Order encoded manifests in a content centric network

Information

  • Patent Grant
  • 9946743
  • Patent Number
    9,946,743
  • Date Filed
    Monday, January 12, 2015
    10 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
One embodiment provides a system that facilitates direct seeking of the ordered content of a manifest based on external metadata. During operation, the system determines, by a content producing device, a root manifest, wherein a manifest indicates a set of content objects and their corresponding digests, wherein a respective content object is a data object or another manifest, and is associated with a name that is a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level. The system generates an index associated with the root manifest, wherein the index allows the set of content objects indicated in the root manifest to be searched and accessed directly, thereby facilitating a content consumer to seek to a desired location in the content represented by the root manifest.
Description
RELATED APPLICATION

The subject matter of this application is related to the subject matter in the following applications:


U.S. patent application Ser. No. 13/847,814, entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013 (hereinafter “U.S. patent application Ser. No. 13/847,814”);


U.S. patent application Ser. No. 12/338,175, entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008 (hereinafter “U.S. patent application Ser. No. 12/338,175”); and


U.S. patent application Ser. No. 14/231,515, entitled “AGGREGATE SIGNING OF DATA IN CONTENT CENTRIC NETWORKING,” by inventors Ersin Uzun, Marc E. Mosko, Michael F. Plass, and Glenn C. Scott, filed 31 Mar. 2014 (hereinafter “U.S. patent application Ser. No. 14/231,515”);


the disclosures of which are herein incorporated by reference in their entirety.


BACKGROUND

Field


This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a method and system for facilitating random access to a piece of content in a content centric network.


Related Art


The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content-centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level. CCN is an effective network architecture for delivering content. However, at present, there is no effective way for a content consumer to randomly access a large piece of content in a cost-effective way. For example, a user typically cannot have random access to any location in a movie he is viewing without experiencing significant delays.


SUMMARY

One embodiment provides a system that facilitates direct seeking of the ordered content of a manifest. During operation, the system determines, by a content producing device, a root manifest, wherein a manifest indicates a set of content objects and their corresponding digests, wherein each content object is a data object or another manifest, and is associated with a name that is a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level. The system generates an index associated with the root manifest, wherein the index allows the set of content objects indicated in the root manifest to be searched and accessed directly, thereby facilitating a content consumer to seek to a desired location in the content represented by the root manifest.


In some embodiments, the generated index further comprises a root manifest index that is a content object distinct from the root manifest.


In some embodiments, the root manifest index comprises a complete index for the set of content objects indicated in the root manifest, and the complete index begins from a first object based on a tree-like topology of the set of content objects indicated in the root manifest.


In some embodiments, the content producing device creates, for a respective manifest indicated by the root manifest, a relative index that describes a relative ordering for a subset of content objects indicated by the respective manifest, wherein the root manifest index is a relative index that describes a relative ordering for a subset of content objects indicated by the root manifest.


In some embodiments, a respective manifest indicated by the root manifest includes a link to a parent of the respective manifest.


In some embodiments, the set of content objects are indicated in the root manifest based on a tree-like topology.


In some embodiments, generating the index further comprises: creating an ordering for the content objects indicated in the root manifest, wherein the ordering describes the order of: a respective content object indicated in the root manifest; and for a respective content object indicated in the root manifest that is itself a manifest, each parent and child of the manifest.


In further embodiments, the system retrieves, by a content consuming device, a root manifest, wherein a manifest indicates a set of content objects and their corresponding digests, wherein a respective content object is a data object or another manifest, and is associated with a name that is a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level. The system determines an index associated with the root manifest, wherein the index allows the set of content objects indicated in the root manifest to be searched and accessed directly. The system determines a target seek location of the contents indicated in the root manifest. Subsequently, the system retrieves a content object based on a manifest that most closely matches the target seek location, wherein the closest match manifest is the manifest that is associated with a unit of measure that is less than or equal to the target seek location, thereby facilitating the content consuming device to seek to a desired location without having to traverse the content represented by the root manifest.


In some embodiments, determining the index further comprises retrieving, by the content consuming device, a root manifest index that is a content object distinct from the root manifest.


In some embodiments, determining the index further comprises determining, by a content consuming device, that an ordering for the content objects indicated in the root manifest is included in the root manifest, wherein the ordering describes the order of: a respective content object indicated in the root manifest; and for a respective content object indicated in the root manifest that is itself a manifest, each parent and child of the manifest.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary computing environment that facilitates direct seeking of the ordered content of a manifest, in accordance with an embodiment of the present invention.



FIG. 2 presents a flow chart illustrating a method performed by a content producer for creating an order encoded manifest, in accordance with an embodiment of the present invention.



FIG. 3A presents a flow chart illustrating a method performed by a content consumer for retrieving content based on a desired seek location in an order encoded manifest, in accordance with an embodiment of the present invention.



FIG. 3B presents a flow chart illustrating a method performed by a content consumer for retrieving content based on a desired seek location in an order encoded manifest, in accordance with an embodiment of the present invention.



FIG. 4A presents a table depicting a format of a manifest, in accordance with an embodiment of the present invention.



FIG. 4B presents a table depicting a format of a modified manifest payload section, in accordance with an embodiment of the present invention.



FIG. 4C presents tables depicting an exemplary manifest payload and corresponding sample interests for retrieving the contents of the exemplary manifest payload, in accordance with an embodiment of the present invention.



FIG. 5 presents an exemplary tree-like topology corresponding to an exemplary root manifest, in accordance with an embodiment of the present invention.



FIG. 6A presents tables depicting exemplary contents of the root manifest and the manifests indicated by the root manifest corresponding to FIG. 5, in accordance with an embodiment of the present invention.



FIG. 6B presents a table depicting exemplary contents of a root manifest external complete index, based on FIG. 5, in accordance with an embodiment of the present invention.



FIG. 6C presents tables depicting exemplary contents of a root manifest external relative index and the external relative indices associated with each manifest indicated in the root manifest, based on FIG. 5, in accordance with an embodiment of the present invention.



FIG. 7 illustrates an exemplary computer and communication system that facilitates direct seeking of the ordered content of a manifest, in accordance with an embodiment of the present invention





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention provide a content access system that solves the problem of random access to a large piece of content in a CCN by encoding an order for the content. In CCN, a large piece of content, e.g., a movie, video, book, or a genome sequence, can be represented as a manifest, which is a content object that describes a collection of content objects and their corresponding digests. A manifest can include a name and a signature, thus providing trust to a requesting application for the content objects described by the manifest. Signing and verifying aggregates of content objects through the use of a secure content catalog (e.g., a manifest) is described in U.S. patent application Ser. No. 14/231,515 which is herein incorporated by reference. The content described by the manifest can be data objects or other manifests. A manifest contains an inherent order based on a tree-like topology of the collection of objects described by the manifest. In order to retrieve the contents of a manifest, the system can traverse a manifest tree, which contains child and parent nodes ordered in the tree-like structure. For example, a root manifest can describe a collection of objects (data object or other manifests) that represents a movie, and the root manifest can be represented as a tree, as described below in relation to FIG. 5. A content consumer who wishes to play the movie from the beginning retrieves the root manifest and the content objects indicated by the root manifest based on a post-order traversal (e.g., the inherent order of the manifest tree).


If the content consumer wishes to play the movie at a specific target time, the system provides a method to directly access the movie at the specific time. A content producer can encode an order into the root manifest (e.g., create an “order encoded root manifest”) by including a link to an external index representing the movie contents. The external index can be a content object that is distinct from the root manifest and can be based on a certain unit of measure, such as minutes. Multiple external index links can be included in the root manifest, thus providing a content consumer with multiple methods for accessing the ordered content. For example, a root manifest that represents a book can include links to an external chapter index and an external page index, while a root manifest that represents a movie can include links to an external time index and an external scene index. An external index typically does not include links to other external indices for order encoding. The root manifest can further include pointers to parent objects and ordering information for each manifest, parent, and child entry, thus preserving the ability to continue traversing through the tree-like topology (e.g., to play or rewind the movie from the specific target time or target seek location). The content producer can also create an order encoded root manifest by including the index information directly in the root manifest. Thus, the system facilitates direct access to a target seek location of the ordered content of a root manifest without requiring a complete traversal of the manifest tree.


In examples described in this disclosure, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an Interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object: A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document. In some embodiments, the name can include a non-hierarchical identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest: A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175 which is herein incorporated by reference.


Network Architecture and Overview of Order Encoded Manifest



FIG. 1 illustrates an exemplary computing environment 100 that facilitates direct seeking of the ordered content of a manifest, in accordance with an embodiment of the present invention. Computing environment 100 can include a content producer 104, which can include any content producing device that can publish or produce content and fulfill a request for content via a network 102. Computing environment 100 can also include a content consumer 108, which can include any content consuming device that can determine a request for content via a network 102. For example, client device 108 can include a smartphone 108.1, a tablet computer 108.2, and/or a personal computing device 108.p (e.g., a laptop). Computing environment 100 can also include network 102 which can be, for example, a content-centric network (CCN), a named data network (NDN), or an information-centric network (ICN). A content producer (e.g., content producer 104) producer can produce content and create a root manifest (e.g., root manifest 120) to describe the content. The content producer can encode the order of the content described by the root manifest by: including a link to an external index or indices associated with the metadata of the root manifest (e.g., creating an external index); or extending the format of the root manifest to include ordering markers (e.g., directly including index information in the root manifest).


The content producer can create an external index based on two methods: a complete index and a relative index. Both methods rely on the inclusion of metadata in the root manifest. In the first method, the root manifest includes a metadata section that points to a complete, exhaustive table of contents (“external complete index”). An external complete index for a root manifest which represents a movie can indicate an array of, e.g., time increments by minute (for all minutes of the movie) to the nearest manifest containing that time increment (“closest match manifest”). A desired target time can be found by locating the closest match manifest for the desired target time in the external complete index, as described below in relation to FIG. 6B. In the second method, each respective manifest (e.g., the root manifest and any other content object in the collection indicated by the root manifest that is itself a manifest) includes a metadata section that points to an external index, which provides ordering information for a subset of the content objects indicated in the respective manifest (“external relative index”). The ordered subset of content objects relates only to the direct children of the respective manifest. To directly seek to a specified target location based on an external relative index, the system traverses down the manifest tree based on the external relative index associated with each respective manifest, as described below in relation to FIG. 6C. Thus, by encoding an order in an external (complete or relative) index, the content producer creates an order encoded root manifest.


In some embodiments, rather than creating an external index, the content producer creates an order encoded root manifest by directly including complete index information within the root manifest. Note that directly encoding index information in the root manifest may yield less efficient results than using external indices.


For example, in FIG. 1, content producer 104 can create root manifest 120 to describe a piece of content. Root manifest 120 can contain a manifest name 122 and a list of content object names 130.1-130.n. Root manifest 120 can also contain hash values 132.1-132.n associated with content object names 130.1-130.n. In some embodiments, each hash value can be part of a self-certifying content name which uniquely identifies the content object. In addition, root manifest 120 can contain a producer signature 136. Root manifest 120 can contain a pointer to an external index based on an index name 124. For example, the external index is a content object that is distinct from root manifest 120 and has a corresponding name of index name 124. Root manifest 120 is depicted as an order encoded root manifest that includes one link to one external index, indicated by index name 124. Although only one external index is depicted in FIG. 1, recall that as described above, an order encoded root manifest can include multiple links to multiple external indices.


Index name 124 can be associated with a content object such as a root manifest index 140, which contains index name 124 and a list of entries that each include: measurement units 144.1-144.m; closest matching manifest names 146.1-146.m; and hash values 148.1-148.m. Measurement units 144.1-144.m denote the manner in which the index is organized and the unit of measure to be used to search and access the content. For example, if root manifest 120 represents a movie, measurement units 144.1-144.m can be in minutes. Closest matching manifest names 146.1-146.m are the names of the manifests that are the closest to (e.g., less than or equal to) the corresponding measurement units 144.1-144.m (“closest match manifest”). The use cases described below in relation to FIGS. 6B and 6C depict how to determine the closest match manifest. Hash values 148.1-148.m represent hashes of the content objects with closest match manifest names 146.1-146.m. Hash values 148.1-148.m also allow a requesting application (e.g., content consumer 108) to verify integrity by hashing any subsequently obtained manifests and comparing that hash with hash values 148.1-148.m.


Content consumer 108 can retrieve order encoded root manifest 120 by transmitting an interest through network 102 for a content object with manifest name 122. Upon obtaining root manifest 120, content consumer 108 can retrieve root manifest index 140 by transmitting an interest through network 102 for a content object with index name 124. Content consumer 108 can then seek to a specific location within the content of root manifest 120 by using the ordering information included in root manifest index 140, as described below in relation to FIG. 3B. Thus, the system allows content consumer 108 to perform a direct seek within (e.g., randomly access) a large piece of content based on order encoded root manifest 120 created by content producer 104.


Creating an Order Encoded Manifest



FIG. 2 presents a flow chart illustrating a method 200 performed by a content producer for creating an order encoded manifest, in accordance with an embodiment of the present invention. During operation, a content producer determines a root manifest that indicates a set of content objects and their corresponding digests (e.g., hash values) (operation 202). A respective content object can be a data object or another manifest and is associated with a name that is a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level. The content producer generates an index associated with the root manifest that allows direct search and access of the content indicated by the root manifest (operation 204). The content producer can generate the index based on a direct or external method (decision 206). If the index is generated based on a direct method, the content producer includes the encoded index directly in the root manifest (operation 208). If the index is external, the content producer creates an external root manifest index (operation 210), which can be either a relative index or a complete index (decision 212). As described above, a relative index includes ordering information for a subset of the contents of a respective manifest indicated by the root manifest, where the ordered subset of content objects relates only to the direct children of each respective manifest, and a complete index includes an exhaustive list of all the content objects indicated by the root manifest. The root manifest indicates content objects (both data objects and manifests) by including a list of the names and hashes for each direct child of the root manifest. Each manifest indicated by the root manifest can be described based on a nested hierarchy, as shown in the tree-like topology depicted in FIG. 5, and can include information for each parent and child of the manifest.


If the external index is a relative index, the content producer creates a root manifest index that is a relative index for a subset of the content objects indicated in the root manifest (operation 214). Additionally, for each manifest indicated by the root manifest, the content producer creates a relative index for a subset of the content objects indicated in each manifest (operation 216). If the external index is a complete index, the content producer creates a root manifest that is a complete (e.g., exhaustive) index for the set of content objects indicated in the root manifest (operation 218).


Retrieving Content from Order Encoded Manifest Based on Target Seek



FIG. 3A presents a flow chart illustrating a method 300 performed by a content consumer for retrieving content based on a desired seek location in an order encoded manifest, in accordance with an embodiment of the present invention. During operation, a content consumer retrieves a root manifest that indicates a set of content objects and their corresponding digests (operation 302). The content consumer determines an index associated with the root manifest that allows direct search and access of the content indicated by the root manifest (operation 304). The content consumer also determines a target seek location of the content indicated in the root manifest (operation 306). The index can be a direct index or an external index (decision 308). If the encoded index is directly included in the root manifest, the content consumer retrieves a content object based on a manifest that most closely matches the determined target seek location (operation 310). Recall that each manifest can include pointers to the parent and all children of the manifest, thereby providing ordering information that allows a content consumer to continue a forward or backward traversal of the contents of the manifest tree from the target seek location. The system can traverse the remainder of the content objects indicated in the root manifest based on the directly encoded index (operation 312). If the encoded index is a link to an external index, the operation continues as shown in FIG. 3B.



FIG. 3B presents a flow chart illustrating a method 350 performed by a content consumer for retrieving content based on a desired seek location in an order encoded manifest, in accordance with an embodiment of the present invention. The external index can be either a relative index or a complete index (decision 352). If the external index is a relative index, the content consumer retrieves a root manifest index that is a relative index for a subset of the content objects indicated in the root manifest (operation 354). The external relative index can include a parent pointer to the name of the parent manifest, which allows the system to continue traversing through the manifest tree from the target seek location. The external relative index can further include a pointer to the root manifest (when different from the parent manifest) such that the system can quickly skip to the root of the tree. Thus, the use of external relative indices allows for any form of threading through the tree for quicker and more efficient seek operations.


Based on the external relative index, the content consumer determines whether a content object indicated by the current manifest (here, the root manifest) matches the target seek (e.g., if a content object indicated by the current manifest is a data object with a name and corresponding hash that matches the name and corresponding hash of the target seek) (decision 356). If there is a match, the content consumer retrieves the content object (as indicated in the manifest) (operation 362). The system can traverse the remainder of the content objects indicated in the root manifest based on the tree-like topology of the external relative indices (operation 364). If there is not a match, the content consumer determines a manifest of the subset of content objects indicated in the relative index that most closely matches the target seek location (“closest match manifest”) (operation 358). The content consumer retrieves the external relative index of the closest match manifest (operation 362) and, based on the retrieved external relative index, determines whether a content object indicated by the current manifest (here, the closest match manifest) matches the target seek (e.g., if a content object indicated by the current manifest is a data object with a name and corresponding hash that matches the name and corresponding hash of the target seek) (decision 356). The system repeats operation 358, operation 360, and decision 356, until a match for the target seek is found. Subsequently, the operation continues as described in relation to operation 362.


If the external index is a complete index, the content consumer retrieves a root manifest index that is a complete index for the set of content objects indicated in the root manifest (operation 364). Because the complete index is an exhaustive list of the contents indicated in the root manifest, the content consumer does not need to traverse the entire manifest tree to obtain the content object corresponding to the target seek. Based on the external complete index, the content consumer retrieves a content object based on a manifest that most closely matches the target seek (“closest match manifest”) (operation 366). The system can then traverse the remainder of the content objects indicated in the root manifest based on the tree-like topology of the external index (operation 368).


Format of Exemplary Standard Manifest and Manifest Payload



FIG. 4A presents a table depicting a format of a standard CCN manifest 400, in accordance with an embodiment of the present invention. The format of manifest 400 is based on the metalanguage of Augmented Backus-Naur Form (ABNF). Manifest 400 can contain a signed object 402 field that indicates the content object (manifest 400) and can also include a validation algorithm and a validation payload. A validation algorithm 404 field can contain, e.g., an RSA or an HMAC. A validation payload 406 field can contain, e.g., a signature of the producer of the manifest. Validation algorithm 404 and validation payload 406 are optional fields designed for integrity checks or authentication, and do not affect the contents of the manifest. A content object 410 field indicates a name, create time, expiry time, and payload type of the content object. A name 412 field indicates the CCN name of the content object. A create time 414 field and an expiry time 416 field indicate the respective create and expiration times in, e.g., a UTC time. A payload type 418 field indicates whether the payload type is data, manifest, or other. For example, a data 420 field can contain a value that represents the application payload, and a manifest 422 field can contain a value that represents the manifest payload. A payload 424 field can be a list of content objects. If payload type 418 indicates a manifest, the payload of the content object (manifest 400) will be parsed as a manifest payload 430.


Manifest payload 430 can include a metadata section and a payload section. A metadata section 432 points to elements that describe a payload section 434. Both metadata section 432 and payload section 434 can be encoded as a section. A section 440 field is defined as an optional Access Control List (ACL) and two arrays. An ACL 442 field contains a link 460 which includes a target name 462 field that is the CCN name of the link target, a target KeyId 464 field that is the KeyId restriction for the link target, and a target hash 466 field which contains a content object hash restriction for the link target. The first array in section 440 is a list of names 444 field, which includes a list of name entries. A name entry 446 field includes a root media name and can also include a start chunk. The list of media names can be empty if all hashes are based on the name of the current content object. The second array in section 440 is a list of hashes 448, which includes a name index 450 and a hash 452. The content object name has a name index value of “0,” so list of names 444 begins with a name index value of “1.” If the content object name has an associated chunk number, that number plus one is the implied start chunk of the corresponding entry with a name index value of “1.” If the start chunk is present in the name entry 446 field, then the names are assumed to include a chunk name component. The starting chunk number is the sum of the start chunk and the relative order, where the relative order is the ordinal position of the list of hashes 448 entry that corresponds to the name index.



FIG. 4C presents tables depicting an exemplary manifest payload 430 and corresponding sample interests 490 for retrieving the contents of exemplary manifest payload 430, in accordance with an embodiment of the present invention. As discussed above in relation to FIG. 4A, manifest payload 430 includes a list of names 444 and a list of hashes 448. Both entries in list of names 444 include a start chunk, so the names are assumed to include a chunk name component. The first entry in list of names 444 has a start chunk value of “1” and a root media name of “/netflix/frozen/manifest20” while the second entry has a start chunk value of “0” and a root media name of “/netflix/frozen/contentobj10.” The four entries in list of hashes 448 correspond to various chunks of the content objects indicated in list of names 444. Recall that list of names 444 begins with a name index value of “1” because the content object name has a name index value of “0.” Thus, the first entry in list of names 444 corresponds to a name index value of “1” and the second entry in list of names 444 corresponds to a name index value of “2.” The set of generated interests for the contents of manifest payload 430 are depicted in sample interests 490. The format of manifest payload 430 allows a requesting application (e.g., a content consumer) to interleave the retrieval of a series of content objects with different media names and different chunk number sequences. For example, interests 490.0 and 490.2 are interests for data objects indicated by the names “/netflix/frozen/contentobj10/chunk=0” and “/netflix/frozen/contentobj10/chunk=1,” with respective hash values of “0x123” and “0x456,” while interests 490.1 and 490.3 are interests for manifests indicated by the names “netflix/frozen/manifest20/chunk=1” and “/netflix/frozen/manifest20/chunk=2,” with respective hash values of “0xAAA” and “0xBBB.”



FIG. 4B presents a table depicting a format of a modified manifest payload section 470, in accordance with an embodiment of the present invention. Modified section 470 can either be directly encoded in manifest 400 or include a link to external data (e.g., an external complete index or an external relative index). A section 480 field contains an optional Access Control List (ACL) and three arrays. As shown in FIG. 4A, ACL 442 contains link 460 which includes a target name 462 that is the CCN name of the link target, a target KeyId 464 field that is the KeyId restriction for the link target, and a target hash 466 field which contains a content object hash restriction for the link target. The first array is a list of names 444, the second array is a list of hashes 448, and the third array is an ordering 472. As described above for the standard manifest 400 depicted in FIG. 4A, the first array is a list of names 444 field, which includes a list of name entries. A name entry 446 field includes a root media name and can also include a start chunk. The second array is a list of hashes 488, which includes an ordering 482, a name index 450 and a hash 452. The third array in section 480 is an ordering indicating an ordering for the content objects described in payload section 434 of manifest 400. Modified section 470 further includes a list of parents 484 that is a list of parent entries, where a parent entry 486 includes ordering 482 and a link to the respective parent.


Exemplary Topology and Corresponding Manifests



FIG. 5 presents an exemplary tree-like topology 500 corresponding to an exemplary root manifest, in accordance with an embodiment of the present invention. Root manifest tree 500 depicts a root manifest node 502 with a name of “/netflix/frozen” and four child nodes: a node 0 that is a data object with a name of “/netflix/frozen/D0”; a node 10 that is a data object with a name of “/netflix/frozen/D10”; a node 20 that is a manifest with a name of “/netflix/frozen/M20”; and a node 70 that is a manifest with a name of “/netflix/frozen/M70.” Node 20 is a manifest that has three child nodes: a node 20 that is a data object with a name of “/netflix/frozen/M20/D20”; a node 30 that is a manifest with a name of “/netflix/frozen/M20/M30”; and a node 65 that is a data object with a name of “/netflix/frozen/M20/D65.” Node 30 is a manifest that has five child nodes: a node 30 that is a data object with a name of “/netflix/frozen/M20/M30/D30”; a node 35 that is a data object with a name of “/netflix/frozen/M20/M30/D35”; a node 40 that is a manifest with a name of “/netflix/frozen/M20/M30/M40”; a node 50 that is a data object with a name of “/netflix/frozen/M20/M30/D50”; and a node 60 that is a data object with a name of “/netflix/frozen/M20/M30/D60.” Node 40 is a manifest that has two child nodes: a node 40 that is a data object with a name of “/netflix/frozen/M20/M30/M40/D40”; and a node 45 that is a data object with a name of “/netflix/frozen/M20/M30/M40/D45.” Node 70 is a manifest that has two child nodes: a node 70 that is a data object with a name of “/netflix/frozen/M70/D70”; and a node 75 that is a data object with a name of “/netflix/frozen/M70/D75.”



FIG. 6A presents tables depicting exemplary contents of the root manifest and the manifests indicated by the root manifest represented by tree topology 500 as described in relation to FIG. 5, in accordance with an embodiment of the present invention. A root manifest 600 includes: a name 602 field with a value of “/netflix/frozen/manifest_root”; a payload type 604 field with a value of “MANIFEST”; a manifest 606 field that corresponds to a manifest payload 608 with a value as indicated in a metadata section 610 and a payload section 612. Metadata section 610 is a link to an encoded index, which is a content object with the name of “/netflix/frozen/index_complete” (see FIG. 6B, described below) or “/netflix/frozen/index_relative” (see FIG. 6C, described below). The external index (e.g., the root manifest index) is a content object that is distinct from the root manifest. Payload section 612 is a list of names and a list of corresponding hashes. Note that the tables describing the various manifests in FIG. 6A include only a list of “<name, hash>” pairs rather than the more detailed inclusion of start chunks and name indices described in relation to FIGS. 4A and 4C. For example, manifest 620 is shown with a name of “/netflix/frozen/M20” of payload type “MANIFEST” with a payload containing the following <name, hash>pairs: “/netflix/frozen/M20/D20”, hash(CO/netflix/frozen/M20/D20); “/netflix/frozen/M20/M30”, hash(CO/netflix/frozen/M20/M30); and “/netflix/frozen/M20/D65”, hash(CO/netflix/frozen/M20/D65). Manifests 630, 640, and 670 are similarly depicted and correspond to tree topology 500 as described in FIG. 5.


Exemplary External Complete Index and Corresponding Use Case



FIG. 6B presents a table depicting exemplary contents of a root manifest 600 external complete index 600_C, based on FIG. 5 and the manifest payloads as described in FIG. 6A, in accordance with an embodiment of the present invention. In some embodiments, the contents of external complete index 600_C are included and encoded directly in root manifest 600. External complete index 600_C includes a name with a value of “/netflix/frozen/index_complete,” which corresponds to the value of metadata section 610 of root manifest 600 in FIG. 6A. Index 600_C further includes a list of entries that covers the complete contents of the root manifest, where each entry indicates: a measurement unit that indicates the manner in which the index is organized (e.g., the unit of measure that can be used to search and access the contents); a name of the closest matching manifest which is the manifest that is the closest to (e.g., less than or equal to) the corresponding unit of measure (“closest match manifest”); and a hash value which represents a hash of the manifest associated with the name of the closest match manifest. Index 600_C can be organized based on 5-second increments in a movie and contain a complete list of references to the manifest that contains a desired content object. Note that while index 600_C lists 5-second increments, a search can be conducted based on smaller time increments, such as a 1-second increment. The system determines the closest match manifest based on the manifest that matches the entry corresponding to a unit that is less than or equal to the desired seek unit. Index 600_C can also begin from a first object based on tree topology 500, which represents the set of content objects indicated in root manifest 600. For example, the first entry in external complete index 600_C is an entry for 0 seconds, which corresponds to Node 0, the first object of root manifest 600 as shown in tree topology 500.


The following use case for complete index 600_C is based on the exemplary tables presented and described in relation to FIGS. 5, 6A, and 6B and the methods disclosed herein. A content producer creates root manifest 600 and manifests 620, 630, 640, and 670, which correspond to tree-like topology 500 and represent the movie “Frozen.” The content producer also creates external complete index 600_C, which contains a complete list by 5-second increments of the contents of root manifest 600 by indicating the closest match manifest for a particular 5-second increment. A content consumer who wishes to access a desired portion (e.g., second 39) of the movie retrieves root manifest 600, determines that payload type 604 is “MANIFEST,” and, based on metadata section 610, retrieves root manifest 600 external complete index 600_C based on the name “/netflix/frozen/index_complete.” The content consumer uses index 600_C to determine the closest match manifest name. The closest match manifest is determined based on the unit of measure which is the closest to the desired seek location, where the “closest” match is that which is less than or equal to the desired seek location. In this case, the closest match manifest is found at the entry for 35 seconds, which is the closest match that is less than or equal to the desired seek location of 39 seconds. That entry indicates that the name of the closest match manifest is “/netflix/frozen/M20/M30,” which corresponds to manifest 630. The content consumer retrieves manifest 630 by name and can verify manifest 630 by comparing the associated hash values (e.g., by hashing retrieved manifest 630, shown in FIG. 6A, and comparing that hash to the corresponding hash value for the entry at 35 seconds in external complete index 600_C. The content consumer then retrieves the contents of manifest 630 and traverses the retrieved contents of manifest 630 until the desired content object is obtained, e.g., the content object with the name of “/netflix/frozen/M20/M30/D35.” Thus, complete index 600_C allows the content consumer to seek to a specific location in the contents indicated by the root manifest without having to traverse the entire contents of the root manifest.


Exemplary External Relative Indices and Corresponding Use Case



FIG. 6C presents tables depicting exemplary contents of a root manifest 600 external relative index 600_R and the external relative indices associated with each manifest indicated in the root manifest (e.g., external relative indices 620_R, 630_R, 640_R, and 670_R), based on FIG. 5 and the manifest payloads as described in FIG. 6A, in accordance with an embodiment of the present invention. External relative index 600_R includes a name with a value of “/netflix/frozen/index_relative,” which corresponds to the value of metadata section 610 of root manifest 600 in FIG. 6A. Index 600_R further includes a list of entries that correspond to a subset of the contents of the root manifest, where each entry indicates: a measurement unit that indicates the manner in which the index is organized (e.g., the unit of measure that can be used to search and access the contents); a name of the closest matching manifest which is the manifest that is the closest to (e.g., less than or equal to) the corresponding unit of measure (“closest match manifest”); and a hash value which represents a hash of the manifest associated with the name of the closest match manifest. Index 600_R can be organized based on 5-second increments in a movie, and can contain entries corresponding to the unit of measure in seconds with a value of 0, 10, 20, and 70. Each manifest indicated by the root manifest can also contain its own external relative index. For example: manifest 620 external relative index 620_R can contain entries corresponding to 20, 30, and 65 seconds; manifest 630 external relative index 630_R can contain entries corresponding to 30, 35, 40, 50, and 60 second; manifest 640 external relative index 640_R can contain entries corresponding to 40 and 45 seconds; and manifest 670 external relative index 670_R can contain entries corresponding to 70 and 75 seconds.


The following use case for relative index 600_R is based on the exemplary tables presented and described in relation to FIGS. 5, 6A, and 6B and the methods disclosed herein. A content producer creates root manifest 600 and manifests 620, 630, 640, and 670, which correspond to tree-like topology 500 and represent the movie “Frozen.” The content producer also creates external relative indices 600_R, 620_R, 630_R, 640_R, and 670_R. Each of these external relative indices contains a subset of entries based on 5-second increments of the contents of root manifest 600, e.g., by indicating the closest match manifest for each direct child (data object or manifest) of the respective manifest. A content consumer who wishes to access a desired portion (e.g., second 42) of the movie retrieves root manifest 600, determines that payload type 604 is “MANIFEST,” and, based on metadata section 610, retrieves root manifest 600 external relative index 600_R based on the name “/netflix/frozen/index_relative.” Note that as described above for the use case corresponding to external complete index 600_C shown in FIG. 6B, the system can verify a retrieved content object (e.g., a data object, a manifest, an external complete index, or an external relative index) by hashing the retrieved content object and comparing that hash value to a corresponding included hash value.


The content consumer uses index 600_R to determine the closest match manifest name. As discussed above, the closest match manifest is determined based on the unit of measure which is the closest to the desired seek location, where the “closest” match is that which is less than or equal to the desired seek location. In this case, the closest match manifest is found at the entry for 20 seconds, which is the closest match in external relative index 600_R that is less than or equal to the desired seek location of 42 seconds. That entry indicates that the name of the closest match manifest is “/netflix/frozen/M20,” which corresponds to manifest 620. The content consumer then retrieves manifest 620, retrieves relative index 620_R, and again determines the closest match manifest name, which here is at the entry for 30 seconds with a name of “/netflix/frozen/M20/M30,” which corresponds to manifest 630. The content consumer retrieves manifest 630, retrieves relative index 630_R, and determines the closest match manifest is at the entry for 40 seconds with a name of “/netflix/frozen/M20/M30/M40,” which corresponds to manifest 640. The content consumer retrieves manifest 640, retrieves relative index 640_R, and determines that the closest match manifest is the current manifest (manifest 640), retrieves the contents of manifest 640, and traverses the retrieved contents of manifest 640 until the desired content object is obtained, e.g., the content object with the name of “/netflix/frozen/M20/M30/M40/D40.” Thus, the relative indices allow the content consumer to seek to a specific location in the contents indicated by the root manifest by progressively/recursively narrowing down the search without having to traverse the entire contents of the root manifest.


Exemplary Computer and Communication System



FIG. 7 illustrates an exemplary computer and communication system 702 that facilitates direct seeking of the ordered content of a manifest, in accordance with an embodiment of the present invention. Computer and communication system 702 includes a processor 704, a memory 706, and a storage device 708. Memory 706 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer and communication system 702 can be coupled to a display device 710, a keyboard 712, and a pointing device 714. Storage device 708 can store an operating system 716, a content-processing system 718, and data 732.


Content-processing system 718 can include instructions, which when executed by computer and communication system 702, can cause computer and communication system 702 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 718 may include instructions for determining, by a content producing device, a root manifest, wherein a manifest indicates a set of content objects and their corresponding digests, where a content object is a data object or another manifest (root manifest determination mechanism 720). Content-processing system 718 can include instructions for generating an index associated with the root manifest, where the index allows the set of content objects indicated in the root manifest to be searched and accessed directly, and where the index is a root manifest index that comprises a complete index for the set of content objects indicated in the root manifest (complete index mechanism 722).


Content-processing system 718 can also include instructions for generating an index associated with the root manifest, where the index allows the set of content objects indicated in the root manifest to be searched and accessed directly, and where the index is a root manifest index that comprises a relative index for the set of content objects indicated in the root manifest (relative index mechanism 724). Content-processing system 718 can further include instructions for creating, for a respective manifest indicated by the root manifest, a relative index that describes a relative ordering for a subset of content objects indicated by the respective manifest (relative index mechanism 724). Content-processing system 718 can include instructions for creating an ordering for the content objects indicated in the root manifest, where the ordering is included in the root manifest and describes the order of each content object in the root manifest and, for each content object in the root manifest that is itself a manifest, each parent and child of the manifest (direct encoding mechanism 726).


Content-processing system 718 can additionally include instructions for retrieving, by a content consuming device, a root manifest, where a manifest indicates a set of content objects and their corresponding digests, and where a content object is a data object or another manifest (communication mechanism 728). Content-processing system 718 can include instructions for determining an index associated with the root manifest, where the index allows the set of content objects indicated in the root manifest to be searched and accessed directly, and where the index is a root manifest index that comprises a complete index for the set of content objects indicated in the root manifest (complete index mechanism 722). Content-processing system 718 can further include instructions for determining a target seek location of the contents indicated in the root manifest (target seek mechanism 730). Content-processing system 718 can include instructions for retrieving a content object based on a manifest that most closely matches the target seek location, where the closest match manifest is the manifest that is associated with a unit of measure that is less than or equal to the target seek location (communication mechanism 728).


Content-processing system 718 can further include instructions for determining an index associated with the root manifest, where the index allows the set of content objects indicated in the root manifest to be searched and accessed directly, and where the index is a root manifest index that comprises a relative index for the set of content objects indicated in the root manifest (relative index mechanism 724). Content-processing system 718 can further include instructions for retrieving, for a respective manifest indicated by the root manifest, a relative index that describes a relative ordering for a subset of content objects indicated by the respective manifest (relative index mechanism 724).


Content-processing system 718 can also include instructions for retrieving a root manifest index that is a content object distinct from the root manifest (communication mechanism 728). Content-processing system 718 can include instructions for determining that an ordering for the content objects indicated in the root manifest is included in the root manifest, where the ordering describes the order of each content object in the root manifest and, for each content object in the root manifest that is itself a manifest, each parent and child of the manifest (direct encoding mechanism 726).


Data 732 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 732 can store at least: a root manifest that indicates a set of content objects and their corresponding digests; a data object; a manifest; a name associated with each content object, where the name is a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level; an index associated with the root manifest, where the index allows the set of content objects indicated in the root manifest to be searched and accessed directly; a root manifest index that is a content object distinct from the root manifest; a complete index for the set of content objects indicated in the root manifest, where the complete index begins from a first object based on a tree-like topology of the set of content objects indicated in the root manifest; a relative index for a manifest that describes a relative ordering for a subset of content objects indicated by the manifest; a link to a parent of a manifest; a set of content objects based on a tree-like topology; an ordering for the set of content objects indicated in the root manifest; a root manifest that includes the ordering information; and a target seek location of the contents located indicated in the root manifest.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules or apparatus. The hardware modules or apparatus can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), dedicated or shared processors that execute a particular software module or a piece of code at a particular time, and other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer-implemented method for encoding content, comprising: at a content producing device to communicate with a content centric network (CCN):determining a root manifest that indicates a set of content objects including data objects and other manifests in a hierarchy in which a root node represents the root manifest, intermediate nodes represent the other manifests, and terminal nodes represent data objects mapped back to the root manifest via parent-child relationships with the other manifests,wherein each content object is indicated by a unique name used for routing in the CCN and a corresponding hash,wherein the root manifest indicates (i) names and hashes for data objects that are direct children of the root manifest, and (ii) an identifier of an external root manifest index;generating the external root manifest index as a named content object distinct from the root manifest and to include a list of entries corresponding to the set of content objects of the hierarchy, wherein the root manifest index allows the set of content objects indicated in the root manifest to be searched and accessed directly, to enable a content consumer to seek a desired location in content represented by the root manifest;receiving from the CCN a first Interest requesting the root manifest by name and,in response, sending the root manifest to the CCN, wherein the first Interest includes a hash value associated with the root manifest; andreceiving from the CCN a second Interest requesting the external root manifest index by name and, in response, accessing the index using the identifier and sending the index to the CCN,wherein the second Interest includes a hash value associated with the external root manifest index.
  • 2. The method of claim 1, wherein each entry of the root manifest index includes a measurement unit used to search the root manifest index for and access the content object corresponding to the entry, a name of the content object corresponding to the entry and that most closely matches the measurement unit, and a hash of the content object corresponding to the entry.
  • 3. The method of claim 2, wherein the root manifest index comprises a complete index for the set of content objects indicated in the root manifest, and wherein the complete index begins from a first object based on a tree-like topology of the set of content objects indicated in the root manifest.
  • 4. The method of claim 2, further comprising: creating, for a respective manifest indicated by the root manifest, a relative index that describes a relative ordering for a subset of content objects indicated by the respective manifest, wherein the root manifest index is a relative index that describes a relative ordering for a subset of content objects indicated by the root manifest.
  • 5. The method of claim 2, wherein each entry of the external index further defines a path from the root manifest to the content object of the entry in the form of the parent-child relationships.
  • 6. The method of claim 1, wherein the set of content objects are indicated in the root manifest based on a tree-like topology.
  • 7. The method of claim 1, wherein generating the root manifest index further comprises: creating an ordering for the content objects indicated in the root manifest, wherein the ordering is included in the root manifest, and wherein the ordering describes the order of: a respective content object indicated in the root manifest; andfor a respective content object indicated in the root manifest that is itself a manifest, each parent and child of the manifest.
  • 8. The method of claim 1, wherein: the root manifest includes a first identifier of a complete root manifest index and a second identifier of a relative root manifest index; andthe generating includes: generating the external complete root manifest index such that the external complete root manifest index indicates all of the content objects in the hierarchy; andgenerating the external relative root manifest index such that the external relative root manifest index indicates a subset of the content objects in the hierarchy.
  • 9. The method of claim 1, wherein each unique name is a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level.
  • 10. A computer-implemented method for encoding content, comprising: at a content consuming device to communicate with a content centric network (CCN):sending to the CCN a first Interest requesting by name a root manifest in the form of a named content object,wherein the first Interest includes a hash value associated with the root manifest;receiving from the CCN the requested root manifest,wherein the root manifest indicates a set of content objects including data objects and other manifests in a hierarchy in which a root node represents the root manifest, intermediate nodes represent the other manifests, and terminal nodes represent data objects mapped back to the root manifest via parent-child relationships with the other manifests,wherein each content object is indicated by a unique name used for routing in the CCN and a corresponding hash,wherein the root manifest indicates (i) names and hashes for data objects that are direct children of the root manifest, and (ii) an identifier of an external root manifest index,wherein the root manifest index is in the form of a named content object distinct from the root manifest and allows the set of content objects indicated in the root manifest to be searched and accessed directly;sending to the CCN a second Interest requesting the external root manifest index by name,wherein the second Interest includes a hash value associated with the external root manifest;receiving the external root manifest index from the CCN;determining a target seek location of the contents indicated in the root manifest; andusing the external root manifest index, retrieving a content object based on a manifest that most closely matches the target seek location,wherein the closest match manifest is the manifest that is associated with a unit of measure that is less than or equal to the target seek location, thereby facilitating the content consuming device to seek a desired location without having to traverse the content represented by the root manifest.
  • 11. The method of claim 10, wherein the root manifest index comprises a complete index for the set of content objects indicated in the root manifest, and wherein the complete index begins from a first object based on a tree-like topology of the set of content objects indicated in the root manifest.
  • 12. The method of claim 10, wherein the root manifest index is a relative index that describes a relative ordering for a subset of content objects indicated by the root manifest, and wherein determining the index further comprises: for a respective manifest indicated by the root manifest, retrieving a relative index that describes a relative ordering for a subset of content objects indicated by the respective manifest.
  • 13. The method of claim 10, wherein the set of content objects are indicated in the root manifest based on a tree-like topology.
  • 14. The method of claim 10, further comprising: determining that an ordering for the content objects indicated in the root manifest is included in the root manifest, wherein the ordering describes the order of: a respective content object indicated in the root manifest; andfor a respective content object indicated in the root manifest that is itself a manifest, each parent and child of the manifest.
  • 15. A computer system for encoding content and for communicating with a content centric network (CCN), comprising: a processor;a storage device coupled to the processor and storing instructions that when executed by the processor cause the computer system to perform a method, the method comprising:determining a root manifest that indicates a set of content objects including data objects and other manifests in a hierarchy in which a root node represents the root manifest, intermediate nodes represent the other manifests, and terminal nodes represent data objects mapped back to the root manifest via parent-child relationships with the other manifests,wherein each content object is indicated by a unique name used for routing in the CCN and a corresponding hash,wherein the root manifest indicates (i) names and hashes for data objects that are direct children of the root manifest, and (ii) an identifier of an external root manifest index;generating the external root manifest index as a named content object distinct from the root manifest and to include a list of entries corresponding to the set of content objects of the hierarchy,wherein the root manifest index allows the set of content objects indicated in the root manifest to be searched and accessed directly, to enable a content consumer to seek a desired location in content represented by the root manifest;receiving from the CCN a first Interest requesting the root manifest by name and, in response, sending the root manifest to the CCN, wherein the first Interest includes a hash value associated with the root manifest; andreceiving from the CCN a second Interest requesting the root manifest index by name and,in response, accessing the root manifest index using the identifier and sending the root manifest index to the CCN,wherein the second Interest includes a hash value associated with the external root manifest index.
  • 16. The computer system of claim 15, wherein each entry of the root manifest index includes a measurement unit used to search the index for and access the content object corresponding to the entry, a name of the content object corresponding to the entry and that most closely matches the measurement unit, and a hash of the content object corresponding to the entry.
  • 17. The computer system of claim 16, wherein the root manifest index comprises a complete index for the set of content objects indicated in the root manifest, and wherein the complete index begins from a first object based on a tree-like topology of the set of content objects indicated in the root manifest.
  • 18. The computer system of claim 16, wherein the method further comprises: creating, for a respective manifest indicated by the root manifest, a relative index that describes a relative ordering for a subset of content objects indicated by the respective manifest, wherein the root manifest index is a relative index that describes a relative ordering for a subset of content objects indicated by the root manifest.
  • 19. The computer system of claim 15, wherein a respective manifest indicated by the root manifest includes a link to a parent of the respective manifest.
  • 20. The computer system of claim 15, wherein the set of content objects are indicated in the root manifest based on a tree-like topology.
  • 21. The computer system of claim 15, wherein generating the root manifest index further comprises: creating an ordering for the content objects indicated in the root manifest, wherein the ordering is included in the root manifest, and wherein the ordering describes the order of: a respective content object indicated in the root manifest; andfor a respective content object indicated in the root manifest that is itself a manifest, each parent and child of the manifest.
US Referenced Citations (589)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020156912 Hurst et al. Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Paterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100322249 Thathapudi Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Lovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231365 Bahl Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130238740 Vass et al. Sep 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140156396 Dekozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140237095 Bevilacqua-Linn Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150040041 Yang Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150222704 Kipp Aug 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160065677 Mosko Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
Foreign Referenced Citations (32)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011022405 Feb 2011 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2012094363 Jul 2012 WO
2013107502 Jul 2013 WO
2013123410 Aug 2013 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (167)
Entry
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf.
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016].
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016].
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, 23 Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009).
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
B. Lynn$2E.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D. Boneh, C. Gentry, and B. Waters, 'Collusi.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. 'Termination detection for diffusing computations.' Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {2013, Aug.). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Reencryption Schemes with Applications to Secure Distributed Storage. In the 12th Annual Network and Distributed System Security Sympo.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
H. Xiong, X. Zhang, W. Zhu, and D. Yao. CloudSeal: End-to$2.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., 'NLSR: Named-data Link State Routing Protocol', Aug. 12, 2013, ICN 2013, pp. 15-20.
https://code.google.com/p/ccnx-trace/.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer ScienceVolume 5443 (2009).
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Blaze, G. Bleumer, and M. Strauss, ‘Divertible protocols and atomic prosy cryptography,’ in Proc. EUROICRYPT 1998, Espoo, Finland, May-Jun. 1998, pp. 127-144.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “Pkcs#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matted Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE-A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E. Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology -AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, lain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network$.
D. Trossen and G. Parisis, “Designing and realizing and information-centric Internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights Management using Broadcast Encryption. Proceedings of the IEEE 92.6 (2004).
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
Hogue et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12,2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Extended European Search Report for European Application No. 16150268.7, dated Jun. 13, 2016, 10 pages.
I. Moiseenko, “Fetching content in Named Data Networking with embedded manifests”, NDN, Technical Report NDN-0025, 2014, http://named-data.net/techreports.html, Revision 1: Sep. 25, 2014, 3 pages.
Related Publications (1)
Number Date Country
20160203170 A1 Jul 2016 US