The present invention relates to the field of veterinary vaccinology; specifically the invention relates to an oral vaccine against respiratory disease in ruminants, comprising live attenuated Mannheimia haemolytica bacteria. In addition the invention relates to methods for the preparation of such a vaccine, to methods for the vaccination of ruminants employing such a vaccine, and to medical uses of a composition comprising M. haemolytica bacteria.
In the animal husbandry of ruminants, one of the main veterinary problems is respiratory disease. This is a complex syndrome of affections with serious negative effects on animal welfare and on economy of operation. Several causes are considered to be relevant in ruminant respiratory disease (RRD): at the basis is infection by one or more bacteria and viruses, which is facilitated and aggravated by environmental stress factors. Such stress can resort from housing conditions such as heat, thirst, crowding, poor ventilation (dust and ammonia); from social factors such as weaning, and co-mingling into new groups; as well as from handling and transportation. This is why RRD is often called ‘shipping fever pneumonia’.
Several veterinary treatments are available to prevent or mitigate RRD, often combinations are being used of antibiotics and of vaccines for the viral- and bacterial pathogens.
Of the bacterial pathogens involved in RRD, M. haemolytica is the major cause of disease. While being a commensal of the upper respiratory tract in ruminants, it can become the principal bacterial pathogen associated with pneumonic Pasteurellosis in RRD if an opportunity arises. Typical clinical symptoms of disease are fever, depression, and increase of respiration frequency. Histopathological signs are characteristic lung lesions such as necrosis, thrombosis, and exudation.
A Polyvinylpyrrolidone (PVP) is a synthetic polymer which has been known since the 1930's and is widely used for a variety of purposes: in foodstuffs as a stabiliser (E1201); in technical products, e.g. in paint or glue; and in cosmetics and pharmaceuticals as a binder, thickener, emulsifier or disintegrant.
WO 94/20070 is titled ‘Polymeric mucoadhesives in the delivery of immunogens at mucosal surfaces’. It presents a list of compounds ‘considered to act as mucoadhesives’, among which is PVP. '070 prefers the use of carboxymethylcellulose and an adjuvant. The only antigen tested is inactivated H3N2 influenza virus, which is administered to mice by oral- or intragastric route. Not all experiments showed protection, and the samples that did show seroconversion were later found to be bacterially contaminated. This was then assigned to be a ‘bacterial adjuvant’. '070 concludes that the viral antigen, with mucoadhesive but without a bacterial adjuvant was unable to provide a significant immune response by oral immunisation ('070, page 24, 9th-3rd line from the bottom).
WO 00/50078 is titled ‘Use of bioadhesives and adjuvants for the mucosal delivery of antigens’, and aims to develop an intranasal vaccine against influenza for humans. '078 lists PVP and hydroxy-propyl-methyl cellulose (HPMC) as bioadhesives. The bioadhesive is preferred to be a microsphere with the antigen adsorbed on, or entrapped within the spheres. The only experiment described applies intranasal administration of Influenza HA antigen to rabbits, using a bacterial toxin as adjuvant, and polycarbophil, carbopol, or HPMC as bioadhesive.
WO 2005/00330 describes an acapsular deletion mutant of P. multocida, to be used as a live attenuated vaccine administered via the feed or drinking water. '330 describes immunisation of turkeys by intramuscular injection, and of calves by subcutaneous route, or by oral route via the feed. No use of or need for any other excipient is described or suggested.
Bühler (in: ‘Polyvinylpyrrolidone excipients for pharmaceuticals’, ISBN 3-540-23412-8, Springer Berlin, 2005) describes the suitability of PVP as bioadhesive for the delivery of pharmaceutical compounds to dermal and mucosal surfaces (Bühler, supra: p. 120, section 2.4.9.2). However the suitability of PVP for use in mouthwashes etc. is described to derive from its reduction of the adherence of oral bacteria to tooth enamel, hence its use as microbial anti-adherent agent (Bühler, supra: p. 124, section 2.4.9.9).
WO 93/16680 also describes the microbial anti-adherence effect of PVP in dentifrices.
It is an object of the present invention to overcome a disadvantage in the prior art, and to accommodate to a need in the field by providing a live attenuated bacterial vaccine against ruminant respiratory disease that can be administered by a more convenient and less stressful route of administration, while still inducing an effective immune-protection.
One common method of mass application of vaccines is by oral route. However when the inventors attempted the straightforward oral application of existing live attenuated bacterial vaccines prescribed for administration by intranasal route, this was not successful. While effective for P. multocida bacteria, but surprisingly the oral route was no success for the closely related M. haemolytica. This even when doses of the bacterium were applied that were near the maximum levels that can be produced (above 10{circumflex over ( )}9 bacteria per animal dose), even with rich culture media and state of the art industrial systems for bacteriological production. The inventors then attempted to concentrate an M. haemolytica culture, but this only reduced the final titre of live bacteria. The inventors had no indications from the prior art on how to overcome this problem.
Surprisingly it was found that the object can be met, and consequently one or more disadvantages of the prior art can be overcome, by providing an effective vaccine for RRD comprising live attenuated Mannheimia haemolitica bacteria, that can be administered by oral route. This was reached by the addition of a Polyvinylpyrrolidone to the vaccine.
The advantageous effect of the novel vaccine is that its administration by oral route, especially when applied as a drink or with the feed, allows the cheap and effective mass vaccination of animals. This no longer requires an additional handling of the animals and so reduces unnecessary stress to the animal, and in addition saves considerably on expenses for labour and veterinary services. Because stress is such an important factor in RRD, therefore the reduction of stress to the animal by vaccination using a method of mass administration helps to reduce onset of RRD.
It is currently not known why the addition of a PVP enables the administration of a live attenuated M. haemolytica by oral route. Although the inventors do not want to be bound by any theory or model that might explain these observations, they speculate that a PVP in some way or other associates with the bacteria in the vaccine, which allows these bacteria to more effectively establish a colonisation of the upper respiratory tract and/or results in a better exposure of these bacteria to the immune system.
Therefore in one aspect the invention relates to an oral vaccine against respiratory disease in ruminants, the vaccine comprising live attenuated Mannheimia haemolitica bacteria and a pharmaceutically acceptable carrier, wherein the vaccine also comprises Polyvinylpyrrolidone (PVP).
For the invention “oral” refers to a route of administration to a target ruminant via the oral cavity of the animal, typically: via the mouth, also known as: per os. Inter alia this includes routes of administration that are termed: buccal, (sub)lingual, (sub)labial, laryngeal, oro-pharyngeal, tonsilar, or oro-mucosal. Further this also refers to an indirect administration to the oral cavity, such as by administration to the muzzle area of a ruminant; the animal's natural tendency to clean itself by licking, or even by licking another ruminant, will then cause the inoculum to reach the oral cavity.
A “vaccine” is well known to be a composition that has a medical effect. A vaccine comprises an immunologically active component, and a pharmaceutically acceptable carrier. The ‘immunologically active component’, is one or more antigenic molecule(s), here: live M. haemolytica bacteria, that are recognised by the immune system of a target, and induce a protective immunological response. The response may originate from the targets' innate- and/or from the acquired immune system, and may be of the cellular- and/or of the humoral type.
The effect of an oral vaccine according to the invention is the prevention or reduction in ruminants of an infection by a pathogenic M. haemolytica, and/or of one or more signs of respiratory disease that are associated with such infection or replication. Such (clinical) signs are: fever, increased respiration rate, nasal discharge, and several types of inflammatory affections to the lungs causing typical lesions. Consequently, the oral vaccine according to the invention is an aid in the reduction of respiratory disease caused by M. haemolytica, as is e.g. detectable in reduction of the number and/or the severity of lung lesions caused by M. haemolytica.
Such an M. haemolytica vaccine may colloquially also be referred to as a vaccine ‘against’ M. haemolytica, a vaccine ‘against’ pneumonic Pasteurellosis, or as an ‘M. haemolytica vaccine’.
Embodiments and details of an oral vaccine according to the invention, its production, and its uses will be described herein below.
“Respiratory disease” for the invention refers to any disease of a ruminants' respiratory tract. Typically this is a consequence of infection with a pathogenic M. haemolytica bacteria, commonly in combination with infection by one or more bacteria or viruses. For a description see veterinary handbooks such as: “The Merck veterinary manual” (10th ed., 2010, C. M. Kahn edt., ISBN: 091191093X). Examples of such a disease are: shipping fever, or pneumonic Pasteurellosis.
A “ruminant” for the invention is an animal assigned to the suborder Ruminantia, and/or an animal applying the process of rumination to digest its feed.
The terms “live” and “attenuated” for the invention refer to bacteria that are alive, meaning replicative, and that have a reduced capacity to induce infection or disease in a particular host, as compared to un-attenuated, more pathogenic strains of the bacterium. A synonym is: modified-live. The effect of the attenuation is that the bacterium can still replicate in a target animal and so display relevant antigens to the targets' immune system, but without itself causing (serious) disease to the target. This effectively protects the target against (the consequences of) an infection with an un-attenuated version of the bacterium.
“M. haemolytica” are bacteria from the Pasteurellaceae family. They display the characterising features of their taxonomic group-members such as the morphologic, genomic, and biochemical characteristics, as well as the biological characteristics such as physiologic, immunologic, or pathologic behaviour. As is known in the field, the classification of micro-organisms is based on a combination of such characterising features. The scope of the invention therefore also includes M. haemolytica bacteria that are sub-classified therefrom in any way, for instance as a subspecies, strain, isolate, genotype, variant, subtype, serotype, or subgroup and the like.
It will be apparent to a skilled person that while a particular M. haemolytica bacterium for the present invention may currently be classified in a specific species and genus, such a taxonomic classification can change in time as new insights may lead to reclassification into a new or different taxonomic group. This applies in particular to M. haemolytica which was previously classified as Pasteurella haemolytica. Such reclassification does not change the micro-organism itself, its genetic or antigenic repertoire, or the level of genetic relatedness to other bacteria, but only its scientific name or classification. Therefore such re-classified bacteria remain within the scope of the invention.
A “pharmaceutically acceptable carrier” is for example a liquid such as water, physiological salt solution, or phosphate buffered saline solutions. In a more complex form the carrier can e.g. be a buffer comprising further additives, such as stabilisers or preservatives.
The term “comprises” (as well as variations such as “comprise”, “comprising”, and “comprised”) as used herein, intends to refer to all elements, and in any possible combination conceivable for the invention, that are covered by or included in the text section, paragraph, claim, etc., in which this term is used, even if such elements or combinations are not explicitly recited; and not to the exclusion of any of such element(s) or combinations.
A “Polyvinylpyrrolidone” is a synthetic polymer of 1-vinyl-2-pyrrolidinone units. The compound has CAS number 9003-39-8, is abbreviated as PVP, and has several synonyms, such as: Polyvidone, and Povidone. PVP is widely available commercially, in different levels of quality and purity. Well-known brands are for example: Kollidon™ and Luvitec™, both available from BASF or Sigma-Aldrich; Luviskol™, BASF; Periston™ BCM; and Plasdone™ from Ashland.
Different embodiments of an oral vaccine according to the invention, regarding for instance its composition, volume, titre, and physical form are disclosed herein below.
Therefore the embodiments and details described herein of the oral vaccine according to the invention refer to the final version of the vaccine which is ready for administration to a ruminant target.
The live attenuated M. haemolytica bacteria for use in the oral vaccine according to the invention can be obtained in different ways, either as a natural isolate, or as result from manipulation and selection in vitro, to achieve attenuation in any way that provides for their safe but efficacious use in the invention. The preferred method of attenuation is one that has a stable genetic basis in the bacterial genome; such stable mutation will not change to more or less attenuation upon the many rounds of replication that a vaccine strain of bacteria must undergo. Examples of such rounds of replication are the generation of master- and working stock supplies, next the replication during production runs, and finally the rounds of replication in the target animal to establish an effective and immunising infection. Typically the most stable mutations are the ones that have been introduced by targeted recombinant DNA techniques, and that incorporate more than a single or a few nucleotides of change.
In this respect: the avirulence of the M. haemolytica leukotoxin A protein may derive from the size of the expressed leukotoxin A protein being shorter than in a wildtype protein, or may derive from the protein not achieving post-translational activation. Either way, the bacteria expressing such avirulent leukotoxin A protein remain viable and replicative, and the expressed form of the leukotoxin A protein can still stimulate an immune response, but causes significantly less pathology than a wildtype version of the leukotoxin A. Such mutants are for example described in WO 1997/016531, and in WO 1999/015670
Therefore in an embodiment of the oral vaccine according to the invention, the live attenuated M. haemolytica bacteria express an avirulent form of the leukotoxin A protein.
Even more preferred are live attenuated M. haemolytica bacteria as described in WO 1999/015670 that comprise a deletion in the leukotoxin A gene of the nucleotides that would otherwise encode amino acids numbers 34-378 of the wildtype Leukotoxin A protein. Most preferred live attenuated M. haemolytica is the mutant strain of M. haemolytica serotype 1, as described in WO 1999/015670, named: NADC D153 ΔlktA.
In a preferred embodiment, a “ruminant” for the invention relates to any ruminant of relevance to veterinary science or to commercial farming operations. Preferably this refers to bovine, caprine, ovine or cervine animals.
Therefore in an embodiment of the oral vaccine according to the invention, the ruminant is a bovine animal.
The inventors observed that the range wherein PVP is effective in the oral vaccine according to the invention is quite broad. Only practical limitation is that at higher concentrations of PVP, or when using PVP of types with high average molecular weight ranges, it can take more time to completely dissolve the PVP and achieve complete mixing with the other constituents.
An effective oral vaccine according to the invention can be obtained by comprising a concentration of between about 0.01 and about 10% w/v PVP in the vaccine. As described above, this refers to the final version of the oral vaccine according to the invention which is ready for administration to a ruminant.
Therefore in an embodiment of the oral vaccine according to the invention, the concentration of PVP is between about 0.3 and about 3% w/v.
For the invention, a number indicated with the term “about” means that number can vary between ±25% around the indicated value; preferably: about means±20% around the indicated value, more preferably: about means±15, 12, 10, 8, 6, 5, 4, 3, 2% around the indicated value, or even: about means±1% around the indicated value, in that order of preference.
In a more preferred embodiment of the oral vaccine according to the invention, the concentration of PVP is about 1.3% w/v.
In an embodiment, the oral vaccine according to the invention comprises a suitable preservative, such as thimerosal, merthiolate, or benzoic compounds, in an amount that is effective but is also tolerated by the live vaccine micro-organisms.
In one embodiment, the oral vaccine according to the invention is in liquid form. The liquid may be generally aqueous, meaning: like water, but can also be a less fluid semi-solid, e.g. as in a syrup, gel, dispersion, emulsion or paste.
In one embodiment, the oral vaccine according to the invention is in freeze-dried form, also known as: in lyophilised form. This form has a number of advantages over a vaccine in liquid form, as it is lighter and therefore more economical to transport. Further, a freeze-dried vaccine will usually not require to be kept frozen, but can be stored at a more economical 2-8° C.
Therefore in an embodiment of the oral vaccine according to the invention, the vaccine is in freeze-dried form.
The oral vaccine in freeze-dried form according to the invention can be administered as such to a ruminant, for example as a fast-melt dosing-form, or as a ground powder from freeze-dried cake. More common is that the freeze-dried cake is first reconstituted in a diluent and then is ready for administration to a ruminant.
The “freeze-dried form” will be a freeze dried cake which itself can be in any form, for example as a layer in a bottle, as a tablet, or as a spherical object, for example a lyosphere as described in EP 799.613.
Typically freeze-dried vaccines will contain a freeze-drying stabiliser that will protect the live-attenuated micro-organisms in the vaccine from decay over time in storage, but also during the cooling- and heating cycles of the freeze-drying process itself. Well-known freeze drying stabilisers contain a bulking agent such as an amino acid, e.g. glycine or arginine; a specific protein such as bovine serum albumin or a hydrolysate e.g. NZ amine; and/or polymers such as dextrane or gelatine.
In an embodiment the oral vaccine in freeze-dried form according to the invention comprises sucrose as a freeze-drying stabiliser. Not only does this provide good stabilisation, but an additional advantage is that its sweet taste makes the ingestion of the oral vaccine more pleasant to the ruminant, which helps to further reduce the stress of the vaccination for the ruminant animal.
Therefore in an embodiment of the oral vaccine in freeze-dried form according to the invention, the vaccine comprises sucrose.
The sucrose is present in the oral vaccine in freeze-dried form according to the invention in a concentration of between about 1 and about 20% w/v of the vaccine ready to use; preferably between about 2 and about 15%, between about 3 and about 10, or even between about 4 and about 8% w/v of the vaccine ready to use, in that order of preference.
In addition, the oral vaccine in freeze-dried form according to the invention may comprise further excipients, for example carry-over compounds from the culture medium of the micro-organism(s) in the vaccine. For the M. haemolytica of the invention, that may be residues of the bacterial culture medium comprising yeast extract, dextrose, peptone, etc. Such compounds may even be helpful in the stabilisation, as additional bulking agent.
To reconstitute a freeze-dried vaccine, it is common to re-suspend the freeze-dried cake in a physiologically acceptable diluent. This is commonly done shortly before administration to the target, to ascertain the best quality of the vaccine. The diluent is typically aqueous, and can e.g. be sterile water, or a physiological salt solution.
The diluent for the oral vaccine in freeze-dried form can be supplied in a separate container, either with- or separate from the freeze-dried vaccine. When provided together, the freeze-dried vaccine and the diluent (each in their own container) form a kit of parts that embodies the oral vaccine according to the invention.
Therefore in an embodiment of the oral vaccine in freeze-dried form according to the invention, the vaccine is a kit of parts with at least two containers, one container comprising the freeze-dried vaccine, and one container comprising a diluent.
In an embodiment, the oral vaccine according to the invention comprises a colorant. This can facilitate the administration, by serving as an optical indication of which ruminants have already been vaccinated. Such a colorant will of course need to be pharmaceutically acceptable, such as e.g. a food-colorant. Also the colorant needs to be non-toxic for the live attenuated M. haemolytica bacteria, and for any other micro-organisms, antigens, or biologically active molecules that may be included.
The colorant for the invention can be comprised in the vaccine that is released by a manufacturer, either when in liquid, semi-solid, or when in freeze-dried form.
The oral vaccine according to the invention comprises an amount of live attenuated M. haemolytica bacteria that is immunologically effective.
The inventors were surprised to learn that the use of PVP in an oral vaccine according to the invention, makes that the titre of M. haemolytica bacteria per animal dose that is required for effective protection by oral route, is now in the range of about 10{circumflex over ( )}8 CFU/dose or less; this for the first time makes the economic production of an oral vaccine of M. haemolytica feasible.
Therefore in an embodiment, the oral vaccine according to the invention comprises at least about 1×10{circumflex over ( )}7 CFU of live attenuated M. haemolytica bacteria as described for the invention, per animal dose of the final version of the vaccine which is ready for administration to a ruminant target.
The volume of one animal dose of the oral vaccine according to the invention is a volume that is practicable from the viewpoint of the manufacturer and of the user, such as a veterinarian or animal caretaker. In addition the volume of what constitutes one animal dose can be dependent on the type and the age of the ruminant target that is to be vaccinated. As described, the volume of one animal dose refers to the final version of the oral vaccine which is ready for administration to a ruminant target. Also the volume of a dose refers to the vaccine when in liquid form, or to the freeze-dried cake resulting from such a volume.
In an embodiment of the oral vaccine according to the invention, the volume of one animal dose is between about 0.1 and about 10 ml.
Although it is possible to release commercial ruminant vaccines in packaging for a single animal, that is not very cost efficient, nor is it practicable for use on large number of animals. Therefore commercial forms of packaging of ruminant vaccines can be in containers that comprise the animal doses for 2, 5, 10, 20, 25, 50, 100, 200, 250, 500, or even 1000 animals. For example, a container of oral vaccine according to the invention for 50 animal doses, may contain a freeze-dried pellet of an original volume of about 30 ml of vaccine formulation. This can be dissolved in 100 ml diluent to provide 50 doses of 2 ml each.
The inventors have found that different types of PVP can be used to achieve the advantageous effect of the invention, for example they have used PVP of types such as K 12 and K 60. The K value being an indication of the weight-averaged molecular weight of the polymer, determined by viscosity measurement, as described above. Also combinations of types of PVP have been tested, such as the combination of K 12 and K 60 types, and found to be effective. Consequently, the PVP to be used for the invention can be made up of a single type of PVP, but can also be a combination of types of PVP, e.g. of two, three, or even more types.
Therefore in an embodiment of the oral vaccine according to the invention, the PVP is of a combination of types of PVP.
For the invention the “type” of PVP refers to the size class of the weight-averaged molecular weight of the PVP polymer that is being used. Such a size class can be indicated by a certain size-averaged molecular weight or -weight-range, or by the K value.
In an embodiment of the oral vaccine according to the invention, the type of PVP is one or more selected from the group consisting of: K 12, K 17, K 24, K 25, K 30, K 60, K 70, K 80, K 90 and K 120.
These different types of PVP are commercially available from a variety of suppliers. They are also available in a variety of qualities and purities. The use of PVP of a pharmaceutical grade is preferred.
Surprisingly it was found that the use of PVP provided advantages also in the formulation phase of the oral vaccine according to the invention; specifically in the freeze-drying process. For example: PVP K 12 was found to provide for improved survival of M. haemolytica bacteria in the freeze-drying process.
Therefore in an embodiment of the oral vaccine according to the invention, the type of PVP is K 12, or the type of PVP is K 60, or the type of PVP is a combination of K 12 and K 60.
An example of a way to combine more than one type of PVP in the oral vaccine according to the invention, is by incorporating one or more types of PVP into the culture medium during the production stage, and adding one or more further types at the stage of final formulation, or via a diluent. The PVP in the culture medium is then carried-over with the bacteria and the medium into the vaccine, when these bacteria are harvested for the subsequent formulation. In the preparation of the oral vaccine according to the invention, significant amounts of the culture medium can be taken up into the vaccine, e.g. 20% or more of the culture volume.
The oral vaccine according to the invention can advantageously be combined with one or more other antigens, micro-organisms or biologically active molecules, into a combination vaccine. However the combination needs to be made with care to safeguard the viability of the replicative vaccine components, and the stability and efficacy of the overall combination vaccine. Such choices are within the routine capabilities of the skilled person.
Therefore, in an embodiment the oral vaccine according to the invention comprises at least one additional immunoactive component.
An “additional immunoactive component” may be an antigen, micro-organisms or a part thereof, a biologically active molecule, an immune enhancing substance, and/or a vaccine, either of which may comprise an adjuvant. The additional immunoactive component when in the form of an antigen may consist of any antigenic component of veterinary importance. Preferably the additional immunoactive component is based upon, or derived from, a further micro-organism that is pathogenic to a ruminant animal. It may for instance comprise a biological or synthetic molecule such as a protein, a carbohydrate, a lipopolysaccharide, a nucleic acid encoding a proteinaceous antigen. Also a host cell comprising such a nucleic acid, or a live recombinant carrier micro-organism containing such a nucleic acid, may be a way to deliver or express the nucleic acid or an additional immunoactive component. Alternatively the additional immunoactive component may comprise a fractionated or killed micro-organism such as a parasite, bacterium or virus, or a part thereof, such as an extract, fraction, or sonicate.
Preferred additional immunoactive components are based on, or derived from, micro-organisms that are pathogenic to ruminants. Examples of such micro-organisms are:
For cattle: Neospora spec., Dictyocaulus spec., Cryptosporidium spec., Ostertagia spec., bovine rotavirus, bovine viral diarrhoea virus, bovine coronavirus, infectious bovine rhinotracheitis virus (bovine herpes virus 1), bovine paramyxo virus, bovine parainfluenza virus, bovine respiratory syncytial virus, rabies virus, bluetongue virus, E. coli, Salmonella spec., Staphylococcus spec., Mycobacterium spec., Brucella spec., Clostridia spec., Pasteurella spec., Mannheimia spec., Haemophilus spec., Leptospira spec., and Fusobacterium spec.
For sheep and goats: Toxoplasma gondii, peste des petit ruminant virus, bluetongue virus, Schmallenberg virus, Mycobacterium spec., Brucella spec., Clostridia spec., Coxiella spec., E. coli, Chlamydia spec., Clostridia spec., Pasteurella spec., and Mannheimia spec.
For cervines: Epizootic haemorrhagic disease virus, bluetongue virus, papilloma virus, Borrelia burgdorferi, Mycobacterium bovis, and Trueperella pyogenes.
Preferred micro-organisms pathogenic to ruminants are one or more selected from the group consisting of: Pasteurella multocida, Mycoplasma bovis, Histophilus somni, bovine coronavirus, parainfluenza-3 virus, bovine respiratory syncytial virus, bovine viral diarrhoea virus, and bovine herpes virus 1.
More preferred micro-organisms pathogenic to ruminants are live attenuated Pasteurella multocida bacteria.
Therefore in an embodiment of the oral vaccine according to the invention, the at least one additional immunoactive component are live attenuated Pasteurella multocida bacteria.
Preferred live attenuated P. multocida bacteria for the invention, are those that are acapsular, meaning that the bacterium cannot express its normal capsule of hyaluronic acid.
Therefore in an embodiment of the oral vaccine comprising live attenuated P. multocida bacteria as additional immunoactive component according to the invention, the live attenuated P. multocida bacteria are acapsular.
Even more preferred are live attenuated P. multocida as described in WO 2005/003330 that comprise a deletion of all or part of the hyaE gene.
An oral vaccine according to the invention can be used either as a prophylactic- or as a therapeutic treatment, or both, as it interferes both with the establishment and with the progression of an infection by a pathogenic M. haemolytica.
Further or additional embodiments of the oral vaccine according to the invention are conceivable, and are perfectly achievable for a skilled person. Also these further embodiments may be applied in one or more combination(s) to the embodiments already described.
Therefore in an embodiment of an oral vaccine according to the invention, one, more, or all of the conditions apply, selected from the group consisting of:
In an embodiment of the oral vaccine according to the invention, the live attenuated M. haemolytica is the mutant strain of M. haemolytica serotype 1, as described in WO 1999/015670, named: NADC D153 ΔlktA; the ruminant is cattle; the concentration of PVP is about 1.3% w/v; the type of PVP is a combination of K 12 and K 60; the oral vaccine comprises between about 1×10{circumflex over ( )}8 and about 7×10{circumflex over ( )}8 CFU of live attenuated M. haemolytica bacteria per animal dose; the oral vaccine additionally comprises a live attenuated P. multocida which is the mutant strain of P. multocida serotype A3, as described in WO 2005/003330, named: 1062 ΔhyaE; the oral vaccine is in freeze-dried form; and comprises sucrose in a concentration of about 6% w/v.
The oral vaccine according to the invention can be prepared from live attenuated M. haemolytica bacteria, by methods well known in the art, and within the routine capabilities of a person skilled in the art. For example: M. haemolytica is cultured in fermenters using standard culture medium, e.g. TSB, with monitoring of temperature and use of variable stirrer speed and oxygen level. The complete culture is harvested at an appropriate time, such as upon reaching a specified culture density, measurable e.g. by optical density. The bacteria are then harvested for example by centrifugation, and are taken up into a pharmaceutically acceptable carrier such as water for injection combined with the necessary stabilisers.
Therefore in a further aspect the invention relates to a method for the preparation of an oral vaccine according to the invention, comprising the step of admixing live attenuated M. haemolytica bacteria and a pharmaceutically acceptable carrier, with PVP.
The admixing with PVP can be done in different ways, and at different times, to optimise production efficiency or vaccine characteristics.
At different points in this method, additional steps may be added, for example for additional treatments such as for purification or storage.
As described before, an oral vaccine according to the invention can be produced in different forms, for example as a liquid, or semi-solid, and can be either a concentrate, or ready to use for administration. Alternatively, the vaccine can be formulated in a freeze-dried form. These variations, and optionally many more, can be incorporated as a further step at an appropriate point in the method for preparation according to the invention.
Therefore the method for the preparation according to the invention can comprise any of the embodiments (preferred or not) as described herein for the oral vaccine according to the invention, or any combination of two or more of those embodiments of the oral vaccine according to the invention.
The oral vaccine according to the invention, which can be made by a method for the preparation according to the invention, can be administered to a target ruminant in different ways and at a different time point in its life, as long as the efficacy and the safety are preserved. For example, as will be evident to a skilled person, it is preferred that the target ruminant did not receive around the time of vaccination e.g. via feed or as injectable, any significant amount of antibiotics to which the vaccine bacteria are sensitive.
The oral vaccine according to the invention, in the final version of the vaccine which is ready for administration to a ruminant target, can conveniently be administered to a ruminant by administering the required volume of one animal dose, directly into the animal's mouth. Such oral administration of a fluid to an animal is commonly called a drench. Alternatively, when in semi-solid form, the oral vaccine can be orally administered as e.g. a paste or a gel. A wide variety of tools for the convenient dosing and oral administration are available commercially. Typically this will be an applicator of some sort such as a syringe or injector, with a nozzle that can be placed in the animal's mouth. Such applicators are also available for repeated administration, when treating large number of animals.
Therefore in a further aspect, the invention relates to a method for the vaccination of ruminants against respiratory disease, the method comprising the step of administering an oral vaccine according to the invention to said ruminants by oral route.
The administration regime for a method for the administration according to the invention, to a target ruminant can be in single or in multiple doses, in a manner compatible with the formulation of the vaccine and with practical aspects of the animal husbandry.
Therefore in an embodiment of the method for the vaccination of ruminants according to the invention, the vaccine is administered in a combination with another ruminant vaccine.
One of the advantages of the oral vaccine according to the invention is that the oral route enables the use of methods of mass administration. Such methods are without stress to the animal and are very cheap to apply.
Therefore in an embodiment of the method for the vaccination of ruminants according to the invention, the vaccine is administered to a target ruminant as a drink and/or with the feed.
Administration with the feed preferably regards so called top-dressing of feed, which is the addition of the vaccine to feed directly before feeding. This is advantageous to the vaccine's stability as compared to use already mixed into the feed. Alternative administrations by feeding are also: as a bait, treat, chew, or lick.
Preferred method of mass-administration of the oral vaccine according to the invention, is administration as a drink, e.g. with drinking water.
Administration via drinking water can conveniently be accomplished by using the water installations present on the farm, such as a ring-system for drinking water distribution, with drinkers which are adapted to the target animals. Essentially this would mean the dilution of the oral vaccine according to the invention in drinking water, and assuring that the animals to be vaccinated ingest the right amount of this vaccine-dilution.
Therefore in an embodiment of the method for the vaccination of ruminants according to the invention, the vaccine is administered to a target ruminant in drinking water.
One preferred occasion for administering the oral vaccine according to the invention is in the preparation of ruminants for transport, for example to a grower- or finisher farm. Such transport and comingling is quite stressful to the ruminants, and is often followed by outbreaks of RRD in the weeks after. The timing of such vaccination can be optimised to take place at about 1-2 weeks before a planned transportation, e.g. before weaning or before transport to a feedlot farm.
Therefore, in an embodiment of the method for the vaccination of ruminants according to the invention, the vaccine is administered to a target ruminant 1-2 weeks before a planned transportation of the ruminant. Preferably such vaccination is administered via drinking.
The age, weight, sex, immunological status, etc. of the target ruminant for a vaccination according to the invention, are not critical although it is favourable to vaccinate healthy targets, and to vaccinate as early as possible to prevent (the consequences of) an early infection by a pathogenic M. haemolytica.
Therefore, in an embodiment of the method for the vaccination of ruminants according to the invention, the oral vaccine according to the invention is administered to young ruminants.
The term “young” refers to the period in the life of a ruminant up to its weaning. This period differs for various species of ruminants; for cattle weaning is typically at about 6-8 weeks of age, for lambs weaning is at about 4-6 weeks of age. Preferably “young” refers to 0-8 weeks of age, more preferably to 0-6 weeks of age.
Preferred method of mass-administration of the oral vaccine according to the invention, is, e.g. with drinking water.
One advantageous method for the vaccination of ruminants by the administration as a drink, according to the invention, is to administer the oral vaccine to ruminants by admixing the vaccine with milk, and feeding this mixture to the ruminants. Ruminants of all ages like to drink milk, therefore such administration is totally stress-free for the animals. This can conveniently be done by feeding an appropriate amount of vaccine-in-milk dilution to the ruminant using a drinking trough or a bucket, or for young ruminants a bottle with a suction nipple. The milk drink with the vaccine dilution can conveniently be prepared and administered to a large number of ruminants at a time.
Therefore, in an embodiment of the method for the vaccination of ruminants according to the invention by administration as a drink, the oral vaccine according to the invention is admixed with milk and fed to ruminants.
The “milk” to be used for admixing with the oral vaccine according to the invention, can be whole milk, and is preferably from the same species as the target. Alternatively the milk can be prepared from powdered milk, such as a milk replacer. Commercial milk replacer is available in a variety of types, both for general cross-species use, or for species-specific use. The milk evidently needs to be of good quality, and the dilution of the vaccine in the milk is preferably prepared shortly before administration by feeding.
The feeding of the vaccine dilution in milk can be incorporated into the normal milk feeding program of the young ruminant target, the timing and the quantities of which will be dependent of its species and age.
The dilution of the vaccine in milk or in drinking water can be prepared either from the oral vaccine according to the invention itself, or from an intermediate dilution. For example the vaccine when in freeze-dried form and already containing the PVP, can be dissolved in a small volume of water or milk and subsequently in a larger volume of water or milk. Alternatively, when the vaccine in freeze dried form did not yet contain PVP, it should first be dissolved in diluent-containing PVP, and then in water or milk.
Alternative wording can be used to describe the embodiments of the oral vaccine and of the method for the vaccination of ruminants, both according to the invention:
In a further aspect the invention relates to an oral vaccine according to the invention, for administration to a ruminant as a drink or with the feed.
In a preferred embodiment, the drink is a dilution of the vaccine in milk, for administration by feeding to young ruminants.
The “milk drink” is composed and prepared as described above.
In a further aspect the invention relates to a milk drink for the vaccination by feeding of young ruminants against respiratory disease, the drink comprising a dilution of an oral vaccine according to the invention.
In a further aspect the invention relates to the use of an oral vaccine according to the invention for the manufacture of a milk drink for the vaccination by feeding of young ruminants against respiratory disease.
In a further aspect the invention relates to a method for the reduction of an infection with M. haemolytica or of associated signs of disease in ruminants, characterised in that the method comprises the administration to said ruminants of an oral vaccine according to the invention.
In a preferred embodiment of the method for the reduction of an infection according to the invention, the vaccine is administered to a target ruminant as a drink and/or with the feed.
The invention will now be further described by the following, non-limiting, examples.
1.1. Summary
This experiment demonstrated the efficacy of an oral vaccine comprising a relatively low dose of live attenuated M. haemolytica in PVP, to protect bovine calves of 2 to 3 weeks of age against respiratory disease caused by a severe challenge infection with M. haemolytica.
The vaccine for group A contained the M. haemolytica and the P. multocida bacteria at passage +5 from the master seed. Vaccine was reconstituted from freeze dried formulation with sterile water, to 2 ml per animal dose.
1.3.1. Experimental Animals:
groups A and B each contained 20 calves, all from the same source, of Holstein breed and of mixed sex. The calves had been raised colostrum-deprived, and were individually marked. The calves were healthy at the time of vaccination with no prior history of vaccination against M. haemolytica or P. multocida.
1.3.2. Vaccination:
Ampules of vaccines were reconstituted in sterile water, and pooled. A dose of 2 ml per animal of the respective vaccine was mixed with about 3 litres of milk replacer shorty before feeding the milk to the calve. Bacterial titrations were done in 5 fold on the pool vaccines to confirm the average titre per animal dose.
Post-vaccination animals were observed daily; one death in control group B at 20 days post vaccination was of a cause unrelated to the experiment.
1.3.3. Challenge:
At −2, −1 and 0 days prior to challenge, rectal temperatures and respiratory rates were recorded for all calves to establish baseline parameters. On day −1 blood samples were taken.
All the calves were challenged on day 28 post-vaccination, by intratracheal inoculation with 30 ml of TSB containing 3×10{circumflex over ( )}8 CFU virulent M. haemolytica bacteria. The titre in CFU was determined in 5 fold, by streaking serial dilutions on standard blood-agar plates.
Post challenge the calves were observed daily at approximately the same time of day. Rectal temperatures and respiratory rates were recorded for seven days.
1.4.1. Confirmation of Vaccine Dose:
Titration results indicated that the M. haemolytica titre in vaccine A was 1.81×10{circumflex over ( )}8 CFU/2 ml. The P. multocida titre was 2×10{circumflex over ( )}9 CFU/2 ml dose.
1.4.2. Lung Lesion Scores:
The analysis of the lung lesion data from all the calves showed a mean LLS of 11.46 for the vaccine group A, and a mean LLS of 28.35 for the control group B. As the ratio of these LLS (vaccine/control) is 0.4, which is below 0.5, this indicates (as described in Example 3) that the challenge-protection was efficacious.
1.4.3. Clinical Observations:
With respect to the rectal temperatures of all the calves, there were 13 of the 19 animals from the control group B and 15 of the 20 animals from the vaccinated group A with a temperature >40° C. on at least one post-challenge day.
1.4.4. Mortality Analysis:
During the post-challenge period, 10 of the 19 animals from the control group B, and 5 of the 20 animals from the vaccine group A died, indicating that the challenge was severe. Clearly, significantly fewer calves died in the vaccinated group A, compared to the control group B.
1.4.5. Bacterial Isolation:
Out of the 39 lung tissue samples from which isolation was attempted, growth was observed from 37 samples. Eighteen positive isolations were from the vaccine group A and 19 from the control group B. All positive samples were identified as M. haemolytica.
1.5. Conclusions:
Prior to the experiments described in Examples 1 and 2, several earlier vaccination-challenge studies had been performed in calves. These tested several oral vaccines, comprising different amounts of live-attenuated M. haemolytica, but without PVP. Those experiments were generally performed as described in Example 1.
It was only after the introduction of PVP into the vaccine, that lower doses of M. haemolytica also became effective.
The combined results of a representative set of these experiments are presented in Table 1 below, which focuses on the relative reduction of lung-lesions, as the most important parameter of effective protection against a challenge with pathogenic M. haemolytica.
Indications used in Table 1: ‘exp.nr’=experiment number; ‘M. haem dose’=dose/animal of live attenuated M. haemolytica bacteria in the oral vaccine; ‘Chall.-prot. to M. haem.’=protection against M. haemolitica challenge; ‘Expl. 1’ refers to the experiments described in Example 1.
To facilitate the interpretation of the relative reduction of lung-lesions, the ratio is indicated of the lung lesion scores of the vaccinates over that of the controls (‘Ratio V/C’). This is a simplification of the advanced statistical analysis that was applied in these experiments. Nevertheless this ratio gives a quick indication of protection: when this ratio is 0.5 or less, the test animals can be considered protected against a severe challenge with pathogenic M. haemolytica.
Table 1 clearly illustrates the advantageous effects of the use of different concentrations of PVP, in an oral vaccine for ruminants against pathogenic M. haemolytica.
Also a further comparison was made between groups from the experiments described herein in Examples 1 and 2, that did or did not receive PVP added to the vaccine. Specifically: a group receiving vaccine with PVP from Example 1 was compared to a group without PVP from the studies listed in Table 1, both for a vaccine dose of 1×10{circumflex over ( )}8 CFU/dose. Other circumstances were the same: vaccine was administered orally in 1 litre of milk replacer, and challenge dose was 2×10{circumflex over ( )}8 CFU/ml at 30 ml challenge dose.
This experiment is currently in progress and will confirm the duration of the immunity induced by the oral vaccine according to the invention.
The layout of this experiment is largely the same as that described in Example 1:
4.1. Introduction:
This study is the completion of the experiment already described as Example 3 above. The purpose of this study was to demonstrate the sustained efficacy of the M. haemolytica vaccine according to the invention, at four months after oral administration to 2 week old calves, against respiratory disease caused by M. haemolytica. The vaccine used was a modified live vaccine containing the M. haemolytica strain NADC D153 ΔlktA, which was formulated with 1.3% w/v total PVP (K 60 and K 12), as described above in Examples 1 and 3. The vaccine for group A contained live attenuated bacteria of both M. haemolytica and of P. multocida; the control vaccine for group B only contained live attenuated P. multocida.
4.2.1. Animals and Housing
The calves were received in two shipments of 24 and 20 calves, Within each shipment, calves were randomly assigned to the two treatment groups using the RAND function in Excell™. All calves were from the same source and no blocking factors were used. The calves in the two treatment groups were housed separately in individual huts. After two months they were moved to a different building, and housed separately in pens based on the treatment groups, whereby comparable numbers of vaccinates and controls were in each building. The calves were commingled prior to challenge, and remained commingled until the end of the study.
4.2.2. Vaccine
The vaccine for group A was a lyophilized sample containing the M. haemolytica NADC D153 ΔlktA strain. Also vaccine A contained an acapsular mutant strain of Pasteurella multocida, strain 1062 with ΔhyaE mutation. One dose of vaccine A contained about 1.8×10{circumflex over ( )}8 CFU per 2 mL dose of M. haemolytica, and about 1×10{circumflex over ( )}9 CFU per 2 mL dose of P. multocida. Both bacteria were at the 5th passage level from their master seed.
For each target, a 2 ml sample was taken from pools of vaccine A or vaccine B, dependent on the planned treatment. This was mixed with approximately 2.5 liters of milk replacer, which was fed completely to the calf, as a single dose. The vaccine pools were back-titrated to verify the dose actually applied.
4.2.3. Challenge
The challenge material was an active culture of virulent M. haemolytica (strain OSU), which was grown in Tryptic soy broth with moderate agitation at 37° C. Prior to challenge, the culture was diluted in sterile TSB to the approximate target dose, which was based on a prior established correlation between the OD value and CFU counts.
The challenge was administered on day 123 post-vaccination. Each calf in the study was inoculated once intra-tracheally with 40 mL of TSB containing at least 1×10{circumflex over ( )}8 virulent M. haemolytica bacteria.
After challenge the calves were observed daily at approximately the same time of day. Rectal temperatures and respiratory rates (per minute) were recorded daily for seven days after the challenge (post-challenge days 1 through 7). Coughing, if observed and abnormal respiratory patterns, were recorded. Calves were also observed for general health and signs of any disease.
On day 7 post-challenge, all surviving calves were euthanized. Necropsy was conducted and lungs were harvested from the calves. The percentage of pneumonic lung tissue was evaluated and percent (score) of lung lesions was calculated according to the procedure described by Jericho and Langford (Can. J. Comp. Med, 1982, vol. 46, p. 287-292). Lung lesion scoring was conducted independently by two observers and the two scores were averaged.
Titration of bacteria in vaccine pools was done on tryptic soy agar plates. Serial tenfold dilutions of Vaccines A and B were made in sterile TSB. Each dilution was streaked on five plates. Plates were incubated at 36° C. for 16-24 hours. Colonies of M. haemolytica could be counted directly; plates of P. multocida required a further incubation at room temperature for an additional 16-24 hours. The plates for counting M. haemolytica contained 0.001% Nafcillin to inhibit the growth of P. multocida; the plates for counting P. multocida contained 0.0015% Potassium tellurite to inhibit the growth of M. haemolytica.
4.3.1. Confirmation of Vaccine Dose
Titration results indicated that vaccine A contained 1.64×10{circumflex over ( )}8 M. haemolytica per 2 mL dose.
4.3.2. Confirmation of Challenge Dose
Titration results indicated that each animal in the study received approximately 4.06×10{circumflex over ( )}8 M. haemolytica organisms in the 40 mL dose administered by the intra-tracheal route.
4.3.3. Mortality Analysis:
The percent death caused by the M. haemolytica challenge was evaluated by the prevented fraction (PF) method and 95% confidence interval for the PF. The PF and associated confidence intervals were calculated with SAS™ 9.3 using the procedure BINOMIAL from StatXact 10 Procs for SAS.
4.3.4. Lung Lesion Scores:
The percent of lung tissue with lesions caused by M. haemolytica infection was evaluated by the mitigated fraction (MF) method with associated 95% highest density confidence interval. The MFs and associated confidence intervals were calculated with SAS™ 9.3 using the procedure PROC_R with R module.
The analysis of the data showed that the mean LLS for the control group B was 24.32 and the mean LLS for the vaccinated group A was 1.02. The mitigated fraction was 0.74 with a lower 95% highest density confidence bound of 0.5.
4.3.5. Clinical Observations:
With respect to the rectal temperatures of all the calves, there were 5 of the 15 animals from the control group B and 3 of the 18 animals from the vaccinated group A with a temperature of over 40° C. on at least one post-challenge day.
With respect to the respiration rates of all the calves, there were 10 of the 15 animals from the control group B, and 4 of the 18 animals from the vaccinated group A with a respiratory rate of over 40/minute, on at least one post-challenge day.
4.4. Conclusions
During the post-challenge period, 5 of the 15 animals from the control group B died and there were no deaths in the vaccinated group A. The mortality rate was significant in the control group (p=0.0092).
Also, significant differences of lung lesion scores were observed between the two treatment groups, where control group B animals scored LLS of 24.32 and vaccinates from group A only scored LLS of 1.02 (p=0.0003). There was also a significant difference between the control and vaccinated groups with respect to the maximum respiratory rate (p=0.0063).
Consequently, the oral M. haemolytica vaccine according to the invention was demonstrated to be protective at a dose of 1.64×10{circumflex over ( )}8 CFU/2 mL dose, given by oral route, against a severe challenge infection. The results of this experiment demonstrate convincingly the efficacy of a vaccine according to the invention in protecting calves against respiratory disease caused by Mannheimia haemolytica infection, even up to 4 months after vaccination. After challenge, calves in the vaccinated group A had significantly less infection and disease as indicated by their much lower scores of mortality and LLS.
Number | Date | Country | Kind |
---|---|---|---|
2018155 | Jan 2017 | NL | national |
This application is a national stage entry under 35 U.S.C. § 371 of PCT/EP2017/082139, filed on Dec. 11, 2017, which claims priority to NL Application 2018155, filed on Jan. 11, 2017 and to U.S. Application 62/432,803, filed Dec. 12, 2016, the content of PCT/EP2017/082139 is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/082139 | 12/11/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/108772 | 6/21/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6982088 | Francon et al. | Jan 2006 | B2 |
9393298 | Buchanan et al. | Jul 2016 | B2 |
20060171960 | Chu et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
1993016680 | Sep 1993 | WO |
1994020070 | Sep 1994 | WO |
1999015670 | Jan 1999 | WO |
2000050078 | Aug 2000 | WO |
2002028362 | Apr 2002 | WO |
2004064776 | Aug 2004 | WO |
2005000330 | Jan 2005 | WO |
2007035455 | Mar 2007 | WO |
2014074817 | May 2014 | WO |
2014140239 | Sep 2014 | WO |
2015124594 | Aug 2015 | WO |
Entry |
---|
Lal et al (Vaccine, 31:4759-4764, 2013). |
European Search report for NL2018155, dated Apr. 21, 2017, 9 pages. (Cover letter is in Dutch, Search report and Written Opinion in English). |
International Search Report for application PCTEP2017082139, dated Jan. 30, 2018, 3 Pages. |
Angen, Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov., International Journal of Systematic Bacteriology, 1999, 67-86, 49. |
Buhler (in: ‘Polyvinylpyrrolidone excipients for pharmaceuticals’, ISBN 3-540-23412-8, Springer Berlin, 2005) (Buhler, supra: p. 120, section 2.4 9.2) and (Buhler, supra: p. 124, section 2.4 9.9). |
Chengappa, M.M., Improved Method for Obtaining Streptomycin-Dependent Mutants from Pasteurella multocida and pasteurella haemolytica, Using N-Methyl-N′-Nitro-N-Nitrosoguanidine, Am. J. Vet. Res., 1979, 449-450, 40. |
Chung, Jing Yeng, The capsule biosynthetic locus of Pasteurella multocida A:1, FEMS Microbiology Letters, 1998, 289-296, 166. |
Griffin, Dee, Bovine Pasteurellosis and Other Bacterial Infections of the Respiratory Tract, Vet. Clin. Food Animals, 2010, 57-71,26. |
Grissett, G.P., Structured Literature Review of Responses of Cattle to Viral and Bacterial Pathogens Causing Bovine Respiratory Disease Complex, Journal of Veterinary Internal Medicine, 2015, 770-780, 29. |
Jericho, K.W.F. and Langford, E.V., Aerosol vaccination of calves with Pasteurella haemolytica against experimental respiratory disease, Can. J comp. Med., Jul. 1982, pp. 287-292, vol. 46. |
Suzuki, M., Effect of suspending media on freeze-drying and preservation of vaccinia virus, J. Hyg., Camb., 1970, 29-41, 68. |
Number | Date | Country | |
---|---|---|---|
20190381161 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62432803 | Dec 2016 | US |