This application is a 371 of PCT/IT2011/000190, filed Jun. 9, 2011, which claims the benefit of Italian Patent Application No. BS2010A000105, filed Jun. 10, 2010, the contents of each of which are incorporated herein by reference.
The present invention concerns a system for the conversion of thermal energy into electric energy by means of a so-called Organic Rankine Cycle (ORC), where the heating source that supplies the cycle is characterized by a variable temperature and in particular where the intention is to maximize the production of electric energy, deducting from the heating source a thermal power as high as possible in the presence of differences in temperature between the heating source and the work fluid of the cycle reduced as much as possible. The systems using geothermal energy that are fed by liquid geothermal fluid correspond to these requirements, above all in concomitance with a high value of the electric energy produced.
The typology of the ORC plant the present description refers to is characterized in that it receives the thermal energy for work from a hot source with variable temperature, that is a source made up of a flow of fluid, liquid or gaseous or similar to these (such as a solid in small size opportunely fluidized) that directly or indirectly through an intermediate fluid vector, release heat to the working fluid of the ORC system, thanks to a lowering of its temperature. As an example the hot source can be made up of a flow of liquid geothermal fluid, mainly made up of liquid water with dissolved salts and gas, at a temperature of about 150° C., that transfers to the ORC system a thermal power of some tens of MW, lowering its temperature to a temperature of re-injection in a deep aquifer. The re-injection temperature, except for specific cases, is mainly free, and is therefore advantageous to cool the geothermal fluid as much as possible so as to increase the thermal power taken from the geothermal fluid itself. Other examples can be established in the recovering of heat from industrial process fluids both liquid and gaseous.
In general, the range of the initial temperature of the hot source is typically included between 120 and 300° C., even though it is possible to have lower or higher temperatures, depending on the source fluid (geothermal fluid, heat carrier in the recovery of waste heat in the industry, etc) and also in relation to the working fluid used from case by case in the ORC system, such as for example a Hydrocarbon, a Refrigerant, a Siloxane.
The minimum temperature of the Rankine cycle depends on the available cold source for the condensation of the work fluid. In the description to follow, reference will be made to a cold source in the form of cooling water which can be made available by a cooling tower, therefore with a low side temperature of about 25-30° C. and with such a flow rate as to have a typical increase in temperature in the subtraction of the heat from the cycle around 10° C. However the considerations to follow are applicable in the same way with different cold sources, such as air, or industrial process fluids or heating circuits for ambient heating, greenhouses, or any other low temperature thermal utiliser.
In
The thermovector fluid coming from the thermal source S1 then moves along the line 6 towards the evaporator 22, the line 7 between the evaporator 22 and preheater 23 and the line 8 of return to the source S1, while the work fluid is placed in circulation by means of a pump 25 and passes in sequence in the preheater 23, the evaporator 22, the expander 26 and the condensator 27, then returning to the pump.
In an ORC system as represented in
In
The two lines or curves a, b, respectively indicative of the release and the reception of the heat, are characterized by a point, in relation to conditions 3 of the work fluid, in which the two curves are close between them and the difference in temperature T7-T3 between the heat releasing fluid and the heat receiving fluid becomes lower compared to the other points of the transfer diagram. This point is conventionally called “Pinch Point”.
It is known, in reality, that practically it is not possible to obtain at point 3 of the end of pre-heating a temperature of the working fluid coincident with the saturated liquid condition. In fact, in general the point 3 will correspond to a slightly lower temperature than the thermovector fluid and, at least in a frequent case that the successive evaporation takes place in an evaporator through a strong mixing of the fluid content; the b curve of the behaviour of the receiving fluid can be indicated as the broken line represented in
For simplicity, in the description to follow, this aspect will not be taken into consideration, which moreover tends to intensify the effects of “Pinch Point”, and the transformation will be assimilated to the one represented in
The presence of a “Pinch Point”, in which the heat release curve a and the heat receiving curve b getnear, causes that even a large increase, of the thermal exchange surface between the two fluid currents, respectively the source fluid and the working fluid, does not move forward towards a significant increase in the thermal power subtracted from the heat source.
Taking as a reference for clarity the hypothesis to confront systems with equal evaporation temperatures, if a first system has a modest temperature difference value of “Pinch Point”, for example equal to a 2° C., a second system even with a very large increase of the exchange surface compared to the first system, may reduce this difference of an amount, lower however to the same difference in the first system. For example the reduction may be equal to 1° C. The effect of an increase in the thermal exchange surface on the quantity of heat transferred is therefore modest. In reality the effect may be even negligible, for the difficulty indicated above to drop to very low values of the Pinch Point temperature difference.
The objective of the invention is on the one hand to overcome the problem exposed above through an elision of the “Pinch Point” and, on the other hand, to obtain a real benefit in order to subtract more heat by the adoption of larger exchange surfaces, even in presence of small values of difference in temperature of the “Pinch Point”.
The objective is reached in accordance with the invention with an ORC plant according to the preamble of claim 1 and furthermore comprising on the side of the thermal exchange group downstream of the primary pre-heater:
In particular, the means for deviating a part of the flow of the work fluid from the output of the primary preheater to the auxiliary evaporator can be constituted by a lamination valve and the compressor can be driven by a respective electric motor.
Preferably, the evaporated working fluid coming from the auxiliary evaporator and compressed by the auxiliary compressor is fed to the expander through the same admission duct as the evaporated fluid flow coming from the primary evaporator.
As an alternative however, the vapour of the work fluid supplied by the primary evaporator and the vapour of the work fluid supplied by the auxiliary evaporator can be introduced separately in the expander.
Furthermore, considering the main stream of the work fluid flow, between the primary preheater and the primary evaporator a further preheater can be provided in which the source fluid releases heat to the working fluid before its input in the primary evaporator with the advantage of a further increase of the thermal power taken from the source fluid and, therefore, of a greater electric power produced.
It should be understood that the invention is equally applicable to ORC installations where a first expander and a second expander can be provided, both using the same source fluid and the same work fluid, but operating with different evaporation temperatures through a diverse management of the work fluid flow.
In any case, an ORC installation reconfigured according to the present invention consents in this way an elision of the “Pinch Point” in the primary thermal exchange group or better a substitution of the traditional “Pinch Point” as defined above with at least two “Pinch Points” separated by a cession of heat between the source fluid—though at a lower temperature—and the work fluid, with the final result of consenting a more efficient subtraction of heat to the source fluid.
The invention will be explained better in the continuation of the description made starting from
In these other drawings the same reference numbers are used in the same way as in
With particular reference to
Downstream of said primary preheater 51 the work fluid flow is divided into two streams, with a first stream 3 directed to a primary evaporator 56 and a second stream 13 direct to an auxiliary evaporator 53. In particular, this second working fluid flow 13 is laminated through a valve 52 to carry the pressure at the level in force in the auxiliary evaporator 53. The capacity of the second work fluid flow 13 so separated gets evaporated in this auxiliary evaporator 53 and, through a conduit 15, is fed to a compressor 54 driven by a motor 5, in which the pressure of the work fluid is raised up to the necessary value so as to consent to the admission in an expander 57, preferably through the same conduit 18 that receives and transfers to the expander the main work fluid flow of the evaporation in the evaporator 56.
The source fluid that heats the work fluid passes in succession in the exchanger 56, 53, 51 of the primary thermal exchange group ST1 moving in sequence the lines 6, 7, 9, 8. In the representation on the Temperature (T) versus the Thermal power exchanged (Q) diagram in
Really, the actual conditions in 18 will depend on the efficiency of the compressor and on its level of adiabaticity; principally as the compressors are basically adiabatic and necessarily with efficiency lower than the unit, the point 18 will probably be at an higher temperature than point 4, however there may also be different cases, for example in case the fluid in condition 4 happens to be superheated.
The exchanged thermal powers are represented by the differences in the abscissa values from 6 to 7, for the primary evaporator 56, from 7 to 9 for the auxiliary evaporator 53, from 9 to 8 for the pre-heater 51.
In the diagram in
Therefore, in an ORG installation incorporating the present invention, the traditional system with a single “Pinch Point” in 7″, a system with two “Pinch Points” separated from a transfer of heat, has been substituted with the final result of allowing a more efficient deduction of heat, represented in
Evidently this increase in thermal power entering in the ORG system corresponds to an increase of produced electric power, and though this increase takes place at the cost of an increase of exchange surfaces and of an increase of the consumption of energy on the part of the auxiliaries for the work of the compressors, the final balance however becomes positive compared to a traditional ORC system.
In a variation of the invention as shown in
While in the embodiment in
In this execution, the components of the primary thermal exchange group ST1 between the source fluid and the work fluid of the power circuit 24 correlated to the first expander 57 are completely analogous to those described in relation to the embodiment in
The two expanders 57, 57a, therefore, are transversed by work fluid flows that receive thermal power from the source fluid with a set course in series except for what concerns the preheaters 51a, 51aa that are positioned in parallel on the flow of the source fluid. This solution, comprising at least one but preferably two elision systems of the “Pinch Point” as shown in
In the description that precedes only the most relevant exchanges of heat have been reported and discussed for the application of the invention. However the invention can be efficiently applied even in the in presence of other exchangers, in particular for applications with high temperatures, such as one or more regenerators downstream of the expander or of each expander, heat exchangers for the preheating at the cost of an external thermal source of a part of the liquid in parallel in regards to the regenerator itself, according to a technique known with the name of “split”.
Number | Date | Country | Kind |
---|---|---|---|
BS2010A0105 | Jun 2010 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT2011/000190 | 6/9/2011 | WO | 00 | 2/4/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/154983 | 12/15/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5867988 | Kaplan | Feb 1999 | A |
20100071368 | Kaplan et al. | Mar 2010 | A1 |
20120131920 | Held et al. | May 2012 | A1 |
20140026573 | Palmer | Jan 2014 | A1 |
20140026574 | Leibowitz et al. | Jan 2014 | A1 |
20140033711 | Leibowitz et al. | Feb 2014 | A1 |
20140075937 | Batscha et al. | Mar 2014 | A1 |
20140075941 | Adachi et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1998013 | May 2009 | EP |
Number | Date | Country | |
---|---|---|---|
20130160448 A1 | Jun 2013 | US |