The present disclosure relates to health and personal hygiene equipment and more particularly, to oral irrigators.
Oral irrigators typically are used to clean a user's teeth and gums by discharging a pressurized fluid stream into a user's oral cavity. The fluid impacts the teeth and gums to remove debris. Many oral irrigators include electrical components, such as batteries, a motor, or the like. For example, typically oral irrigators include a motor driven pump that pumps fluid from a reservoir to the tip. Often oral irrigators are used in a wet environment, such as a bathroom and some users may even take the irrigators into the shower or bath, but conventional oral irrigators are not waterproof, merely water resistant. Hence, conventional oral irrigators may be protected from splashes and incidental fluid contact, but as they are not waterproof may not protect electronic components when submersed in water or exposed to large amounts of water. When water and other fluids reach the electronic components, the fluids can cause the oral irrigator to malfunction and may even prevent the oral irrigator from operating completely. As such, there is a need for an oral irrigator that is waterproof.
One example of the present disclosure may take the form of an oral irrigator pump. The oral irrigator pump may include a motor, a pump body, a connecting rod, and a diaphragm seal. The connecting rod may be at least partially received within the pump body and movably connected to the motor and the motor moves the connecting rod between a first position and a second position within the pump body. As the connecting rod moves from the first position to the second position, the diaphragm seal deforms from a first orientation to a second orientation.
Another example of the present disclosure may take the form of an oral irrigator. The oral irrigator may include a reservoir, a tip fluidly connected to the reservoir, a motor having a drive shaft, and a pump fluidly connected to the reservoir and the tip. The pump may include a pump body including a pump inlet fluidly connected to the reservoir and a pump outlet fluidly connected to the tip, a pinion gear placed on the drive shaft and including a plurality of pinion gear teeth that curve along their length, and a driven gear including a plurality of driven gear teeth that mesh with the pinion gear teeth. In this embodiment, the pinion gear teeth and the driven gear teeth are spiral gears with beveled edges. The pump may also include a connecting rod eccentrically connected to the driven gear and a piston connected to a first end of the connecting rod and received within the pump body. In operation, movement of the drive shaft of the motor causes the pinion gear to rotate, which causes the driven gear to rotate, translating the connecting rod and moving the piston laterally within the pump body to pull fluid from the reservoir and push the fluid to the tip.
Yet another example of the present disclosure may take the form of an oral irrigator including a handle fluidly connected to a reservoir and a tip latch assembly connected to the handle. The tip latch assembly may include a latch with an integrally formed biasing structure and at least one prong selectively movable from an engaged position to a disengaged position. The tip latch assembly may also include a tip release button engaging at least one surface of the latch. To operate the latch, a user exerts a force on the tip release button, which causes the tip release button to exert a force against the at least one surface of the latch, overcoming a biasing force exerted by the biasing structure and causing the at least one prong to move from the engaged position to the disengaged position. When the user removes the force from the tip release button, the biasing structure exerts the biasing force on the tip release button as the at least one prong moves from the disengaged position back to the engaged position.
Another example of the present disclosure may take the form of a waterproof oral irrigator. The waterproof oral irrigator may include a body including a front shell and a rear shell connected together to define a cavity, an interior housing received within the cavity, and a control assembly connected to an outer surface of the interior housing and positioned between an interior surface of the front shell and the interior housing. The waterproof oral irrigator may also include a first sealing member connected to the front shell and the interior housing, where the first sealing member surrounds the control assembly.
Yet another example of the present disclosure may take the form of an oral irrigation assembly including an oral irrigator and a charging unit. The oral irrigator includes a housing, at least one rechargeable battery received within the housing, and at least one housing magnet connected to the housing. The charging unit is selectively connectable to the housing of the oral irrigator and is configured to provide a charge to the at least one rechargeable battery. The charging unit includes at least one charger magnet connected to the charging unit, such that the at least one housing magnet and the at least one charger magnet cooperate to removably connect the charging unit to the housing of the oral irrigator.
While multiple examples are disclosed, still other examples of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative examples of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Some examples of the present disclosure include a cordless oral irrigator. The cordless oral irrigator may include an integrated handle and reservoir to allow the irrigator to be held in a user's hand without requiring cords or hoses extending to a base station to provide fluid communication to a reservoir and/or electrical communication to a power source. The oral irrigator of the present disclosure may include a body, a tip, a reservoir, a control panel, a power source, and a drive assembly. The power source in many embodiments will be a battery or other rechargeable component that can provide portable electricity to the drive assembly. However, it should be noted that multiple aspects of the present disclosure can be incorporated into a countertop oral irrigator.
The oral irrigator may include a number of waterproofing elements that help to ensure that water (and other fluids) do not enter into certain compartments or reach certain components, e.g., the motor and battery. In one example, the oral irrigator may include three separate waterproof compartments, one for the control assembly, one for a charging assembly, and one for the motor and batteries. The waterproofing elements may allow the oral irrigator to be waterproof and be able to function even if dropped into a meter or more of water. The waterproofing elements seal the outer surface of the oral irrigator to prevent water from entering into the internal compartments, as well seal internal compartments within the irrigator, so that if there are internal leaks within the oral irrigator, fluid from the reservoir, pump, and/or tip does not damage any electrical components. The waterproofing elements are discussed in more detail below, but some examples include seals between the control panel and the body or housing, overmolded buttons on the control panel, and ultrasonically welding a portion of the control panel to the body of the oral irrigator. Alternatively or additionally, the oral irrigator may include components that are coated with a super-hydrophobic coating to help protect electronic components from damage. The waterproofing elements allow the oral irrigator to receive an IPX7 waterproof rating under the International Protection Marking standard, which means that the device is suitable in immersion in fluid up to 1 meter.
In some embodiments the drive assembly may include a motor, a pump, and a linkage connecting the pump to the motor. The linkage may include a pinion gear and a driven gear, with the pinion gear being received around a drive shaft of the motor and the driven gear meshing with the pinion gear. In one example the driven gear and the pinion gear are bevel gears mounted on shafts arranged approximately 90 degrees relative to one another. The gears of the linkage may be configured to transmit an eccentric motion to the pump, which will be discussed in more detail below. In one embodiment, both the pinion gear and the driven gear may include helical or spiral-shaped gear teeth. That is, the gear teeth on both gears may be curved along their length. The spiral shape of the pinion gear and the driven gear of the present disclosure, although they may be more difficult to machine and manufacture, have a reduced noise level as compared to straight teeth gears.
Conventional oral irrigating devices typically include gears, such as crown gears, with substantially straight gear teeth having a 90 degree pitch cone. Crown gears are relatively easy to manufacture, allow larger tolerances, and have a high efficiency, but with crown gears only one set of teeth carries the load at a time. In particular, with straight cut gears (such as crown gears), the load cannot be distributed. On the contrary, with the spiral shape of the gears of the present disclosure, multiple teeth can carry the load at a time, which increases the load that can be handled by the linkage, as well as makes the gears less susceptible to failure.
The spiral shape of the gear teeth further have effectively larger sized teeth as compared to a similarly sized crown gear since the teeth extend diagonally rather than straight across. Also, the angle of the teeth of the gears engages more gradually, since the pitch is less than 90 degrees. The gradual engagement of the teeth of the spiral gears reduces the noise, as well as allows the gears to mesh more smoothly. Spiral gears have an increased durability as compared to crown gears and therefore have improved reliability and create less noise. However, spiral gears require tight tolerances to manufacture as the axial, radial, and vertical positions, as well as the shaft angle, should be correct to allow the gear to run smoothly and avoid excessive wear. Further, spiral gears have a greater sliding friction as compared to crown gears and therefore may be less efficient than crown gears.
In some embodiments, the oral irrigator may include a diaphragm seal that seals the pump from the electrical components of the oral irrigator (e.g., the motor and the power source). The diaphragm seal connects to a piston rod or connecting rod of the pump that moves a piston to pump fluid from the reservoir to the tip. The diaphragm seal includes a rod aperture through which the piston rod is received. The diaphragm seal is secured to the position rod and is secured to a pump body or other location along an exterior of the pump. The diaphragm is connected so that as the connecting rod moves to drive the piston, the diaphragm moves correspondingly, but does not rub against any surfaces as it moves. This increases the durability of the diaphragm as it reduces wear due to friction and, because the diaphragm does not experience friction during use, the diaphragm does not reduce the efficiency of the pump.
The oral irrigator may also include a removably attachable charging device. The charging device may selectively attach to the body and charge the power source, such as the battery, when connected. As an example, the charging device may include one or more magnets that magnetically couple to one or more body magnets positioned with the body of the oral irrigator. When the charging device is connected to the body, a first induction coil of the charging device is positioned to align with a second induction coil in the body of the oral irrigator so as to induce a current flow in the second induction coil. In some embodiments, the charging device may generally conform to the shape of the oral irrigator body. This allows the charging device to more securely connect to the body, as well as provide an aesthetically pleasing uniform appearance between the body of the oral irrigator and the charger. Further, the charger may also include a plurality of cooling grooves defined on a side of the charger housing. The cooling grooves allow airflow between the oral irrigator and the charger when the oral irrigator is charging, which dissipates heat and helps to prevent damage to components, such as the housing of the irrigator and/or charger, due to the heat generated by the coils during charging.
Overview of the Oral Irrigator
Turning to the figures,
The body 102 may be contoured to comfortably fit in the hand of a user. For example, as shown in
The body 102 may also include one or more gripping elements. As one example, the body 102 may include a grip surface 118 (see
With reference to
The front shell 138 will now be discussed in more detail.
The front shell 138 may further include a plurality of connecting posts 152a-152k. The connecting posts 152a-152k may assist in aligning the front shell 138 with the back shell 140 as well as connecting the two shells 138, 140 together. For example, the connecting posts 152a-152k may be configured to align with corresponding posts on the rear shell 140 and receive fasteners, e.g., press fit pins, screws, or other mechanisms, to secure the posts 152a-152k of the front shell 138 with those on the rear shell 140. Some of the connecting posts 152a-152k may instead be used to connect various internal components as well.
With continued reference to
With reference to
The control panel 108 may be connected to the front shell 138 of the body 102. With reference to
The reservoir 104 of the oral irrigator 100 will now be discussed in more detail.
The refill port 122 is defined as an aperture through an outer sidewall of the reservoir 104. A port recess 132 may surround the refill port 122 and define a generally oval shape recessed compartment in the outer surface of the reservoir 104. A lid 124 is movably connected to the reservoir 104 by a hinge 126. The lid 124 extends over the refill port 122 and includes a flange 164 that is received into the port recess 132. An O-ring 156 (see
With reference to
The oral irrigator 100 may further include a reservoir hose 206 that extends into the reservoir 104 from a tube protrusion feature 165 extending from a surface of the rear shell and a tube 202 that fluidly connects a pump body 200 to a reservoir hose 206 (see
With reference to
The internal components of the oral irrigator 100 will now be discussed in more detail.
With reference to
With continued reference to
With reference again to
The oral irrigator 100 may include a second circuit board 196 in electrical communication with the first circuit board 204 via a plurality of connection wires 192. The second circuit board 196 may include a secondary coil assembly 194 and other components, such as one or more electrical components (e.g., capacitors, resistors, microprocessor, or the like), for charging the oral irrigator 100, discussed in more detail below.
Drive and Pump Assemblies
The drive assembly 178 will now be discussed in more detail.
The motor 172 includes a drive shaft 216 connected thereto which is rotatably driven by the motor 172. The motor 172 may be any type of suitable motor depending on the desired output of the oral irrigator. The linkage 174 or transmission includes a drive or pinion gear 218, a driven gear 220, and a gear pin 224. As will be discussed in more detail below, the linkage 174 transforms the rotational movement of the drive shaft 216 to longitudinal movement of a piston of the pump assembly 176.
The pinion gear 218 includes a plurality of gear teeth 230 on an outer surface or engagement surface thereof. The gear teeth 230 are spiral shape and extend along a curve from a top edge 234 of the outer surface to a bottom edge 236 of the outer surface. In other words, rather than extending in a substantially straight line, the gear teeth 230 wrap around a portion of the outer perimeter of the pinion gear 218. Additionally, the pinon gear 218 may include a frustum or conical shape having a larger bottom end diameter than a top end diameter, i.e., the pinon gear may have a tapered shape that narrows towards the top end of the component. The shape of the pinion gear may allow the gear teeth to mesh as desired with the driven gear.
The driven gear 220 may be oriented at substantially a 90 degree angle with respect to the pinion gear 218. The driven gear 220 includes a plurality of gear teeth 232 extending outwards from an engagement surface of the driven gear 220. In some embodiments, the gear teeth 232 may also extend outwards relative to the center of the driven gear 220 such that the outer perimeter of the gear 220 expands from the beginning of the teeth to an end point of the teeth. The gear teeth 232 are configured to mesh with the gear teeth 230 of the pinion gear 218. Similar to the pinion gear 218, the gear teeth 232 of the driven gear 220 may be helically shape and may extend at a curve from the interior of the driven gear 220 towards an outer edge of the driven gear 220. In this manner, the gear teeth 232 start and end at an angle with respect to each other.
In other examples, the gears 218, 220 may be hypoid gears having curved teeth, but with shaft axes that are offset from one another. Also, it should be noted that in some embodiments, different types of gears may be used together. For example, the pinion gear 218 may be a helical gear whereas the driven gear 220 may be a face gear.
The driven gear 220 may also include an eccentric shaft 226 including a cam surface 222 and a gear pin aperture 228 defined through a center of the driven gear 220. The eccentric shaft 226 is offset from a center (and gear pin aperture) of the driven gear 220, the offset depends on the desired fluid pressure delivery, the pump characteristics, and/or the rotational speed of the motor 172. For example, as shown in
With reference to
The connecting rod 240 or piston rod is driven by the driven gear 220 and connects to the piston 248. The connecting rod 240 may include a ball 242 on a first end and a gear aperture 262 on a second end. The gear aperture 262 is defined by a cylindrical wall extending from the second end of the connecting rod 240 and is configured to be placed around the eccentric shaft 226 of the gear. The gear aperture 262 includes a radius that substantially matches a radius of the eccentric shaft 226 of the driven gear 220 so as to form a tight connection with the eccentric shaft 226, such that the connecting rod will move with the eccentric shaft rather than rotate about the connecting shaft. The connecting rod 240 may include a first securing rib 244 and a second securing rib 246 spaced apart from and below the first securing rib 244 along the shaft of the connecting rod 240. The two ribs 244, 246 extend around an outer perimeter of the connecting rod 240 shaft and are annular shaped following the outer surface of the connecting rod. The two ribs 244, 246 may be positioned in the middle or upper portion of the connector rod 240. In other embodiments, the connecting rod 240 may include other types of securing features, other than ribs, such as, but not limited to, protrusions, nubs, apertures, fasteners, adhesive, or the like.
The pump body 200 defines a volume as pump chamber 260 for receiving fluid from the reservoir and is configured to receive the piston 248 and a portion of the connecting rod 240. The pump body 200 includes a pump inlet 256 and a pump outlet 258 arranged substantially perpendicularly to the pump inlet 256. The pump body 200 includes a piston section 239 having a substantially cylindrical shape that terminates in a receiving section 241 having a frustum shape terminating in a connecting flange 243. The connecting flange 243 forms the bottom end of the pump body 200 and includes a plurality of fastening brackets 245 configured to receive fasteners that secure the pump body 200 to the lower housing. The connecting flange 243 also acts to better seal the pump chamber and fluid passageways within the pump.
The top end of the pump body 200 includes a pump head 247 defining the pump inlet 256 and pump outlet 258, optionally, the pump head 247 includes a connecting portion that receives one or more fasteners to secure the top end of the pump body 200 to the outlet valve body 424. A valve receiving section 251 is defined on a top end of the pump head 247 and defines a valve chamber for receiving an outlet valve. The valve receiving section 251 may include a cylindrical wall extending upwards from a bottom wall that defines the outlet 258. Below and oriented perpendicular to the pump outlet, an inlet valve receiving section 249 is formed on the side of the pump head 247. The inlet valve receiving section 249 is configured to receive and connect to the inlet valve 250. For example, the inlet valve receiving section 249 may include a wall structure that mates with or receives the inlet valve 250 to fluidly connect the valve to the inlet of the pump. The pump body 200 is configured to have a pump chamber and other components that are substantially aligned with one another to allow the oral irrigator to have a smaller diameter and thus easier to be held by users having smaller hands (e.g., children).
A pump fluid passage 264 is defined within the pump body 200 and fluidly connects the pump inlet 256 to a pump chamber 260 and fluidly connects the pump chamber 260 to the pump outlet 258. In one embodiment, the fluid passageway 264 extends longitudinally along a length of the pump body 200 and the pump chamber 260 is located at a first end of the fluid passageway 264 and the pump outlet 258 is located at a second end of the fluid passageway 264 with the pump inlet 256 being positioned between the pump chamber 260 and the pump outlet 258. In this embodiment, the pump inlet 256 may define an intersection in the fluid passageway 264 creating a T-shape lumen through the pump body 200. In this example, the pump inlet 256 is substantially perpendicularly oriented relative to the pump outlet and pump chamber 260. Additionally, in some embodiments, the pump inlet 256 may be positioned lower on the pump body 200 as compared to the pump outlet which is formed at the top end of the pump body 200, such that as fluid is pumped out of the pump body 200, the fluid passes the fluid inlet into the pump body 200.
The inlet reed valve 252 is positioned in or on the inlet valve body 250 at the pump inlet 256. The inlet reed valve 252 is selectively opened and closed to regulate the flow of fluid to and from the pump body 200. The inlet reed valve 252 includes a flap that opens inwards toward the fluid passageway 264 of the pump body 200. The outlet reed valve 254 is positioned on top of the pump outlet 258 and selectively controls flow into and out of the pump body 200. The outlet reed valve 254 may be substantially similar to the inlet reed valve 252 and may include a flap that opens outwards away from a top end of the pump body 200. Operation of the reed valves will be discussed in more detail below during a discussion of the operation of the oral irrigator 100. Other types of inlet and outlet one-way valves may be used as well.
With reference to
With reference to
The outlet valve body 424 may be a somewhat tube shaped member having a plurality of grooves and flanges defined an outer surface thereof, as shown in
The oral irrigator 100 may also include one or more sealing members that seal the pump from the electrical components of the power assembly.
The diaphragm seal 274 includes a seal top surface 302 with a rod aperture 292 defined through a center thereof. The seal top surface 302 extends radially outwards from the rod aperture 292 and then downwards at an angle to define a flexible skirt 296. The skirt 296 may be conical or frustum shaped and may define a hollow space in the seal 274. The skirt 296 is flexible and is configured to deform and resiliently return to its original shape. At a bottom end of the skirt 296, a crease 298 or bend is defined as the diaphragm seal 278 extends back upwards and outwards. As will be discussed in more detail below, the depth of the crease 298 varies as the seal is deformed during operation of the pump. A beaded flange 288 extends radially outwards from a top end of the crease 298. The beaded flange 288 has a substantially flat top surface 294 while the bottom surface 300 is convexly curved forming an annular bead on the bottom surface. The top surface 294 may be substantially flat and configured to be received between the pump body and the lower housing 182.
With continued reference to
In the embodiment shown in
Tip Latch Assembly
The tip latch assembly will now be discussed in more detail.
The latch chassis 308 supports various components of the tip latch assembly 306 to the oral irrigator 100.
With reference to
With reference to
With reference again to
The latch 318 of the tip latch assembly 306 will now be discussed in more detail.
The engagement arms 350a, 350b of the latch 318 include a first portion 366 and a second portion 368, with the first portion 366 being connected to the biasing structure 352 and the second portion extending from the first portion 366. The engagement arms 350a, 350b may be mirror images of each other and so the discussion of any component for one of the arms 350a, 350b may be understood to apply to the other arm. Each arm 350a, 350b may include a fastening aperture 354a, 354b defined on a top surface and extending through a height or a portion of the height of the engagement arm 350a, 350b.
The ends of the engagement arms 350a, 350b are configured to both engage with the tip release 120 as well as the tip 106, as discussed in more detail below. The engagement arms 350a, 350b include a tang 356a, 356b extending towards the opposite arm 350a, 350b from an interior surface 358 of its respective arm 350a, 350b. The tang 356a, 356b includes a locking surface 370 that is somewhat parallel to the extension of the engagement arms 350a, 350b. Additionally, a top surface 364 of each tang 356a, 356b slopes downwards as it extends outwards from the top surface of the engagement arm 350a, 350b to transition into the locking surface 370. The ends of the engagement arms 350a, 350b include an actuation surface 360 that begins at the terminal end of each engagement arm 350a, 350b and extends at an angle in towards the opposite engagement arm and towards the biasing structure 352. For example, the actuation surface 360 may extend at an angle of about 45 degrees from the end of the engagement arm 350a 350b. A lip 362 is formed at the end of the engagement arms 350a, 350b; the lip 362 defines a relatively flat surface that is perpendicular to the top surface of the engagement arms 350a, 350b.
With reference to
With continued reference to
The tip release 120 may also include a spring seat 380 including a stud 382 portion. The spring seat 380 is formed as a cylindrical extension that extends from a back wall 390 of the tip release 120. The spring seat 380 seats within a recess 384 formed in the back wall 390. The stud portion 382 has a smaller diameter than the spring seat 380 and extends outward from the spring seat 380. The diameter differential between the stud 382 and the seat 380 defines a seat configured to receive a spring 316 as discussed in more detail below.
The tip collar 110 allows a user to change the orientation of the tip 106.
With continued reference to
With reference to
Assembly of the Oral Irrigator
Assembly of the oral irrigator 100 will now be disused in more detail. It should be noted that the below discussion is meant as illustrative only and that although certain components are discussed as being assembled in a particular order, the components of the oral irrigator 100 may be assembled in any manner as desired. With reference to
With reference to
The drive assembly 178 may be received in the lower housing 182. With reference to
With reference to
Once the drive assembly 178 is connected to the lower housing 182, the batteries 412a, 412b may be connected to the lower housing 182. In particular, with reference to
With reference to
The circuit board 196 may be assembled prior to connecting it to the lower hosing 182 and the secondary coil 194 assembly may be positioned on the circuit board 196 and mounted to the lower housing 182 with the circuit board 196.
With reference to
With continued reference to
Once the outlet valve body 424 is connected to the pump body 200, the upper housing 184 may be connected to the assembly. With reference to
With reference to
With reference to
With reference to
After magnets 420, 450 are connected to the front shell 138, with reference to
The second sealing feature 144 of the front shell 138 may be positioned around the outer edge of the second flange 208, compressing the gasket 212 between the feature 144 and the flange 208 to form a second waterproof compartment. A plurality of fasteners, such as press fit pins or screws, may be connected to the lower and upper housings 182, 184 and into the connecting posts 152a-152k to secure the front shell 138 to the upper housing 184 and the lower housing 182. It should be noted that depending on the type of fasteners used, the connecting posts may be omitted.
In some embodiments, the connection wires 192 may then be connected to the control assembly 180 and the power circuit board 196 after the front shell 138 has been connected to the upper and lower housings. In these embodiments, the window panel 146 may not be connected to the front shell 138 until the connection wires 192 are connected. Once the connection wires 192 are connected, the window panel 146 is ultrasonically welded to the front shell 138. The welding connection helps to prevent fluid from entering into the front shell 138 through the window 146 by creating a leak-proof seal, but because the panel 146 may be added after the connection wires 192 have been connected, the wires may be accessible during manufacturing and assembly of oral irrigator 100.
To connect the rear shell 140 to the oral irrigator 100, the hose 202 is connected to the tube projection feature 165 on the rear shell 140 and the reservoir 206 hose is connected to the opposite side of the feature 165, fluidly connecting the reservoir hose 206 to the hose 202 (see
Once the two shells 138, 140 are connected, the reservoir hose 206 is connected to the hose 202 and the reservoir 104 may be secured to the oral irrigator 100. With reference to
The tip latch assembly 306 may then be connected to the top end of the outlet valve body 424. In one embodiment, the top end of the outlet valve body 424 may be positioned between the outer wall 324 and the tip support column 322 of the latch chassis 308. A seal 442 may be positioned around the outlet valve body 424 to seal against the interior surface of the outer wall 324 of the latch chassis 308.
Once the latch chassis 308 is connected, the remaining components of the tip latch assembly 306 may be connected and secured to the oral irrigator 100. With reference to
After the tip release 120 is connected to the latch chassis 308, the latch 318 may be connected to the chassis 308. With reference to
The tip ring 388 may be connected to the tip latch assembly 306. For example, with reference to
With continued reference to
Once the tip latch assembly 306 is connected to the oral irrigator 100, the tip collar 110 is connected to the tip latch assembly 306. With reference to
Once the tip collar 110 is connected, the tip 106 may be inserted into the oral irrigator 100. With continued reference to
Operation of the Oral Irrigator
Operation of the oral irrigator 100 will now be discussed in more detail. With reference to
With reference to
Due to the bellows of the seal 274 forming the crease 298, the seal 274 allows the piston to reciprocate linearly without introducing friction into the system. In particular, the diaphragm seal 274 deforms as the connecting rod 240 moves longitudinally and as the perimeter edge forming the beaded flange 288 of the diaphragm seal 274 is clamped and prevented from moving, the seal 274 does not rub against any surfaces as it deforms, reducing the risk of wear and tear on the seal 274. Additionally, as there is substantially no friction between the seal 274 and the connecting rod 240, parasitic energy losses are reduced as compared to conventional oral irrigators with piston seals, as the motor 172 does not have to overcome friction in addition to the energy required to deform the seal 274. The configuration of the diaphragm seal allows it to stay in position relative to the connecting rod and pump body, even at high frequencies such as those typically used with oral irrigators. Additionally, the diaphragm seal allows the omission of a radial shaft seal or lip seal that are typically placed on rotary elements, such as the motor or driven gear. These seals are prone to leak and wear over time and create friction on the rotary element, which requires more energy to operate and reduces the efficiency of the irrigator.
With reference to
With reference to
Tip Release Operation
The operation of the tip latch assembly 306 will now be discussed in more detail.
The force exerted by the tip release 120 causes the engagement arms 350a, 350b of the latch 318 to pivot in the rotation direction R. In particular, the engagement arms 350a, 350b pivot around the posts 320a, 320b. This pivoting motion causes the tangs 356a, 356b of each arm 350a, 350b to pivot away from the center of the oral irrigator 100 and move out of the latch windows 336 in the latch chassis 308. With reference to
With reference again to
It should be noted that in some embodiments, the retention spring 316 may be omitted and the biasing force of the biasing structure 352 of the latch 318 may be configured to exert a sufficient force to not only pivot the engagement arms 350a, 350b back to a locked position, but also force the actuation prongs 372a, 372b of the release button 120 laterally away from the latch 318 to the locked orientation.
The movement of the tip release button 120 by the retention spring 316 is limited by the stops 374 on the interior surfaces of the actuation prongs 372a, 372b. In particular, with reference to
With the latch assembly 306, both engagement arms 350a, 350b of the latch 318 may engage with the tip 106 in the locked position. This structure is more reliable than conventional tip latch assemblies where a single arm engaged with the tip 106. Further, the dual-arms allow greater assembly tolerances and help to prevent inadvertent disengagement of the tip 106 from the oral irrigator 100. Further, the integrated biasing structure 352 of the latch 318 reduces the complexity and number of components for the tip latch assembly 306, which makes manufacturing easier as the chances for error during assembly are reduced. The biasing structure 352 allows the latch 318 to be created as a single part and thus a single mold is needed to form the latch 318 of the present disclosure as compared to other latch assemblies including separate biasing elements.
The Charger and Charging the Oral Irrigator
The charger 134 for the oral irrigator 100 will now be discussed in more detail.
The charger housing 454 may define a somewhat oval shaped body having a curved interior surface 460 configured to match the exterior curve of the front shell 138 of the oral irrigator 100, as well as be aesthetically appealing. The interior source 460 may include two cooling grooves 462a, 462b that extend parallel to each other from a top end to a bottom end of the charger 134. The cooling grooves 462a, 462b allow airflow between the charger 134 and the oral irrigator 100 when the charger is connected. The shape and dimensions of the cooling grooves 462a, 462b may be configured not only to enhance airflow but also to provide an aesthetically appealing appearance for the charger 134. The exterior surface 480 may be convexly curved and bow outwards at a middle section (see
With reference to
Adjacent the outer edges of each of the cooling grooves 462a, 462b the charger 134 may include one or more magnet pockets 464a, 464b configured to receive one or more magnets 476a, 476b (see
The charger 134 may also include one or more activation switches that activate the charger 134 when it is connected to the oral irrigator 100. In one embodiment, the activation switch 487 may be a Hall effect sensor that interacts with magnet 420 on the oral irrigator to activate the charger 134. This type of activation prevents the charger from being activated when it is not in a position to charge the oral irrigator 100, which reduces power consumption and increases the energy efficiency of the irrigator 100 and charger. Other types of sensors or switches may also be used, for example, mechanical or optical switches, that switch the charger into a charging mode once it is secured to the body of the oral irrigator 100. However, in embodiments where waterproofing is desired, a magnetic sensor, such as a Hall effect sensor, may be preferred as the sensor is not affected by fluids, such as water or mouthwash and the magnets can be concealed within the housings of the oral irrigator and charger to allow for a cleaner aesthetic appearance.
With reference to
In one embodiment, the primary coil 466 and the secondary coil 486 may include a plurality of twisted copper wires, such as Litz wires, and each of the multiple wires may be insulated from each other. In these embodiments, the coils 466, 486 may allow for fast inductive charging of the oral irrigator 100, while having a low amount of heat generation. In conventional charging devices for oral care products, such as electric toothbrushes, an inductive coil may be made from a solid enameled copper wire. However, these types of coils have a low charging rate to prevent heat generation. On the contrary by using the twisted wires for the coils 466, 486, the multiple wires reduce the heat generated by the coils during charging due to reduced skin effect and proximity effect losses. This allows the charger 134 to be made of plastic or other low-heat resistant products since the heat generated by the coils 466, 486 is much lower. Further, the coil 466, 486 configurations with multiple wires charges faster than conventional single-wire structures as current has multiple pathways to flow.
It should be noted that in some embodiments, the primary coil 466 and the secondary coil 486 may be made with multiple parallel wires, rather than twisted wires. As another example, in some embodiments, the coils 466, 486 may be braided, woven, or otherwise formed. The wires forming the coils 466, 486 may be substantially any type of multiple wire arrangement and may be round or rectangular in cross section and may include a core, such as a fiber core that the wires are wound around, and/or may include insulating sleeves or the like around the group of wires, individual wires, or the like.
The core 470 may be a ferrite core or other type of magnetic core. In one embodiment, the core 470 may be “E” shaped and include a central prong and two peripheral prongs on either side of the central prong.
With reference to
With reference to
Operation of the charger 134 to charge the batteries of the oral irrigator 100 will now be discussed in more detail. With reference to
Once the charger 134 is connected to the oral irrigator 100, the user may connect the power cord 136 to an electrical source, such as a wall outlet, battery, or the like. Once connected to a power source, the charger 134 causes a current to be induced in the coil assembly 194 of the oral irrigator.
As discussed above, due to the twisted copper wire configuration of the coils 466, 486 the charge currents generated are larger as compared to conventional inductive charging devices. This allows the oral irrigator 100 to charge more quickly than conventional inductive devices. Additionally, the multiple wires reduce heat generated by the coils during charging, which reduces the risk of damage to other components of the oral irrigator 100, such as the shell 138, housings, etc., and helps to prevent the outer surfaces of the oral irrigator 100 from becoming heated, which could present a risk to a user.
Further, the cooling grooves 462a, 462b allow airflow to flow between the charger 134 and the outer surface of the oral irrigator 100, even when the charger 134 is connected to the irrigator 100. The cooling grooves 462a, 462b may be spaced around the primary coil assembly 478 to allow heat dissipation from the coil assembly 478 during charging. The heat dissipation provided by the cooling grooves 462a, 462b helps to cool the coil 478 and helps to prevent the heat generated during charging from damaging other components, such as the charger housing 454 and/or oral irrigator housing. This allows the charger housing 454 to be made out of plastics or other similar materials as the risk of melting or other damage is minimized by the cooling grooves 462a, 462b.
With continued reference to
Slide Latch for the Removable Reservoir
As discussed above, in some embodiments, the reservoir 104 may be removable from the body 102. In these embodiments, the oral irrigator 100 may include a latching system to selectively secure and release the reservoir 104 from the body 102.
With reference to
With reference to
With reference to
With reference to
Operation of the latch assembly 500 will now be discussed in more detail. With continued reference to
To unlock the reservoir 104, a user slides the button 518 in the DU direction towards the unlock icon 530. As the button 518 slides, the latch 516 moves correspondingly, and the first finger 526 flexes downward and the nub 524 disengages from the first detent 534 and slides towards the second detent 536, flexing upwards to seat the nub 524 in the second detent 536. At the same time, the second finger 528 moves within the track 506 and the tang 520 moves from abutting against the second stop 510 to abutting against the first stop 508. Once the tang 520 abuts against the first stop 508 and the nub 524 is seated in the second detent 536, the latch 516 is positioned in the unlock position and adjacent the unlock icon 530. This lateral movement of the latch 516 within the latch cavity 504 locates the latch 516 so that the latch 516 is no longer positioned between the first shelf 512 and the bottom surface 514 of the front shell 138. With the latch 516 disengaged from the front shell 138, a user may move the reservoir 104 vertically downwards away from the body 102 and front shell 138, disconnecting the flange 171 of the reservoir 104 from its sealed position, allowing the reservoir 104 to be removed.
To secure the reservoir 104 back to the body 102, the reservoir 104 flange 171 is repositioned within the body 102 and the bottom surface 502 of the reservoir 104 is aligned with the bottom surface 514 of the front shell 138. Once aligned, the user slides the button 518 in the lock direction DL towards the lock icon 532. As the button 518 moves laterally, the latch 516 moves correspondingly and seats between the first shelf 512 and the bottom surface 514 and the fingers 526, 528 move to the locked positions, with the nub 524 seated in the first detent 534 and the tang 520 positioned adjacent the second stop 510. In these embodiments, the tang 520 and nub 524 provide haptic and audible feedback to a user to indicate that the latch 516 has moved to the unlocked or locked positions.
It should be noted that in embodiments where the reservoir 104 is removable from the body 102, other latching or securing mechanisms may be used as well. For example, a spring latch including a molded integral spring body may be used. The type of latch or securing assembly may be varied based on the shape and configuration of the reservoir and body.
Battery Venting
In some embodiments, the oral irrigator includes a venting assembly for the battery compartment.
With reference to
With reference to
With continued reference to
The vent 608 is positioned over the venting aperture 614 and is a material impermeable to fluids, but allows gases and air to pass therethrough. For example, the vent 608 may be a laminated product of porous polytetrafluoroethylene (PTFE) or porous ultra-high-molecular-weight polyethylene (UHMW-PE), such as DeWAL 235ep by DeWal Industries. The vent 608 is sized and shaped so as to cover the vent aperture 614 and may be varied as desired.
With reference to
In operation, the venting assembly 600, in particular the vent 608 and venting aperture 614 allow gasses, such as gases due to outgassing from the batteries, to pass through the battery cap 198 and exit the battery compartment. This allows the pressure within the battery compartment and other locations within the dry compartments to be equalized with ambient pressure. This equalization feature helps to prevent the sealing features, such as the diaphragm seal 274, from being damaged due to variations in air pressure (e.g., shipping the product from a low altitude to a high altitude).
As discussed above, the oral irrigator of the present disclosure may be waterproof and be able to be immersed within 1 meter of water without damage to the internal components. Further, internal leakage, such as leakage from the pump, may be sealed from reaching any electronic components. In some embodiments, the oral irrigator may also include a waterproofing spray, such as a super-hydrophobic coating, on certain electronic components, such as the batteries, circuit boards, and so on. In these embodiments, the coating may repel water and some fluids and thus further help to prevent damage to the electronic components due to fluid.
It should be noted that any of the features in the various examples and embodiments provided herein may be interchangeable and/or replaceable with any other example or embodiment. As such, the discussion of any component or element with respect to a particular example or embodiment is meant as illustrative only. It should be noted that although the various examples discussed herein have been discussed with respect to oral irrigators, the devices and techniques may be applied in a variety of applications, such as, but not limited to, toothbrushes, bath appliances, or the like.
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the examples of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined and the like) are to be construed broadly and may include intermediate members between the connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
In some instances, components are described by reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the present invention is not limited to components which terminate immediately beyond their point of connection with other parts. Thus the term “end” should be broadly interpreted, in a manner that includes areas adjacent rearward, forward of or otherwise near the terminus of a particular element, link, component, part, member or the like. In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation but those skilled in the art will recognize the steps and operation may be rearranged, replaced or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
This application is a continuation of U.S. Non-Provisional application Ser. No. 14/956,017, filed Dec. 1, 2015, entitled “Oral Irrigator,” which claims priority to U.S. Provisional Application No. 62/086,051, filed Dec. 1, 2014, entitled “Waterproof Cordless Oral Irrigator,” and to U.S. Provisional Application No. 62/132,319 filed Mar. 12, 2015, entitled “Waterproof Cordless Oral Irrigator,” the disclosures of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
555588 | Spencer | Mar 1896 | A |
1278225 | Schamberg | Sep 1918 | A |
1452258 | Smith | Apr 1923 | A |
1464419 | Gill | Aug 1923 | A |
1480310 | Smith | Jan 1924 | A |
1498267 | Hachman | Jun 1924 | A |
1602742 | Bennet | Oct 1926 | A |
1650686 | Binks | Nov 1927 | A |
1669889 | Andrews et al. | May 1928 | A |
1681320 | Bergl et al. | Aug 1928 | A |
1933454 | Sidney | Oct 1933 | A |
1940111 | Austin | Dec 1933 | A |
D93019 | Hose | Aug 1934 | S |
1977782 | Roy | Oct 1934 | A |
2107686 | Bramsen et al. | Feb 1938 | A |
2421498 | Guedel | Jun 1947 | A |
D159872 | Skold | Aug 1950 | S |
2531730 | Henderson | Nov 1950 | A |
2595666 | Hutson | May 1952 | A |
2669233 | Friend | Feb 1954 | A |
2709227 | Foley et al. | May 1955 | A |
2733713 | Kabnick | Feb 1956 | A |
2783919 | Ansell | Mar 1957 | A |
2794437 | Tash | Jun 1957 | A |
2870932 | Davis | Jan 1959 | A |
2984452 | Hooper | May 1961 | A |
3089490 | Goldberg | May 1963 | A |
3096913 | Jousson | Jul 1963 | A |
3144867 | Trupp et al. | Aug 1964 | A |
D202041 | Burzlaff | Aug 1965 | S |
3200320 | Mallory | Aug 1965 | A |
3209956 | MCKenzie | Oct 1965 | A |
3216619 | Richards et al. | Nov 1965 | A |
3225759 | Drapen et al. | Dec 1965 | A |
3227158 | Mattingly | Jan 1966 | A |
3266623 | Poferl | Aug 1966 | A |
3297558 | Hillquist | Jan 1967 | A |
D208778 | Koch | Oct 1967 | S |
D209202 | Fulton et al. | Nov 1967 | S |
D209203 | Mattingly et al. | Nov 1967 | S |
D209204 | St. Clair et al. | Nov 1967 | S |
D209395 | Gilbert | Nov 1967 | S |
D210018 | Mattingly et al. | Jan 1968 | S |
D210019 | Johnson et al. | Jan 1968 | S |
3370214 | Aymar | Feb 1968 | A |
3391696 | Woodward | Jul 1968 | A |
3393673 | Mattingly et al. | Jul 1968 | A |
3400999 | Goldstein | Sep 1968 | A |
3418552 | Holmes | Dec 1968 | A |
3420228 | Kalbfeld | Jan 1969 | A |
3425410 | Cammack | Feb 1969 | A |
3453969 | Mattingly | Jul 1969 | A |
3465751 | Powers | Sep 1969 | A |
3467083 | Mattingly | Sep 1969 | A |
3467286 | Ostrowsky | Sep 1969 | A |
D215920 | McCarty et al. | Nov 1969 | S |
3487828 | Troy | Jan 1970 | A |
3489268 | Meierhoefer | Jan 1970 | A |
3495587 | Freedman | Feb 1970 | A |
3496933 | Lloyd | Feb 1970 | A |
3499440 | Gibbs | Mar 1970 | A |
3500824 | Gilbert | Mar 1970 | A |
3501203 | Falk | Mar 1970 | A |
3502072 | Stillman | Mar 1970 | A |
3517669 | Buono et al. | Jun 1970 | A |
D218270 | Soper | Aug 1970 | S |
3522801 | Robinson | Aug 1970 | A |
3532221 | Kaluhiokalani et al. | Oct 1970 | A |
3536065 | Moret | Oct 1970 | A |
3537444 | Garn | Nov 1970 | A |
3538950 | Porteners | Nov 1970 | A |
3547110 | Balamuth | Dec 1970 | A |
3561433 | Kovach | Feb 1971 | A |
D220334 | Mackay et al. | Mar 1971 | S |
3570525 | Borsum | Mar 1971 | A |
3572375 | Rosenberg | Mar 1971 | A |
3578884 | Jacobson | May 1971 | A |
D220996 | Irons | Jun 1971 | S |
3583609 | Oppenheimer | Jun 1971 | A |
3590813 | Roszyk | Jul 1971 | A |
3608548 | Lewis | Sep 1971 | A |
3612045 | Dudas | Oct 1971 | A |
D222862 | Cook | Jan 1972 | S |
3636947 | Balamuth | Jan 1972 | A |
3651576 | Massa | Mar 1972 | A |
3669101 | Kleiner | Jun 1972 | A |
3703170 | Ryckman, Jr. | Nov 1972 | A |
3718974 | Buchtel et al. | Mar 1973 | A |
3747595 | Grossan | Jul 1973 | A |
3768472 | Hodosh et al. | Oct 1973 | A |
3771186 | Moret et al. | Nov 1973 | A |
3783364 | Gallanis et al. | Jan 1974 | A |
3809506 | Malcosky | May 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3811432 | Moret | May 1974 | A |
3820532 | Eberhardt et al. | Jun 1974 | A |
3827147 | Condon | Aug 1974 | A |
3840795 | Roszyk et al. | Oct 1974 | A |
3847145 | Grossan | Nov 1974 | A |
3854209 | Franklin et al. | Dec 1974 | A |
3863628 | Vit | Feb 1975 | A |
3871560 | Crippa | Mar 1975 | A |
3874506 | Hill et al. | Apr 1975 | A |
3911796 | Hull | Oct 1975 | A |
3912125 | Acklin | Oct 1975 | A |
3943628 | Kronman et al. | Mar 1976 | A |
3973558 | Stouffer et al. | Aug 1976 | A |
3977084 | Sloan | Aug 1976 | A |
4001526 | Olson | Jan 1977 | A |
4004302 | Hori | Jan 1977 | A |
4007739 | Bron et al. | Feb 1977 | A |
4013227 | Herrera | Mar 1977 | A |
4022114 | Hansen, III | May 1977 | A |
4052002 | Stouffer et al. | Oct 1977 | A |
D246667 | Mackay et al. | Dec 1977 | S |
D246668 | Mackay et al. | Dec 1977 | S |
4060870 | Cannarella | Dec 1977 | A |
4075761 | Behne et al. | Feb 1978 | A |
4078558 | Woog et al. | Mar 1978 | A |
4089079 | Nicholson | May 1978 | A |
4094311 | Hudson | Jun 1978 | A |
4108167 | Hickman et al. | Aug 1978 | A |
4108178 | Betush | Aug 1978 | A |
4109650 | Peclard | Aug 1978 | A |
4122845 | Stouffer et al. | Oct 1978 | A |
4133971 | Boyd et al. | Jan 1979 | A |
4135501 | Leunissan | Jan 1979 | A |
4141352 | Ebner et al. | Feb 1979 | A |
4144646 | Takemoto et al. | Mar 1979 | A |
4149315 | Page, Jr. et al. | Apr 1979 | A |
4154375 | Bippus | May 1979 | A |
4160383 | Rauschenberger | Jul 1979 | A |
4171572 | Nash | Oct 1979 | A |
4182038 | Fleer | Jan 1980 | A |
4200235 | Monschke | Apr 1980 | A |
4201200 | Hubner | May 1980 | A |
4210380 | Brzostek | Jul 1980 | A |
4215476 | Armstrong | Aug 1980 | A |
4219618 | Leonard | Aug 1980 | A |
4227878 | Lohn | Oct 1980 | A |
4229634 | Hickman et al. | Oct 1980 | A |
4236889 | Wright | Dec 1980 | A |
D258097 | Wistrand | Feb 1981 | S |
4248589 | Lewis | Feb 1981 | A |
4249899 | Davis | Feb 1981 | A |
4257458 | Kondo et al. | Mar 1981 | A |
4262799 | Perrett | Apr 1981 | A |
4266934 | Pernot | May 1981 | A |
4276023 | Phillips et al. | Jun 1981 | A |
4276880 | Malmin | Jul 1981 | A |
4302186 | Cammack et al. | Nov 1981 | A |
4303064 | Buffa | Dec 1981 | A |
4303070 | Ichikawa et al. | Dec 1981 | A |
4306862 | Knox | Dec 1981 | A |
4315741 | Reichl | Feb 1982 | A |
4319568 | Tregoning | Mar 1982 | A |
4331422 | Heyman | May 1982 | A |
4337040 | Cammack et al. | Jun 1982 | A |
4340365 | Pisanu | Jul 1982 | A |
4340368 | Lococo | Jul 1982 | A |
D266117 | Oberheim | Sep 1982 | S |
4353694 | Pelerin | Oct 1982 | A |
4363626 | Schmidt et al. | Dec 1982 | A |
4365376 | Oda et al. | Dec 1982 | A |
4370131 | Banko | Jan 1983 | A |
4374354 | Petrovic et al. | Feb 1983 | A |
4382167 | Maruyama et al. | May 1983 | A |
4382786 | Lohn | May 1983 | A |
D270000 | Ketler | Aug 1983 | S |
4396011 | Mack et al. | Aug 1983 | A |
4412823 | Sakai et al. | Nov 1983 | A |
4416628 | Cammack | Nov 1983 | A |
4442830 | Markau | Apr 1984 | A |
4442831 | Trenary | Apr 1984 | A |
4452238 | Kerr | Jun 1984 | A |
4454866 | Fayen | Jun 1984 | A |
4512769 | Kozam et al. | Apr 1985 | A |
4517962 | Heckele | May 1985 | A |
4531912 | Schuss et al. | Jul 1985 | A |
4531913 | Taguchi | Jul 1985 | A |
4534340 | Kerr et al. | Aug 1985 | A |
4552130 | Kinoshita | Nov 1985 | A |
4561214 | Inoue | Dec 1985 | A |
D283374 | Cheuk-Yiu | Apr 1986 | S |
4585415 | Hommann | Apr 1986 | A |
4591777 | McCarty et al. | May 1986 | A |
4592728 | Davis | Jun 1986 | A |
4602906 | Grunenfelder | Jul 1986 | A |
4607627 | Leber et al. | Aug 1986 | A |
4613074 | Schulze | Sep 1986 | A |
4619009 | Rosenstatter | Oct 1986 | A |
4619612 | Weber et al. | Oct 1986 | A |
4629425 | Detsch | Dec 1986 | A |
4636198 | Stade | Jan 1987 | A |
4642037 | Fritchman | Feb 1987 | A |
4644937 | Hommann | Feb 1987 | A |
4645488 | Matukas | Feb 1987 | A |
4647831 | O'Malley et al. | Mar 1987 | A |
4648838 | Schlachter | Mar 1987 | A |
4650475 | Smith et al. | Mar 1987 | A |
4655198 | Hommann | Apr 1987 | A |
4669453 | Atkinson et al. | Jun 1987 | A |
4672953 | DiVito | Jun 1987 | A |
4673396 | Urbaniak | Jun 1987 | A |
D291354 | Camens | Aug 1987 | S |
4716352 | Hurn et al. | Dec 1987 | A |
4749340 | Ikeda et al. | Jun 1988 | A |
4770632 | Ryder et al. | Sep 1988 | A |
D298565 | Kohler, Jr. et al. | Nov 1988 | S |
4783321 | Spence | Nov 1988 | A |
4787845 | Valentine | Nov 1988 | A |
4787847 | Martin et al. | Nov 1988 | A |
4798292 | Hauze | Jan 1989 | A |
4803974 | Powell | Feb 1989 | A |
4804364 | Dieras et al. | Feb 1989 | A |
4810148 | Aisa et al. | Mar 1989 | A |
4818229 | Vasile | Apr 1989 | A |
4820152 | Warrin et al. | Apr 1989 | A |
4821923 | Skorka | Apr 1989 | A |
4824368 | Hickman | Apr 1989 | A |
4826431 | Fujimura et al. | May 1989 | A |
4827551 | Maser et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4854869 | Lawhorn | Aug 1989 | A |
4861340 | Smith et al. | Aug 1989 | A |
4862876 | Lih-Sheng | Sep 1989 | A |
4864918 | Martin | Sep 1989 | A |
4869720 | Chernack | Sep 1989 | A |
4880382 | Moret et al. | Nov 1989 | A |
4886452 | Lohn | Dec 1989 | A |
4900252 | Liefke et al. | Feb 1990 | A |
4902225 | Lohn | Feb 1990 | A |
4903687 | Lih-Sheng | Feb 1990 | A |
4906187 | Amadera | Mar 1990 | A |
4907744 | Jousson | Mar 1990 | A |
4915304 | Campani | Apr 1990 | A |
4925450 | Imonti et al. | May 1990 | A |
4928675 | Thornton | May 1990 | A |
4930660 | Porteous | Jun 1990 | A |
4941459 | Mathur | Jul 1990 | A |
4950159 | Hansen | Aug 1990 | A |
4958629 | Peace et al. | Sep 1990 | A |
4958751 | Curtis et al. | Sep 1990 | A |
4959199 | Brewer | Sep 1990 | A |
4961698 | Vlock | Oct 1990 | A |
4966551 | Betush | Oct 1990 | A |
4969874 | Michel et al. | Nov 1990 | A |
4973246 | Black | Nov 1990 | A |
4973247 | Varnes et al. | Nov 1990 | A |
4973250 | Milman | Nov 1990 | A |
4975054 | Esrock | Dec 1990 | A |
4979503 | Chernack | Dec 1990 | A |
4979504 | Mills | Dec 1990 | A |
4989590 | Baum et al. | Feb 1991 | A |
4998880 | Nerli | Mar 1991 | A |
5013241 | Von Gutfeld et al. | May 1991 | A |
5014884 | Wunsch | May 1991 | A |
5019054 | Clement et al. | May 1991 | A |
5027798 | Primiano | Jul 1991 | A |
5029576 | Evans, Sr. | Jul 1991 | A |
5033617 | Hartwein et al. | Jul 1991 | A |
5033961 | Kankler et al. | Jul 1991 | A |
D318918 | Hartwein | Aug 1991 | S |
5046486 | Grulke et al. | Sep 1991 | A |
5049071 | Davis et al. | Sep 1991 | A |
5060825 | Palmer et al. | Oct 1991 | A |
5061180 | Wiele | Oct 1991 | A |
5062795 | Woog | Nov 1991 | A |
5064168 | Raines et al. | Nov 1991 | A |
D322314 | Ohbayashi | Dec 1991 | S |
5071346 | Domaas | Dec 1991 | A |
5082115 | Hutcheson | Jan 1992 | A |
5082443 | Lohn | Jan 1992 | A |
5085317 | Jensen et al. | Feb 1992 | A |
5086756 | Powell | Feb 1992 | A |
5095893 | Rawden, Jr. | Mar 1992 | A |
5098291 | Curtis et al. | Mar 1992 | A |
5098676 | Brooks, Jr. | Mar 1992 | A |
5100319 | Baum | Mar 1992 | A |
5117871 | Gardner et al. | Jun 1992 | A |
5125835 | Young | Jun 1992 | A |
5127831 | Bab | Jul 1992 | A |
5142723 | Lustig et al. | Sep 1992 | A |
5150841 | Silvenis et al. | Sep 1992 | A |
5172810 | Brewer | Dec 1992 | A |
5173273 | Brewer | Dec 1992 | A |
5183035 | Weir | Feb 1993 | A |
5197458 | Ito et al. | Mar 1993 | A |
5197460 | Ito et al. | Mar 1993 | A |
5199871 | Young | Apr 1993 | A |
5203697 | Malmin | Apr 1993 | A |
5203769 | Clement et al. | Apr 1993 | A |
5204004 | Johnston et al. | Apr 1993 | A |
5208933 | Lustig et al. | May 1993 | A |
5215193 | Dennis | Jun 1993 | A |
5218956 | Handler et al. | Jun 1993 | A |
5220914 | Thompson | Jun 1993 | A |
5228646 | Raines | Jul 1993 | A |
5230624 | Wolf et al. | Jul 1993 | A |
5232687 | Geimer | Aug 1993 | A |
5235968 | Woog | Aug 1993 | A |
5241714 | Barry | Sep 1993 | A |
5246367 | Ito et al. | Sep 1993 | A |
5252064 | Baum et al. | Oct 1993 | A |
D341200 | Yoshimoto | Nov 1993 | S |
5257933 | Jousson | Nov 1993 | A |
5261448 | Furuya et al. | Nov 1993 | A |
D341943 | Si-Hoe | Dec 1993 | S |
5267586 | Jankavaara | Dec 1993 | A |
5269684 | Fischer | Dec 1993 | A |
5281137 | Jousson | Jan 1994 | A |
5281139 | Frank et al. | Jan 1994 | A |
5282745 | Wiltrout et al. | Feb 1994 | A |
5286192 | Dixon | Feb 1994 | A |
5286201 | Yu | Feb 1994 | A |
5295832 | Evans | Mar 1994 | A |
5297962 | O'Connor et al. | Mar 1994 | A |
D346212 | Hosl | Apr 1994 | S |
5301381 | Klupt | Apr 1994 | A |
5302123 | Bechard | Apr 1994 | A |
5317691 | Traeger | May 1994 | A |
5321865 | Kaeser | Jun 1994 | A |
5323770 | Ito et al. | Jun 1994 | A |
5331704 | Rosen et al. | Jul 1994 | A |
5344317 | Pacher et al. | Sep 1994 | A |
5346677 | Risk | Sep 1994 | A |
5349896 | Delaney, III | Sep 1994 | A |
D351892 | Wolf et al. | Oct 1994 | S |
5360338 | Waggoner | Nov 1994 | A |
5368548 | Jousson | Nov 1994 | A |
5370534 | Wolf et al. | Dec 1994 | A |
D354168 | Hartwein | Jan 1995 | S |
D354559 | Knute | Jan 1995 | S |
5378149 | Stropko | Jan 1995 | A |
5380201 | Kawata | Jan 1995 | A |
D356864 | Woog | Mar 1995 | S |
5399089 | Eichman et al. | Mar 1995 | A |
D358883 | Vos | May 1995 | S |
5456672 | Diederich et al. | Oct 1995 | A |
5465445 | Yeh | Nov 1995 | A |
5467495 | Boland et al. | Nov 1995 | A |
5468148 | Ricks | Nov 1995 | A |
5470305 | Arnett et al. | Nov 1995 | A |
5474450 | Chronister | Dec 1995 | A |
5474451 | Dalrymple et al. | Dec 1995 | A |
5476379 | Disel | Dec 1995 | A |
5484281 | Renow et al. | Jan 1996 | A |
5487877 | Choi | Jan 1996 | A |
5490779 | Malmin | Feb 1996 | A |
5505916 | Berry, Jr. | Apr 1996 | A |
D369656 | Vos | May 1996 | S |
D370125 | Craft et al. | May 1996 | S |
5525058 | Gallant et al. | Jun 1996 | A |
5526841 | Detsch et al. | Jun 1996 | A |
5540587 | Malmin | Jul 1996 | A |
5547374 | Coleman | Aug 1996 | A |
D373631 | Maeda et al. | Sep 1996 | S |
5554014 | Becker | Sep 1996 | A |
5554025 | Kinsel | Sep 1996 | A |
5556001 | Weissman et al. | Sep 1996 | A |
5564629 | Weissman et al. | Oct 1996 | A |
D376893 | Gornet | Dec 1996 | S |
D377091 | Scott, Sr. | Dec 1996 | S |
5613259 | Craft et al. | Mar 1997 | A |
5616028 | Hafele et al. | Apr 1997 | A |
5626472 | Pennetta | May 1997 | A |
5634791 | Matsuura et al. | Jun 1997 | A |
5636987 | Serfaty | Jun 1997 | A |
5640735 | Manning | Jun 1997 | A |
D382407 | Craft et al. | Aug 1997 | S |
5653591 | Loge | Aug 1997 | A |
5659995 | Hoffman | Aug 1997 | A |
5667483 | Santos | Sep 1997 | A |
D386576 | Wang et al. | Nov 1997 | S |
5683192 | Kilfoil | Nov 1997 | A |
5685829 | Allen | Nov 1997 | A |
5685851 | Murphy et al. | Nov 1997 | A |
5697784 | Hafele et al. | Dec 1997 | A |
D388612 | Stutzer et al. | Jan 1998 | S |
D388613 | Stutzer et al. | Jan 1998 | S |
D389091 | Dickinson | Jan 1998 | S |
5709545 | Johnston et al. | Jan 1998 | A |
D390934 | McKeone | Feb 1998 | S |
5716007 | Nottingham et al. | Feb 1998 | A |
5718668 | Arnett et al. | Feb 1998 | A |
5746595 | Ford | May 1998 | A |
5749726 | Kinsel | May 1998 | A |
5759502 | Spencer et al. | Jun 1998 | A |
5779471 | Tseng et al. | Jul 1998 | A |
5779654 | Foley et al. | Jul 1998 | A |
5795153 | Rechmann | Aug 1998 | A |
5796325 | Lundell et al. | Aug 1998 | A |
5833065 | Burgess | Nov 1998 | A |
5836030 | Hazeu et al. | Nov 1998 | A |
D402744 | Zuege | Dec 1998 | S |
5851079 | Horstman et al. | Dec 1998 | A |
D403511 | Serbinski | Jan 1999 | S |
D406334 | Rosenthal et al. | Mar 1999 | S |
5876201 | Wilson et al. | Mar 1999 | A |
D408511 | Allen et al. | Apr 1999 | S |
5901397 | Häfele et al. | May 1999 | A |
5934902 | Abahusayn | Aug 1999 | A |
D413975 | Maeda | Sep 1999 | S |
D416999 | Miyamoto | Nov 1999 | S |
D417082 | Classen et al. | Nov 1999 | S |
5993402 | Sauer et al. | Nov 1999 | A |
6030215 | Ellion et al. | Feb 2000 | A |
6038960 | Fukushima et al. | Mar 2000 | A |
6039180 | Grant | Mar 2000 | A |
6041462 | Marques | Mar 2000 | A |
6047429 | Wu | Apr 2000 | A |
D424181 | Caplow | May 2000 | S |
D425615 | Bachman et al. | May 2000 | S |
D425981 | Bachman et al. | May 2000 | S |
6056548 | Neuberger et al. | May 2000 | A |
6056710 | Bachman et al. | May 2000 | A |
D426633 | Bachman et al. | Jun 2000 | S |
6089865 | Edgar | Jul 2000 | A |
6116866 | Tomita et al. | Sep 2000 | A |
6120755 | Jacobs | Sep 2000 | A |
6124699 | Suzuki et al. | Sep 2000 | A |
D434500 | Pollock et al. | Nov 2000 | S |
6159006 | Cook et al. | Dec 2000 | A |
6164967 | Sale et al. | Dec 2000 | A |
D435905 | Bachman et al. | Jan 2001 | S |
D437049 | Hartwein | Jan 2001 | S |
6193512 | Wallace | Feb 2001 | B1 |
6193932 | Wu et al. | Feb 2001 | B1 |
6199239 | Dickerson | Mar 2001 | B1 |
6200134 | Kovac | Mar 2001 | B1 |
D439781 | Spore | Apr 2001 | S |
6217835 | Riley et al. | Apr 2001 | B1 |
D441861 | Hafliger | May 2001 | S |
6230717 | Marx et al. | May 2001 | B1 |
6233773 | Karge et al. | May 2001 | B1 |
6234205 | D'Amelio et al. | May 2001 | B1 |
6237178 | Krammer et al. | May 2001 | B1 |
6238211 | Esrock | May 2001 | B1 |
6247929 | Bachman et al. | Jun 2001 | B1 |
6280190 | Hoffman | Aug 2001 | B1 |
D448236 | Murray | Sep 2001 | S |
6293792 | Hanson | Sep 2001 | B1 |
D449884 | Tobin et al. | Oct 2001 | S |
6299419 | Hunklinger | Oct 2001 | B1 |
D453453 | Lun | Feb 2002 | S |
D455201 | Jones | Apr 2002 | S |
D455203 | Jones | Apr 2002 | S |
6363565 | Paffrath | Apr 2002 | B1 |
D457949 | Krug | May 2002 | S |
D464799 | Crossman et al. | Oct 2002 | S |
6468482 | Frieze et al. | Oct 2002 | B1 |
6475173 | Bachman et al. | Nov 2002 | B1 |
6485451 | Roberts et al. | Nov 2002 | B1 |
6497375 | Srinath et al. | Dec 2002 | B1 |
6497572 | Hood et al. | Dec 2002 | B2 |
D468422 | McCurrach | Jan 2003 | S |
6502584 | Fordham | Jan 2003 | B1 |
D470660 | Schaber | Feb 2003 | S |
6532837 | Magussen, Jr. | Mar 2003 | B1 |
6558344 | McKinnon et al. | May 2003 | B2 |
6561808 | Neuberger et al. | May 2003 | B2 |
D475346 | McCurrach et al. | Jun 2003 | S |
D476743 | D'Silva | Jul 2003 | S |
6589477 | Frieze et al. | Jul 2003 | B1 |
6602071 | Ellion et al. | Aug 2003 | B1 |
6632091 | Cise et al. | Oct 2003 | B1 |
D482451 | Page et al. | Nov 2003 | S |
6640999 | Peterson | Nov 2003 | B2 |
6647577 | Tam | Nov 2003 | B2 |
6659674 | Carlucci et al. | Dec 2003 | B2 |
6663386 | Moelsgaard | Dec 2003 | B1 |
6669059 | Mehta | Dec 2003 | B2 |
D484971 | Hartwein | Jan 2004 | S |
6681418 | Bierend | Jan 2004 | B1 |
D486573 | Callaghan et al. | Feb 2004 | S |
6689078 | Rehkemper et al. | Feb 2004 | B1 |
6699208 | Bachman et al. | Mar 2004 | B2 |
6719561 | Gugel et al. | Apr 2004 | B2 |
D489183 | Akahori et al. | May 2004 | S |
6739782 | Rehkemper et al. | May 2004 | B1 |
6740053 | Kaplowitz | May 2004 | B2 |
D490899 | Gagnon | Jun 2004 | S |
D491728 | Jimenez | Jun 2004 | S |
D492996 | Rehkemper et al. | Jul 2004 | S |
6761324 | Chang | Jul 2004 | B2 |
6766549 | Klupt | Jul 2004 | B2 |
D495142 | Berde | Aug 2004 | S |
D495143 | Berde | Aug 2004 | S |
6779216 | Davies et al. | Aug 2004 | B2 |
6783004 | Rinner | Aug 2004 | B1 |
6783505 | Lai | Aug 2004 | B1 |
6796796 | Segal | Sep 2004 | B2 |
6808331 | Hall et al. | Oct 2004 | B2 |
D498643 | Pryor | Nov 2004 | S |
6814259 | Foster et al. | Nov 2004 | B1 |
D499885 | Xi | Dec 2004 | S |
6835181 | Hippensteel | Dec 2004 | B2 |
D500599 | Callaghan | Jan 2005 | S |
6836917 | Blaustein et al. | Jan 2005 | B2 |
6837708 | Chen et al. | Jan 2005 | B2 |
6884069 | Goldman | Apr 2005 | B2 |
6902337 | Kuo | Jun 2005 | B1 |
6907879 | Drinan et al. | Jun 2005 | B2 |
D509585 | Kling et al. | Sep 2005 | S |
D513638 | Pan | Jan 2006 | S |
D515215 | Wang | Feb 2006 | S |
D522652 | Massey | Jun 2006 | S |
7080980 | Klupt | Jul 2006 | B2 |
D529661 | Schmidt | Oct 2006 | S |
D530010 | Luettgen et al. | Oct 2006 | S |
7117555 | Fattori et al. | Oct 2006 | B2 |
D532570 | Vizcarra | Nov 2006 | S |
7131838 | Suzuki et al. | Nov 2006 | B2 |
D533720 | Vu | Dec 2006 | S |
7147468 | Snyder et al. | Dec 2006 | B2 |
D538474 | Sheppard et al. | Mar 2007 | S |
D548334 | Izumi | Aug 2007 | S |
D550097 | Lepoitevin | Sep 2007 | S |
D553980 | VerWeyst | Oct 2007 | S |
7276035 | Lu | Oct 2007 | B2 |
7314456 | Shaw | Jan 2008 | B2 |
D563674 | Beedham | Mar 2008 | S |
D565175 | Boyd et al. | Mar 2008 | S |
7344510 | Yande | Mar 2008 | B1 |
D565713 | Gao | Apr 2008 | S |
7367803 | Egeresi | May 2008 | B2 |
D574952 | Boyd et al. | Aug 2008 | S |
7414337 | Wilkinson et al. | Aug 2008 | B2 |
D577198 | Jimenez | Sep 2008 | S |
D577814 | Seki et al. | Sep 2008 | S |
D581279 | Oates | Nov 2008 | S |
7455521 | Fishburne, Jr. | Nov 2008 | B2 |
7469440 | Boland et al. | Dec 2008 | B2 |
D585132 | Pukall | Jan 2009 | S |
D588262 | Pukall | Mar 2009 | S |
7500584 | Schutz | Mar 2009 | B2 |
D590492 | Powell | Apr 2009 | S |
D592748 | Boulton | May 2009 | S |
D595136 | Canamasas Puigbo | Jun 2009 | S |
D601694 | Rocklin | Oct 2009 | S |
D601697 | Sobeich et al. | Oct 2009 | S |
D603708 | Handy | Nov 2009 | S |
D608430 | Slothower | Jan 2010 | S |
7670141 | Thomas et al. | Mar 2010 | B2 |
7677888 | Halm | Mar 2010 | B1 |
D613550 | Picozza et al. | Apr 2010 | S |
D621949 | Seki et al. | Aug 2010 | S |
D622928 | Griebel | Sep 2010 | S |
D623376 | Griebel | Sep 2010 | S |
D625105 | Winkler | Oct 2010 | S |
D625406 | Seki et al. | Oct 2010 | S |
7814585 | Reich | Oct 2010 | B1 |
D629884 | Stephens | Dec 2010 | S |
7857623 | Grez | Dec 2010 | B2 |
7862536 | Chen et al. | Jan 2011 | B2 |
7959597 | Baker et al. | Jun 2011 | B2 |
D640872 | Nanda | Jul 2011 | S |
D648539 | Wai | Nov 2011 | S |
D648941 | Leung | Nov 2011 | S |
D651409 | Papenfu | Jan 2012 | S |
D651805 | Hay | Jan 2012 | S |
D653340 | Goerge et al. | Jan 2012 | S |
8113832 | Snyder et al. | Feb 2012 | B2 |
D655380 | Taylor | Mar 2012 | S |
D658381 | Gebski | May 2012 | S |
8220726 | Qiu et al. | Jul 2012 | B2 |
D666912 | Kawai | Sep 2012 | S |
8256979 | Hilscher et al. | Sep 2012 | B2 |
D668339 | Luoto | Oct 2012 | S |
D669169 | Washington et al. | Oct 2012 | S |
8297534 | Li et al. | Oct 2012 | B2 |
D670373 | Taylor et al. | Nov 2012 | S |
D670958 | Picozza et al. | Nov 2012 | S |
D671637 | Gebski et al. | Nov 2012 | S |
D672018 | Bucher | Dec 2012 | S |
8366024 | Leber et al. | Feb 2013 | B2 |
8403577 | Khoshnevis | Mar 2013 | B2 |
8403665 | Thomas et al. | Mar 2013 | B2 |
8408483 | Boyd et al. | Apr 2013 | B2 |
8418300 | Miller et al. | Apr 2013 | B2 |
D686311 | Mori | Jul 2013 | S |
D694378 | Bates | Nov 2013 | S |
D694398 | Taylor | Nov 2013 | S |
D700343 | Liu | Feb 2014 | S |
D702819 | Garland | Apr 2014 | S |
D702821 | Garland | Apr 2014 | S |
D707350 | Woodard | Jun 2014 | S |
D709183 | Kemlein | Jul 2014 | S |
8801667 | Taylor | Aug 2014 | B2 |
D714929 | Kim et al. | Oct 2014 | S |
D714930 | Kim et al. | Oct 2014 | S |
D717412 | Bucher | Nov 2014 | S |
D717427 | Kim | Nov 2014 | S |
D717547 | Adriaenssen | Nov 2014 | S |
D718855 | Kim et al. | Dec 2014 | S |
D719737 | Adriaenssen | Dec 2014 | S |
D723387 | Fath | Mar 2015 | S |
D725770 | Kim et al. | Mar 2015 | S |
D731640 | Kim et al. | Jun 2015 | S |
9050157 | Boyd et al. | Jun 2015 | B2 |
D735305 | Obara | Jul 2015 | S |
D740936 | Kim et al. | Oct 2015 | S |
D745329 | Ong | Dec 2015 | S |
D746975 | Schenck | Jan 2016 | S |
D747464 | Taylor | Jan 2016 | S |
D754330 | Kim et al. | Apr 2016 | S |
D756122 | Taylor | May 2016 | S |
D764051 | Wang | Aug 2016 | S |
D766423 | Kim et al. | Sep 2016 | S |
D772396 | Kim et al. | Nov 2016 | S |
D772397 | Kim et al. | Nov 2016 | S |
D773822 | Sikora | Dec 2016 | S |
D776253 | Li | Jan 2017 | S |
D782326 | Fath | Mar 2017 | S |
D782657 | Williams | Mar 2017 | S |
9642677 | Luettgen et al. | May 2017 | B2 |
D788907 | Kim | Jun 2017 | S |
D798059 | McGarry | Jul 2017 | S |
D798440 | Kim | Sep 2017 | S |
D799217 | Massee | Oct 2017 | S |
20020090252 | Hall et al. | Jul 2002 | A1 |
20020108193 | Gruber | Aug 2002 | A1 |
20020119415 | Bailey | Aug 2002 | A1 |
20020152565 | Klupt | Oct 2002 | A1 |
20030060743 | Chang | Mar 2003 | A1 |
20030098249 | Rollock | May 2003 | A1 |
20030162146 | Shortt | Aug 2003 | A1 |
20030204155 | Egeresi | Oct 2003 | A1 |
20030213075 | Hui et al. | Nov 2003 | A1 |
20040045107 | Egeresi | Mar 2004 | A1 |
20040076921 | Gofman et al. | Apr 2004 | A1 |
20040122377 | Fischer et al. | Jun 2004 | A1 |
20040126730 | Panagotacos | Jul 2004 | A1 |
20040180569 | Chiou | Oct 2004 | A1 |
20040209222 | Snyder | Oct 2004 | A1 |
20050004498 | Klupt | Jan 2005 | A1 |
20050049620 | Chang | Mar 2005 | A1 |
20050064371 | Soukos et al. | Mar 2005 | A1 |
20050101894 | Hippensteel | May 2005 | A1 |
20050102773 | Obermann et al. | May 2005 | A1 |
20050144745 | Russell | Jul 2005 | A1 |
20050177079 | Pan | Aug 2005 | A1 |
20050271531 | Brown et al. | Dec 2005 | A1 |
20060008373 | Schutz | Jan 2006 | A1 |
20060010624 | Cleland | Jan 2006 | A1 |
20060021165 | Boland et al. | Feb 2006 | A1 |
20060026784 | Moskovich et al. | Feb 2006 | A1 |
20060057539 | Sodo | Mar 2006 | A1 |
20060078844 | Goldman et al. | Apr 2006 | A1 |
20060079818 | Yande | Apr 2006 | A1 |
20060207052 | Tran | Sep 2006 | A1 |
20070082316 | Zhadanov et al. | Apr 2007 | A1 |
20070082317 | Chuang | Apr 2007 | A1 |
20070113360 | Tsai | May 2007 | A1 |
20070202459 | Boyd et al. | Aug 2007 | A1 |
20070203439 | Boyd et al. | Aug 2007 | A1 |
20070254260 | Alden | Nov 2007 | A1 |
20080008979 | Thomas et al. | Jan 2008 | A1 |
20080189951 | Molema et al. | Aug 2008 | A1 |
20080213719 | Giniger et al. | Sep 2008 | A1 |
20080253906 | Strong | Oct 2008 | A1 |
20080307591 | Farrell et al. | Dec 2008 | A1 |
20090070949 | Sagel et al. | Mar 2009 | A1 |
20090071267 | Mathus et al. | Mar 2009 | A1 |
20090082706 | Shaw | Mar 2009 | A1 |
20090124945 | Reich et al. | May 2009 | A1 |
20090139351 | Reichmuth | Jun 2009 | A1 |
20090163839 | Alexander | Jun 2009 | A1 |
20090188780 | Watanabe | Jul 2009 | A1 |
20090281454 | Baker et al. | Nov 2009 | A1 |
20100010524 | Barrington | Jan 2010 | A1 |
20100015566 | Shaw | Jan 2010 | A1 |
20100049177 | Boone, III et al. | Feb 2010 | A1 |
20100190132 | Taylor et al. | Jul 2010 | A1 |
20100239998 | Snyder et al. | Sep 2010 | A1 |
20100261134 | Boyd et al. | Oct 2010 | A1 |
20100261137 | Boyd et al. | Oct 2010 | A1 |
20100266982 | Klecker et al. | Oct 2010 | A1 |
20100326536 | Nan | Dec 2010 | A1 |
20100330527 | Boyd et al. | Dec 2010 | A1 |
20110027749 | Syed | Feb 2011 | A1 |
20110076090 | Wu et al. | Mar 2011 | A1 |
20110097683 | Boyd et al. | Apr 2011 | A1 |
20110139826 | Hair et al. | Jun 2011 | A1 |
20110144588 | Taylor et al. | Jun 2011 | A1 |
20110184341 | Baker et al. | Jul 2011 | A1 |
20110247156 | Schmid | Oct 2011 | A1 |
20110307039 | Cornell | Dec 2011 | A1 |
20120021374 | Cacka et al. | Jan 2012 | A1 |
20120045730 | Snyder et al. | Feb 2012 | A1 |
20120064480 | Hegemann | Mar 2012 | A1 |
20120077145 | Tsurukawa | Mar 2012 | A1 |
20120141952 | Snyder et al. | Jun 2012 | A1 |
20120179118 | Hair | Jul 2012 | A1 |
20120266396 | Leung | Oct 2012 | A1 |
20120277663 | Millman et al. | Nov 2012 | A1 |
20120277677 | Taylor et al. | Nov 2012 | A1 |
20120277678 | Taylor et al. | Nov 2012 | A1 |
20120279002 | Sokol et al. | Nov 2012 | A1 |
20120295220 | Thomas et al. | Nov 2012 | A1 |
20130025394 | Fan | Jan 2013 | A1 |
20130089832 | Lee | Apr 2013 | A1 |
20130125326 | Schmid et al. | May 2013 | A1 |
20130193915 | Jung et al. | Aug 2013 | A1 |
20130295520 | Hsieh | Nov 2013 | A1 |
20140106296 | Woodard et al. | Apr 2014 | A1 |
20140193774 | Snyder et al. | Jul 2014 | A1 |
20140259474 | Sokol et al. | Sep 2014 | A1 |
20140272769 | Luettgen et al. | Sep 2014 | A1 |
20140272782 | Luettgen et al. | Sep 2014 | A1 |
20140352088 | Wu | Dec 2014 | A1 |
20150004559 | Luettgen et al. | Jan 2015 | A1 |
20150147717 | Taylor et al. | May 2015 | A1 |
20150173850 | Garrigues et al. | Jun 2015 | A1 |
20150182319 | Wagner et al. | Jul 2015 | A1 |
20160100921 | Ungar | Apr 2016 | A1 |
20160151133 | Luettgen et al. | Jun 2016 | A1 |
20170239132 | Luettgen et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
851479 | Sep 1970 | CA |
655237 | Apr 1986 | CH |
203693808 | Jul 2014 | CN |
204049908 | Dec 2014 | CN |
1466963 | May 1969 | DE |
1566490 | Nov 1970 | DE |
2019003 | Nov 1971 | DE |
2409752 | Sep 1975 | DE |
2714876 | Oct 1978 | DE |
2910982 | Feb 1980 | DE |
3346651 | Jul 1985 | DE |
2545936 | Apr 1997 | DE |
10033919 | Feb 2002 | DE |
20200015767 | Jan 2006 | DE |
0023672 | Jul 1980 | EP |
0515983 | Feb 1992 | EP |
1825827 | Aug 2007 | EP |
2621050 | Jul 2013 | EP |
2556954 | Jun 1985 | FR |
2654627 | May 1991 | FR |
838564 | Jun 1960 | GB |
1182031 | Feb 1970 | GB |
2018605 | Oct 1979 | GB |
2237505 | May 1991 | GB |
2-134150 | May 1990 | JP |
2009-39455 | Feb 2009 | JP |
20120126265 | Nov 2012 | KR |
WO95016404 | Jun 1995 | WO |
WO0110327 | Feb 2001 | WO |
WO01019281 | Mar 2001 | WO |
WO04021958 | Mar 2004 | WO |
WO04039205 | May 2004 | WO |
WO2004062518 | Jul 2004 | WO |
WO2004060259 | Jul 2004 | WO |
WO2008070730 | Jun 2008 | WO |
WO2008157585 | Dec 2008 | WO |
WO2011075581 | Jun 2011 | WO |
WO2013095462 | Jun 2013 | WO |
WO2013124691 | Aug 2013 | WO |
WO2014145890 | Sep 2014 | WO |
Entry |
---|
US RE27,274 E, 01/1972, Mattingly (withdrawn) |
The Right Tool, Electron Fusion Devices, Inc., 2 pages, at least as early as Feb. 1991. |
Japanese Packaging, 2 pages, at least as early as Dec. 2002. |
Japanese Instruction Brochure, 20 pages, at least as early as Dec. 2002. |
Brochure: Woog International, “You have a 98% chance of getting gum disease. Unless you read this.”, Lancaster, Pennsylvania, 5 pages, Feb. 1987. |
Brochure: Woog International, “We put the control of home dental care back into the hands of the professional”, Lancaster, Pennsylvania, 2 pages, Feb. 1987. |
Brochure: Woog International, “Products at a Glance: Home Dental Care System” Woog Orajet, 3 pages, at least as early as Dec. 18, 1998. |
WEBSITE: http://www.just4teeth.com/product/Panasonic/Panasonic_Portable_Irrigator.htm, 2 pages, at least as early as Jun. 20, 2003. |
WEBSITE: http://www.videodirectstore.com/store/merchant.mv?Screen=PROD&Product_Code=EW1'. . . , 2 pages, at least as early as Jun. 20, 2003. |
WEBSITE: http://products.consumerguide.com/cp/family/review/index.cfm/id/18742, 2 pages, at least as early as Jun. 20, 2003. |
WEBSITE: http://www.racekarteng.com/images/walbroparts.gif and http://www.muller.net/mullermachine/docs/walbro1.html, 4 pages, at least as early as Jun. 20, 2003. |
European Search Report, EPO Application No. 07250799.9, dated Jul. 5, 2007. |
European Search Report, EPO Application No. 07252693.2, 14 pages, dated Apr. 28, 2008. |
European Examination Report, EPO Application No. 07250799.9, dated Feb. 5, 2009. |
International Search Report, Application No. PCT/US2010/028180, 2 pages, dated May 18, 2010. |
International Search Report, PCT/US2010/060800, 2 pages, dated Feb. 11, 2011. |
International Search Report, PCT/US2011/052795, 10 pages, dated Jan. 17, 2012. |
Waterpik SinuSense WEBSITE: http://www.insightsbyapril.com/2012/03/waterpik-natural-remedy-for-sinus.html, 8 pages, retrieved on May 31, 2012. |
Waterpik WP 350W Oral Irrigator. Dentist.net. Copyright date 2013. Date accessed: Mar. 30, 2017, 2 pages <http://www.dentalhoo.com/waterpik-wp350.asp>. |
IPik Portable Oral Irrigator. AliExpress. Date reviewed: Oct. 5, 2016. <https://www.allexpress.com/...e-Oral-Care-Product-Nasal-Irrigator-Tooth-Flosser-Water/1525541997.html?aff_platform=aaf&cpt=1490913714609&sk=yfAeyJa&aff_trace_key=c5a300c4f02e46d08c042f5292e1762f-1490913714609-07517-yfAeyJa>, 18 pages. |
Brite Leafs Professional Portable 2-in-1 Nasal Sinus & Oral Irrigator. Brite Leafs. Copyright date 2012, <http://www.briteleafs.com/product6.html>, 1 page. |
AliExpress. Date reviewed: Jan. 12, 2017. <https://www.aliexpress.com/item/Cordless-Water-Floss-Portable-Oral-Irrigator-Dental-Water-Flosser-Waterpic-Whatpick-Dental-Water-Pic-Whater-Pick/32769416341.html?spm=2114.40010308.4.75.Owuzfj>. |
Suvo. “Helical Gears vs Spur Gears—Advantages and Disadvantages Compared.” Brighthub Engineering, Aug. 18, 2010, www.brighthubengineering.com/manufacturing-technology/33535-helical-gears-vs-spur-gears/., 7 pages. |
Waterpik ADA Accepted WP-663, posted at amazon.com, earliest date reviewed on Feb. 6, 2014, [online], acquired on Feb. 12, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Accepted-WP-663-Aquarius-Flosser/dp/B072JFVXSY/ref=cm_cr_arp_d_product_top?ie=UTF8&th=1> (Year: 2014). |
Waterpik Classic Professional Water Flosser, WP-72, posted at amazon.com, earliest date reviewed on Mar. 5, 2016, [online], acquired on Feb. 23, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Classic-Professional-Flosser-WP-72/dp/B00HFQQOU6/ref=cm_cr_arp_d_product_top?ie=UTF8> (Year: 2016). |
Waterpik Complete Care 5.0 Toothbrush, posted at amazon.com, earliest date reviewed on Mar. 14, 2016, [online], acquired on Feb. 23, 2018. Available from Internet, <URL: https://www.amazon.com/Waterpik-Complete-Toothbrush-Water-Flosser/dp/B01CRZ939Y/ref=cm_cr arp_d_product_top?ie=UTF8> (Year: 2016). |
Extended European Search Report dated Oct. 4, 2019, in European Application No. 19157292.4, 20 pages. |
European Partial Search Report dated Jul. 5, 2019, in European Application No. 19157292.4, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20200276003 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62132319 | Mar 2015 | US | |
62086051 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14956017 | Dec 2015 | US |
Child | 16877081 | US |