Oral irrigator with variable pressure

Information

  • Patent Grant
  • 9775692
  • Patent Number
    9,775,692
  • Date Filed
    Friday, April 25, 2014
    10 years ago
  • Date Issued
    Tuesday, October 3, 2017
    7 years ago
Abstract
An oral irrigator including a fluid reservoir, a pumping assembly, a pressure control assembly, and a nozzle. The pumping assembly comprises a power source, a motor in electrical communication with the power source, and a pump in fluid communication with the reservoir. The pressure control assembly is in fluid communication with the pump; mechanically varies a pressure of a fluid exiting the nozzle to change the outlet pressure of the oral irrigator a high pressure to a low pressure and vice versa.
Description
TECHNICAL FIELD

The present invention relates to health and personal hygiene equipment and methods of controlling such equipment. More particularly, the present invention relates to oral irrigators and methods of controlling such equipment.


BACKGROUND

Oral irrigators for discharging a high-pressure fluid stream into a user's oral cavity are well known in the art and are useful for promoting oral hygiene and health. For example, a particularly effective oral irrigator is disclosed in U.S. patent application Ser. No. 10/749,675 which is hereby incorporated by reference in its entirety into the present application.


It is advantageous for an oral irrigator to discharge a fluid stream at a select pulse rate that is generally constant. For example, a particularly useful constant pulse rate is 1200 cycles per minute.


Depending on the user and the part of the oral cavity being impacted by the fluid stream, a high-pressure fluid stream or a low-pressure fluid stream may be preferred. Thus, it is preferable to offer oral irrigators with an ability to vary the pressure of the fluid stream discharging from the oral irrigator. Prior art oral irrigators have attempted to meet this need by adjusting pumping speed. Unfortunately, this approach results in an inability of the oral irrigator to provide a generally constant pulse rate.


SUMMARY

A handheld oral irrigator general includes a fluid reservoir, a pump, a pressure control assembly, and a nozzle. In an implementation disclosed herein, the pump may include a suction side and a discharge side. The suction side is in fluid communication with the fluid reservoir. The pressure control assembly may include a casing and a member displaceable within the casing. The casing has an inlet and an outlet. The inlet is in fluid communication with the discharge side of the pump, and the nozzle is in fluid communication with the outlet of the casing. In one embodiment, the member is longitudinally displaceable within the casing.


In some embodiments, the oral irrigator may also include an actuator for displacing the member within the casing. The member may have a portion that extends through the casing to couple to the actuator. In one embodiment, the portion of the member is an arm that extends through a longitudinally extending slot in the casing. A fluid flow path may extend from the inlet to the outlet and may be modifiable between a first route that extends along at least a portion of the member and a second route that does not.


In another implementation, an oral irrigator may have a pump, a discharge nozzle and a pressure control. The pump may have a generally constant operating speed and feeds the discharge nozzle. The pressure control may be adapted to modify a discharge pressure at the nozzle without a significant change in pump speed. The pressure control modifies a level of fluid flow restriction between the pump and the nozzle. The pressure control may modify the diameter of a fluid flow path extending through the pressure control. The pressure control may also modify the length of a fluid flow path extending through the pressure control. The pressure control may also modify the number of direction changes of a fluid flow path extending through the pressure control.


In a further implementation, an oral irrigator has a pump and a pressure adjustment assembly. The pump supplies a nozzle. The pressure adjustment assembly may be configured to provide a first fluid flow path associated with a high nozzle discharge pressure and a second fluid flow path associated with a low nozzle discharge pressure. The pressure adjustment assembly may be located between the pump and nozzle.


In one embodiment, the first fluid flow path offers a more direct route to the nozzle than the second fluid flow path. In another embodiment, the first fluid flow path has a length that is shorter than a length of the second fluid flow path. In a further embodiment, the second fluid flow path has a diameter that is smaller than a diameter of the first fluid flow path.


The pressure adjustment assembly may have a casing and a member displaceable within the casing. The casing defines a first orifice and the member a second orifice. The second fluid flow path extends through both orifices. The first fluid flow path extends only through the orifice of the casing.


In one embodiment, the pressure adjustment assembly may have a casing and a member displaceable within the casing. A portion of the second fluid flow path extends circumferentially about at least a portion of the member. The member may be generally cylindrical and define a groove extending about at least a portion of the circumferential outer surface of the member. The casing may define an inlet orifice that aligns with the groove to form a portion of the second fluid flow path. The member may also have a longitudinally extending center lumen in fluid contact with the groove via an orifice extending through a wall of the member.


In another implementation an oral irrigator may have a pump and a pressure adjustment assembly. The pump supplies a nozzle. The pressure adjustment assembly may have a first fluid flow friction setting associated with a high nozzle discharge pressure and a second fluid flow friction setting associated with a low nozzle discharge pressure.


In a further implementation, a method of controlling a nozzle discharge pressure of an oral irrigator having a pump that feeds a nozzle is described. The method includes modifying a fluid flow friction value of a fluid flow path between the pump and nozzle by modifying the fluid flow path. The fluid flow path may be modified by one or more of the following actions: changing its length, changing its diameter or by changing its number of direction deviations.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top isometric view of the handheld oral irrigator.



FIG. 2 is a top isometric view of the handheld oral irrigator.



FIG. 3 is a control side elevation of the handheld oral irrigator.



FIG. 4 is a reservoir side elevation of the handheld oral irrigator.



FIG. 5 is a right side elevation of the handheld oral irrigator as if viewed from the direction of arrow A in FIG. 3.



FIG. 6 is a left side elevation of the handheld oral irrigator as if viewed from the direction of arrow B in FIG. 3.



FIG. 7 is a top plan view of the handheld oral irrigator.



FIG. 8 is a bottom plan view of the handheld oral irrigator.



FIG. 9 is a section elevation of the handheld oral irrigator as taken along section line 9-9 in FIG. 4.



FIG. 10 is an isometric view of a motor side of the handheld oral irrigator with the outer housing of the handle portion removed to show the internal elements of the irrigator.



FIG. 11 is the same type of view as illustrated in FIG. 10, except of a pump side of the handheld oral irrigator.



FIG. 12 is a longitudinal section through the pump.



FIG. 13 is an isometric of view of the motor/pump/transmission arrangement with the rest of the irrigator 10 hidden for clarity purposes.



FIG. 14 is an isometric view of the pressure control valve assembly 85 with the majority of the rest of the handheld oral irrigator 10 hidden for clarity purposes.



FIG. 15 is a side elevation of the same elements depicted in FIG. 14, as viewed from the same direction as FIG. 6.



FIG. 16 is a side elevation of the same elements depicted in FIG. 14, as viewed from the same direction as FIG. 4.



FIG. 17A is a longitudinal cross section of the pressure control valve assembly as taken along section line 17-17 in FIG. 15 and wherein a spool is in a rearward location (i.e., a high discharge pressure position) within the valve cylinder.



FIG. 17B is the same view depicted in FIG. 17A, except the spool is in a forward location (i.e., a low discharge pressure position) within the valve cylinder.



FIG. 18A is a longitudinal cross section of the pressure control valve assembly as taken along section line 18-18 in FIG. 16 and wherein the spool is in a rearward location (i.e., a high discharge pressure position) within the valve cylinder.



FIG. 18B is the same view depicted in FIG. 18A, except the spool is in a forward location (i.e., a low discharge pressure position) within the valve cylinder.



FIG. 19 is a side view of the pressure control valve assembly as shown in FIG. 15, except the discharge tube, nozzle and control button are hidden for clarity purposes.



FIG. 20 is an isometric view of the valve assembly wherein the discharge tube, nozzle and control button are hidden for clarity purposes.



FIG. 21 is an isometric view of the spool and yoke.



FIG. 22 is an isometric latitudinal cross section taken along section line 22-22 in FIG. 15.



FIG. 23 is a similar view as illustrated in FIG. 10, except various components are shown in an alternate configuration.



FIG. 24 is a similar view as illustrated in FIG. 11, except various components are shown in an alternate configuration.



FIG. 25 is a bottom perspective view of a reservoir of the handheld oral irrigator.



FIG. 26 is a rear perspective view of a removable faceplate of the handheld oral irrigator.





DETAILED DESCRIPTION OF THE INVENTION

In one embodiment, a handheld oral irrigator 10 allows a user to adjust the discharge pressure of the irrigator generated fluid stream while maintaining the pulse rate of the fluid stream. Thus, the handheld oral irrigator 10 is advantageous over the prior art because it allows a user to adjust the fluid stream discharge pressure to suit the user's comfort preference, while still allowing the oral irrigator to supply the fluid stream at a preferred or most effective pulse rate (e.g., 1200 cycles per minute).


For a discussion of the overall external configuration of one embodiment of the handheld oral irrigator 10, reference is made to FIGS. 1-8. FIGS. 1 and 2 are top isometric views of the handheld oral irrigator 10. FIG. 3 is a control side elevation of the handheld oral irrigator 10. FIG. 4 is a reservoir side elevation of the handheld oral irrigator 10. FIG. 5 is a right side elevation of the handheld oral irrigator 10 as if viewed from the direction of arrow A in FIG. 3. FIG. 6 is a left side elevation of the handheld oral irrigator 10 as if viewed from the direction of arrow B in FIG. 3. FIG. 7 is a top plan view of the handheld oral irrigator 10. FIG. 8 is a bottom plan view of the handheld oral irrigator 10.


As shown in FIGS. 1-7, in one embodiment, the irrigator 10 includes a handle portion 15 and a nozzle 20 with an orthodontic tip at its distal end. The nozzle 20 extends from a top end of the handle portion 15. The nozzle 20 is detachable from the handle portion 15 via a nozzle release button 25 located on the top of the handle portion 15.


As illustrated in FIGS. 1-6, in one embodiment, the handle portion 15 has a modified hourglass shape that gradually narrows from a wide base 30 (the proximal end of the irrigator 10) to a narrow gripping area 35 and gradually widens from the narrow gripping area 35 to a moderately wide top 40 (the distal end of the irrigator 10). The hourglass shape is aesthetically pleasing and ergonomically shaped to accommodate a user's hand, which in one embodiment will be a child or adolescent hand.


As indicated in FIGS. 1, 2 and 4-8, in one embodiment, the handle portion 15 includes a reservoir 45 that forms a part of the base 30. The reservoir 45 is removable from the rest of the handle portion 15 and includes a fill port 50 near the bottom of the reservoir 45. To fill the reservoir with fluid, the reservoir 45 may be disengaged and removed from the rest of the handle portion 15, the cap of the fill port 50 is opened, and a fluid is flowed into the reservoir 45 via the open fill port 50. Once the reservoir 45 is filled, the cap is closed on the fill port 50 and the reservoir 45 is reattached to the rest of the handle portion 15.


As can be understood from FIGS. 1, 2 and 4-8, the reservoir 45 may be filled while still attached to the rest of the handle portion 15. To do this, the cap of the fill port 50 is opened and a fluid is flowed into the reservoir 45 via the open fill port 50. Once the reservoir 45 is filled, the cap is closed.


For a discussion regarding disengaging the reservoir 45 from the rest of the handle portion, reference is made to FIGS. 8 and 25, wherein FIG. 25 is a bottom perspective view of the reservoir of the handheld oral irrigator. As best shown in FIGS. 8 and 25, the reservoir 45 includes a leaf spring latch 47 molded into a lower portion of the reservoir 45 to releasably secure the reservoir 45 to the handle portion 15. The leaf spring latch 47 is biased to engage the handle portion 15 when the reservoir 45 is joined with the handle portion 15. To disengage the leaf spring latch 47 from the handle portion 15, the user moves a latch portion 49 of the leaf spring latch 47 in the direction indicated by an arrow formed, printed, or placed on the leaf spring latch 47. In one embodiment, the reservoir 45 moves downwardly relative to the handle portion 15 when the leaf spring latch 47 is disengaged from the handle portion 15.


Referring again to FIGS. 1, 3 and 5-7 for a continued discussion of the overall external configuration of the handheld oral irrigator, in one embodiment, a control side of the gripping area 35 includes an on/off control 52, a pressure control 54, and a removable faceplate 56 that surrounds the locations of the two controls 52, 54. The on/off control 52 allows a user to turn on or shut off the irrigator 10. To turn the irrigator 10 on, the on/off control 52, which can be a slide, button, etc., is moved (e.g., slid or depressed) to complete an electrical circuit between the irrigator's internal power source and its motor. To turn the irrigator 10 off, the control 52 is moved again to break the electrical circuit.


The pressure control 54 allows a user to adjust the discharge pressure of a fluid stream discharging from the distal tip of the nozzle 20. In one embodiment, the nozzle release button 25 is located on the reservoir side opposite from the controls 50, 52, which helps limit accidental release of the nozzle 20 by accidental pressing or other engagement of the nozzle release button 25 when the user operates the controls 50, 52.


The removable faceplate 56 can be replaced with other faceplates having other colors or designs, thereby allowing the user to customize the appearance of the irrigator 10 as preferred. In one embodiment, the handheld oral irrigator 10 is sold or provided with multiple faceplates 56 of various designs and colors. The user selects their preferred faceplate and mounts it on the handle portion 15.


As shown in FIG. 26, which is a rear perspective view of the removable faceplate of the handheld oral irrigator, the removable face plate 56 has two or more L-shaped tabs 410a, 410b for receipt in corresponding slots or grooves defined in the handle portion 15 of the oral irrigator 10 to join the removable faceplate 56 to the handle portion 15. When joined together, the short legs of the tabs 410a, 410b are received in the slots or grooves defined in the handle portion 15 to maintain the joined relationship between the removable faceplate 56 and the handle portion 15.


To disconnect the removable faceplate 56 from the handle portion 15, the removable faceplate 56 is sufficiently flexible such that a user can deflect the edges 415, 420 of the removable faceplate 56 inward in order disengage the tabs 410a, 410b from the handle portion 15 to pull the faceplate 56 away from the handle portion 15. As a user moves the edges 415,420 of the removable faceplate 56 inwardly, the short legs of the tabs 410a, 410b are removed from the slots or grooves in the handle portion 15, thereby allowing the user to remove the removable faceplate 56 from the handle portion 15.


To join the removable faceplate 56 to the handle portion 15, a user deflects the edges 415,420 of the removable faceplate 56 inwardly and abuts a rear facing surface 425 of the removable faceplate 56 against the handle portion 15. When the removable faceplate 56 abuts the handle portion 15 in the proper location and orientation, the short legs of the tabs 410a, 410b generally align with the grooves or slots in the handle portion 15. In one embodiment, the handle portion 15 has a recessed surface surrounding the controls 50, 52 to aid a user in properly locating and orienting the removable faceplate 56 relative to the handle portion. 15. Once the removable faceplate 45 abuts the handle portion 56 in the proper location and orientation, the user stops squeezing the edges 415, 420 of the removable faceplate inwardly, thereby causing the short legs of the tabs 410a, 410b, which are biased to move outwardly by the internal forces generated by inward movement of the edges 415, 420 of the removable faceplate 56, to enter into the grooves or slots defined in the handle portion 15.


Referring again to FIGS. 1, 3 and 5-7 for a continued discussion of the overall external configuration of the handheld oral irrigator, the reservoir side of the gripping area 35 includes a soft over molded grip area 58, which in one embodiment, includes gripping bumps 60, a textured gripping surface, or other grip enhancing features.


As illustrated in FIGS. 1 and 3, in one embodiment, a charging plug 63 exits in the handle portion 15 near the base 30. The charging plug 63 is used to place an external power source in electrical communication with an internal power source (e.g., battery) located within the handle portion 15.


For a discussion of the overall internal configuration of one embodiment of the handheld oral irrigator 10, reference is made to FIGS. 9-11, 23 and 24. FIG. 9 is a section elevation of the handheld oral irrigator 10 as taken along section line 9-9 in FIG. 4. FIG. 10 is an isometric view of a motor side of the handheld oral irrigator 10 with the outer housing 65 of the handle portion 15 removed to show the internal elements of the irrigator 10. FIG. 11 is the same type of view as illustrated in FIG. 10, except of a pump side of the handheld oral irrigator 10. FIG. 23 is a similar view as illustrated in FIG. 10, except various components are shown in an alternate configuration. FIG. 24 is a similar view as illustrated in FIG. 11, except various components are shown in an alternate configuration.


As shown in FIG. 9, the irrigator 10 includes an outer housing 65 that forms the exterior surface of the handle portion 15. The housing 65 encloses a motor 70, a pump 75, a transmission 77, a rechargeable NiCad battery 80, and a pressure control valve assembly 85. In one embodiment as illustrated in FIGS. 10 and 11, the motor 70 and pump 75 are located in a side-by-side arrangement near the base 30, the transmission 77 is located below the motor 70 and pump 75, the battery 80 is located above the motor 70 and pump 75, and the valve assembly 85 is located above the battery 80. In another embodiment as illustrated in FIGS. 23 and 24, the battery 80 is located near the base 30, the motor 70 and pump 75 are located above the battery 80, the transmission 77 is located above the motor 70 and pump 75, and the valve assembly 85 is located above the transmission 77. The transmission 77 couples the motor 70 to the pump 75 to convert the rotational output of the motor 70 into the longitudinally reciprocating movement of the pump's piston 120.


As illustrated in FIG. 9, the removable reservoir 45 forms a significant part of a lower side of the handle portion 15. The fill port 50 opens into the reservoir 45, and the reservoir 45 extends under a portion of the housing 65 enclosing the motor 70 and pump 75. A transfer tube 90 extends from a bottom level of the reservoir 45 to a seal coupling 95. In one embodiment, the transfer tube 90 is part of the reservoir. In another embodiment, the transfer tube 90 is separate from the reservoir 45. When the reservoir 45 is coupled to the rest of the handle portion 15, the seal coupling 95 sealing mates with a bottom end of a suction tube 100, which leads to a suction port 105 of the pump 75, as best understood from FIGS. 11 and 24. Thus, the reservoir 45 is placed in fluid communication with the suction side of the pump 75.


As indicated in FIGS. 10 and 11, and FIGS. 23 and 24, the motor 70, pump 75, transmission 77 and valve assembly 85 are coupled to a chassis plate 110 longitudinally extending through the housing 65 of the handle portion 15. In one embodiment, the controls 52, 54, motor 70 and the battery 80 are located on one side of the plate 110, and the pump 70 and valve assembly 85 are located on the other side of the plate 110.


As can be understood from FIGS. 9 and 11, the suction tube 100 is detachably sealably coupled to the seal coupling 95 by coupling the reservoir 45 to the rest of the housing 65 of the handle portion 15 such that the free end of the suction tube 100 is received in the seal coupling 95. As shown in FIG. 11, fluid traveling form the reservoir 45 to the distal end of the nozzle 20 is drawn through the transfer tube 90, into the suction tube 100 at the seal coupling 95 and to the suction port 105 of the pump 75.


As can be understood from FIG. 12, which is a longitudinal section through the pump 75, when a piston 120 moves rearwardly in a cylinder 115 of a cylinder casing 118 (rearward movement indicated by arrow X in FIG. 12), a discharge wafer 121 of a discharge wafer valve arrangement is forced against a discharge valve seat 122 and the fluid is drawn through the suction port 105 of a suction casing 107 of the pump 75, past a suction wafer 108 forming a suction wafer valve arrangement, and into the cylinder 115. When the piston 120 moves forwardly (as indicated by arrow Yin FIG. 12), the suction wafer 108 is forced against the suction valve seat 125 and the fluid is forced past the discharge wafer 121, into a discharge port 130 of a discharge casing 135 of the pump 75, and into a discharge tube 140 leading to the valve assembly 85, as illustrated in FIGS. 11 and 24.


In one embodiment, as depicted in FIGS. 11 and 12, the pump 75 is formed from three casings (e.g., the suction casing 107, cylinder casing 118 and discharge casing 135). In one embodiment, the three casings 107, 118, 135 are held together via a joining mechanism. For example, in one embodiment, a screw 145 (illustrated in FIG. 11) is received in screw receiving holes 146 (shown in FIG. 12) in the three casings 107, 118, 135.


For a discussion of the motor/pump/transmission arrangement, reference is made to FIG. 13, which is an isometric of view of the motor/pump/transmission arrangement with the rest of the irrigator 10 hidden for clarity purposes. As shown in FIG. 12, a pinion gear 150 extends from the motor 70 to drive a gear 155 carrying a cam 160. A piston rod 165 (see FIGS. 12 and 13) extends between the piston 120 and a cam follower end 170 of the piston rod 165. The cam follower end 170 receives the cam 160, and as the cam 160 is caused to rotate, the cam follower 170 and cam 160 act to convert the rotational movement of the motor 70 into longitudinal reciprocal displacement of the piston 120 within the cylinder 115.


For a discussion of the pressure control valve assembly 85, reference is made to FIGS. 14-22. FIG. 14 is an isometric view of the pressure control valve assembly 85 with the majority of the rest of the handheld oral irrigator 10 hidden for clarity purposes. FIG. 15 is a side elevation of the same elements depicted in FIG. 14, as viewed from the same direction as FIG. 6. FIG. 16 is a side elevation of the same elements depicted in FIG. 14, as viewed from the same direction as FIG. 4. FIG. 17A is a longitudinal cross section of the pressure control valve assembly 85 as taken along section line 17-17 in FIG. 15 and wherein a spool 180 is in a rearward location (i.e., a high discharge pressure position) within the valve cylinder 185. FIG. 17B is the same view depicted in FIG. 17A, except the spool 180 is in a forward location (i.e., a low discharge pressure position) within the valve cylinder 185. FIG. 18A is a longitudinal cross section of the pressure control valve assembly 85 as taken along section line 18-18 in FIG. 16 and wherein the spool 180 is in a rearward location (i.e., a high discharge pressure position) within the valve cylinder 185. FIG. 18B is the same view depicted in FIG. 18A, except the spool 180 is in a forward location (i.e., a low discharge pressure position) within the valve cylinder 185. FIG. 19 is a side view of the pressure control valve assembly 85 as shown in FIG. 15, except the discharge tube 140, nozzle 20 and control button 54 are hidden for clarity purposes. FIG. 20 is an isometric view of the pressure control valve assembly 85 wherein the discharge tube 140, nozzle 20 and control button 54 are hidden for clarity purposes. FIG. 21 is an isometric view of the spool 180 and yoke 190. FIG. 22 is an isometric latitudinal cross section taken along section line 22-22 in FIG. 15.


As can be understood from FIGS. 14-18B and 22, fluid pumped through the discharge tube 140 from the pump 75 enters an inlet 210 of the pressure control valve assembly 85. As depicted in FIG. 19 and FIG. 22, in one embodiment, to enter the valve cylinder 185, the fluid passes through slot openings 215 in the cylinder wall 220.


As can be understood from FIGS. 17A-18B, a spool 180 is located in the cylinder 185 and longitudinally displaceable within the cylinder 185. As illustrated in FIG. 21, the spool 180 is cylindrically shaped with a pair of arms 257 extending outwardly and rearwardly from a middle portion of the spool 180. A lumen 258 extends longitudinally through the length of the spool 180. The free ends of the arms 257 are received in pivot holes 259 in a yoke 261. The distal end of the spool 180 includes a pair of o-ring receiving grooves 260, a fluid groove 265 positioned between the o-ring grooves 260, and an orifice 275 extending between the fluid groove 265 and the lumen 270. The proximal end of the spool 180 includes an o-ring receiving groove 277.


As indicated in FIGS. 17A and 18A, when the spool 180 is located rearwardly in the cylinder 185, the fluid passes through the slot openings 215 (see FIGS. 19 and 20) and directly from the front of the cylinder 185, through the valve assembly outlet 225, through the lumen 230 of the nozzle 20, and out the distal tip of the nozzle 20 as a high discharge pressure fluid stream. As indicated in FIGS. 17B, 18B and 21, when the spool 180 is located forwardly in the cylinder 185, the fluid passes through the slot openings 215 (see FIGS. 19 and 20) and between the fluid groove 265 and the inner circumferential surface of the cylinder 185, through the orifice 275, into the lumen 258 of the spool 180, through the valve assembly outlet 225, through the lumen 230 of the nozzle 20, and out the distal tip of the nozzle 20 as a low discharge pressure fluid stream.


As can be understood from FIGS. 17A-20, when the spool 180 is in the forward position within the cylinder 185 (i.e., the low discharge pressure position), the fluid flow passing through the pressure control valve assembly 85 must overcome a substantially increased frictional resistance as compared to when the spool 180 is in the rearward position within the cylinder 185 (i.e., the high discharge pressure position). Accordingly, when the spool 180 is in the low discharge pressure position, the pressure control valve assembly 85 creates a substantially high-pressure drop in the fluid flow passing through the assembly 85 as compared to when the spool 180 is in the high discharge pressure position. Thus, without having to adjust the operating speed of the pump 75, a user may adjust the discharge pressure of a fluid stream emanating from the nozzle 20 of the oral irrigator 10 by adjusting the position of the spool 180 within the cylinder 185. Accordingly, the discharge pressure may be substantially modified by a user without causing a substantial change in the preferred pulse rate of the fluid stream.


As can be understood from FIGS. 17A-20, moving the spool 180 from the high discharge pressure position (see FIGS. 17A and 18A) to the low discharge pressure position (see FIGS. 17B and 18B) modifies, in several ways, the fluid flow path through the discharge pressure control assembly 85 and, as a result, the fluid flow path between the pump 75 and the nozzle 20. First, moving the spool 180 from the high to the low discharge pressure position increases the length of the fluid flow path because the flow is diverted about the fluid groove 265, through the orifice 275 and through the lumen 258 before the flow can pass through the cylinder outlet 225 to the nozzle 20. Second, moving the spool 180 from the high to the low discharge pressure position substantially decreases the diameters or flow areas of the fluid flow path because the diameters or flow areas of the fluid groove 265, orifice 275, and lumen 258 are substantially smaller than the internal diameter or flow area of the cylinder 185. Third moving the spool 180 from the high to the low discharge pressure position increases the number of direction deviations the fluid flow must undergo because the fluid must travel a tortuous route around the groove 265 and through the orifice 275 and lumen 258 before the flow can pass through the cylinder outlet 225 to the nozzle 20.


Each of these modifications to the fluid flow path brought about by moving the spool 180 from the high to low discharge pressure position increases the magnitude of the fluid flow friction between the pump 75 and the nozzle 20. Accordingly, although the pump 75 continues to operate at generally the same speed and provides a fluid stream at generally the same pulse rate, because the spool 180 moves from the high to the low discharge pressure position within the cylinder 185, the discharge pressure of the fluid stream at the distal end of the nozzle 20 decreases from a high to low discharge pressure.


Research has indicated that some fluid stream pulse rates are more effective than other pulse rates. For example, in one embodiment, the pump 75 of the oral irrigator 10 cycles at a rate such that it discharges a fluid stream out the nozzle 20 that has a pulse rate of 1000-1600 pulses per minute and, in one embodiment, 1100-1400 pulses per minute and, in one embodiment, 1200 pulses per minute. As discussed in U.S. Pat. No. 3,227,158 issued to Mattingly, which is incorporated by reference herein in its entirety, a pulse rate of 1000-1600 pulses per minute has been found to be the most effective pulse rates for the purposes of oral hygiene and health. Other highly effective pulse rates for the purposes of oral hygiene and health also include 1100-1400 pulse per minute and 1200 pulses per minute.


The pressure control feature is advantageous because it allows a user to adjust the fluid stream discharge pressure to suit the user's comfort preferences while maintaining the pulse rate generally at a preferred pulse rate. For example, regardless of whether the pressure control valve assembly 85 is set to cause a low or high discharge pressure fluid stream to emanate from the nozzle 20, the fluid stream will have a preferred number of pulses per minute (e.g., 1000-1600 pulses per minute, 1100-1400 pulses per minute, 1200 pulses per minute, etc.).


For a discussion of the cylinder's configuration, reference is again made to FIGS. 14 and 17A-20. As best understood from FIGS. 14, 19 and 20, the cylinder 185 of the pressure control valve assembly 185 includes a proximal portion 185a received within a collar portion 185b of a distal portion 185c. A slot 300 extends longitudinally along the sides of the cylinder 185, and the arms 257 of the spool 180 extend through the slots 300 to couple with the arms of the yoke 261. As indicated in FIGS. 17A-18B, the cylinder 185 is hollow to receive the spool 180, and the proximal end of the cylinder proximal portion 185c is walled-off such that when a fluid flows into the lumen 258 of the spool 180, the fluid impacts the proximal end of the cylinder proximal portion 185c to establish a back pressure condition within the pressure control valve assembly 85. As can be understood from FIGS. 17A and 17B, the o-rings 260, 277 prevent fluid from escaping the cylinder 185 through the slots 300.


For a discussion of the linkage 305 used to cause the spool 180 to displace within the cylinder 185, reference is again made to FIGS. 9, 14, 15, 18A-21. As best understood from these figures, the linkage 305 includes the yoke 261 and the pressure control 54. The yoke 261 includes a pair of arms, and each arm has a pivot hole 259 near its free end. The pivot holes 259 pivotally receive therein the free ends of the spool arms 257. The yoke includes an arcuately slotted tongue 310 opposite the yoke arms for pivotally receiving therein a ball 315 extending from the pressure control 54.


As indicated in FIG. 9, in one embodiment, the pressure control 54 is a slide supported by the housing 65 of the handle portion 15 of the irrigator 10. As illustrated in FIGS. 19 and 21, the yoke 261 has a rocker portion 320 from which the tongue 310 extends. As shown in FIGS. 18A and 18B, the rocker portion 320 resides within a hole or slot 325 in the chassis plate 110, which allows the tongue 310 to rock towards the nozzle 20 or towards the base 30, depending on how the slide 54 is displaced along the housing 65.


As indicated in FIG. 18A, when the slide 54 is shifted towards the nozzle 20, the tongue 310 is rocked towards the nozzle 20 thereby causing the yoke 261 to pivot about the hole 325 in the chassis plate 110 such that the yoke arms move towards the base 30 and pull the spool arms 257 towards the base 30, which causes the spool 180 to move towards the base 30 (i.e., the spool 180 moves into the high discharge pressure position). As indicated in FIG. 18B, when the slide 54 is shifted towards the base 30, the tongue 310 is rocked towards the base 30 thereby causing the yoke 261 to pivot about the hole 325 in the chassis plate 110 such that the yoke arms move towards the nozzle 20 and pull the spool arms 257 towards the nozzle 20, which causes the spool 180 to move towards the nozzle 20 (i.e., the spool 180 moves into the low discharge pressure position).


For a discussion regarding the elements of the nozzle release, reference is again made to FIGS. 9, 14, 15 and 18A-20. As illustrated in these figures, the nozzle release button 25 is coupled to a collar 350 having an opening 355 centered about the hole 360 of the nozzle base receiving cylinder 368, which extends from the cylinder outlet 225. The proximal end of the nozzle 20 is received in the receiving cylinder 368 and the collar 350. The collar 350 is biased into a nozzle base groove 370 by a spring 380. The groove 370 extends about the circumference of the nozzle base. To release or disengage the collar 350 from the nozzle base groove 370 to allow the nozzle 20 to be withdrawn from the receiving cylinder 368, the nozzle release button 25 is depressed against the biasing force of the spring 380, which causes the collar 350 to shift out of engagement with the groove 370. The nozzle 20 is then withdrawn from the cylinder 368.


As can be understood from the preceding discussion, the oral irrigator of the present invention is advantageous because it allows a user to adjust the discharge pressure of the fluid stream emanating from the oral irrigator without bringing about a significant change in the pulse rate of the fluid stream. Thus, the oral irrigator can continue to supply a fluid stream at a preferred pulse rate regardless of the discharge pressure selected by the user.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. The invention is limited only by the scope of the following claims.

Claims
  • 1. An oral irrigator comprising a fluid reservoir;a pumping assembly comprising a power source;a motor in electrical communication with the power source and including a drive shaft; anda pump in fluid communication with the reservoir and connected to the drive shaft; anda pressure control assembly in fluid communication with the pump, the pressure control assembly comprising: a spool movable from a first position relative to an outlet of the pump to a second position relative to the outlet of the pump, wherein the spool comprises: a lumen extending longitudinally along a length of the spool;an orifice defined through an outer sidewall of the spool in fluid communication with the lumen: whereinin the first position the orifice is aligned with and fluidly connected to the outlet of the pump; andin the second position the orifice is misaligned with the outlet of the pump and is not fluidly connected to the pump; anda control mechanism operably connected to the spool, wherein movement of the control mechanism in a first direction causes the spool to move in a second direction; and movement of the control mechanism in the second direction causes the spool to move in the first direction; anda nozzle in fluid communication with the pressure control assembly; whereinwhen activated, the power source powers the motor, causing the drive shaft to rotate and activate the pump to pump a fluid from the reservoir to the nozzle in a series of pulses at a predetermined pulse rate; andthe pressure control assembly selectively and mechanically varies a pressure of the fluid exiting the nozzle, maintaining the predetermined pulse rate of the fluid as it exits the nozzle.
  • 2. The oral irrigator of claim 1, wherein the power source provides a substantially constant signal to the motor during operation of the pump.
  • 3. The oral irrigator of claim 1, when activated the motor is driven at a constant speed and the pressure of the fluid exiting the nozzle is selectively variable between a high pressure and a low pressure.
  • 4. The oral irrigator of claim 1, wherein the pressure control assembly varies at least one of the following characteristics to vary the pressure: a length of a fluid flow path from an outlet of the pump to the inlet of the nozzle;a diameter of a portion of the fluid flow path; ora number of direction changes in the fluid flow path.
  • 5. The oral irrigator of claim 4, wherein the pressure control assembly varies the length of the fluid flow path, the at least one diameter of the fluid flow path, and the number of direction changes in the fluid flow path to vary the pressure.
  • 6. The oral irrigator of claim 1, further comprising a housing, wherein the motor is positioned adjacent to the pump.
  • 7. The oral irrigator of claim 6, wherein the power source is positioned above the motor and the pump.
  • 8. The oral irrigator of claim 6, further wherein the power source is positioned below the motor.
  • 9. The oral irrigator of claim 1, further comprising a linkage positioned between the spool and the control mechanism.
  • 10. The oral irrigator of claim 1, wherein the control mechanism and the spool move substantially parallel to a longitudinal length of the nozzle.
  • 11. A water flossing device comprising a reservoir;a nozzle in fluid communication with the reservoir;a pump having an inlet in fluid communication with the reservoir and an outlet in fluid communication with the nozzle;a motor connected to the pump and configured to selectively activate the pump;a power source in electrical communication with the motor; anda pressure assembly connected between the nozzle and the pump, the pressure assembly includes a spool comprising: a lumen defined longitudinally along a length of the spool; andan orifice defined through a sidewall of the spool and in fluid communication with the lumen;a first sealing member connected to the spool and positioned above the orifice; anda second sealing member connected to the spool and positioned below the orifice; whereinin an on state the power source provides a substantially constant voltage to the motor and the pressure assembly selectively varies an outlet pressure of fluid exiting the nozzle while maintaining a constant pulse rate of the fluid exiting the nozzle, wherein the outlet pressure varies between a high pressure setting and a low pressure setting,during the high pressure setting, the spool is in a first position relative to the outlet of the pump and the orifice is fluidly sealed from the outlet of the pump; andduring the low pressure setting, the spool is in a second position relative to the outlet of the pump and the orifice is in fluid communication with the outlet of the pump and fluid flows through the orifice into the lumen from the outlet of the pump.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation patent application of U.S. patent application Ser. No. 13/566,652, filed Aug. 3, 2012 entitled “Oral Irrigator with Hand Conforming Housing,” which is a continuation patent application of U.S. Pat. No. 8,403,665, filed Feb. 22, 2010 entitled “Oral Irrigator,” which is a continuation patent application of U.S. Pat. No. 7,670,141, filed Jul. 7, 2006 entitled “Oral Irrigator,” the disclosures of which are hereby incorporated herein in their entireties.

US Referenced Citations (494)
Number Name Date Kind
555588 Spencer Mar 1896 A
1278225 Schamberg Sep 1918 A
1464419 Gill Aug 1923 A
1498267 Hachman Jun 1924 A
1650686 Binks Nov 1927 A
1669889 Andrews et al. May 1928 A
1681320 Bergl et al. Aug 1928 A
1933454 Sidney Oct 1933 A
2107686 Bramsen et al. Feb 1938 A
2230238 Duberstein et al. Feb 1941 A
2417759 Johnson Mar 1947 A
2669233 Friend Feb 1954 A
2794437 Tash Jun 1954 A
2783919 Ansell Mar 1957 A
2870932 Davis Jan 1959 A
2984452 Hooper May 1961 A
3089490 Goldberg May 1963 A
3096913 Jousson Jul 1963 A
3144867 Trupp et al. Aug 1964 A
3209956 McKenzie Oct 1965 A
3216619 Richards et al. Nov 1965 A
3225759 Drapen et al. Dec 1965 A
3227158 Mattingly Jan 1966 A
3266623 Poferl Aug 1966 A
3297558 Hillquist Jan 1967 A
D208778 Koch Oct 1967 S
D209204 St. Clair et al. Nov 1967 S
D209395 Gilbert Nov 1967 S
D210018 Mattingly et al. Jan 1968 S
D210019 Johnson et al. Jan 1968 S
3370214 Aymar Feb 1968 A
3391696 Woodward Jul 1968 A
3393673 Mattingly Jul 1968 A
3400999 Goldstein Sep 1968 A
3418552 Holmes Dec 1968 A
3420228 Kalbfeld Jan 1969 A
3425410 Cammack Feb 1969 A
3453969 Mattingly Jul 1969 A
3465751 Powers Sep 1969 A
3487828 Troy Jan 1970 A
3489268 Meierhoefer Jan 1970 A
3495587 Freedman Feb 1970 A
3496933 Lloyd Feb 1970 A
3499440 Gibbs Mar 1970 A
3500824 Gilbert Mar 1970 A
3501203 Falk Mar 1970 A
3502072 Stillman Mar 1970 A
3517669 Buono et al. Jun 1970 A
D218270 Soper Aug 1970 S
3522801 Robinson Aug 1970 A
3532221 Kaluhiokalani et al. Oct 1970 A
3536065 Moret Oct 1970 A
3537444 Garn Nov 1970 A
3538950 Porteners Nov 1970 A
3547110 Balamuth Dec 1970 A
3561433 Kovach Feb 1971 A
D220334 Mackay et al. Mar 1971 S
3570525 Borsum Mar 1971 A
3572375 Rosenberg Mar 1971 A
3578884 Jacobson May 1971 A
3583609 Oppenheimer Jun 1971 A
3590813 Roszyk Jul 1971 A
3608548 Lewis Sep 1971 A
D222862 Cook Jan 1972 S
3636947 Balamuth Jan 1972 A
3651576 Massa Mar 1972 A
3669101 Kleiner Jun 1972 A
3703170 Ryckman, Jr. Nov 1972 A
3747595 Grossan Jul 1973 A
3768472 Hodosh et al. Oct 1973 A
3783364 Gallanis et al. Jan 1974 A
3809977 Balamuth et al. May 1974 A
3811432 Moret May 1974 A
3820532 Eberhardt et al. Jun 1974 A
3827147 Condon Aug 1974 A
3840795 Roszyk et al. Oct 1974 A
3847145 Grossan Nov 1974 A
3854209 Franklin et al. Dec 1974 A
3863628 Vit Feb 1975 A
3874506 Hill et al. Apr 1975 A
3881868 Duke May 1975 A
3898739 Gayso Aug 1975 A
3912125 Acklin Oct 1975 A
3943628 Kronman et al. Mar 1976 A
3973558 Stouffer Aug 1976 A
4001526 Olson Jan 1977 A
4004302 Hori Jan 1977 A
4007739 Bron et al. Feb 1977 A
4052002 Stouffer et al. Oct 1977 A
D246667 Mackay et al. Dec 1977 S
4060870 Cannarella Dec 1977 A
4075761 Behne et al. Feb 1978 A
4078558 Woog et al. Mar 1978 A
4108167 Hickman et al. Aug 1978 A
4108178 Betush Aug 1978 A
4109650 Peclard Aug 1978 A
4122845 Stouffer et al. Oct 1978 A
4135501 Leunissan Jan 1979 A
4141352 Ebner et al. Feb 1979 A
4144646 Takemoto et al. Mar 1979 A
4149315 Page, Jr. et al. Apr 1979 A
4154375 Bippus May 1979 A
4160383 Rauschenberger Jul 1979 A
4182038 Fleer Jan 1980 A
4201200 Hubner May 1980 A
4215476 Armstrong Aug 1980 A
4219618 Leonard Aug 1980 A
4227878 Lohn Oct 1980 A
4229634 Hickman et al. Oct 1980 A
4236889 Wright Dec 1980 A
4248589 Lewis Feb 1981 A
4249899 Davis Feb 1981 A
4257458 Kondo et al. Mar 1981 A
4262799 Perrett Apr 1981 A
4266934 Pernot May 1981 A
4276023 Phillips et al. Jun 1981 A
4276880 Malmin Jul 1981 A
4302186 Cammack et al. Nov 1981 A
4303064 Buffa Dec 1981 A
4303070 Ichikawa et al. Dec 1981 A
4315741 Reichl Feb 1982 A
4319568 Tregoning Mar 1982 A
4331422 Heyman May 1982 A
4337040 Cammack Jun 1982 A
4340365 Pisanu Jul 1982 A
4340368 Lococo Jul 1982 A
D266117 Oberheim Sep 1982 S
4353694 Pelerin Oct 1982 A
4363626 Schmidt et al. Dec 1982 A
4365376 Oda et al. Dec 1982 A
4370131 Banko Jan 1983 A
4374354 Petrovic et al. Feb 1983 A
4382167 Maruyama et al. May 1983 A
4382786 Lohn May 1983 A
D270000 Ketler Aug 1983 S
4412823 Sakai et al. Nov 1983 A
4442830 Markau Apr 1984 A
4442831 Trenary Apr 1984 A
4452238 Kerr Jun 1984 A
4454866 Fayen Jun 1984 A
4512769 Kozam et al. Apr 1985 A
4517962 Heckele May 1985 A
4531912 Schuss et al. Jul 1985 A
4531913 Taguchi Jul 1985 A
4534340 Kerr et al. Aug 1985 A
4552130 Kinoshita Nov 1985 A
4561214 Inoue Dec 1985 A
D283374 Cheuk-Yiu Apr 1986 S
4585415 Hommann Apr 1986 A
4591777 McCarty et al. May 1986 A
4592728 Davis Jun 1986 A
4602906 Grunenfelder Jul 1986 A
4607627 Leber et al. Aug 1986 A
4613074 Schulze Sep 1986 A
4619612 Weber et al. Oct 1986 A
4629425 Detsch Dec 1986 A
4636198 Stade Jan 1987 A
4642037 Fritchman Feb 1987 A
4644937 Hommann Feb 1987 A
4645488 Matukas Feb 1987 A
4647831 O'Malley et al. Mar 1987 A
4648838 Schlachter Mar 1987 A
4650475 Smith et al. Mar 1987 A
4655198 Hommann Apr 1987 A
4669453 Atkinson et al. Jun 1987 A
4672953 DiVito Jun 1987 A
4673396 Urbaniak Jun 1987 A
D291354 Camens Aug 1987 S
4716352 Hurn et al. Dec 1987 A
4749340 Ikeda et al. Jun 1988 A
4770632 Ryder et al. Sep 1988 A
4783321 Spence Nov 1988 A
4787845 Valentine Nov 1988 A
4787847 Martin et al. Nov 1988 A
4798292 Hauze Jan 1989 A
4803974 Powell Feb 1989 A
4804364 Dieras et al. Feb 1989 A
4818229 Vasile Apr 1989 A
4820152 Warrin et al. Apr 1989 A
4821923 Skorka Apr 1989 A
4824368 Hickman Apr 1989 A
4826431 Fujimura et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4854869 Lawhorn Aug 1989 A
4861340 Smith et al. Aug 1989 A
4862876 Lih-Sheng Sep 1989 A
4869720 Chernack Sep 1989 A
4880382 Moret et al. Nov 1989 A
4886452 Lohn Dec 1989 A
4900252 Liefke et al. Feb 1990 A
4902225 Lohn Feb 1990 A
4903687 Lih-Sheng Feb 1990 A
4906187 Amadera Mar 1990 A
4907744 Jousson Mar 1990 A
4925450 Imonti et al. May 1990 A
4928675 Thornton May 1990 A
4930660 Porteous Jun 1990 A
4941459 Mathur Jul 1990 A
4950159 Hansen Aug 1990 A
4958629 Peace et al. Sep 1990 A
4958751 Curtis et al. Sep 1990 A
4959199 Brewer Sep 1990 A
4961698 Vlock Oct 1990 A
4966551 Betush Oct 1990 A
4969874 Michel et al. Nov 1990 A
4973247 Varnes et al. Nov 1990 A
4973250 Milman Nov 1990 A
4975054 Esrock Dec 1990 A
4979503 Chernack Dec 1990 A
4979504 Mills Dec 1990 A
4989590 Baum et al. Feb 1991 A
4998880 Nerli Mar 1991 A
5013241 Von Gutfeld et al. May 1991 A
5014884 Wunsch May 1991 A
5019054 Clement et al. May 1991 A
5027798 Primiano Jul 1991 A
5029576 Evans, Sr. Jul 1991 A
5033617 Hartwein et al. Jul 1991 A
5033961 Kankler et al. Jul 1991 A
D318918 Hartwein Aug 1991 S
5046486 Grulke et al. Sep 1991 A
5049071 Davis et al. Sep 1991 A
5060825 Palmer et al. Oct 1991 A
5061180 Wiele Oct 1991 A
5062795 Woog Nov 1991 A
5064168 Raines et al. Nov 1991 A
D322314 Ohbayashi Dec 1991 S
5071346 Domaas Dec 1991 A
5082115 Hutcheson Jan 1992 A
5082443 Lohn Jan 1992 A
5085317 Jensen et al. Feb 1992 A
5086756 Powell Feb 1992 A
5095893 Rawden, Jr. Mar 1992 A
5098291 Curtis et al. Mar 1992 A
5098676 Brooks, Jr. Mar 1992 A
5100319 Baum Mar 1992 A
5117871 Gardner et al. Jun 1992 A
5125835 Young Jun 1992 A
5127831 Bab Jul 1992 A
5142723 Lustig et al. Sep 1992 A
5150841 Silvenis et al. Sep 1992 A
5172810 Brewer Dec 1992 A
5173273 Brewer Dec 1992 A
5183035 Weir Feb 1993 A
5197458 Ito et al. Mar 1993 A
5197460 Ito et al. Mar 1993 A
5199871 Young Apr 1993 A
5203697 Malmin Apr 1993 A
5203769 Clement et al. Apr 1993 A
5204004 Johnston et al. Apr 1993 A
5208933 Lustig et al. May 1993 A
5215193 Dennis Jun 1993 A
5218956 Handler et al. Jun 1993 A
5220914 Thompson Jun 1993 A
5228646 Raines Jul 1993 A
5230624 Wolf et al. Jul 1993 A
5232687 Geimer Aug 1993 A
5235968 Woog Aug 1993 A
5241714 Barry Sep 1993 A
5246367 Ito et al. Sep 1993 A
5252064 Baum et al. Oct 1993 A
D341200 Yoshimoto Nov 1993 S
5257933 Jousson Nov 1993 A
5261448 Furuya et al. Nov 1993 A
D341943 Si-Hoe Dec 1993 S
5267586 Jankavaara Dec 1993 A
5269684 Fischer Dec 1993 A
5281137 Jousson Jan 1994 A
5281139 Frank et al. Jan 1994 A
5282745 Wiltrout et al. Feb 1994 A
5286192 Dixon Feb 1994 A
5286201 Yu Feb 1994 A
5297962 O'Connor et al. Mar 1994 A
D346212 Hosl Apr 1994 S
5302123 Bechard Apr 1994 A
5317691 Traeger May 1994 A
5321865 Kaeser Jun 1994 A
5331704 Rosen et al. Jul 1994 A
5344317 Pacher et al. Sep 1994 A
5346677 Risk Sep 1994 A
D351892 Wolf et al. Oct 1994 S
5360338 Waggoner Nov 1994 A
5368548 Jousson Nov 1994 A
5370534 Wolf et al. Dec 1994 A
D354168 Hartwein Jan 1995 S
5378149 Stropko Jan 1995 A
5380201 Kawata Jan 1995 A
D356864 Woog Mar 1995 S
5399089 Eichman et al. Mar 1995 A
D358883 Vos May 1995 S
5456672 Diederich et al. Oct 1995 A
5465445 Yeh Nov 1995 A
5467495 Boland et al. Nov 1995 A
5468148 Ricks Nov 1995 A
5470305 Arnett et al. Nov 1995 A
5474450 Chronister Dec 1995 A
5474451 Dalrymple et al. Dec 1995 A
5476379 Disel Dec 1995 A
5484281 Renow et al. Jan 1996 A
5487877 Choi Jan 1996 A
5490779 Malmin Feb 1996 A
5505916 Berry, Jr. Apr 1996 A
D369656 Vos May 1996 S
5525058 Gallant et al. Jun 1996 A
5526841 Detsch et al. Jun 1996 A
5540587 Malmin Jul 1996 A
5547374 Coleman Aug 1996 A
D373631 Maeda et al. Sep 1996 S
5554025 Kinsel Sep 1996 A
5556001 Weissman Sep 1996 A
5564629 Weissman Oct 1996 A
D377091 Scott, Sr. Dec 1996 S
5616028 Hafele et al. Apr 1997 A
5622501 Levy Apr 1997 A
5634791 Matsuura et al. Jun 1997 A
5636987 Serfaty Jun 1997 A
5640735 Manning Jun 1997 A
5653591 Loge Aug 1997 A
5659995 Hoffman Aug 1997 A
5667483 Santos Sep 1997 A
D386576 Wang et al. Nov 1997 S
5683192 Kilfoil Nov 1997 A
5685829 Allen Nov 1997 A
5685851 Murphy et al. Nov 1997 A
5697784 Hafele et al. Dec 1997 A
D388612 Stutzer et al. Jan 1998 S
D388613 Stutzer et al. Jan 1998 S
5709545 Johnston et al. Jan 1998 A
5716007 Nottingham et al. Feb 1998 A
5718668 Arnett et al. Feb 1998 A
5746595 Ford May 1998 A
5749726 Kinsel May 1998 A
5759502 Spencer et al. Jun 1998 A
5779654 Foley et al. Jul 1998 A
5795153 Rechmann Aug 1998 A
5796325 Lundell et al. Aug 1998 A
5833065 Burgess Nov 1998 A
5836030 Hazeu et al. Nov 1998 A
D402744 Zuege Dec 1998 S
5851079 Horstman et al. Dec 1998 A
D403511 Serbinski Jan 1999 S
D406334 Rosenthal et al. Mar 1999 S
5876201 Wilson et al. Mar 1999 A
D408511 Allen et al. Apr 1999 S
5901397 Häfele et al. May 1999 A
5934902 Abahusayn Aug 1999 A
D413975 Maeda Sep 1999 S
D417082 Classen et al. Nov 1999 S
5993402 Sauer et al. Nov 1999 A
6030215 Ellion et al. Feb 2000 A
6038960 Fukushima et al. Mar 2000 A
6039180 Grant Mar 2000 A
D425615 Bachman et al. May 2000 S
D425981 Bachman et al. May 2000 S
6056710 Bachman et al. May 2000 A
D426633 Bachman et al. Jun 2000 S
6089865 Edgar Jul 2000 A
6116866 Tomita et al. Sep 2000 A
6124699 Suzuki et al. Sep 2000 A
D434500 Pollock et al. Nov 2000 S
6159006 Cook et al. Dec 2000 A
6164967 Sale et al. Dec 2000 A
D435905 Bachman et al. Jan 2001 S
D437049 Hartwein Jan 2001 S
6193512 Wallace Feb 2001 B1
6193932 Wu et al. Feb 2001 B1
6199239 Dickerson Mar 2001 B1
6200134 Kovac Mar 2001 B1
D439781 Spore Apr 2001 S
6217835 Riley et al. Apr 2001 B1
D441861 Hafliger May 2001 S
6233773 Karge et al. May 2001 B1
6234205 D'Amelio et al. May 2001 B1
6237178 Krammer et al. May 2001 B1
6247929 Bachman et al. Jun 2001 B1
D448236 Murray Sep 2001 S
6293792 Hanson Sep 2001 B1
D449884 Tobin et al. Oct 2001 S
6343174 Neuberger Jan 2002 B1
D453453 Lun Feb 2002 S
6363565 Paffrath Apr 2002 B1
D464799 Crossman et al. Oct 2002 S
6468482 Frieze et al. Oct 2002 B1
6475173 Bachman et al. Nov 2002 B1
6485451 Roberts et al. Nov 2002 B1
6497375 Srinath et al. Dec 2002 B1
6497572 Hood et al. Dec 2002 B2
6502584 Fordham Jan 2003 B1
D470660 Schaber Feb 2003 S
6558344 McKinnon et al. May 2003 B2
6561808 Neuberger et al. May 2003 B2
D475346 McCurrach et al. Jun 2003 S
6589477 Frieze et al. Jul 2003 B1
6602071 Ellion et al. Aug 2003 B1
6632091 Cise et al. Oct 2003 B1
D482451 Page et al. Nov 2003 S
6640999 Peterson Nov 2003 B2
6647577 Tam Nov 2003 B2
6659674 Carlucci et al. Dec 2003 B2
6663386 Moelsgaard Dec 2003 B1
6669059 Mehta Dec 2003 B2
D486573 Callaghan et al. Feb 2004 S
6689078 Rehkemper et al. Feb 2004 B1
6699208 Bachman et al. Mar 2004 B2
6719561 Gugel et al. Apr 2004 B2
D489183 Akahori et al. May 2004 S
6739782 Rehkemper et al. May 2004 B1
6740053 Kaplowitz May 2004 B2
D490899 Gagnon Jun 2004 S
D491728 Jimenez Jun 2004 S
D492996 Rehkemper et al. Jul 2004 S
6761324 Chang Jul 2004 B2
6766549 Klupt Jul 2004 B2
D495142 Berde Aug 2004 S
D495143 Berde Aug 2004 S
6779216 Davies et al. Aug 2004 B2
6783004 Rinner Aug 2004 B1
6783505 Lai Aug 2004 B1
6796796 Segal Sep 2004 B2
D498643 Pryor Nov 2004 S
6814259 Foster et al. Nov 2004 B1
D499885 Xi Dec 2004 S
6835181 Hippensteel Dec 2004 B2
D500599 Callaghan Jan 2005 S
6837708 Chen et al. Jan 2005 B2
6884069 Goldman Apr 2005 B2
6902337 Kuo Jun 2005 B1
6907879 Drinan et al. Jun 2005 B2
D509585 Kling et al. Sep 2005 S
D513638 Pan Jan 2006 S
D522652 Massey Jun 2006 S
7080980 Klupt Jul 2006 B2
D529661 Schmidt Oct 2006 S
D530010 Luettgen et al. Oct 2006 S
7117555 Fattori et al. Oct 2006 B2
D533720 Vu Dec 2006 S
7147468 Snyder et al. Dec 2006 B2
D538474 Sheppard et al. Mar 2007 S
D548334 Izumi Aug 2007 S
D550097 Lepoitevin Sep 2007 S
7276035 Lu Oct 2007 B2
7314456 Shaw Jan 2008 B2
D565175 Boyd et al. Mar 2008 S
7344510 Yande Mar 2008 B1
7367803 Egeresi May 2008 B2
D574952 Boyd et al. Aug 2008 S
D577198 Jimenez Sep 2008 S
7455521 Fishburne, Jr. Nov 2008 B2
7469440 Boland et al. Dec 2008 B2
7500584 Schutz Mar 2009 B2
D590492 Powell Apr 2009 S
7670141 Thomas et al. Mar 2010 B2
7677888 Halm Mar 2010 B1
7878403 Hennick et al. Feb 2011 B2
8403665 Thomas et al. Mar 2013 B2
8408483 Boyd et al. Apr 2013 B2
9050157 Boyd et al. Jun 2015 B2
20020090252 Hall et al. Jul 2002 A1
20020119415 Bailey Aug 2002 A1
20020182186 Loeb Dec 2002 A1
20030098249 Rollock May 2003 A1
20030204155 Egeresi Oct 2003 A1
20030213075 Hui et al. Nov 2003 A1
20040045107 Egeresi Mar 2004 A1
20040076921 Gofman et al. Apr 2004 A1
20040122377 Fischer et al. Jun 2004 A1
20040126730 Panagotacos Jul 2004 A1
20040209222 Snyder Oct 2004 A1
20050049620 Chang Mar 2005 A1
20050064371 Soukos et al. Mar 2005 A1
20050101894 Hippensteel May 2005 A1
20050177079 Pan Aug 2005 A1
20050271531 Brown et al. Dec 2005 A1
20060008373 Schutz Jan 2006 A1
20060021165 Boland et al. Feb 2006 A1
20060026784 Moskovich et al. Feb 2006 A1
20060057539 Sodo Mar 2006 A1
20060078844 Goldman et al. Apr 2006 A1
20060079818 Yande Apr 2006 A1
20070082316 Zhadanov et al. Apr 2007 A1
20070113360 Tsai May 2007 A1
20070202459 Boyd et al. Aug 2007 A1
20070203439 Boyd et al. Aug 2007 A1
20070254260 Alden Nov 2007 A1
20080008979 Thomas et al. Jan 2008 A1
20100010524 Barrington Jan 2010 A1
20100261134 Boyd et al. Oct 2010 A1
20100261137 Boyd et al. Oct 2010 A1
20100330527 Boyd et al. Dec 2010 A1
20110097683 Boyd et al. Apr 2011 A1
20110139826 Hair et al. Jun 2011 A1
20120064480 Hegemann Mar 2012 A1
20120141952 Snyder et al. Jun 2012 A1
20140193774 Snyder et al. Jul 2014 A1
Foreign Referenced Citations (21)
Number Date Country
851479 Sep 1970 CA
502817 Feb 1971 CH
655237 Apr 1987 CH
1466963 May 1969 DE
2409752 Sep 1975 DE
2545936 Apr 1977 DE
2910982 Feb 1980 DE
0023672 Jul 1980 EP
0515983 Dec 1992 EP
2556954 Jun 1985 FR
2654627 May 1991 FR
1182031 Feb 1970 GB
2018605 Oct 1979 GB
2-134150 Apr 1990 JP
WO9516404 Jun 1995 WO
0110327 Feb 2001 WO
WO2004021958 Mar 2004 WO
WO2004039205 May 2004 WO
2004060259 Jul 2004 WO
2008157585 Dec 2008 WO
2013124691 Aug 2013 WO
Non-Patent Literature Citations (11)
Entry
US RE27,274, 01/1972, Mattingly (withdrawn)
The Right Tool, Electron Fusion Devices, Inc., 2 pages, at least as early as Feb. 1991.
Japanese Packaging, 2 pages, at least as early as Dec. 2002.
Japanese Instruction Brochure, 20 pages, at least as early as Dec. 2002.
Brochure: Woog International, “You have a 98% chance of getting gum disease. Unless you read this.”, Lancaster, Pennsylvania, 5 pages, Feb. 1987.
Brochure: Woog International, “We put the control of home dental care back into the hands of the professional”, Lancaster, Pennsylvania, 2 pages, Feb. 1987.
Brochure: WOOG International, “Products at a Glance: Home Dental Care System” WOOG ORAJET, 3 pages, at least as early as Dec. 18, 1998.
Website: http://www.just4teeth.com/product/Panasonic/Panasonic—Portable—Irrigator.htm, 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.videodirectstore.com/store/merchant.mv?Screen=PROD&Product—Code=EW1′ . . . , 2 pages, at least as early as Jun. 20, 2003.
Website: http://products.consumerguide.com/cp/family/review/index.cfm/id/18742, 2 pages, at least as early as Jun. 20, 2003.
Website: http://www.racekarteng.com/images/walbroparts.gif and http://www.muller.net/mullermachine/docs/walbro1.html, 4 pages, at least as early as Jun. 20, 2003.
Related Publications (1)
Number Date Country
20140227659 A1 Aug 2014 US
Continuations (3)
Number Date Country
Parent 13566652 Aug 2012 US
Child 14262131 US
Parent 12709677 Feb 2010 US
Child 13566652 US
Parent 11483376 Jul 2006 US
Child 12709677 US