The embodiments described herein relate generally to compressors. More particularly, the embodiments described herein relate to an orbiting crankshaft drive pin and associated bearing sleeve geometry.
One increasingly popular type of compressor is a scroll compressor. In a scroll compressor, a pair of scroll members orbits relative to each other to compress an entrapped refrigerant.
In typical scroll compressors, a first, stationary, scroll member has a base and a generally spiral wrap extending from its base. A second, orbiting, scroll member has a base and a generally spiral wrap extending from its base. The second, orbiting, scroll member is driven to orbit by a rotating shaft. An eccentric pin on the rotating shaft may extend into a slider block which is received within a boss on a rear face of the second, orbiting, scroll member. This geometry disadvantageously allows radial movement of the slider block.
Some scroll compressors employ an orbital bearing that is offset from the rotating crankshaft main bearings. Such scroll compressors disadvantageously require that the associated crankshaft main bearing system be assembled from the end of the crankshaft opposite the end of the crankshaft having the eccentric pin.
In view of the foregoing, there is a need for a compressor crankshaft drive pin, crankshaft drive pin sleeve, and associated drive pin sleeve geometry that is capable of both creating an orbiting motion without compromising the integrity of the drive pin and allowing assembly of a crankshaft main bearing via the drive pin end of the crankshaft.
According to one embodiment, a compressor crankshaft assembly comprises a substantially cylindrical main bearing. A crankshaft is rotatably disposed at least partially within the substantially cylindrical main bearing. The crankshaft assembly further comprises a substantially cylindrical orbital bearing, an eccentric drive pin extending from one end of the crankshaft, and a drive pin sleeve affixed to the eccentric drive pin. Use of the term “affixed” is intended to mean, that once assembled, the drive pin sleeve is not intended to move relative to the eccentric drive pin during the compressor's lifetime. The eccentric drive pin and the drive pin sleeve are rotatably disposed at least partially within the substantially cylindrical orbital bearing. The shape of the drive pin viewed into the exposed end of the drive pin is defined by the intersection of a cylinder that is coaxial with the axis of the orbital bearing and a cylinder that is coaxial with the axis of the main bearing such that the area defined by the intersecting portion is less than the area defined by either cylinder.
In some embodiments, the “areas” referred to above are areas defined by a cross sectional area perpendicular to the longitudinal axis of the respective cylinders. For example, the area may also refer to a cross-sectional area of the drive pin or of the intersection of the two cylinders.
According to another embodiment, a compressor crankshaft assembly comprises a crankshaft and an eccentric drive pin extending from one end of the crankshaft. The shape of the drive pin viewed into the exposed end of the drive pin is defined by the intersection of a first cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
According to yet another embodiment, a compressor crankshaft assembly comprises a horizontal main bearing housing comprising a fluid inlet and a fluid outlet. A first, input stage is disposed within the horizontal main bearing housing and is configured to receive and compress a fluid via the fluid inlet. The first, input stage comprises a first, fixed scroll member and a first, orbiting scroll member in meshing engagement with the fixed scroll member. A second, output stage is disposed within the horizontal main bearing housing and is configured to further compress and discharge the fluid via the fluid outlet. The second, output stage comprises a second, fixed scroll member and a second orbiting scroll member in meshing engagement with the second, fixed scroll member. A crankshaft is rotatably journaled in one or more main bearings disposed within the horizontal main bearing housing. The crankshaft comprises a first eccentric drive pin extending from a first end of the crankshaft such that the first eccentric drive pin engages the first, orbiting scroll member. The crankshaft further comprises a second eccentric drive pin extending from a second end of the crankshaft such that the second eccentric drive pin engages the second, orbiting scroll member. The shape of at least one drive pin viewed into the exposed end of the drive pin is defined by the intersection of a respective cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
According to still another embodiment, a compressor crankshaft assembly comprises a main bearing housing and a crankshaft rotatably journaled in one or more main bearings disposed within the main bearing housing. The crankshaft comprises a first eccentric drive pin extending from one end of the crankshaft, wherein the shape of the first eccentric drive pin viewed into the exposed end of the first eccentric drive pin is defined by the intersection of a respective cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the first eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
These and other features, aspects, and advantages of the orbiting crankshaft drive pin and associated bearing sleeve geometry will become better understood when the following detailed description is read with reference to the accompanying drawing, wherein:
While the above-identified drawing figures set forth particular embodiments, other embodiments of the orbiting crankshaft drive pin and associated bearing sleeve geometry are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the orbiting crankshaft drive pin and associated eccentric drive pin sleeve geometry by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the orbiting crankshaft drive pin and associated eccentric drive pin sleeve geometry described herein.
Although particular embodiments are described herein with respect to scroll compressors, it will be appreciated the principles described herein are not so limited, and may just as easily be applied to other types of compressors, such as, without limitation, reciprocating compressors. Looking now at
Scroll compressor 100 comprises a first, input stage 102 and a second, output stage 104. The first, input stage 102 comprises a suction side input 106. First, input stage 102 further comprises a fixed, non-orbiting scroll member 108 and an orbiting scroll member 110. Non-orbiting scroll member 108 is positioned in meshing engagement with orbiting scroll member 110.
The second, output stage 104 comprises an input 105, which receives refrigerant from the first stage discharge side. Second, output stage 104 further comprises a fixed, non-orbiting scroll member 112 and an orbiting scroll member 114. Non-orbiting scroll member 112 is positioned in meshing engagement with orbiting scroll member 114.
Scroll compressor 100 further comprises a compressor drive shaft or crankshaft 116 extending between the first, input stage 102 and the second, output stage 104. The crankshaft 116 may be rotatably driven via an electric motor comprising windings 118 and a rotor 120 press-fit on the compressor crankshaft 116. The crankshaft 116 may be rotatably journaled within one or more journals onto which inner races of main bearings 122, 124 can be mounted. Each crankshaft main bearing 122, 124 may comprise a rolling element bearing having a generally cylindrical portion.
The compressor crankshaft 116 further may comprise a first eccentric drive pin 126 disposed at its first, input stage end. The compressor crankshaft 116 may further comprise a second eccentric drive pin 128 disposed at its second, output stage end. Each eccentric drive pin 126, 128 may be disposed within a drive pin sleeve 130, 132 that is placed over a respective drive pin 126, 128. The scroll compressor 100 may then operate to provide an orbiting motion of one of two intermeshing scrolls 108, 110 and/or 112, 114 via the drive pin sleeve 130, 132 that is placed over its respective eccentric drive pin 126, 128.
As shown in
The orbital bearing, e.g. orbital bearing 204, can be comprised of the bearing sleeve 302, the eccentric journal portion of the eccentric drive pin sleeve 300, the clearance between the sleeve and the journal, and perhaps, the oil filling the clearance between the two parts. The bearing sleeve/bushing 302 of
The eccentric drive pin/drive pin sleeve configurations described in further detail herein with reference to
Looking now at
The eccentric drive pin 128 extends from one end of the compressor crankshaft 116 as shown more clearly in
The foregoing eccentric drive pin 128 and drive pin sleeve 500 geometries described with reference to
In summary explanation, an eccentric drive pin and sleeve structure maximizes the size of the eccentric drive pin and still permits assembly of a crankshaft and main bearing for a crankshaft comprising the eccentric drive pin. The eccentric drive pin shape is defined by the intersection of a cylinder that is coaxial with an orbiting/orbital bearing associated with the eccentric drive pin, and a cylinder that is defined by the crankshaft main bearing diameter. For example, the drive pin shape could be slightly smaller than the intersection of the two cylinders, e.g. confined by the intersection, and still be larger than typical drive pins. The inner periphery of an eccentric drive pin sleeve has a corresponding shape so that it can be placed over the eccentric pin, thus allowing assembly of the crankshaft main bearing, assembly of the orbital/orbiting bearing, and resulting in minimal eccentric drive pin deflection.
Maximizing or at least increasing the size of the eccentric drive pin advantageously improves functionality and reliability of the associated orbiting/orbital bearing. More specifically, maximizing or at least increasing the size of the eccentric drive pin advantageously prevents bending of the eccentric drive pin to a point where the alignment of the orbiting/orbital bearing is compromised. The embodiments described herein advantageously prevent loss of lubricant film thickness and bearing failure.
It will be appreciated that the drive pin and associated drive pin sleeve geometry can be applied to parallel flow machines, such as parallel flow compressors in which there is not a serial flow of the fluid, e.g. refrigerant, to be compressed such as shown in
It will be appreciated that any of aspects 1 to 5 may be combined with any of aspects 6 to 22, and any of aspects 6 to 10 may be combined with any of aspects 11 and 22, and any of aspects 11 and 12 may be combined with any of aspects 13 to 22, and any of aspects 13 to 21 may be combined with aspect 22.
Aspect 1. A compressor crankshaft assembly comprising: a substantially cylindrical main bearing; a crankshaft rotatably disposed at least partially within the substantially cylindrical main bearing; a substantially cylindrical orbital bearing; and an eccentric drive pin extending from one end of the crankshaft and rotatably disposed at least partially within the substantially cylindrical orbital bearing, wherein the shape of the drive pin viewed into the exposed end of the drive pin is defined by the intersection of a cylinder that is coaxial with the axis of the orbital bearing and a cylinder that is coaxial with the axis of the main bearing such that the area defined by the intersecting portion is less than the area defined by either cylinder.
Aspect 2. The compressor crankshaft assembly according to aspect 1, further comprising an eccentric drive pin sleeve pressed, or shrunk around, or fixedly attached to the eccentric drive pin.
Aspect 3. The compressor crankshaft assembly according to aspect 1 or 2, further comprising an eccentric drive pin sleeve between the orbital bearing and the eccentric drive pin, wherein the drive pin sleeve includes an inside surface shaped so as to receive the eccentric drive pin, the inside surface being defined by the intersection of the cylinder that is coaxial with the axis of the orbital bearing and the cylinder that is coaxial with the axis of the main bearing.
Aspect 4. The compressor crankshaft assembly according to any of aspects 1 to 3, wherein the crankshaft is disposed within a horizontal compressor.
Aspect 5. The compressor crankshaft assembly according to any of aspects 1 to 4, wherein the crankshaft is disposed within a vertical compressor.
Aspect 6. A compressor crankshaft assembly comprising: a crankshaft; and an eccentric drive pin extending from one end of the crankshaft, wherein the shape of the drive pin viewed into the exposed end of the drive pin is defined by the intersection of a first cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
Aspect 7. The compressor crankshaft assembly according to aspect 6, further comprising a drive pin sleeve configured to receive the eccentric drive pin, the shape of the drive pin sleeve being defined by the intersection of the first and second cylinders.
Aspect 8. The compressor crankshaft assembly according to aspect 7, further comprising an orbital bearing that rotatably receives the drive pin sleeve.
Aspect 9. The compressor crankshaft assembly according to any of aspects 6 to 8, wherein the crankshaft is disposed within a horizontal compressor.
Aspect 10. The compressor crankshaft assembly according to any of aspects 6 to 9, wherein the crankshaft is disposed within a vertical compressor.
Aspect 11. A compressor assembly comprising: a horizontal main bearing housing comprising a fluid inlet and a fluid outlet; a first, input stage disposed within the horizontal main bearing housing and configured to receive and compress a fluid via the fluid inlet, the first, input stage comprising: a first, fixed scroll member; and a first, orbiting scroll member in meshing engagement with the fixed scroll member; a second, output stage disposed within the horizontal main bearing housing and configured to further compress and discharge the fluid via the fluid outlet, the second, output stage comprising: a second, fixed scroll member; and a second orbiting scroll member in meshing engagement with the second, fixed scroll member; a crankshaft rotatably journaled in one or more main bearings disposed within the horizontal main bearing housing, the crankshaft comprising: a first eccentric drive pin extending from a first end of the crankshaft such that the first eccentric drive pin engages the first, orbiting scroll member; and a second eccentric drive pin extending from a second end of the crankshaft such that the second eccentric drive pin engages the second, orbiting scroll member, wherein the shape of at least one drive pin viewed into the exposed end of the drive pin is defined by the intersection of a respective cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
Aspect 12. The compressor assembly according to aspect 11, further comprising a respective drive pin sleeve that receives an eccentric drive pin for each eccentric drive pin having a shape defined by the intersection of a respective first and second cylinder, such that the respective drive pin sleeve is defined by the intersection of the respective first and second cylinders.
Aspect 13. A compressor crankshaft assembly comprising: a main bearing housing; and a crankshaft rotatably journaled in one or more main bearings disposed within the main bearing housing, the crankshaft comprising: a first eccentric drive pin extending from one end of the crankshaft, wherein the shape of the first eccentric drive pin viewed into the exposed end of the first eccentric drive pin is defined by the intersection of a respective cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the first eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
Aspect 14. The compressor crankshaft assembly according to aspect 13, wherein the main bearing housing comprises a scroll compressor main bearing housing.
Aspect 15. The compressor crankshaft assembly according to aspect 14, wherein the scroll compressor main bearing housing comprises a two-stage scroll compressor main bearing housing.
Aspect 16. The compressor crankshaft assembly according to any of aspects 13 to 15, further comprising a second eccentric drive pin extending from the opposite end of the crankshaft, wherein the shape of the second eccentric drive pin viewed into the exposed end of the second eccentric drive pin is defined by the intersection of a respective cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the second eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
Aspect 17. The compressor crankshaft assembly according to any of aspects 13 to 16, wherein the main bearing housing comprises a reciprocating compressor main bearing housing.
Aspect 18. The compressor crankshaft assembly according to any of aspects 13 to 17, wherein the main bearing housing and the crankshaft together are associated with a vertical compressor.
Aspect 19. The compressor crankshaft assembly according to aspect 18, wherein the vertical compressor is selected from a scroll compressor and a reciprocating compressor.
Aspect 20. The compressor crankshaft assembly according to any of aspects 13 to 19, wherein the main bearing housing and the crankshaft together are associated with a horizontal compressor.
Aspect 21. The compressor crankshaft assembly according to aspect 20, wherein the horizontal compressor comprises a two-stage scroll compressor.
Aspect 22. A parallel-flow compressor assembly comprising: a horizontal main bearing housing; a first stage disposed within the horizontal main bearing housing and configured to receive and compress a fluid via a fluid inlet and discharge the fluid via a fluid outlet, the first stage comprising: a first, fixed scroll member; and a first, orbiting scroll member in meshing engagement with the fixed scroll member; a second stage disposed within the horizontal main bearing housing and configured to receive and compress a fluid via a fluid inlet and discharge the fluid via a fluid outlet, the second stage comprising: a second, fixed scroll member; and a second orbiting scroll member in meshing engagement with the second, fixed scroll member; a crankshaft rotatably journaled in one or more main bearings disposed within the horizontal main bearing housing, the crankshaft comprising: a first eccentric drive pin extending from a first end of the crankshaft such that the first eccentric drive pin engages the first, orbiting scroll member; and a second eccentric drive pin extending from a second end of the crankshaft such that the second eccentric drive pin engages the second, orbiting scroll member, wherein the shape of at least one drive pin viewed into the exposed end of the drive pin is defined by the intersection of a respective cylinder that is coaxial with the axis of a substantially cylindrical orbital bearing journaled and installed to receive the eccentric drive pin and a second cylinder that is coaxial with the axis of a substantially cylindrical main bearing journaled and installed to rotatably receive the crankshaft, such that the area defined by the intersecting portion is less than the area defined by either cylinder.
While the embodiments have been described in terms of various specific embodiments, those skilled in the art will recognize that the embodiments can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4836758 | Elson et al. | Jun 1989 | A |
5174738 | Baumann et al. | Dec 1992 | A |
5439360 | Barito | Aug 1995 | A |
5496158 | Barito et al. | Mar 1996 | A |
6203300 | Williams et al. | Mar 2001 | B1 |
6354822 | Lifson et al. | Mar 2002 | B1 |
6585502 | Fenocchi | Jul 2003 | B2 |
7247009 | Sun | Jul 2007 | B2 |
7273363 | Sun et al. | Sep 2007 | B1 |
7766633 | Nakamura et al. | Aug 2010 | B2 |
8308461 | Kuwahara et al. | Nov 2012 | B2 |
20030063982 | Pham | Apr 2003 | A1 |
20040052666 | Cho | Mar 2004 | A1 |
20060204378 | Anderson | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
07197890 | Aug 1995 | JP |
Entry |
---|
English language machine translation of JP 07197890. |
Number | Date | Country | |
---|---|---|---|
20150037185 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61860318 | Jul 2013 | US |