Organic anti-reflective polymer and preparation thereof

Information

  • Patent Application
  • 20030208018
  • Publication Number
    20030208018
  • Date Filed
    May 14, 2003
    21 years ago
  • Date Published
    November 06, 2003
    21 years ago
Abstract
The present invention relates to organic anti-reflective coating polymers suitable for use in a semiconductor device during a photolithograhy process for forming ultrafine patterns using 193 nm ArF beam radiation, and preparation method therefor. Anti-reflective coating polymers of the present invention contain a monomer having a pendant phenyl group having high absorbency at the 193 nm wavelength. When the polymers of the present invention are used in an anti-reflective coating in a photolithography process for forming ultrafine patterns, the polymers eliminate the standing waves caused by changes in the thickness of the overlying photosensitive film, by the spectroscopic property of lower layers on wafer and by changes in CD due to diffractive and reflective light originating from the lower layers. Use of the anti-reflective coating of the present invention results in the stable formation of ultrafine patters suitable for 64M, 256M, 1G, 4G and 16G DRAM semiconductor devices and a great improvement in the production yield.
Description


CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application is related to Korean Patent Application No. 1999-24469 filed Jun. 26, 1999, and takes priority from that date.



BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention


[0003] The present invention relates to an organic anti-reflective coating (“ARC”) material which allows the stable formation of ultrafine patterns suitable for 64M, 256M, 1G, 4G and 16G DRAM semiconductor devices. More particularly, the present invention relates to an organic anti-reflective coating material that contains a chromophore with high absorbance at the wavelengths useful for submicrolithography. A layer of said anti-reflection material can prevent back reflection of light from lower layers or a surface of the semiconductor ship, as well as eliminate the standing waves in the photoresist layer, during a submicrolithographic process using a 193 nm ArF laser light sources. Also, the present invention is concerned with an anti-reflective coating composition comprising such a material, an anti-reflective coating therefrom and a preparation method thereof


[0004] 2. Description of the Prior Art


[0005] During a submicrolithographic process, one of the most important processes for fabricating highly integrated semiconductor devices, there inevitably occur standing waves and reflective notching of the waves due to the optical properties of lower layers coated on the wafer and to changes in the thickness of the photosensitive film applied thereon. In addition, the submicrolithographic process generally suffers from a problem of the CD (critical dimension) being altered by the diffracted light and reflected light from the lower layers.


[0006] To overcome these problems, it has been proposed to introduce a film, called an anti-reflective coating, between the substrate and the photosensitive film to prevent light reflection from the lower layer. Largely, anti-reflective coatings are classified into “organic” and “inorganic” by the materials used and into “absorbing” and “interfering” by the operation mechanisms.


[0007] An inorganic anti-reflective coating is used mainly in the process of ultrafine-pattern formation using i-line radiation with a wavelength of 365 nm. TiN and amorphous carbon have been widely used in light-absorbing coatings, and SiON has been used in light-interfering coatings. The SiON anti-reflective coatings are also adopted for submicrolithographic processes that use KrF light sources.


[0008] Recently, extensive and intensive research has been and continues to be directed to the application of organic anti-reflective coatings for such submicrolithography. In view of the present development status, organic anti-reflective coatings, if they are to be useful, must satisfy the following fundamental requirements:


[0009] First, during the pattern formation process, the photoresist must not be peeled from the substrate by dissolving in the solvent used in the organic anti-reflective coating. For this reason, the organic anti-reflective coating needs to be designed to form a cross-linked structure, and must not produce chemicals as a by-product.


[0010] Second, acid or amine compounds must not migrate in or out of the anti-reflective coating. This is because there is a tendency for undercutting at the lower side of the pattern if an acid migrates, and for footing if a base such as an amine migrates.


[0011] Third, the anti-reflective coating must have a faster etching speed compared to the photoresist layer so that the etching process can be performed efficiently by utilizing the photoresist layer as a mask.


[0012] Finally, the organic anti-reflective coatings should be as thin as possible while playing an excellent role in preventing light reflection.


[0013] As various as anti-reflective coatings are, those which are satisfactorily applicable for submicrolithographic processes using ArF light have thus far not been found. As for inorganic anti-reflective coatings, there have been reported no materials which can control interference at the ArF wavelength, that is, 193 nm. In contrast, active research has been undertaken to develop organic materials into superb anti-reflective coatings. In fact, in most cases of submicrolithography, the coating of photosensitive layers is necessarily followed by organic anti-reflective coatings that prevent the standing waves and reflective notching occurring upon light exposure, and that eliminate the influence of the back diffraction and reflection of light from lower layers. Accordingly, the development of such an anti-reflective coating material showing high absorption properties against specific wavelengths is one of the hottest and most urgent issues in the art.



SUMMARY OF THE INVENTION

[0014] The present invention overcomes the problems encountered in the prior art and provides a novel organic compound that can be used as an anti-reflective coating useful for submicrolithography processes using 193 nm ArF laser.


[0015] The present invention provides a method for preparing an organic compound that prevents the diffusion and reflection caused by light exposure in submicrolithography.


[0016] The present invention further provides an anti-reflective coating composition containing such a diffusion/reflection-preventive compound and a preparation method therefor.


[0017] The present invention also provides an anti-reflective coating formed from such a composition and a preparing method thereof.


[0018] The polymers of the present invention comprise a monomer with a phenyl group having high absorbance at 193 nm, so that the polymer resin absorbs 193 nm wavelength light. A cross-linking mechanism using a ring opening reaction is introduced into preferred polymer resins of the invention by adding another monomer having an epoxy structure, so that a cross-linking reaction takes place when coatings of the polymer resins are “hard baked”, i.e., heated at a temperature of 100-300° C. for 10-1,000 seconds. Accordingly, a great improvement can be effected in the formation, tightness and dissolution properties of the anti-reflective coatings using polymers of the present invention. Particularly, maximal cross-linking reaction efficiency and storage stability are realized by the present invention. The anti-reflective coating resins of the present invention have superior solubility in all hydrocarbon solvents, in order to form a coating composition, yet are of such high solvent resistance after hard baking that they are not dissolved in any solvent at all. These advantages allow the resins to be coated without any problem to form an anti-reflective coating which prevents undercutting and footing problems when images are formed on the overlying photosensitive layer. Furthermore, coatings made of the acrylate polymers of the invention are higher in etch rate than the photosensitive film coatings, thereby improving the etch selection ratio therebetween.



DETAILED DESCRIPTION OF THE INVENTION

[0019] Polymer resins according to the present invention are represented by the following general formula 1:
1


[0020] wherein,


[0021] Ra, Rb, Rc and Rd each represents hydrogen or methyl group;


[0022] R1 represents hydrogen, hydroxy, a substituted or unsubstituted, straight or branched C1-C5 alkyl, cycloalkyl, alkoxyalkyl or cycloalkoxyalkyl;


[0023] w, x, y and z each represents a mole fraction of 0.01-0.99; and n1, n2 and n3 each represents an integer of 1 to 4;


[0024] and by the following general formula 2:
2


[0025] wherein,


[0026] Ra, Rb, and Rc each represents hydrogen or methyl group;


[0027] R1 represents hydrogen, hydroxy, substituted or unsubstituted, straight or branched C1-C5 alkyl, cycloalkyl, alkoxyalkyl or cycloalkoxyalkyl;


[0028] x, y and z each represents mole fraction of 0.01-0.99; and n1 and n2 each represents an integer of 1 to 4.


[0029] The polymer resins of the present invention are particularly suitable for use in the organic anti-reflective coatings since they comprise a p-tosylalkylacrylate monomer having a phenyl group with excellent absorbency of 193 nm wavelength radiation. Preferred monomers comprise a monomer of the following chemical formula 3:
3


[0030] wherein,


[0031] R is hydrogen or methyl group; n is an integer of 2 or 3.


[0032] The polymers represented by general formula 1 can be prepared in accordance with the reaction equation 1 set forth below, wherein p-tosylalkylacrylate-type monomers, hydroxyalkylacrylate-type monomers, methylacrylate-type monomers and glycidylmethacrylate-type monomers are polymerized with the aid of an initiator in a solvent. Each of the monomers has a mole fraction ranging from 0.01 to 0.99.
4


[0033] wherein,


[0034] Ra, Rb, Rc and Rd each represents hydrogen or methyl group;


[0035] R1 represents hydrogen, hydroxy, straight or branched C1-C5 alkyl, cycloalkyl, alkoxyalkyl or cycloalkoxyalkyl; and n1, n2 and n3 each represents an integer of 1 to 4.


[0036] The polymers represented by general formula 2 above can be prepared in accordance with the reaction equation 2 set forth below, wherein, p-tosylalkylacrylate-type monomers, hydroxyalkylacrylate-type monomers and methylacrylate-type monomers are polymerized with the aid of an initiator in a solvent. Each of the monomers has a mole fraction ranging from 0.01 to 0.99.
5


[0037] wherein,


[0038] Ra, Rb, and Rc each represents hydrogen or methyl group;


[0039] R1 represents hydrogen, hydroxy, a substituted or unsubstituted, straight or branched C1-C5 alkyl, cycloalkyl, alkoxyalkyl or cycloalkoxyalkyl; and n1 and n2 represents an integer of 1 to 4.


[0040] Conventional radical initiators, preferably 2,2-azobisisobutyronitrile (AIBN), acetylperoxide, laurylperoxide or t-butylperoxide, may be used for initiating the polymerization reaction forming the polymers of general formulas 1 and 2. Also, conventional solvents may be used for the polymerization, preferably tetrahydrofuran, toluene, benzene, methylethylketone or dioxane. Preferably, the polymerization for the polymers of the general formulas 1 and 2 is carried out at 50-80° C.


[0041] Semiconductor devices of the present invention may be prepared as described below. The copolymer of general formula 1 or formula 2 may be dissolved in a suitable solvent alone, or with a cross-linker additive selected from acrolein, diethylacetal and melamine-type cross linkers, at an amount of 0.1 to 30% by weight. The solution is filtered and coated on a wafer and then hard-baked to form a cross-linked anti-reflective coating. Semiconductor devices can then be fabricated therefrom in the conventional manner.


[0042] Conventional organic solvents may be used in preparing the anti-reflective coating composition, with preference given to ethyl 3-ethoxypropionate, methyl 3-methoxy propionate, cyclohexanone or propyleneglycol methyletheracetate. The solvent is preferably used at an amount of 200 to 5000% by weight based on the weight of the anti-reflective coating resin copolymer used.


[0043] It has been found that the anti-reflective coatings of the present invention exhibit high performance in photolithography processes for forming ultrafine-patterns using 193 nm ArF radiation. The same was also true of where 248 nm KrF, 157 nm F2 laser, E-beams, EUV (extremely ultraviolet) and ion beams are used as light sources.


[0044] A better understanding of the present invention may be obtained from following examples, which are set forth to illustrate, but are not to be construed to limit, the present invention.







EXAMPLE I


Synthesis of p-tosylethylacrylate Monomer

[0045] 0.35 mole of p-toluene sulfonylchloride are added to 0.35 mole of triethylamine. After complete dissolution, 0.3 mole of 2-hydroxyethylacrylate are slowly added in a nitrogen atmosphere. The reaction is continued for more than 24 hours with cooling, and during the reaction, the rate of reaction is checked by TLC. After the completion of the reaction, the mixture is neutralized with 1N-sulfuric acid and washed with deionized water, and then the reactant in the organic solvent layer is extracted. The water in the organic solvent is removed with MgSO4 to produce the monomer represented by the following chemical formula 1. The yield is 90-95%.
6



EXAMPLE II


Synthesis of p-tosylethylmethacrylate Monomer

[0046] 0.35 mole of p-toluene sulfonylchloride are added to 0.35 mole of triethylamine. After complete dissolution, 0.3 mole of 2-hydroxyethylmethacrylate are slowly added in a nitrogen atmosphere. The reaction is continued for more than 24 hours with cooling, and during the reaction, the rate of reaction is checked by TLC. After the completion of the reaction, the mixture is neutralized with 1N-sulfuric acid and washed with deionized water, and then the reactant in the organic solvent layer is extracted. The water in the organic solvent is removed with MgSO4 to produce the monomer represented by the following chemical formula 2. The yield is 90-95%.
7



EXAMPLE III


Synthesis of p-tosylpropylacrylate Monomer

[0047] The 0.35 mole of p-toluene sulfonylchloride are added to 0.35 mole of triethylamine. After complete dissolution, 0.3 mole of 2-hydroxypropylacrylate are slowly added in a nitrogen atmosphere. The reaction is continued for more than 24 hours with cooling and during the reaction, the rate of reaction is checked by TLC. After the completion of the reaction, the mixture is neutralized with 1N-sulfuric acid and washed with deionized water, and then the reactant in the organic solvent layer is extracted. The water in the organic solvent is removed with MgSO4 to produce the monomer represented by the following chemical formula 3. The yield is 90-95%.
8



EXAMPLE IV


Synthesis of p-tosylpropylmethacrylate Monomer

[0048] The 0.35 mole of p-toluene sulfonylchloride are added to 0.35 mole of triethylamine. After complete dissolution, 0.3 mole of 2-hydroxypropylmethacrylate are slowly added in a nitrogen atmosphere. The reaction is continued for more than 24 hours with cooling, and during the reaction, the rate of reaction is checked by TLC. After the completion of the reaction, the mixture is neutralized with 1N-sulfuric acid and washed with deionized water, and then the reactant in the organic solvent layer is extracted. The water in the organic solvent is removed with MgSO4 to produce the monomer represented by the following chemical formula 4. The yield is 90-95%.
9



EXAMPLE V


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxyethylacrylate-methylmethacrylate-glycidylmethacrylate)

[0049] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.25 mole of hydroxyethylacrylate, 0.1 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of 2,2-azobisisobutyronitrile (AIBN), the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly (tosylethylacrylate-hydroxyethylacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 5, at a yield of 65-70%.
10



EXAMPLE VI


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxyethylmethacrylate-methylmethacrylate-glycidylmethacrylate)

[0050] In a 500 ml round-bottom flask are placed 0.33 mole of tosylethylacrylate, 0.2 mole of hydroxyethylmethacrylate, 0.15 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethylether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxyethylmethacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 6, at a yield of 65-70%.
11



EXAMPLE VII


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxypropylacrylate-methylmethacrylate-glycidylmethacrylate)

[0051] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.25 mole of hydroxypropylacrylate, 0.1 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxypropylacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 7, at a yield of 65-70%.
12



EXAMPLE VIII


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxypropylmethacrylate-methylmethacrylate-glycidylmethacrylate)

[0052] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.23 mole of hydroxypropylmethacrylate, 0.1 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxypropylmethacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 8, at a yield of 65-70%.
13



EXAMPLE IX


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxybutylacrylate-methylmethacrylate-glycidylmethacrylate)

[0053] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.2 mole of hydroxybutylacrylate, 0.1 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxybutylacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 9, at a yield of 65-70%.
14



EXAMPLE X


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxyethylacrylate-methylmethacrylate-glycidylmethacrylate)

[0054] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.25 mole of hydroxyethylacrylate, 0.15 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of 2,2-azobisisobutyronitrile (AIBN), the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylmethacrylate-hydroxyethylacrylate-methylmethacrylate -glycidylmethacrylate) represented by the following chemical formula 10, at a yield of 65-70%.
15



EXAMPLE XI


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxyethylmethacrylate-methylacrylate-glycidylmethacrylate)

[0055] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.2 mole of hydroxyethylmethacrylate, 0.15 mole of methylacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethylether or normal-hexane and the precipitate is filtered and dried to produce poly (tosylethylmethacrylate-hydroxyethylmethacrylate-methylacrylate-glycidylmethacrylate) represented by the following chemical formula 11, at a yield of 65-70%.
16



EXAMPLE XII


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxypropylacrylate-methylmethacrylate-glycidylmethacrylate)

[0056] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.25 mole of hydroxypropylacrylate, 0.15 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly (tosylethylmethacrylate-hydroxypropylacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 12, at a yield of 65-70%.
17



EXAMPLE XIII


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxypropylmethacrylate-methylmethacrylate-glycidylmethacrylate)

[0057] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.22 mole of hydroxypropylmethacrylate, 0.15 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly (tosylethylmethacrylate-hydroxypropylmethacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 13, at a yield of 65-70%.
18



EXAMPLE XIV


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxybutylacrylate-methylmethacrylate-glycidylmethacrylate)

[0058] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.2 mole of hydroxybutylacrylate, 0.1 mole of methylmethacrylate, and 0.3 mole of glycidylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with string and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylmethacrylate-hydroxybutylacrylate-methylmethacrylate-glycidylmethacrylate) represented by the following chemical formula 14, at a yield of 65-70%.
19



EXAMPLE XV


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxyethylacrylate-methylmethacrylate)

[0059] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.3 mole of hydroxyethylacrylate and 0.25 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxyethylacrylate-methylmethacrylate) represented by the following chemical formula 15, at a yield of 65-70%.
20



EXAMPLE XVI


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxyethylmethacrylate-methylmethacrylate)

[0060] In a 500 ml round-bottom flask are placed 0.33 mole of tosylethylacrylate, 0.35 mole of hydroxyethylmethacrylate and 0.25 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxyethylmethacrylate-methylmethacrylate) represented by the following chemical formula 16, at a yield of 65-70%.
21



EXAMPLE XVII


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxypropylacrylate-methylmethacrylate)

[0061] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.33 mole of hydroxypropylacrylate and 0.22 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxypropylacrylate-methylmethacrylate) represented by the following chemical formula 17, at a yield of 65-70%.
22



EXAMPLE XVIII


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxypropylmethacrylate-methylmethacrylate)

[0062] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.33 mole of hydroxypropylmethacrylate and 0.25 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxypropylmethacrylate-methylmethacrylate) represented by the following chemical formula 18, at a yield of 65-70%.
23



EXAMPLE XIX


Synthesis of the Copolymer poly(tosylethylacrylate-hydroxybutylacrylate-methylmethacrylate)

[0063] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.3 mole of hydroxybutylacrylate and 0.3 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylacrylate-hydroxybutylacrylate-methylmethacrylate) represented by the following chemical formula 19, at a yield of 65-70%.
24



EXAMPLE XX


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxyethylacrylate-methylmethacrylate)

[0064] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.25 mole of hydroxyethylacrylate and 0.3 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylmethacrylate-hydroxyethylacrylate-methylmethacrylate) represented by the following chemical formula 20, at a yield of 65-70%.
25



EXAMPLE XXI


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxyethylmethacrylate-methylmethacrylate)

[0065] In a 500 ml round-bottom flask are placed 0.3 mole) of tosylethylmethacrylate, 0.32 mole of hydroxyethylmethacrylate and 0.3 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylmethacrylate-hydroxyethylmethacrylate-methylmethacrylate) represented by the following chemical formula 21, at a yield of 65-70%.
26



EXAMPLE XXII


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxypropylacrylate-methylmethacrylate)

[0066] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.33 mole of hydroxypropylacrylate and 0.3 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylmethacrylate-hydroxypropylacrylate-methylmethacrylate) represented by the following chemical formula 22, at a yield of 65-70%.
27



EXAMPLE XXIII


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxypropylmethacrylate-methylmethacrylate)

[0067] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylmethacrylate, 0.3 mole of hydroxypropylmethacrylate and 0.3 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly(tosylethylmethacrylate-hydroxypropylmethacrylate-methylmethacrylate) represented by the following chemical formula 23, at a yield of 65-70%.
28



EXAMPLE XXIV


Synthesis of the Copolymer poly(tosylethylmethacrylate-hydroxybutylacrylate-methylmethacrylate)

[0068] In a 500 ml round-bottom flask are placed 0.3 mole of tosylethylacrylate, 0.33 mole of hydroxybutylacrylate and 0.3 mole of methylmethacrylate. This mixture is added to 300 g of separately prepared tetrahydrofuran (THF) with stirring and mixed completely. Thereafter, in the presence of 0.1 g-3 g of AIBN, the reaction mixture is subjected to polymerization at 60-75° C. for 5-20 hours in a nitrogen atmosphere. After completion of this polymerization, the solution is precipitated in ethyl ether or normal-hexane and the precipitate is filtered and dried to produce poly (tosylethylmethacrylate-hydroxybutylacrylate-methylmethacrylate) represented by the following chemical formula 24, at a yield of 65-70%.
29



EXAMPLE XXV


Preparation of ARC

[0069] A polymer (resin) having a chemical structure of general formula 1, as obtained in each of Examples V-XIV polymer (resin), is dissolved in 200-5,000% (w/w) of propyleneglycolmethyletheracetate (PGMEA). This solution is filtered, coated on a wafer, and hard-baked (i.e. heated at 100-300° C. for 10-1,000 sec). A photosensitive material may be applied on the anti-reflective coating thus formed, and imaged to ultrafine patterns in the conventional manner.



EXAMPLE XXVI


Preparation of ARC

[0070] A polymer (resin) having a chemical structure of the general formula 2, as obtained in each of Examples XV-XXIV is dissolved in 200-5,000% (w/w) of propyleneglycolmethyletheracetate (PGMEA). This solution, alone or in combination with 0.1-30% by weight of at least one cross-linker selected from the group consisting of acroleindimethylacetal, acroleindiethylacetal and melamine type cross-linker is filtered, coated on a wafer, and hard-baked (i.e. heated at 100-300° C. for 10-1,000 sec). A photosensitive material may be applied on the anti-reflective coating thus formed, and imaged to ultrafine patterns in the conventional manner.


[0071] As described hereinbefore, anti-reflective coating of the present invention, for example, coatings formed from the polymer resins of chemical formulas 5 to 24, contain phenyl groups pendant from the polymeric backbone which exhibit superior absorbency at 193 nm wavelength. Thus, an anti-reflective coating of the present invention can play an excellent role in forming ultrafine patterns. For example, it can prevent the back-reflection of light from the wafer surface and lower layers as well as eliminate the standing waves in the photoresist layer itself during a submicrolithographic process using a 193 nm ArF laser. This results in the formation of ultrafine patterns suitable for 64M, 256M, 1G, 4G, and 16 G DRAM semiconductor devices and a great improvement in the production yield.


Claims
  • 1. A polymer having a monomer represented by the following general formula 3:
  • 2. A method for preparing a monomer represented by the following general formula 3:
  • 3. A polymer represented by the following general formula 1.
  • 4. A polymer as set forth in claim 3 wherein R1 represents methyl.
  • 5. A polymer as set forth in claim 3 comprising poly(tosylethylacrylate-hydroxyethylacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxyethylacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.25:0.1:0.3.
  • 6. A polymer as set forth in claim 3 comprising poly (tosylethylacrylate-hydroxyethylmethacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxyethylmethacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.2:0.1:0.3.
  • 7. A polymer as set forth in claim 3 comprising poly(tosylethylacrylate-hydroxypropylacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxypropylacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.25:0.1:0.3.
  • 8. A polymer as set forth in claim 3 comprising poly(tosylethylacrylate-hydroxypropylmethacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxypropylmethacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.23:0.1:0.3.
  • 9. A polymer as set forth in claim 3 comprising poly(tosylethylacrylate-hydroxybutylacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxybutylacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.2:0.1:0.3.
  • 10. A polymer as set forth in claim 3 comprising poly(tosylethylmethacrylate-hydroxyethylacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxyethylacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.25:0.15:0.3.
  • 11. A polymer as set forth in claim 3 comprising poly(tosylethylmethacrylate-hydroxyethylmethacrylate-methylacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxyethylacrylate:methylacrylate:glycidylmethacrylate is 0.3:0.2:0.15:0.3.
  • 12. Polymer as set forth in claim 3 comprising poly(tosylethylmethacrylate-hydroxypropylacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxypropylacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.25:0.15:0.3.
  • 13. A polymer as set forth in claim 3 comprising poly(tosylethylmethacrylate-hydroxypropylmethacrylate-methylmethacrylate -glycidylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxypropylmethacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.22:0.15:0.3.
  • 14. A polymer as set forth in claim 3 comprising poly(tosylethylmethacrylate-hydroxybutylacrylate-methylmethacrylate-glycidylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxybutylacrylate:methylmethacrylate:glycidylmethacrylate is 0.3:0.2:0.1:0.3.
  • 15. A method for preparing the polymer of claim 3 comprising polymerizing a tosylalkylacrylate-type monomer, a hydroxyalkylacrylate-type monomer, an alkylacrylate-type monomer and a glycidylmethacrylate-type monomer in a solvent in the presence of an initiator, as shown in the following reaction equation 1:
  • 16. A method for preparing a polymer according to claim 15, wherein R1 represents methyl.
  • 17. A method for preparing a polymer according to claim 15, wherein the initiator is selected from the group consisting of 2,2-azobisisobutyronitrile (AIBN), acetylperoxide, laurylperoxide and t-butylperoxide.
  • 18. A method for preparing a polymer according to claim 15, wherein the solvent is selected from the group consisting of tetrahydrofuran, toluene, benzene, methylethylketone and dioxane.
  • 19. A method for preparing a polymer according to claim 15, wherein the polymerizing reaction is conducted at 50-80° C.
  • 20. A polymer represented by the following general formula 2.
  • 21. A polymer as set forth in claim 20 wherein R1 represents methyl.
  • 22. A polymer as set forth in claim 20 comprising poly(tosylethylacrylate-hydroxyethylacrylate-methylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxyethylacrylate:methylmethacrylate is 0.3:0.3:0.25.
  • 23. A polymer as set forth in claim 20 comprising poly(tosylethylacrylate-hydroxyethylmethacrylate-methylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxyethylmethacrylate:methylmethacrylate is 0.33:0.35:0.25.
  • 24. A polymer as set forth in claim 20 comprising poly-(tosylethylacrylate-hydroxypropylacrylate-methylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxypropylacrylate:methylmethacrylate is 0.3:0.33:0.22.
  • 25. A polymer as set forth in claim 20 comprising poly(tosylethylacrylate-hydroxypropylmethacrylate-methylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxypropylmethacrylate:methylmethacrylate is 0.3:0.33:0.25.
  • 26. A polymer as set forth in claim 20 comprising poly(tosylethylacrylate-hydroxybutylacrylate-methylmethacrylate) wherein the mole ratio of tosylethylacrylate:hydroxybutylacrylate:methylmethacrylate is 0.3:0.3:0.3.
  • 27. A polymer as set forth in claim 20 comprising poly(tosylethylmethacrylate-hydroxyethylacrylate-methylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxyethylacrylate:methylmethacrylate is 0.3:0.25:0.3.
  • 28. A polymer as set forth in claim 20 comprising poly(tosylethylmethacrylate-hydroxyethylmethacrylate-methylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxyethylmethacrylate:methylmethacrylate is 0.3:0.32:0.3.
  • 29. A polymer as set forth in claim 20 comprising poly(tosylethylmethacrylate-hydroxypropylacrylate-methylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxypropylacrylate:methylmethacrylate is 0.3:0.33:0.3.
  • 30. A polymer as set forth in claim 20 comprising poly(tosylethylmethacrylate-hydroxypropylmethacrylate-methylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxypropylmethacrylate:methylmethacrylate is 0.3:0.3:0.3.
  • 31. A polymer as set forth in claim 20 comprising poly(tosylethylmethacrylate-hydroxybutylacrylate-methylmethacrylate) wherein the mole ratio of tosylethylmethacrylate:hydroxybutylacrylate:methylmethacrylate is 0.3:0.33:0.3.
  • 32. A method for preparing a polymer of claim 20 comprising polymerizing a tosylalkylacrylate-type monomer, a hydroxyalkylacrylate-type monomer and an alkylacrylate-type monomer in a solvent in the presence of an initiator as shown in the following reaction equation 2:
  • 33. A method for preparing a polymer as set forth in claim 32, wherein R1 represents methyl.
  • 34. A method for preparing a polymer as set forth in claim 32, wherein the initiator is selected from the group consisting of 2,2-azobisisobutyronitrile (AIBN), acetylperoxide, laurylperoxide and t-butylperoxide.
  • 35. A method for preparing a polymer as set forth in claim 32, wherein the solvent is selected from the group consisting of tetrahydrofuran, toluene, benzene, methylethylketone and dioxane.
  • 36. A method for preparing a polymer as set forth in claim 32, wherein the polymerizing reaction is conducted at 50-80° C.
  • 37. An anti-reflective coating comprising the polymer of claim 3.
  • 38. A method for preparing an anti-reflective coating, which comprises dissolving 200-5000% (w/w) of the polymer of claim 3 in an organic solvent to form a coating composition; coating said composition on a wafer; and subjecting the coated wafer to hard baking for 10 to 1000 sec. at 100-300° C.
  • 39. A method as set forth in claim 38, wherein the organic solvent is selected from the group consisting of ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, cyclohexanone and propyleneglycolmethyletheracetate.
  • 40. An anti-reflective coating comprising the polymer of claim 20 and an additive selected from the group consisting of acroleindimethylacetal, acroleindiethylacetal and melamine-type crosslinkers.
  • 41. A method for preparing anti-reflective coating useful in fabricating semiconductor devices which comprises dissolving 200-5000% (w/w) of the polymer of claim 20 in a organic solvent; completely dissolving therein an additive selected from the group consisting of acroleindimethylacetal, acroleindiethylacetal and melamine type cross-linkers to form a coating composition; filtering said composition, coating said composition on a wafer; and subjecting the coated wafer to hard baking for 10 to 1000 sec. at 100-300° C.
  • 42. A method as set forth in claim 41, wherein the organic solvent is selected from the group consisting of ethyl 3-ethoxypropionate, methyl 3-methoypropionate, cyclohexanone and propyleneglycolmethyletheracetate.
  • 43. A method as set forth in claim 41, wherein said additive is used at an amount of 0.1 to 30% (w/w).
  • 44. A semiconductor device comprising the anti-reflective coating of claim 37.
  • 45. A semiconductor device comprising the anti-reflective coating of claim 40.
Priority Claims (1)
Number Date Country Kind
99-24469 Jun 1999 KR
Continuations (1)
Number Date Country
Parent 09603485 Jun 2000 US
Child 10438531 May 2003 US