to hose 118. The valve fitting 152 may be connected to the hose 118 and provide a fluid pathway from the reservoir 104 to the handle 108.


The oral irrigator 100 may also include one or more isolators 168. The isolators 168 may connect the chassis 140 to the bottom support 128 of the base 102. In some examples, the isolators 168 may absorb vibrations from the motor 142 and the pump 146, to reduce the vibrations that may be transmitted to the bottom support 128 and/or feet 132a, 132b, 132c, 132d. For example, the isolators 168 may be an elastomeric material or other material configured to absorb vibrations.


Additionally, in some examples, the oral irrigator 100 may include one or more feedback components. For example, the lights 117a, 117b, which may be light emitting diodes (LEDs) can be used to provide feedback to the user. Continuing with this example, the lights 117a, 117b may be illuminated to indicate the mode of the oral irrigator (e.g., massage mode or normal mode), or may be illuminated to indicate a cleaning or activation time, or the like.


The control circuit 164 may control the motor 142 and other elements of the oral irrigator 100. FIG. 5 is a simplified block diagram of the oral irrigator 100 illustrating the electrical communication between select components. With reference to FIGS. 3A and 5, a power source 115 (which may be an outlet in communication via the power cable 116 or one or more batteries) may be in communication with a massage module 172, the motor 142, and optionally, one or more of the input buttons 110, 112, 124. For example, the second control actuator 112 may be in communication with a switch 148 module that may be in communication with control circuitry 164 and/or power source 115 to selectively activate the motor 142.


In some examples, the control circuitry 164 may provide a substrate that supports one or more components, as well as provides communication between those components. For example, the control circuit 164 may be a printed circuit board including one or more traces or connective lines that transmit signals between the massage module 172, the motor 142, and/or the power source 115.


The massage module 172 may selectively control the motor 142 to vary one or more parameters of oral irrigator 100. The massage module 172 may include a signal generator 166 as well as one or more processing elements 170. The processing element 170 may be one or more processors or control chips that may process and execute instructions. The signal generator 166 may be substantially any type of component that may create voltage signals to control one or more characteristics of the motor 142. For example, the signal generator 166 may create one or more repeating or non-repeating electronic signals (e.g., voltage waveforms) that may be applied to the motor 142. In a particular implementation, the signal generator 166 may be a function generator that may produce electrical waveforms over a range of frequencies. Exemplary waveforms include sinusoidal waves, square waves, sawtooth waves, triangular waves, and so on. Additionally, the signal generator may be configured to create modified waves that include characteristics of two or more waveforms. Illustrative waveforms that may be used will be discussed in more detail below with respect to FIGS. 8A-8C.



FIG. 6 is a simplified circuit diagram of the massage module 172. With reference to FIGS. 5 and 6, the signal generator 166 may be in communication with an amplifier 174 and a gate 176 or switch. The signal generator 166 may be in communication with the processor element 170, which may determine the signals generated by the signal generator 166. In some examples, the signal generator 166 may be incorporated into the processing element 170, such that the processing element 170 may perform the functions of the signal generator 166 and may create and apply signals to the motor.


The signal generator 166 may be in communication with an amplifier 174. The amplifier 174 may amplify a signal generated by the signal generator 166 prior to applying the signal to the motor. For example, the amplifier 174 may be an operational amplifier or a differential amplifier. The amplifier 174 may be in communication with the motor 142 as well as the signal generator 166. In some examples, the amplifier 174 may be configured to receive feedback from its output, in order to provide a more consistent output signal. However, it should be noted that the configuration of the amplifier 174, as well as the type of amplifier and inputs used may be varied based on the type of motor 142 and signal generator used 166. Additionally, depending on the output voltage of the signal generator and/or other system characteristics, the amplifier 174 may be omitted. In these instances, the signal may be directly or indirectly applied to the motor without being amplified.


The amplifier 174 may be in communication with a gate 176 or switch. The gate 176 may selectively provide the output of the amplifier 174 (which may be a signal produced by the signal generator 166) to the motor 142. For example, when the gate is not activated, the motor 142 may not receive a signal from the signal generator, but may receive a constant power signal. As another example, when the gate is not activated, the motor 142 may be separated from any signal or power source, preventing the motor from being activated. In this example, the gate 176 provides power to the motor and the signal produced by the signal generator varies the signal transmitted through the gate and during normal mode the motor receives a constant voltage signal and during massage mode the motor receives a variable signal. As yet another example, the activation voltage for the gate 176 may be varied to control the current transmission to the motor. In particular, the gate 176 may be turned slightly activated during one mode allowing a reduced amount of current to travel between its source and drain (when the gate is a transistor) and then may be fully activated to allow full current flow. The variation in current may be used to pulse the signal to the motor or may be used to slow the motor down.


The gate 176 may be a switch or other selectively activated component. In one example, the gate 176 may be a transistor, such as a metal-oxide-semiconductor field-effect transistor (MOSFET), such as an N-channel MOSFET. However, other types of transistors or gates are also envisioned, as well as other components that may be used to selectively provide communication between two or more components.


The massage module and other control circuitry of the oral irrigator may be implemented in a number of different manners, which may vary as desired. FIGS. 7A-7D illustrate various circuit schematics that may be used to implement one or more functions of the oral irrigator, control circuitry, and/or massage module. However, it should be noted that the electrical components, such as resistors, capacitors, and/or gates illustrated may be otherwise configured, omitted, or varied based on a number of a different factors. As such, the schematics illustrated in FIGS. 7A-7D are meant as illustrative and not limiting.



FIG. 7A is an illustrative circuit schematic of the control circuitry for one example of the oral irrigator. With reference to FIG. 7A, the circuitry 164 may include a number of electrical components, such as traces, resistors, switches or transistors, and amplifier. The schematic illustrated in FIG. 7A is one example only and the exact components and structures for implementing the massage module may be varied as desired and based on the constraints and parameters of the particular oral irrigator or other device incorporating the massage module.



FIG. 7B illustrates a second example of a schematic for the oral irrigator. In the example shown in FIG. 7B, the voltage source may be 12V and the processing element 170 and the switch 148 may control operation of the oral irrigator 100. The schematic may also include a second control element 171 that may control a clock signal, data, a reset function, and the like for the oral irrigator. The second control element 171 may be in electrical communication with the processing element 170.



FIG. 7C illustrates a third example of a schematic for the oral irrigator. In the example shown in FIG. 7C, the voltage source may be higher than the example shown in FIG. 7B and may include a fuse 181 to help regulate spikes in current and/or voltage. As shown in FIG. 7B, the second control element 171 may also be used to provide clock signals and resets for the oral irrigator 100 and the switch 148 may provide communication between one or more of the control actuators 110, 112, 113, 124 with the processing element 170.



FIG. 7D illustrates a diagram of the switch 148 and light module. With reference to FIGS. 7B, 7C, and 7D, the switch 148 module may be in communication with the processing element 170, the lights 117a, 117b, the second control actuator 112, and the third control actuator 113. With reference to FIG. 7D, when the second control actuator 112 is activated by the user, the switch 148 may provide a signal to the processing element 170, which may activate the oral irrigator 100. Additionally, the switch 148 may activate the first light 117a to indicate that the oral irrigator 100 has been activated and is in the normal mode. For example, the normal or clean mode may be a default mode that may be activated when the oral irrigator 100 is initially activated.


With continued reference to FIGS. 7B, 7C and 7D, when the second control actuator 113 is activated by the user, the switch 148 may provide a signal to the processing element 170 indicating that the user has activate the massage mode or second mode. Additionally, the switch 148 may illuminate the second light 117b to indicate to the user that the massage mode has been activated. In the example shown in FIG. 7D, both lights 117a, 117b may be light emitting diodes. However, in other embodiments, other light sources are envisioned.


With reference again to FIGS. 1A-6, in operation, the user may rotate, push, or otherwise provide an input to the second control actuator 112. The second control actuator 112 may activate the oral irrigator 100, causing the power supply 115 to provide power to the control circuitry 164 and the motor 142. During normal operation, control circuitry 164 will provide a normal control signal to the motor 142. For example, the voltage or power source 115 may be placed into communication with the motor 142 and may provide a substantially constant control signal to the motor 142. As the motor 142 receives the constant control signal, the motor 142 may begin turning the drive shaft 143, moving the piston 145. As the piston moves, fluid from the reservoir 104 may be pulled through the valve 158 into the pump 146 and be pushed through the outlet 154 of the valve fitting 152 into the hose 118. The fluid may then travel through the hose 118 to the handle 108 and exit out of the tip 114.


During normal operation, the control signal to the motor 142 may be substantially constant, causing the motor 142 to rotate the drive shaft in a constant manner (e.g., having a constant velocity). In examples where a piston pump or other reciprocating pump is used, the fluid may be slightly pulsed as it is expelled from the tip 114. This is due to the reciprocating nature of the pump, e.g., the alternating pulling and pushing to alternately pull fluid from the reservoir 104 and push fluid from the pump out to the tip 114. Depending on the type, size, or the like, the pulses during normal operation may have a somewhat short duration and fast frequency. In one example, the pulses due to the reciprocating nature of the pump 146 may be about 26 pulses per second. However, in other examples, during normal mode, the fluid outlet may not be pulsed, but may be substantially constant. For example, in examples where a non-reciprocating pump is used, the output during normal mode may be substantially constant.


During use, if the user hits the pause actuator 124, a valve within the handle 106 may reduce or substantially prevent fluid from exiting the tip 114. Alternatively or additionally, the fourth control actuator 124 may transmit a signal to the processing element 170 that may temporarily stop movement of the motor 142, to prevent or reduce fluid transmitted from the reservoir 104 to the tip 114. Also, if the first control actuator 110 is activated, the user may selectively adjust the pressure of fluid expelled from the tip 114.


If massage mode is activated, such as by a user providing an input to the oral irrigator 100 through one of the control actuators 110, 112, 113, 124, the fluid output characteristics may be modified. For example, the third control actuator 113 may be used to activate a massage mode for the oral irrigator 100. During massage mode, the processing element 170 may selectively activate the gate 176, to vary the signal provided to the motor 142. In one example, the signal generator 166 may apply a varying signal to the motor 142, which may cause the motor 142 to selectively vary one or more movement characteristics. For example, the signal generator 166 may apply a signal that has a variable voltage across a predetermined time duration. The signal may vary not only in voltage magnitude, but also in time between a high voltage and a low voltage (e.g., frequency).


With reference to FIG. 6, the amplifier 174 may increase the signal generated by the signal generator 166 and provide the increased control signal to the motor 174. The control signal may selectively interrupt or vary the power supplied to the motor 142, causing the motor to intermittently stop or slow down, reducing, stopping, or changing the movement of the drive shaft 143. As the drive shaft 143 varies, the piston 145 may also vary, which may increase the length of pulses produced by the pump 146, as well as the pressure output by the pump 146. As an example, when the control signal is low or otherwise prevents power from being transmitted to the motor, the motor 142 may stop rotating the drive shaft 143, which may in turn, stop movement of the piston 145, reducing or stopping fluid from flowing from the reservoir 104 to the tip 114.


Specifically, one control signal may be configured create 0.5 second pulses. In other words, the pump 146 may produce 2 pulses per second, with may have a substantially slower pulse rate than the pulse rate due to the reciprocating nature of the pump, and each pulse may have a substantially longer duration as compared to the normal mode. However, it should be noted that other pulse rates are envisioned and will be discussed in more detail below with respect to FIGS. 8A-8C.


In some implementations, the flow rate of the oral irrigator during massage mode may be reduced as compared to the flow rate during normal mode. As a specific example, the massage mode flow rate may be between 40 to 70 percent and often 50 to 60 percent of the flow rate during normal mode. In some implementations, the oral irrigator 100 may have a flow rate during clean mode ranging between 300-400 mL per minute and often may be about 370 mL per minute and during massage mode the flow rate may range between 150-200 mL per minute or lower and often may be 222 mL per minute.


In addition to changing the pulse rate, the control signal may also vary the magnitude of power provided to the motor 142, which may increase or decrease the outlet pressure of the pump 142. In a specific implementation, the outlet pressure of the oral irrigator during cleaning mode may range between 70 to 95 psi, and often average between 90-93 psi and during massage mode may range between 60 to 90 psi, and often average between 80-87 psi. FIGS. 9A and 9B illustrate example pressure ranges for the oral irrigator during normal mode and during massage mode. For example, by applying an increased voltage to the motor 142, the current supplied to the motor 142 may also increase, increasing the torque of the motor 142. The increased torque may exert an increased force on the piston 145, to increase the output pressure of the oral irrigator 100. Accordingly, in some examples, the control signal may vary not only the durations for which a voltage is applied to the motor, but also the magnitude of the voltage in order to vary not only the fluid pulses but also the fluid pressure output by the oral irrigator 100.


As the fluid exits the tip 114, the user may direct the flow on his or her teeth, gums, tongue, cheeks, or the like. The varying control signals may vary the fluid output by the tip 114. In some examples, the variation in fluid may create a massage effect on a user's gums. For example, during each pulse fluid may not exit from the tip 114, allowing blood to return to the user's gums before the next fluid stream hits the gums. This may provide a massaging effect, as well as may stimulate blood flow to the gums and enhance the cleaning experience with the oral irrigator.


The signal generator 166 may vary a frequency and magnitude of the control signal based on a desired output pulse rate and fluid pressure. FIGS. 8A-8C illustrate control signals that may be created by the signal generator to be applied to the motor 142. The control signals may include one or more voltage peaks and voltage minimums. As some illustrative examples, the voltage peaks may be 170V, 12V, 6V, or other values and the voltage minimums may be a subset of the voltage peaks and often may be substantially or about 0V. However, it should be noted that many other voltage values are envisioned and the voltage of the control signal may depend on the motor, the processing element, and other system parameters and as such may be modified as desired.


With reference to FIG. 8A, a control signal 200 may be a square wave having a voltage peak 202 or amplitude and a voltage minimum 204. In some examples, the voltage peak 202 (i.e., maximum voltage) may be applied for a duration T1 and the voltage minimum 204 may be applied for a duration T2. In this example, the durations T1 and T2 may be approximately equal. In a particular implementation, the peak voltage 202 may be approximately 12 V and the minimum voltage 204 may be 0 V, additionally both durations T1 and T2 may have a length of approximately 100 ms.


When the control signal 202 of FIG. 8A is applied to the motor 142, during the duration T2 of the minimum voltage 204, the motor 142 may not receive power. In other words, because the minimum voltage 204 is set to 0 V, the motor 142 may not be powered. As the motor 142 does not receive power during the duration of the minimum voltage 204, the drive shaft 143 may slow down and stop moving, stopping movement of the piston 145 within the pump 146. Thus, during the duration T2, the pump 146 may not pump fluid, creating a pause in fluid flow. Then, when the peak voltage 202 is applied, the motor 142 may begin rotating the drive shaft 143, causing the piston 145 to push fluid from the pump 146, creating fluid flow. In this example, the minimum voltages 204 may define the “pulse” length, or the intermission between fluid output.


With continued reference to FIG. 8A, in another example, the maximum voltage 202 may be selected to be approximately 12V and the minimum voltage 204 may be selected to be approximately 6 V or half of the maximum voltage. However, in other embodiments, the minimum voltage may be 0V in this example as well. Additionally, the two time durations may be selected to be 160 ms. In this example, during second duration T2 when the minimum voltage 204 is applied to the motor 142, the motor 142 may receive some power, but the power may be reduced as compared to the maximum voltage 202. In this example, the motor 142 may still rotate the drive shaft 143, but may do so at a reduced torque and speed, which may also cause a reduced flow rate and pressure output by the pump 146. In this example, during each pulse, fluid may be output from the tip 114, but at a slower flow rate and pressure.


In yet another implementation, the time durations T1 and T2 may be selected to be 250 ms. In these examples, the frequency of the pulses may be reduced, such that there may be fewer pulses per second as compared to examples where the time durations may be shorter.


In FIG. 8A, because the time durations T1 and T2 may be substantially equal, the time of fluid output and fluid pause may be substantially the same. However, in other examples, the time durations for the maximum voltage and the minimum voltage may be varied. With reference to FIG. 8B, a control signal 212 may include a voltage maximum 212 having a duration T3 and a voltage minimum 214 having a duration T4. In this example, the peak time duration T3 may be shorter than the minimum time duration T4, which may result in longer “pauses” in fluid flow or pulses. The time duration T4 may be twice, three times, or more, the length of the peak time duration T3.


As one example, the minimum voltage time duration T4 may be three times as long as the maximum voltage time duration T3. Thus, the pause in fluid flow may last three times as long as the fluid flow segments or pulses. In a specific implementation, the maximum voltage 212 may be 12V and may have time duration T3 of 100 ms, the minimum voltage 214 may be 0V and may have a duration of 300 ms. However, the above values are illustrative only and many other implementations are envisioned. Furthermore, although the control signal 210 in FIG. 8B is illustrated as having a longer low voltage duration T4 than maximum voltage duration T3, in some examples, the maximum voltage time duration T3 may be longer than the minimum voltage time duration T4. In these examples, the pauses or breaks between fluid flow may be reduced as compared to the fluid stream time durations.


In the control signals 200, 210 illustrated in FIGS. 8A and 8B, there may be a rapid transition between the maximum or peak voltage 202, 212 and the minimum voltage 204, 214. For example, both control signals 200, 210 may be square waves that substantially instantaneously transition between minimum and maximum values. However, in other examples, the control signal may gradually transition between a maximum and minimum voltage.


With reference to FIG. 8C, a control signal 220 having a sinusoidal shape is illustrated. The control signal 220 may have a peak voltage 220 and a minimum voltage 224, with the peak voltage 220 having a time duration T5 and the minimum voltage having a time duration T6. However, because the control signal 220 may gradually change between the maximum and minimum levels, the durations T5 and T6 may represent the time between inflection points 226, 228. The inflection points 226, 228 generally may represent half of a cycle or period for the control signal 220. In other words, the sum of the durations T5 and T6 may represent the period for the control signal 220.


Using the control signal 220 of FIG. 8C, the motor 142 may more subtly transition between the high and low states of fluid flow. That is, the transition between the “pulses” may be tapered so that there may not be a sudden reduction in fluid flow, but a more gradual reduction. In some examples, the peak voltage 222 may be three times as large as the minimum voltage 224. As one example, the peak voltage 222 may be selected at 15V and the minimum voltage 224 may be selected at 3V. In this example, the period of the control signal 220 may be 1800 ms with the high duration T5 being 900 ms and the low duration 16 being 900 ms. Although the control signal 222 shown in FIG. 8C is a sine wave, other waveforms are envisioned, such as combination waveforms (e.g., having characteristics of multiple wave types), elliptical waveforms, and the like. Accordingly, the discussion of any particular waveform is meant as illustrative only.


The massage module 172 may not only vary the pulse rate fluid flow of the oral irrigator, but may also vary an outlet fluid pressure for the oral irrigator. FIG. 9A is a chart illustrating an example outlet pressure of the oral irrigator during clean mode. FIG. 9B is a chart illustrating an example outlet pressure of the oral irrigator during massage mode. With reference first to FIG. 9A, the oral irrigator 100 may pulse rapidly (which may be due to the reciprocating nature of the pump) and the outlet pressure 240 may vary between peaks 242 and valleys 244. As can be seen from the graph in FIG. 9A, each pressure peak 242 may be generally close together with a pressure pulse rate of just over 21 peaks per second. Additionally, the average pressure for the peaks 242 may be 91.8 psi and generally the pressure at the peaks 242 ranges between 91 and 92 psi. The example outlet pressures discussed herein are meant as illustrative only and may be higher or lower based as desired.


With continued reference to FIG. 9A, the output pressure 240 may also drop to the valleys 244, which may hover around 0 psi before the pressure ramps back up extend towards a pressure peak 242. Each of the valleys 244 may occur while the piston 145 in the pump 146 is drawing fluid into the pump chamber before it expels the fluid and are therefore due to the reciprocating nature of the pump 146. Accordingly, in examples where a non-reciprocating pump may be used, the outlet pressure during normal mode may be substantially constant.


With reference now to FIG. 9B, during massage mode, the outlet pressure 250 of the oral irrigator 100 may be lower than during clean mode (shown in FIG. 9A) and may also have non-pulsating periods during which the outlet pressure may be close to or at 0 psi. For example, the outlet pressure 250 may include a high pressure period Thigh and a low pressure period Tlow. During the high pressure period Thigh, the outlet pressure 250 may include a plurality of pressure peaks 252, as well as ramp peaks 256 that are the pressure peak while the oral irrigator 100 is transitioning between the high pressure period and the low pressure period. Additionally, the outlet pressure 250 may include valleys 254, 258. The first valley 254 may be during the high pressure Thigh period and may be due to the reciprocating nature of the piston 145, as discussed above with respect to FIG. 9A. The second valley 258 represents the low pressure period between pulses of high pressure. During the low pressure period Tlow, the oral irrigator 100 may output little to no pressure.


As shown in FIG. 9B, in some examples, the oral irrigator 100 may have an average outlet pressure of 85.9 psi during massage mode. As with the clean mode, many other outlet pressures are envisioned and the above examples are meant as illustrative only and not limiting.


A method for operating the oral irrigator 100 including the massage module 172 will now be discussed in more detail. FIG. 10 is a method 300 for activating the massage mode. The method 300 may begin with operation 302 and the irrigator 100 may be activated. For example, the second control actuator 112 may be selected by a user to turn on the oral irrigator 100. Once the oral irrigator 100 is activated, the method 300 may proceed to operation 304. In operation 304, the processing element 170 may determine whether massage mode has been activated. For example, the processing element 170 may determine whether a user has provided an input to one of the control actuators 110, 112, 124 to select the massage mode. In a specific implementation, the switch 148 may provide an input to the processing element 170 when the second control actuator is activated. As another example, the massage mode may be activated automatically after a select time period of activation of the irrigator 100, e.g., after 30 seconds of operation, the massage mode may be automatically activated.


If the massage mode is not activated, the method may proceed to operation 314, which will be discussed in more detail below. However, if in operation 304 the massage mode is activated, the method 300 may proceed to operation 306. In operation 306, the signal generator 166 may generate a control signal 200, 210, 220. The control signal generated 200, 210, 220 may be selected from a predetermined signal, or as will be discussed in more detail below with respect to FIG. 10, may be generated based on one or more user inputs.


Once the signal generator 166 has generated the control signal 200, 210, 220, the method 300 may proceed to operation 308. In operation 308 the control signal may be applied to the motor. For example, the gate 176 may be activated to provide the control signal from the signal generator 166 to the motor 142. As the control signal is applied to the motor 142, the motor 142 may drive the drive shaft 143 based on the signal. For example, the motor 142 may selectively slow down or stop rotation of the drive shaft and/or may decrease or reduce the torque produced by the drive shaft. The variations in the drive shaft movement may create related changes in the piston 145, thus varying the output of the pump 146, changing the output characteristics of the fluid flow from the tip 114.


After operation 308, the method 300 may proceed to operation 312. In operation 312, the processing element 170 may determine whether to end massage mode. For example, the user may provide a second input to the oral irrigator 100, e.g., by selecting one of the control actuators 110, 112, 124, to indicate that he or she wishes to resume normal mode. As another example, the oral irrigator 100 may have a predetermined time period for massage mode (e.g., 1 minute, or the like), and the processing element 172 may determine to end massage mode once the allotted time has passed.


In operation 312, if massage mode is not terminated, the method 300 may proceed to operation 310. In operation 310, the method 300 may determine whether the same control signal 200, 210, 220 should be applied to the motor or whether a different signal should be applied. If the control signal is to remain the same, the method 300 may return to operation 308 and the signal may continue to be applied to the motor 142. However, in operation 310 if a new signal is desired, the method 300 may return to operation 306 and the signal generator 166 may generate a new control signal. For example, in some examples, a user may wish to vary pressure, pulse rate, or the transition between pulses during massage mode. In these instances, the processing element 170 may receive a user input to vary the control signal and may instruct the signal generator 166 to create a new control signal or vary the current control signal.


With continued reference to FIG. 10, if in operation 312 massage mode is terminated, the method 300 may proceed to operation 314. In operation 314 the processing element 170 may provide a constant signal to the motor 142. In other words, the normal mode signal may be applied to the motor, and in some instances, the normal mode signal may be substantially constant. As the motor 142 receives the normal mode signal, movement of the drive shaft 143 may be constant, and any pulses in the fluid output may be due to the reciprocating nature of the pump 146, rather than variable movement in the motor.


After operation 314, the method 300 may proceed to operation 316. In operation 316, the processing element 170 may determine whether more cleaning is desired. For example, the processing element 170 may determine whether the user has deactivated the power control actuator 112. As another example, the oral irrigator may be configured to have an activation time corresponding to a predetermined “cleaning” length and once the time length has expired, the oral irrigator 100 may automatically shut off.


If more cleaning is desired, the method 300 may return to operation 304. However, if no additional cleaning is desired, the method 300 may proceed to operation 318. In operation 318, the processing element 170 may deactivate the motor. As one example, the processing element 170 may switch off a connection between the power supply 115 and the motor 142. After operation 318, the method 300 may proceed to an end state 320.


In some examples, the pressure and pulse rate of the massage mode may be statically set. However, in other examples, the pressure and pulse rate of the pulses during massage mode may be dynamically modifiable or may be initially set by a user (e.g., calibrated to a particular user's preferences). FIG. 11 is a flow chart illustrating a method for dynamically modifying one or more characteristics of the fluid flow during massage mode. With reference to FIG. 11, the method 400 may begin with operation 402. In operation 402, massage mode for the oral irrigator 100 may be activated. For example, the user may select one of the control actuators 110, 112, 124 to indicate his or her desire to enter massage mode. Once in massage mode, as described in operations 306 and 308 in FIG. 9, the signal generator 166 may generate a signal and apply the signal to the motor 142.


Once massage mode has been activated, the method 400 may proceed to operation 404. In operation 404, the processing element 170 may determine whether the outlet pressure should be varied. For example, on the control actuators 110, 112, 124 may be used to allow the user to provide an input indicating whether he or she wishes for the pressure to be increased or decreased. In a particular example, rotating one of the control actuators 110, 112, 124 in a first direction may correspond to an increase in pressure and rotating in a second direction may correspond to a decrease in pressure.


If the pressure is to be varied from the current control signal output, the method 400 may proceed to operation 406. In operation 406 the processing element 170 may determine whether the pressure should be increased. In other words, the processing element 170 may determine whether the user input to vary the pressure corresponds to an increase in pressure or a decrease. It should be noted that in many implementations, operations 404 and 406 may be performed substantially simultaneously. For example, the processing element 170 may receive a single input that indicates both a change a pressure, as well as whether the pressure is to be increased or decreased.


In operation 406, if the pressure is going to be decreased, the method 400 may proceed to operation 408. In operation 408, the control signal 200, 210, 220 may be modified by the processing element 170 to reduce the maximum voltage 202, 212, 222, or reduce the amplitude of the control signal. As discussed above with respect to FIGS. 8A-8C, by decreasing the maximum voltage of the control signal, the output pressure by the pump 146 may be reduced due to a reduction in output torque by the motor. However, it should be noted that in other examples, the pressure may be decreased manually, such as by a user closing or opening a valve, such a by-pass valve or the like. In these examples, the control signal may not be modified, but the mechanical properties of the fluid path between the reservoir 104 and the tip 114 may be changed.


If in operation 406 the pressure is going to be increased the method 400 may proceed to operation 410. In operation 410, the peak voltage 202, 212, 222 or amplitude of the control signal 200, 210, 220 may be increased. As a specific example, the peak voltage may increase from 10 V to 12V. As discussed above, the outlet pressure may be related to the voltage applied to the motor 142 by the control signal, such that a change in the voltage may correspond to a change in pressure.


After either operation 408 or 410, the method 400 may proceed to operation 412. In operation 412, the processing element 170 may determine whether the pulse length and/or pulse rate should be varied. For example, the user may be provide input to the oral irrigator 100 through one or more of the control actuators 110, 112, 124 indicating his or her desire to increase the pulse rate or length.


If the pulse rate is going to be varied, the method 400 may proceed to operation 414. In operation 414, the processing element 170 may determine whether the pulse rate is going to be increased. For example, the user input to vary the pulse rate may also include an indication of whether the pulse rate should be increased or decreased. Additionally, as discussed above with respect to pressure, in some examples, the user input indicating that the pulse rate should be varied may also include data indicating whether the pulse rate should be increased or decreased.


In operation 414, if the pulse rate is going to decrease, the method 400 may proceed to operation 416. In operation 416, the signal generator 166 may decrease the frequency of the control signal 200, 210, 220. As an example, the duration T1, T2, T3, T4, T5 may be increased, such that the cycles per unit of time of the control signal may be increased, reducing the number of pulses per second.


In operation 414 if the pulse rate is going to be increased, the method 400 may proceed to operation 418. In operation 418, the signal generator 166 may increase the frequency of the control signal. For example, the duration T1, T2, T3, T4, T5 for the control signal may shorten, increasing the number of cycles of the control signal per minute. By shortening the length of the maximum and minimum voltages applied to the motor 142, the length of each pulse may be shortened, increasing the number of pulses per time frame.


After operations 416 or 418 or if in operation 412 the pulse rate is not going to be changed, the method 400 may proceed to an end state 420 and may terminate. It should be noted that the method 400 is an illustrative method for varying one or more characteristics of the fluid flow through the tip 114 during massage mode. However, many other methods are envisioned. As one example, the transition between high and low or fluid flow and a pulse may be varied by changing the transition between the maximum and the minimum voltage levels in the control signal. As another example, the length of fluid flow as compared to pulses or breaks in fluid flow may be varied by changing the duration T1, T2, T3, T4, T5 that either the maximum voltage or the minimum voltage is applied to the motor 142.


Other Examples

As generally discussed above, the processing element 170 may vary a control signal to the motor to change either or both the fluid pulse rate and/or the fluid outlet pressure. In other examples, the processing element 170 may activate a switch or valve to vary the pulse rate and/or pressure. As a first example, the processing element 170 may be in communication with an electrical valve such as a solenoid valve and when the massage mode is activated, the processing element 170 may vary the outlet of the valve to change the pressure and/or may selectively open and close the valve to change the flow rate of the oral irrigator 100. As a second example, the oral irrigator 100 may include a gear driven turbine or a water driven turbine that may be mechanically actuated or actuated by the processing element 170 to vary the flow rate of the oral irrigator 100.


Conclusion

The foregoing description has broad application. For example, while examples disclosed herein may focus on a massage mode for oral irrigators, it should be appreciated that the concepts disclosed herein may equally apply to other motor driven devices where a variation in motion may be desired. Similarly, although the massage module is discussed with respect to reducing a pulse rate to create a massage feeling, the devices and techniques disclosed herein are equally applicable to modifying the pulse rate or pressure of an outlet fluid for other applications (e.g., creating a faster pulse rate for quicker or more effective cleaning). Accordingly, the discussion of any example is meant only to be exemplary and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.


Although the present invention has been described with reference to preferred examples, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. The invention is limited only by the scope of the following claims.

Claims
  • 1. An oral irrigator comprising: a reservoir;a tip in fluid communication with the reservoir;a pump in fluid communication with the tip and the reservoir, wherein the pump pumps fluid from the reservoir to the tip;a motor connected to the pump, wherein the motor drives the pump; anda control module electrically coupled to the motor to vary an output of the motor, wherein:during a normal mode, the control module drives the motor to output a normal fluid pulse rate, a normal flow rate, and a normal fluid pressure as the fluid exits the tip;during a massage mode, the control module drives the motor to output a massage fluid pulse rate, a massage flow rate, and a massage fluid pressure as the fluid exits the tip, wherein the massage fluid pulse rate is lower than the normal fluid pulse rate, and the massage fluid pressure is lower than the normal fluid pressure;during the normal mode the control module drives the motor at a first voltage magnitude and a first voltage frequency; andduring the massage mode the control module drives the motor at a second voltage magnitude and a second voltage frequency.
  • 2. The oral irrigator of claim 1, wherein the massage fluid pulse rate defines a pause in fluid exiting the tip sufficient to allow blood to return to the gum tissue before the fluid resumes.
  • 3. The oral irrigator of claim 1, wherein the normal fluid pulse rate is approximately 26 pulses per second and the massage fluid pulse rate is approximately 2 pulses per second.
  • 4. The oral irrigator of claim 1, wherein the massage flow rate is between 40 to 60 percent of the normal flow rate.
  • 5. The oral irrigator of claim 1, wherein the massage flow rate is between 150 to 200 ml/minute.
  • 6. The oral irrigator of claim 1, wherein the normal fluid pressure is above 90 psi and the massage fluid pressure is below 90 psi.
  • 7. The oral irrigator of claim 1, wherein the pump comprises: a pump body;a piston positioned within the pump body and movable relative thereto; anda drive linkage coupling the piston to the motor, wherein as the motor rotates, the piston is moved between a first position and a second position within the pump body.
  • 8. The oral irrigator of claim 1, further comprising: a linkage assembly coupling the pump to the motor; anda gearbox covering the linkage assembly.
  • 9. The oral irrigator of claim 1, further comprising: one or more light emitting diodes coupled to the control module, wherein when the massage mode is selected, the one or more light emitting diodes are illuminated.
  • 10. The oral irrigator of claim 9, wherein the normal pulse rate is determined based on a reciprocating motion of the pump.
  • 11. The oral irrigator of claim 1, wherein during the normal mode, the control module provides a substantially constant control signal to the motor.
  • 12. The oral irrigator of claim 1, further comprising: a housing;a chassis positioned to the housing and supporting the pump and motor; andone or more isolators coupled between the chassis and the housing, wherein the isolators absorb vibrations from the motor and the pump.
  • 13. The oral irrigator of claim 1, further comprising a pressure control actuator that independent of the normal mode or the massage mode allows a user to vary an outlet fluid pressure.
  • 14. The oral irrigator of claim 13, wherein the pressure control actuator mechanically adjusts one or more characteristics of a fluid flow path between the reservoir and the tip to vary the outlet fluid pressure.
  • 15. An oral irrigation device comprising: a fluid reservoir;a reciprocating pump in fluid communication with the fluid reservoir;a tip in fluid communication with the pump;a motor operably connected to the pump, wherein the motor drives the pump to pump fluid from the fluid reservoir to the tip;a mechanically adjustable valve that varies one or more fluid path characteristics of a flow path between the reservoir and the tip to change an outlet fluid pressure of fluid exiting the tip; anda processing element in electrical communication with the motor, wherein the processing element performs the following operations: responsive to receiving a first user input, the processing element varies a voltage applied to the motor to vary a fluid output pressure of the fluid exiting the tip; andresponsive to receiving a second user input, the processing element varies a frequency applied to the motor to vary a fluid pulse rate of the fluid exiting the tip.
  • 16. The oral irrigation device of claim 15, wherein: the motor comprises a drive shaft coupled to a gear shaft and a drive gear; andthe pump comprises a piston coupled to the drive gear.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. Pat. No. 9,642,677 entitled “Oral Irrigator with Massage Mode,” filed on Mar. 14, 2013 and incorporated by reference herein in its entirety.

US Referenced Citations (677)
Number Name Date Kind
555588 Spencer Mar 1896 A
1278225 Schamberg Sep 1918 A
1452258 Smith Apr 1923 A
1464419 Gill Aug 1923 A
1480310 Smith Jan 1924 A
1498267 Hachman Jun 1924 A
1602742 Bennet Oct 1926 A
1650686 Binks Nov 1927 A
1669889 Andrews et al. May 1928 A
1681320 Bergl et al. Aug 1928 A
1933454 Sidney Oct 1933 A
1940111 Austin Dec 1933 A
D93019 Hose Aug 1934 S
1977782 Roy Oct 1934 A
2107686 Bramsen et al. Feb 1938 A
D159872 Skold Aug 1950 S
2531730 Henderson Nov 1950 A
2595666 Hutson May 1952 A
2669233 Friend Feb 1954 A
2709227 Foley et al. May 1955 A
2733713 Kabnick Feb 1956 A
2783919 Ansell Mar 1957 A
2794437 Tash Jun 1957 A
2870932 Davis Jan 1959 A
2984452 Hooper May 1961 A
3089490 Goldberg May 1963 A
3096913 Jousson Jul 1963 A
3144867 Trupp et al. Aug 1964 A
D202041 Burzlaff Aug 1965 S
3209956 McKenzie Oct 1965 A
3216619 Richards et al. Nov 1965 A
3225759 Drapen et al. Dec 1965 A
3227158 Mattingly Jan 1966 A
3266623 Poferl Aug 1966 A
3297558 Hillquist Jan 1967 A
D208778 Koch Oct 1967 S
D209202 Fulton et al. Nov 1967 S
D209203 Mattingly et al. Nov 1967 S
D209204 St. Clair et al. Nov 1967 S
D209395 Gilbert Nov 1967 S
D210018 Mattingly et al. Jan 1968 S
D210019 Johnson et al. Jan 1968 S
3370214 Aymar Feb 1968 A
3391696 Woodward Jul 1968 A
3393673 Mattingly et al. Jul 1968 A
3400999 Goldstein Sep 1968 A
3418552 Holmes Dec 1968 A
3420228 Kalbfeld Jan 1969 A
3425410 Cammack Feb 1969 A
3453969 Mattingly Jul 1969 A
3465751 Powers Sep 1969 A
3467083 Mattingly Sep 1969 A
3467286 Ostrowsky Sep 1969 A
D215920 McCarty et al. Nov 1969 S
3487828 Troy Jan 1970 A
3489268 Meierhoefer Jan 1970 A
3495587 Freedman Feb 1970 A
3496933 Lloyd Feb 1970 A
3499440 Gibbs Mar 1970 A
3500824 Gilbert Mar 1970 A
3501203 Falk Mar 1970 A
3502072 Stillman Mar 1970 A
3517669 Buono et al. Jun 1970 A
D218270 Soper Aug 1970 S
3522801 Robinson Aug 1970 A
3532221 Kaluhiokalani et al. Oct 1970 A
3536065 Moret Oct 1970 A
3537444 Garn Nov 1970 A
3538950 Porteners Nov 1970 A
3547110 Balamuth Dec 1970 A
3561433 Kovach Feb 1971 A
D220334 Mackay et al. Mar 1971 S
3570525 Borsum Mar 1971 A
3572375 Rosenberg Mar 1971 A
3578884 Jacobson May 1971 A
D220996 Irons Jun 1971 S
3583609 Oppenheimer Jun 1971 A
3590813 Roszyk Jul 1971 A
3608548 Lewis Sep 1971 A
D222862 Cook Jan 1972 S
3636947 Balamuth Jan 1972 A
3651576 Massa Mar 1972 A
3669101 Kleiner Jun 1972 A
3703170 Ryckman, Jr. Nov 1972 A
3718974 Buchtel et al. Mar 1973 A
3747595 Grossan Jul 1973 A
3768472 Hodosh et al. Oct 1973 A
3771186 Moret et al. Nov 1973 A
3783364 Gallanis et al. Jan 1974 A
3809506 Malcosky May 1974 A
3809977 Balamuth et al. May 1974 A
3811432 Moret May 1974 A
3820532 Eberhardt et al. Jun 1974 A
3827147 Condon Aug 1974 A
3837166 Hiraoka Sep 1974 A
3840795 Roszyk et al. Oct 1974 A
3847145 Grossan Nov 1974 A
3854209 Franklin et al. Dec 1974 A
3863628 Vit Feb 1975 A
3871560 Crippa Mar 1975 A
3874506 Hill et al. Apr 1975 A
3912125 Acklin Oct 1975 A
3943628 Kronman et al. Mar 1976 A
3959883 Walls et al. Jun 1976 A
3973558 Stouffer et al. Aug 1976 A
3977084 Sloan Aug 1976 A
4001526 Olson Jan 1977 A
4004302 Hori Jan 1977 A
4007739 Bron et al. Feb 1977 A
4013227 Herrera Mar 1977 A
4052002 Stouffer et al. Oct 1977 A
D246667 Mackay et al. Dec 1977 S
D246668 Mackay et al. Dec 1977 S
4060870 Cannarella Dec 1977 A
4075761 Behne et al. Feb 1978 A
4078558 Woog et al. Mar 1978 A
4094311 Hudson Jun 1978 A
4108167 Hickman et al. Aug 1978 A
4108178 Betush Aug 1978 A
4109650 Peclard Aug 1978 A
4122845 Stouffer et al. Oct 1978 A
4133971 Boyd et al. Jan 1979 A
4135501 Leunissan Jan 1979 A
4141352 Ebner et al. Feb 1979 A
4144646 Takemoto et al. Mar 1979 A
4149315 Page, Jr. et al. Apr 1979 A
4154375 Bippus May 1979 A
4160383 Rauschenberger Jul 1979 A
4171572 Nash Oct 1979 A
4182038 Fleer Jan 1980 A
4200235 Monschke Apr 1980 A
4201200 Hubner May 1980 A
4210380 Brzostek Jul 1980 A
4215476 Armstrong Aug 1980 A
4219618 Leonard Aug 1980 A
4227878 Lohn Oct 1980 A
4229634 Hickman et al. Oct 1980 A
4236889 Wright Dec 1980 A
D258097 Wistrand Feb 1981 S
4248589 Lewis Feb 1981 A
4249899 Davis Feb 1981 A
4257458 Kondo et al. Mar 1981 A
4262799 Perrett Apr 1981 A
4266934 Pernot May 1981 A
4276023 Phillips et al. Jun 1981 A
4276880 Malmin Jul 1981 A
4302186 Cammack et al. Nov 1981 A
4303064 Buffa Dec 1981 A
4303070 Ichikawa et al. Dec 1981 A
4306862 Knox Dec 1981 A
4315741 Reichl Feb 1982 A
4319568 Tregoning Mar 1982 A
4331422 Heyman May 1982 A
4337040 Cammack et al. Jun 1982 A
4340365 Pisanu Jul 1982 A
4340368 Lococo Jul 1982 A
D266117 Oberheim Sep 1982 S
4353694 Pelerin Oct 1982 A
4363626 Schmidt et al. Dec 1982 A
4365376 Oda et al. Dec 1982 A
4370131 Banko Jan 1983 A
4374354 Petrovic et al. Feb 1983 A
4382167 Maruyama et al. May 1983 A
4382786 Lohn May 1983 A
D270000 Ketler Aug 1983 S
4396011 Mack et al. Aug 1983 A
4412823 Sakai et al. Nov 1983 A
4416628 Cammack Nov 1983 A
4442830 Markau Apr 1984 A
4442831 Trenary Apr 1984 A
4452238 Kerr Jun 1984 A
4454866 Fayen Jun 1984 A
4512769 Kozam et al. Apr 1985 A
4517962 Heckele May 1985 A
4531912 Schuss et al. Jul 1985 A
4531913 Taguchi Jul 1985 A
4534340 Kerr et al. Aug 1985 A
4552130 Kinoshita Nov 1985 A
4561214 Inoue Dec 1985 A
D283374 Cheuk-Yiu Apr 1986 S
4585415 Hommann Apr 1986 A
4591777 McCarty et al. May 1986 A
4592728 Davis Jun 1986 A
4602906 Grunenfelder Jul 1986 A
4607627 Leber et al. Aug 1986 A
4613074 Schulze Sep 1986 A
4619009 Rosenstatter Oct 1986 A
4619612 Weber et al. Oct 1986 A
4629425 Detsch Dec 1986 A
4636198 Stade Jan 1987 A
4642037 Fritchman Feb 1987 A
4644937 Hommann Feb 1987 A
4645488 Matukas Feb 1987 A
4647831 O'Malley et al. Mar 1987 A
4648838 Schlachter Mar 1987 A
4650475 Smith et al. Mar 1987 A
4655198 Hommann Apr 1987 A
4669453 Atkinson et al. Jun 1987 A
4672953 DiVito Jun 1987 A
4673396 Urbaniak Jun 1987 A
D291354 Camens Aug 1987 S
4716352 Hurn et al. Dec 1987 A
4749340 Ikeda et al. Jun 1988 A
4770632 Ryder et al. Sep 1988 A
D298565 Kohler, Jr. et al. Nov 1988 S
4783321 Spence Nov 1988 A
4787845 Valentine Nov 1988 A
4787847 Martin et al. Nov 1988 A
4798292 Hauze Jan 1989 A
4803974 Powell Feb 1989 A
4804364 Dieras et al. Feb 1989 A
4810148 Aisa et al. Mar 1989 A
4818229 Vasile Apr 1989 A
4820152 Warrin et al. Apr 1989 A
4821923 Skorka Apr 1989 A
4824368 Hickman Apr 1989 A
4826431 Fujimura et al. May 1989 A
4827551 Maser et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4854869 Lawhorn Aug 1989 A
4861340 Smith et al. Aug 1989 A
4862876 Lih-Sheng Sep 1989 A
4869720 Chernack Sep 1989 A
4880382 Moret et al. Nov 1989 A
4886452 Lohn Dec 1989 A
4900252 Liefke et al. Feb 1990 A
4902225 Lohn Feb 1990 A
4903687 Lih-Sheng Feb 1990 A
4906187 Amadera Mar 1990 A
4907744 Jousson Mar 1990 A
4915304 Campani Apr 1990 A
4925450 Imonti et al. May 1990 A
4928675 Thornton May 1990 A
4930660 Porteous Jun 1990 A
4941459 Mathur Jul 1990 A
4950159 Hansen Aug 1990 A
4958629 Peace et al. Sep 1990 A
4958751 Curtis et al. Sep 1990 A
4959199 Brewer Sep 1990 A
4961698 Vlock Oct 1990 A
4966551 Betush Oct 1990 A
4969874 Michel et al. Nov 1990 A
4973246 Black Nov 1990 A
4973247 Varnes et al. Nov 1990 A
4973250 Milman Nov 1990 A
4975054 Esrock Dec 1990 A
4979503 Chernack Dec 1990 A
4979504 Mills Dec 1990 A
4989590 Baum et al. Feb 1991 A
4998880 Nerli Mar 1991 A
5013241 Von Gutfeld et al. May 1991 A
5014884 Wunsch May 1991 A
5019054 Clement et al. May 1991 A
5027798 Primiano Jul 1991 A
5029576 Evans, Sr. Jul 1991 A
5033617 Hartwein et al. Jul 1991 A
5033961 Kandler et al. Jul 1991 A
D318918 Hartwein Aug 1991 S
5046486 Grulke et al. Sep 1991 A
5049071 Davis et al. Sep 1991 A
5060825 Palmer et al. Oct 1991 A
5061180 Wiele Oct 1991 A
5062795 Woog Nov 1991 A
5064168 Raines et al. Nov 1991 A
D322314 Ohbayashi Dec 1991 S
5071346 Domaas Dec 1991 A
5082115 Hutcheson Jan 1992 A
5082443 Lohn Jan 1992 A
5085317 Jensen et al. Feb 1992 A
5086756 Powell Feb 1992 A
5095893 Rawden, Jr. Mar 1992 A
5098291 Curtis et al. Mar 1992 A
5098676 Brooks, Jr. Mar 1992 A
5100319 Baum Mar 1992 A
5117871 Gardner et al. Jun 1992 A
5125835 Young Jun 1992 A
5127831 Bab Jul 1992 A
5142723 Lustig et al. Sep 1992 A
5150841 Silvenis et al. Sep 1992 A
5172810 Brewer Dec 1992 A
5173273 Brewer Dec 1992 A
5183035 Weir Feb 1993 A
5197458 Ito et al. Mar 1993 A
5197460 Ito et al. Mar 1993 A
5199871 Young Apr 1993 A
5203697 Malmin Apr 1993 A
5203769 Clement et al. Apr 1993 A
5204004 Johnston et al. Apr 1993 A
5208933 Lustig et al. May 1993 A
5215193 Dennis Jun 1993 A
5218956 Handler et al. Jun 1993 A
5220914 Thompson Jun 1993 A
5228646 Raines Jul 1993 A
5230624 Wolf et al. Jul 1993 A
5232687 Geimer Aug 1993 A
5235968 Woog Aug 1993 A
5241714 Barry Sep 1993 A
5246367 Ito et al. Sep 1993 A
5252064 Baum et al. Oct 1993 A
D341200 Yoshimoto Nov 1993 S
5257933 Jousson Nov 1993 A
5261448 Furuya et al. Nov 1993 A
D341943 Si-Hoe Dec 1993 S
5267586 Jankavaara Dec 1993 A
5269684 Fischer Dec 1993 A
5281137 Jousson Jan 1994 A
5281139 Frank et al. Jan 1994 A
5282745 Wiltrout et al. Feb 1994 A
5286192 Dixon Feb 1994 A
5286201 Yu Feb 1994 A
5295832 Evans Mar 1994 A
5297962 O'Connor et al. Mar 1994 A
D346212 Hosl Apr 1994 S
5301381 Klupt Apr 1994 A
5302123 Bechard Apr 1994 A
5317691 Traeger May 1994 A
5321865 Kaeser Jun 1994 A
5323770 Ito et al. Jun 1994 A
5331704 Rosen et al. Jul 1994 A
5344317 Pacher Sep 1994 A
5346677 Risk Sep 1994 A
D351892 Wolf et al. Oct 1994 S
5360338 Waggoner Nov 1994 A
5368548 Jousson Nov 1994 A
5370534 Wolf et al. Dec 1994 A
D354168 Hartwein Jan 1995 S
D354559 Knute Jan 1995 S
5378149 Stropko Jan 1995 A
5380201 Kawata Jan 1995 A
D356864 Woog Mar 1995 S
5399089 Eichman et al. Mar 1995 A
D358883 Vos May 1995 S
5456672 Diederich et al. Oct 1995 A
5465445 Yeh Nov 1995 A
5467495 Boland et al. Nov 1995 A
5468148 Ricks Nov 1995 A
5470305 Arnett et al. Nov 1995 A
5474450 Chronister Dec 1995 A
5474451 Dalrymple et al. Dec 1995 A
5476379 Disel Dec 1995 A
5484281 Renow et al. Jan 1996 A
5487877 Choi Jan 1996 A
5490779 Malmin Feb 1996 A
5505916 Berry, Jr. Apr 1996 A
D369656 Vos May 1996 S
D370125 Craft et al. May 1996 S
5525058 Gallant et al. Jun 1996 A
5526841 Detsch et al. Jun 1996 A
5540587 Malmin Jul 1996 A
5547374 Coleman Aug 1996 A
D373631 Maeda et al. Sep 1996 S
5554014 Becker Sep 1996 A
5554025 Kinsel Sep 1996 A
5556001 Weissman et al. Sep 1996 A
5564629 Weissman et al. Oct 1996 A
D376893 Gornet Dec 1996 S
D377091 Scott, Sr. Dec 1996 S
5613259 Craft et al. Mar 1997 A
5616028 Hafele et al. Apr 1997 A
5626472 Pennetta May 1997 A
5634791 Matsuura et al. Jun 1997 A
5636987 Serfaty Jun 1997 A
5640735 Manning Jun 1997 A
D382407 Craft et al. Aug 1997 S
5653591 Loge Aug 1997 A
5659995 Hoffman Aug 1997 A
5667483 Santos Sep 1997 A
D386576 Wang et al. Nov 1997 S
5683192 Kilfoil Nov 1997 A
5685829 Allen Nov 1997 A
5685851 Murphy et al. Nov 1997 A
5697784 Hafele et al. Dec 1997 A
D388612 Stutzer et al. Jan 1998 S
D388613 Stutzer et al. Jan 1998 S
D389091 Dickinson Jan 1998 S
5709545 Johnston et al. Jan 1998 A
D390934 McKeone Feb 1998 S
5716007 Nottingham et al. Feb 1998 A
5718668 Arnett et al. Feb 1998 A
5746595 Ford May 1998 A
5749726 Kinsel May 1998 A
5759502 Spencer et al. Jun 1998 A
5779471 Tseng et al. Jul 1998 A
5779654 Foley et al. Jul 1998 A
5795153 Rechmann Aug 1998 A
5796325 Lundell et al. Aug 1998 A
5833065 Burgess Nov 1998 A
5836030 Hazeu et al. Nov 1998 A
D402744 Zuege Dec 1998 S
5851079 Horstman et al. Dec 1998 A
D403511 Serbinski Jan 1999 S
D406334 Rosenthal et al. Mar 1999 S
5876201 Wilson et al. Mar 1999 A
D408511 Allen et al. Apr 1999 S
5901397 Häfele et al. May 1999 A
5934902 Abahusayn Aug 1999 A
D413975 Maeda Sep 1999 S
D416999 Miyamoto Nov 1999 S
D417082 Classen et al. Nov 1999 S
5993402 Sauer et al. Nov 1999 A
6030215 Ellion et al. Feb 2000 A
6038960 Fukushima et al. Mar 2000 A
6039180 Grant Mar 2000 A
6047429 Wu Apr 2000 A
D424181 Caplow May 2000 S
D425615 Bachman et al. May 2000 S
D425981 Bachman et al. May 2000 S
6056548 Neuberger et al. May 2000 A
6056710 Bachman et al. May 2000 A
D426633 Bachman et al. Jun 2000 S
6089865 Edgar Jul 2000 A
6116866 Tomita et al. Sep 2000 A
6120755 Jacobs Sep 2000 A
6124699 Suzuki et al. Sep 2000 A
D434500 Pollock et al. Nov 2000 S
6159006 Cook et al. Dec 2000 A
6164967 Sale et al. Dec 2000 A
D435905 Bachman et al. Jan 2001 S
D437049 Hartwein Jan 2001 S
6193512 Wallace Feb 2001 B1
6193932 Wu et al. Feb 2001 B1
6199239 Dickerson Mar 2001 B1
6200134 Kovac Mar 2001 B1
D439781 Spore Apr 2001 S
6217835 Riley et al. Apr 2001 B1
D441861 Hafliger May 2001 S
6233773 Karge et al. May 2001 B1
6234205 D'Amelio et al. May 2001 B1
6237178 Krammer et al. May 2001 B1
6247929 Bachman et al. Jun 2001 B1
6280190 Hoffman Aug 2001 B1
D448236 Murray Sep 2001 S
6293792 Hanson Sep 2001 B1
D449884 Tobin et al. Oct 2001 S
D453453 Lun Feb 2002 S
D455201 Jones Apr 2002 S
D455203 Jones Apr 2002 S
6363565 Paffrath Apr 2002 B1
D457949 Krug May 2002 S
D464799 Crossman et al. Oct 2002 S
6468482 Frieze et al. Oct 2002 B1
6475173 Bachman et al. Nov 2002 B1
6485451 Roberts et al. Nov 2002 B1
6497375 Srinath et al. Dec 2002 B1
6497572 Hood et al. Dec 2002 B2
6502584 Fordham Jan 2003 B1
D470660 Schaber Feb 2003 S
6532837 Magussen, Jr. Mar 2003 B1
6558344 McKinnon et al. May 2003 B2
6561808 Neuberger et al. May 2003 B2
D475346 McCurrach et al. Jun 2003 S
D476743 D'Silva Jul 2003 S
6589477 Frieze et al. Jul 2003 B1
6602071 Ellion et al. Aug 2003 B1
6632091 Cise et al. Oct 2003 B1
D482451 Page et al. Nov 2003 S
6640999 Peterson Nov 2003 B2
6647577 Tam Nov 2003 B2
6659674 Carlucci et al. Dec 2003 B2
6663386 Moelsgaard Dec 2003 B1
6669059 Mehta Dec 2003 B2
D484971 Hartwein Jan 2004 S
6681418 Bierend Jan 2004 B1
D486573 Callaghan et al. Feb 2004 S
6689078 Rehkemper et al. Feb 2004 B1
6699208 Bachman et al. Mar 2004 B2
6719561 Gugel et al. Apr 2004 B2
D489183 Akahori et al. May 2004 S
6739782 Rehkemper et al. May 2004 B1
6740053 Kaplowitz May 2004 B2
D490899 Gagnon Jun 2004 S
D491728 Jimenez Jun 2004 S
D492996 Rehkemper et al. Jul 2004 S
6761324 Chang Jul 2004 B2
6766549 Klupt Jul 2004 B2
D495142 Berde Aug 2004 S
D495143 Berde Aug 2004 S
6779216 Davies et al. Aug 2004 B2
6783004 Rinner Aug 2004 B1
6783505 Lai Aug 2004 B1
6796796 Segal Sep 2004 B2
6808331 Hall et al. Oct 2004 B2
D498643 Pryor Nov 2004 S
6814259 Foster et al. Nov 2004 B1
D499885 Xi Dec 2004 S
6835181 Hippensteel Dec 2004 B2
D500599 Callaghan Jan 2005 S
6836917 Blaustein et al. Jan 2005 B2
6837708 Chen et al. Jan 2005 B2
6884069 Goldman Apr 2005 B2
6902337 Kuo Jun 2005 B1
6907879 Drinan et al. Jun 2005 B2
D509585 Kling et al. Sep 2005 S
D513638 Pan Jan 2006 S
D515215 Wang Feb 2006 S
D522652 Massey Jun 2006 S
7080980 Klupt Jul 2006 B2
D529661 Schmidt Oct 2006 S
D530010 Luettgen et al. Oct 2006 S
7117555 Fattori et al. Oct 2006 B2
D532570 Vizcarra Nov 2006 S
7131838 Suzuki et al. Nov 2006 B2
D533720 Vu Dec 2006 S
7147468 Snyder et al. Dec 2006 B2
D538474 Sheppard et al. Mar 2007 S
D548334 Izumi Aug 2007 S
D550097 Lepoitevin Sep 2007 S
D553980 VerWeyst Oct 2007 S
7276035 Lu Oct 2007 B2
7314456 Shaw Jan 2008 B2
D565175 Boyd et al. Mar 2008 S
7344510 Yande Mar 2008 B1
D565713 Gao Apr 2008 S
7367803 Egeresi May 2008 B2
D574952 Boyd et al. Aug 2008 S
7414337 Wilkinson et al. Aug 2008 B2
D577198 Jimenez Sep 2008 S
D577814 Seki et al. Sep 2008 S
D581279 Oates Nov 2008 S
7455521 Fishburne, Jr. Nov 2008 B2
7469440 Boland et al. Dec 2008 B2
D585132 Pukall Jan 2009 S
D588262 Pukall Mar 2009 S
7500584 Schutz Mar 2009 B2
D590492 Powell Apr 2009 S
D592748 Boulton May 2009 S
D595136 Canamasas Puigbo Jun 2009 S
D601694 Rocklin Oct 2009 S
D601697 Sobeich et al. Oct 2009 S
D603708 Handy Nov 2009 S
D608430 Slothower Jan 2010 S
7670141 Thomas et al. Mar 2010 B2
7677888 Halm Mar 2010 B1
D613550 Picozza et al. Apr 2010 S
D621949 Seki et al. Aug 2010 S
D622928 Griebel Sep 2010 S
D623376 Griebel Sep 2010 S
D625406 Seki et al. Oct 2010 S
7814585 Reich Oct 2010 B1
D629884 Stephens Dec 2010 S
7857623 Grez Dec 2010 B2
7862536 Chen et al. Jan 2011 B2
7959597 Baker et al. Jun 2011 B2
D640872 Nanda Jul 2011 S
D648539 Wai Nov 2011 S
D651409 Papenfu Jan 2012 S
D651805 Hay Jan 2012 S
D653340 Goerge et al. Jan 2012 S
8113832 Snyder et al. Feb 2012 B2
D655380 Taylor Mar 2012 S
D658381 Gebski May 2012 S
D658538 Korzeniowski May 2012 S
8220726 Qiu et al. Jul 2012 B2
D666912 Kawai Sep 2012 S
8256979 Hilscher et al. Sep 2012 B2
D668339 Luoto Oct 2012 S
D669169 Washington et al. Oct 2012 S
8297534 Li et al. Oct 2012 B2
D670373 Taylor et al. Nov 2012 S
D670958 Picozza et al. Nov 2012 S
D671637 Gebski et al. Nov 2012 S
D672018 Bucher Dec 2012 S
8366024 Leber et al. Feb 2013 B2
8403577 Khoshnevis Mar 2013 B2
8403665 Thomas et al. Mar 2013 B2
8408483 Boyd et al. Apr 2013 B2
8418300 Miller et al. Apr 2013 B2
D686311 Mori Jul 2013 S
D694378 Bates Nov 2013 S
D694398 Taylor Nov 2013 S
D700343 Liu Feb 2014 S
D702819 Garland Apr 2014 S
D702821 Garland Apr 2014 S
D707350 Woodard Jun 2014 S
D709183 Kemlein Jul 2014 S
D714929 Kim et al. Oct 2014 S
D714930 Kim et al. Oct 2014 S
D717427 Kim Nov 2014 S
D725770 Kim et al. Mar 2015 S
D731640 Kim et al. Jun 2015 S
D745329 Ong Dec 2015 S
D746975 Schenck Jan 2016 S
D747464 Taylor Jan 2016 S
D754330 Kim et al. Apr 2016 S
D756122 Taylor May 2016 S
9642677 Luettgen et al. May 2017 B2
D788907 Kim Jun 2017 S
D798440 Kim Sep 2017 S
D802119 Kim Nov 2017 S
D809650 Kim Feb 2018 S
20020090252 Hall et al. Jul 2002 A1
20020108193 Gruber Aug 2002 A1
20020119415 Bailey Aug 2002 A1
20020152565 Klupt Oct 2002 A1
20030060743 Chang Mar 2003 A1
20030098249 Rollock May 2003 A1
20030162146 Shortt Aug 2003 A1
20030204155 Egeresi Oct 2003 A1
20030213075 Hui et al. Nov 2003 A1
20040045107 Egeresi Mar 2004 A1
20040076921 Gofman et al. Apr 2004 A1
20040122377 Fischer et al. Jun 2004 A1
20040126730 Panagotacos Jul 2004 A1
20040180569 Chiou Oct 2004 A1
20040209222 Snyder Oct 2004 A1
20050049620 Chang Mar 2005 A1
20050064371 Soukos et al. Mar 2005 A1
20050101894 Hippensteel May 2005 A1
20050102773 Obermann et al. May 2005 A1
20050144745 Russell Jul 2005 A1
20050177079 Pan Aug 2005 A1
20050271531 Brown et al. Dec 2005 A1
20060008373 Schutz Jan 2006 A1
20060010624 Cleland Jan 2006 A1
20060026784 Moskovich et al. Feb 2006 A1
20060057539 Sodo Mar 2006 A1
20060078844 Goldman et al. Apr 2006 A1
20060079818 Yande Apr 2006 A1
20060207052 Tran Sep 2006 A1
20070082316 Zhadanov et al. Apr 2007 A1
20070082317 Chuang Apr 2007 A1
20070113360 Tsai May 2007 A1
20070202459 Boyd et al. Aug 2007 A1
20070203439 Boyd et al. Aug 2007 A1
20070254260 Alden Nov 2007 A1
20080008979 Thomas Jan 2008 A1
20080189951 Molema et al. Aug 2008 A1
20080213719 Giniger et al. Sep 2008 A1
20080253906 Strong Oct 2008 A1
20090070949 Sagel et al. Mar 2009 A1
20090071267 Mathus et al. Mar 2009 A1
20090082706 Shaw Mar 2009 A1
20090124945 Reich et al. May 2009 A1
20090139351 Reichmuth Jun 2009 A1
20090163839 Alexander Jun 2009 A1
20090188780 Watanabe Jul 2009 A1
20090281454 Baker et al. Nov 2009 A1
20100010524 Barrington Jan 2010 A1
20100015566 Shaw Jan 2010 A1
20100049177 Boone, III et al. Feb 2010 A1
20100190132 Taylor et al. Jul 2010 A1
20100239998 Snyder et al. Sep 2010 A1
20100261134 Boyd et al. Oct 2010 A1
20100261137 Boyd et al. Oct 2010 A1
20100326536 Nan Dec 2010 A1
20100330527 Boyd et al. Dec 2010 A1
20110027749 Syed Feb 2011 A1
20110076090 Wu et al. Mar 2011 A1
20110097683 Boyd et al. Apr 2011 A1
20110139826 Hair et al. Jun 2011 A1
20110144588 Taylor et al. Jun 2011 A1
20110184341 Baker et al. Jul 2011 A1
20110307039 Cornell Dec 2011 A1
20120021374 Cacka et al. Jan 2012 A1
20120045730 Snyder et al. Feb 2012 A1
20120064480 Hegemann Mar 2012 A1
20120077145 Tsurukawa Mar 2012 A1
20120141952 Snyder et al. Jun 2012 A1
20120179118 Hair Jul 2012 A1
20120189976 McDonough et al. Jul 2012 A1
20120266396 Leung Oct 2012 A1
20120277663 Millman et al. Nov 2012 A1
20120277677 Taylor et al. Nov 2012 A1
20120277678 Taylor et al. Nov 2012 A1
20120279002 Sokol et al. Nov 2012 A1
20120295220 Thomas et al. Nov 2012 A1
20130000666 Hu Jan 2013 A1
20130089832 Lee Apr 2013 A1
20130236851 McDonough Sep 2013 A1
20130295520 Hsieh Nov 2013 A1
20140106296 Woodard et al. Apr 2014 A1
20140157512 Yanity Jun 2014 A1
20140193774 Snyder et al. Jul 2014 A1
20140272782 Luettgen et al. Sep 2014 A1
20140352088 Wu Dec 2014 A1
20150004559 Luettgen et al. Jan 2015 A1
20160038265 Chang Feb 2016 A1
Foreign Referenced Citations (31)
Number Date Country
851479 Sep 1970 CA
502817 Feb 1971 CH
655237 Apr 1986 CH
204049908 Dec 2014 CN
1466963 May 1969 DE
2019003 Nov 1971 DE
2409752 Sep 1975 DE
2545936 Apr 1977 DE
2714876 Oct 1978 DE
2910982 Feb 1980 DE
3346651 Jul 1985 DE
0023672 Jul 1980 EP
0515983 Feb 1992 EP
1825827 Aug 2007 EP
2556954 Jun 1985 FR
2654627 May 1991 FR
838564 Jun 1960 GB
1182031 Feb 1970 GB
2018605 Oct 1979 GB
2-134150 May 1990 JP
2009-39455 Feb 2009 JP
20120126265 Nov 2012 KR
WO95016404 Jun 1995 WO
WO0110327 Feb 2001 WO
WO04021958 Mar 2004 WO
WO04039205 May 2004 WO
WO2004060259 Jul 2004 WO
WO2004062518 Jul 2004 WO
WO2008070730 Jun 2008 WO
WO2008157585 Dec 2008 WO
WO2013124691 Aug 2013 WO
Non-Patent Literature Citations (26)
Entry
US RE27,274 E, 01/1972, Mattingly (withdrawn)
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee, with Partial International Search Report, dated Jul. 7, 2014, for International Application No. PCT/US2014/025716, 7 pages.
Suvo. “Helical Gears vs Spur Gears—Advantages and Disadvantages Compared.” Brighthub Engineering, Aug. 18, 2010, www.brighthubengineering.com/manufacturing-technology/33535-helical-gears-vs-spur-gears/., 7 pages.
Waterpik ADA Accepted WP-663, posted at amazon.com, earliest date reviewed on Feb. 6, 2014, [online], acquired on Feb. 12, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Accepted-WP-663-Aquarius-Flosser/dp/B072JFVXSY/ref=cm_cr_arp_d_product_top?ie=UTF8&th=1> (Year: 2014).
The Right Tool, Electron Fusion Devices, Inc., 2 pages, at least as early as Feb. 1991.
Japanese Packaging, 2 pages, at least as early as Dec. 2002.
Japanese Instruction Brochure, 20 pages, at least as early as Dec. 2002.
Brochure: Woog International, “You have a 98% chance of getting gum disease. Unless you read this.”, Lancaster, Pennsylvania, 5 pages, Feb. 1987.
Brochure: Woog International, “We put the control of home dental care back into the hands of the professional”, Lancaster, Pennsylvania, 2 pages, Feb. 1987.
Brochure: Woog International, “Products at a Glance: Home Dental Care System” Woog Orajet, 3 pages, at least as early as Dec. 18, 1998.
Website: http://www.just4teeth.com/product/Panasonic/Panasonic_Portable_Irrigator.htm, 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.videodirectstore.com/store/merchant.mv?Screen=PROD&Product_Code=EW1 . . . , 2 pages, at least as early as Jun. 20, 2003.
Website: http://products.consumerguide.com/cp/family/review/index.cfm/id/18742, 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.racekarteng.com/images/walbroparts.gif and http://www.muller.net/mullermachine/docs/walbro1.html, 4 pages, at least as early as Jun. 20, 2003.
European Search Report, EPO Application No. 07250799.9, dated Jul. 5, 2007.
European Search Report, EPO Application No. 07252693.2, 14 pages, dated Apr. 28, 2008.
European Examination Report, EPO Application No. 07250799.9, dated Feb. 5, 2009.
International Search Report, Application No. PCT/US2010/028180, 2 pages, dated May 18, 2010.
International Search Report, PCT/US2010/060800, 2 pages, dated Feb. 11, 2011.
International Search Report, PCT/US2011/052795, 10 pages, dated Jan. 17, 2012.
Waterpik SinuSense Website: http://www.insightsbyapril.com/2012/03/waterpik-natural-remedy-for-sinus.html, 8 pages, retrieved on May 31, 2012.
Website: https://www.waterpik.com/about-us/, 3 pages.
Waterpik WP 350W Oral Irrigator. Dentist.net. Copyright date 2013. Date accessed: Mar. 30, 2017, 2 pages <http://www.dentalhoo.com/waterpik-wp350.asp>.
iPik Portable Oral Irrigator. AliExpress. Date reviewed: Oct. 5, 2016. <https://www.allexpress.com/...e-Oral-Care-Product-Nasal-Irrigator-Tooth-Flosser-Water/1525541997.html?aff_platform=aaf&cpt=1490913714609&sk=yfAeyJa&aff_trace_key=c5a300c4f02e46d08c042f5292e1762f-1490913714609-07517-yfAeyJa>, 18 pages.
Brite Leafs Professional Portable 2-in-1 Nasal Sinus & Oral Irrigator. Brite Leafs. Copyright date 2012, <http://www.briteleafs.com/product6.html> , 1 page.
AliExpress. Date reviewed: Jan. 12, 2017. <https://www.aliexpress.com/item/Cordless-Water-Floss-Portable-Oral-Irrigator-Dental-Water-Flosser-Waterpic-Whatpick-Dental-Water-Pic-Whater-Pick/32769416341.html?spm=2114.40010308.4.75.Owuzfj>.
Related Publications (1)
Number Date Country
20170239132 A1 Aug 2017 US
Continuations (1)
Number Date Country
Parent 13831401 Mar 2013 US
Child 15588538 US