Organic compound and organic electroluminescent element comprising same

Information

  • Patent Grant
  • 10008675
  • Patent Number
    10,008,675
  • Date Filed
    Tuesday, December 16, 2014
    10 years ago
  • Date Issued
    Tuesday, June 26, 2018
    6 years ago
Abstract
The present disclosure relates to a novel compound and an organic electroluminescent element including the same, and the compound according to the present disclosure is used for an organic material layer of the organic electroluminescent element, thereby improving the light emitting efficiency, driving voltage, lifetime, and the like of the organic electroluminescent element.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a National Stage of International Application No. PCT/KR2014/012386 filed Dec. 16, 2014, claiming priority based on Korean Patent Application No. 10-2013-0157627 filed Dec. 17, 2013, the contents of all of which are incorporated herein by reference in their entirety.


TECHNICAL FIELD

The present disclosure relates to a novel organic compound and an organic electroluminescent element comprising the same, and more particularly, to a novel compound which is excellent in carrier transporting capability, light emitting capability, and the like, and an organic electroluminescent element including the compound as a material for an organic material layer, thereby improving characteristics, such as light emitting efficiency, driving voltage, lifetime, and the like.


BACKGROUND ART

Studies on an organic electroluminescent (EL) element (hereinafter, simply referred to as ‘organic EL element’) have continued from the start point of observing an organic thin film light emission by Bernanose in the 1950s to blue electric light emission using an anthracene single crystal in 1965, and then an organic EL element having a laminated structure which is divided into functional layers of a hole layer and a light emitting layer was proposed by Tang in 1987. Since then, the organic EL element has been developed in a form in which a specific organic material layer is introduced into the element and a specialized material used therefor has been developed in order to improve the efficiency and lifetime of an organic EL element.


In the organic EL element, when voltage is applied between two electrodes, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer at the cathode. When the injected holes and electrons meet each other, an exciton is formed, and then the exciton falls down to a bottom state to emit light. Materials used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transporting material, an electron transporting material, an electron injection material, and the like according to the function.


Light emitting materials may be divided into blue, green, and red light emitting materials according to the light emitting color. In addition, the light emitting materials may be classified into yellow and orange light emitting materials which are necessary for implementing a more natural color. Furthermore, a host/dopant system may be used as a light emitting material for the purpose of enhancing color purity and light emitting efficiency through energy transfer.


Dopant materials may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound including heavy atoms such as Ir and Pt. Since the development of the phosphorescent material may theoretically improve light emitting efficiency up to 4 times compared to the fluorescent material, interests in not only phosphorescent dopants, but also phosphorescent host materials have been focused.


As materials used as a hole injection layer, a hole transporting layer, a hole blocking layer, and an electron transporting layer, NPB, BCP, Alq3 and the like represented by the following Formulae have been widely known until now, and for a light emitting material, anthracene derivatives have been reported as a fluorescent dopant/host material. In particular, for the phosphorescent material having a great advantage in terms of improving the efficiency among the light emitting materials, there are metal complex compounds including Ir, such as Firpic, Ir(ppy)3, and (acac)Ir(btp)2, and the compounds are used as blue, green and red dopant materials. Until now, CBP exhibits excellent characteristics as a phosphorescent host material.


However, since the light emitting materials in the related art have a low glass transition temperature and thus are very poor in thermal stability, the materials fail to reach a level which is satisfactory in terms of lifetime for an organic EL element, and need to be improved even in terms of light emitting characteristics. Therefore, there is a need for developing a light emitting material having excellent performance.


DISCLOSURE
Technical Problem

An object of the present disclosure is to provide a novel compound which is excellent in heat resistance, carrier transporting capability, light emitting capability, and the like, and thus may be used as a material for an organic material layer of an organic electroluminescent element, particularly, a light emitting layer material, a lifetime enhancement layer material, a light emitting auxiliary layer material, or an electron transporting layer material, and the like.


Further, another object of the present disclosure is to provide an organic electroluminescent element which includes the novel compound to have a low driving voltage, a high light emitting efficiency, and an improved lifetime.


Technical Solution

The present disclosure provides a compound represented by the following Chemical Formula 1:




embedded image


in Chemical Formula 1,


X1 and X2 are the same as or different from each other, and are each independently selected from the group consisting of O, S, N(Ar1), C(Ar2)(Ar3), and Si(Ar4)(Ar5), and in this case, at least one of X1 and X2 is N(Ar1);


Y1 to Y12 are the same as or different from each other, and are each independently N or C(R1), and in this case, when R1 is present in a plural number, these are the same as or different from each other;


Ar1 to Ar5 are the same as or different from each other, and are each independently selected from the group consisting of a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, or may combine with an adjacent group to form a fused ring,


R1 is selected from the group consisting of hydrogen, deuterium, halogen, a cyano group, a nitro group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, or may combine with an adjacent group to form a fused ring, and


the alkyl group, the cycloalkyl group, the heterocycloalkyl group, the aryl group, the heteroaryl group, the alkyloxy group, the aryloxy group, the alkylsilyl group, the arylsilyl group, the alkylboron group, the arylboron group, the arylphosphine group, the arylphosphine oxide group, and the arylamine group of Ar1 to Ar5 and R1 may be each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, a C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, and in this case, the substituent may combine with an adjacent group to form a fused ring, provided that when the substituent is present in a plural number, these are the same as or different from each other.


Further, the present disclosure provides an organic electroluminescent element including an anode, a cathode, and one or more organic material layers interposed between the anode and the cathode, in which at least one of the organic material layers includes the above-described compound represented by Chemical Formula 1.


Here, according to an exemplary embodiment of the present disclosure, the one or more organic material layers include a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injection layer, and in this case, the one or more organic material layers including the compound represented by Chemical Formula 1 are a light emitting layer or an electron transporting layer.


Further, according to another exemplary embodiment of the present disclosure, the one or more organic material layers may include a hole injection layer, a hole transporting layer, a light emitting auxiliary layer, a light emitting layer, an electron transporting layer, and an electron injection layer. In this case, the one or more organic material layers including the compound represented by Chemical Formula 1 is a light emitting auxiliary layer.


Furthermore, according to still another exemplary embodiment of the present disclosure, the one or more organic material layers may include a hole injection layer, a hole transporting layer, a light emitting layer, a lifetime enhancement layer, an electron transporting layer, and an electron injection layer. In this case, the one or more organic material layers including the compound represented by Chemical Formula 1 are a lifetime enhancement layer.


Advantageous Effects

Since the compound represented by Chemical Formula 1 according to the present disclosure is excellent in heat resistance, carrier transporting capability, light emitting capability, and the like, the compound may be used as a material for an organic material layer of an organic electroluminescent element.


Further, for the organic electroluminescent element including the compound according to the present disclosure, the aspects such as light emitting performance, driving voltage, lifetime, and efficiency may be significantly improved, and accordingly, the organic electroluminescent element may be effectively applied to a full-color display panel, and the like.







BEST MODE

Hereinafter, the present disclosure will be described.


1. Novel Compound


A novel organic compound according to the present disclosure forms a basic structure from the fusion of a benzene fused 5-membered heteroaromatic ring moiety, an indene moiety, or an indole moiety with dibenzoazepine (5H-dibenzo[b,f]azepine), dibenzooxepine (dibenzo[b,f]oxepine), dibenzothiepine (dibenzo[b,f]thiepine), dibenzosilepine (5H-dibenzo[b,f]silepine), or dibenzocycloheptene (5H-dibenzo[a,d]cycloheptene), and is represented by Chemical Formula 1. Since the compound represented by Chemical Formula 1 has a higher molecular weight than a material for an organic EL element in the related art [for example: 4,4-dicarbazolybiphenyl (hereinafter, referred to as ‘CBP’), the compound has excellent thermal stability due to a high glass transition temperature, and carrier transporting capability, light emitting capability, and the like. Accordingly, when an organic electroluminescent element includes the compound of Chemical Formula 1, the driving voltage, efficiency, lifetime, and the like of the element may be improved.


In general, in the phosphorescent light emitting layer of an organic electroluminescent element, a host material needs to have a triplet energy gap greater than a triplet energy gap of the dopant. That is, when the lowest excitation state of the host has a greater energy than the lowest emission state of the dopant, the phosphorescent light emitting efficiency may be improved. The compound of Chemical Formula 1 has a high triplet energy of 2.3 eV or more. Further, the compound represented by Chemical Formula 1 may be used as a host material because a specific substituent is introduced into the basic structure in which an indole derivative having a wide singlet energy level and a high triplet energy level is fused, and thus, the energy level may be adjusted to a higher level than that of the dopant.


Further, the compound of the present disclosure has a high triplet energy as described above, and thus may prevent excitons produced from a light emitting layer from diffusing into an electron transporting layer or a hole transporting layer adjacent to the light emitting layer. Accordingly, when the compound of Chemical Formula 1 is used to form an organic material layer (hereinafter, referred to as a ‘light emitting auxiliary layer’) between a hole transporting layer and a light emitting layer, the diffusion of excitons is prevented by the compound such that the number of excitons substantially contributing to light emission in the light emitting layer is increased, and thus the light emitting efficiency of the element may be improved unlike an organic electroluminescent element in the related art, which does not include the light emitting auxiliary layer. Further, even when the compound of Chemical Formula 1 is used to form an organic material layer (hereinafter, referred to as a ‘lifetime enhancement layer’) between a light emitting layer and an electron transporting layer, the diffusion of excitons is prevented by the compound of Chemical Formula 1, and thus, the durability and stability of the organic electroluminescent element may be improved, thereby efficiently increasing the half-lifetime of the element. As described above, the compound represented by Chemical Formula 1 may be used as a material for the light emitting auxiliary layer or a material for the lifetime enhancement layer, in addition to the host of the light emitting layer.


In addition, the compound of Chemical Formula 1 may have a wide bandgap and may have high carrier transporting capability because the HOMO and LUMO energy levels may be adjusted according to the type of substituent to be introduced into the basic structure. For example, in the compound, when an electron withdrawing group (EWG) having large electron absorption properties, such as a nitrogen-containing hetero ring (for example, a pyridine group, a pyrimidine group, a triazine group, and the like) is bonded to the basic structure, the entire molecule has bipolar characteristics, thereby increasing the binding force between holes and electrons. As described above, the compound of Chemical Formula 1, in which the EWG is introduced into the basic structure, has excellent carrier transporting capability and light emitting characteristics, and thus, may also be used as an electron injection/transporting layer material, or a lifetime enhancement layer material in addition to a light emitting layer material of an organic electroluminescent element. Meanwhile, when an electron donor group (EDG) having great electron donor properties, such as an arylamine group, a carbazole group, a terphenyl group, and a triphenylene group is bonded to the basic structure, holes are smoothly injected and transported, so that the compound of Chemical Formula 1 may be usefully used as a hole injection/transporting layer material or a light emitting auxiliary layer material in addition to a light emitting layer material.


As described above, the compound represented by Chemical Formula 1 may improve the light emitting efficiency of the organic electroluminescent element, and simultaneously improve hole injection/transporting capability, electron injection/transporting capability, light emitting efficiency, driving voltage, lifetime characteristics, and the like. Accordingly, the compound of Chemical Formula 1 according to the present disclosure may be used as an organic material layer material, preferably a light emitting layer material (blue, green, and/or red phosphorescent host material), an electron transporting/injection layer material and a hole transporting/injection layer material, a light emitting auxiliary layer material, a lifetime enhancement layer material, and more preferably, a light emitting layer material, an electron injection layer material, a light emitting auxiliary layer material, and a lifetime enhancement layer material, of the organic electroluminescent element.


Further, in the compound of Chemical Formula 1, various substituents, particularly an aryl group and/or a heteroaryl group are/is introduced into the basic structure to significantly increase the molecular weight of the compound and improve the glass transition temperature, and accordingly, the compound may have higher thermal stability than the light emitting material in the related art (for example, CBP). In addition, the compound represented by Chemical Formula 1 is also effective for suppressing crystallization of the organic material layer. Accordingly, in the organic electroluminescent element including the compound of Chemical Formula 1 according to the present disclosure, performance and lifetime characteristics may be greatly improved, and even in a full-color organic light emitting panel to which the organic electroluminescent element is applied, performance may be maximized.


In the compound represented by Chemical Formula 1 according to the present disclosure, X1 and X2 are the same as or different from each other, and are each independently selected from the group consisting of O, S, N(Ar1), C(Ar2)(Ar3), and Si(Ar4)(Ar5), preferably are each independently selected from the group consisting of O, S, and N(Ar1). In this case, at least one of X1 and X2 is N(Ar1).


The compound represented by Chemical Formula 1 may be embodied as any one of the following Chemical Formulae 2 to 10.




embedded image


embedded image


in Chemical Formulae 2 to 10,


Ar1 to Ar5 and Y1 to Y12 are each the same as those defined in Chemical Formula 1.


In Chemical Formulae 1 to 10, Ar1 to Ar5 are the same as or different from each other, and are each independently selected from the group consisting of a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, or may combine with an adjacent group to form a fused ring.


Preferably, Ar1 may be selected from the group consisting of a C6 to C60 aryl group, and a heteroaryl group having 5 to 60 nuclear atoms.


Preferably, Ar2 to Ar5 are the same as or different from each other, and may be each independently selected from the group consisting of a C1 to C40 alkyl group and a C6 to C60 aryl group, and more preferably, Ar2 to Ar5 are the same as or different from each other, and may be each independently a methyl group or a phenyl group.


Further, Y1 to Y12 are the same as or different from each other, and are each independently N or C(R1), and preferably, all of Y1 to Y12 are C(R1), or one of Y1 to Y12 may be N, and the others may be C(R1). In this case, when R1 is present in a plural number, these are the same as or different from each other.


R1 is selected from the group consisting of hydrogen, deuterium, halogen, a cyano group, a nitro group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, or may combine with an adjacent group to form a fused ring.


The alkyl group, the cycloalkyl group, the heterocycloalkyl group, the aryl group, the heteroaryl group, the alkyloxy group, the aryloxy group, the alkylsilyl group, the arylsilyl group, the alkylboron group, the arylboron group, the arylphosphine group, the arylphosphine oxide group, and the arylamine group of Ar1 to Ar5 and R1 may be each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium (D), halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, a C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, and in this case, the substituent may combine with an adjacent group to form a fused ring. Provided that when the substituent is present in a plural number, these are the same as or different from each other.


Further, Ar1 to Ar5 and R1 are the same as or different from each other, and may be each independently selected from hydrogen (provided that Ar1 to Ar5 are excluded) or the group consisting of the following substituents S1 to S204, but the substituents are not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Further, in Chemical Formulae 1 to 10, Ar1 and R1 are the same as or different from each other, and are each independently a substituent represented by the following Chemical Formula 11, or a C6 to C60 aryl group (for example, a phenyl group, a biphenyl group, a terphenyl group, a fluorene group, and the like), and


in this case, the aryl group of Ar1 and R1 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium (D), halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C1 to C40 alkyloxy group, a C6 to C60 aryloxy group, a C1 to C40 alkylsilyl group, a C6 to C60 arylsilyl group, a C1 to C40 alkylboron group, a C6 to C60 arylboron group, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, and in this case, the substituent may combine with an adjacent group to form a fused ring, provided that when the substituent is present in a plural number, these are the same as or different from each other.




embedded image


in Chemical Formula 11,


L is a single bond, or is selected from the group consisting of a C6 to C18 arylene group and a heteroarylene group having 5 to 18 nuclear atoms, and may be preferably a single bond or may be a phenylene group or a biphenylene group;


Z1 to Z5 are the same as or different from each other, and are each independently N or C(R11), provided that at least one of Z1 to Z5 is N, and in this case, when C(R11) is present in a plural number, these are the same as or different from each other;


R11 is selected from the group consisting of hydrogen, deuterium (D), halogen, a cyano group, a C1 to C40 alkyl group, a C6 to C40 aryl group, a heteroaryl group having 5 to 40 nuclear atoms, a C6 to C40 aryloxy group, a C1 to C40 alkyloxy group, a C6 to C40 arylamine group, a C1 to C40 alkylsilyl group, a C1 to C40 alkylboron group, a C6 to C40 arylboron group, a C6 to C40 arylphosphine group, a C6 to C40 arylphosphine oxide group, and a C6 to C40 arylsilyl group, or may combine with an adjacent group to form a fused ring;


in this case, the alkyl group, the aryl group, the heteroaryl group, the aryloxy group, the alkyloxy group, the arylamine group, the alkylsilyl group, the alkylboron group, the arylboron group, the arylphosphine group, the arylphospine oxide group, and the arylsilyl group of R11 may be each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium (D), halogen, a cyano group, a C1 to C40 alkyl group, a C2 to C40 alkenyl group, a C2 to C40 alkynyl group, a C6 to C40 aryl group, a heteroaryl group having 5 to 40 nuclear atoms, a C6 to C40 aryloxy group, a C1 to C40 alkyloxy group, a C6 to C40 arylamine group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C1 to C40 alkylsilyl group, a C1 to C40 alkylboron group, a C6 to C40 arylboron group, a C6 to C40 arylphosphine group, a C6 to C40 arylphosphine oxide group, and a C6 to C40 arylsilyl group, and in this case, when the substituent is present in a plural number, these are the same as or different from each other.


Examples of the substituent represented by Chemical Formula 11 include a substituent represented by any one of the following Chemical Formulae A-1 to A-15, and the examples are not limited thereto.




embedded image


embedded image


In Chemical Formulae A-1 to A-15,


L and R11 are each the same as those defined in Chemical Formula 11,


A plurality of R12 is the same as or different from each other,


R12 is selected from the group consisting of hydrogen, deuterium (D), halogen, a cyano group, a C1 to C40 alkyl group, a C6 to C40 aryl group, a heteroaryl group having 5 to 40 nuclear atoms, a C6 to C40 aryloxy group, a C1 to C40 alkyloxy group, a C6 to C40 arylamine group, a C1 to C40 alkylsilyl group, a C1 to C40 alkylboron group, a C6 to C40 arylboron group, a C6 to C40 arylphosphine group, a C6 to C40 arylphosphine oxide group, and a C6 to C40 arylsilyl group, or may combine with an adjacent group to form a fused ring,


n is an integer of 1 to 4, in this case, the alkyl group, the aryl group, the heteroaryl group, the aryloxy group, the alkyloxy group, the arylamine group, the alkylsilyl group, the alkylboron group, the arylboron group, the arylphosphine group, the arylphospine oxide group, and the arylsilyl group of R12 may be each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium (D), halogen, a cyano group, a C1 to C40 alkyl group, a C2 to C40 alkenyl group, a C2 to C40 alkynyl group, a C6 to C40 aryl group, a heteroaryl group having 5 to 40 nuclear atoms, a C6 to C40 aryloxy group, a C1 to C40 alkyloxy group, a C6 to C40 arylamine group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C1 to C40 alkylsilyl group, a C1 to C40 alkylboron group, a C6 to C40 arylboron group, a C6 to C40 arylphosphine group, a C6 to C40 arylphosphine oxide group, and a C6 to C40 arylsilyl group, and in this case, when the substituent is present in a plural number, these are the same as or different from each other.


The compound represented by Chemical Formula 1 according to the present disclosure may be embodied by any one of the following Chemical Formulae 12 to 20, but is not limited thereto.




embedded image


embedded image


In Chemical Formulae 12 to 20,


Ar1 to Ar5 are each the same as those defined in Chemical Formula 1, and


a plurality of Ar1 is the same as or different from each other.


Examples of the compound represented by Chemical Formula 1 according to the present disclosure include Compounds A-1 to A-23, Compounds B-1 to B-23, Compounds C-1 to C-23, Compounds D-1 to D-23, Compounds E-1 to E-23, Compounds F-1 to F-23, Compounds G-1 to G-23, Compounds H-1 to H-23, Compounds I-1 to I-23, Compounds J-1 to J-10, Compounds K-1 to K-10, Compounds L-1 to L-3, Compounds M-1 to M-3, Compounds N-1 to N-3, Compounds O-1 to O-3, Compounds P-1 to P-16, Compounds Q-1 to Q41, but the examples are not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The “unsubstituted alkyl” used in the present disclosure means a monovalent functional group obtained by removing a hydrogen atom from a linear or branched, saturated hydrocarbon having 1 to 40 carbon atoms. Non-limiting examples of the alkyl include methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, hexyl, and the like.


The “unsubstituted cycloalkyl” used in the present disclosure means a monovalent functional group obtained by removing a hydrogen atom from a monocyclic or polycyclic non-aromatic hydrocarbon (saturated cyclic hydrocarbon) having 3 to 40 carbon atoms. Non-limiting examples of the cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.


The “unsubstituted heterocycloalkyl” used in the present disclosure means a monovalent functional group obtained by removing a hydrogen atom from a non-aromatic hydrocarbon (saturated cyclic hydrocarbon) having 3 to 40 nuclear atoms. In this case, in the heterocycloalkyl, one or more carbons, preferably 1 to 3 carbons in the ring are substituted with a heteroatom such as N, O, or S. Non-limiting examples of the heterocycloalkyl include morpholine, piperazine, and the like.


The “unsubstituted aryl” used in the present disclosure means a monovalent functional group obtained by removing a hydrogen atom from an aromatic hydrocarbon having 6 to 60 carbon atoms, in which a single ring or two or more rings are combined. In this case, in the aryl, two or more rings may be simply pendant to each other, or pendant to each other in a fused form. Non-limiting examples of the aryl include phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl, and the like.


The “unsubstituted heteroaryl” used in the present disclosure means a monovalent functional group obtained by removing a hydrogen atom from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. In this case, in the heteroaryl, one or more carbons, preferably 1 to 3 carbons in the ring are substituted with a heteroatom such as nitrogen (N), oxygen (O), sulfur (S) or selenium (Se). Further, in the heteroaryl, two or more rings may be simply pendant to each other, or pendant to each other in a fused form, and furthermore, may also include a fused form with an aryl group. Non-limiting examples of the heteroaryl include: a 6-membered monocyclic ring, such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl; a polycyclic ring, such as phenoxathienyl, indolizinyl, indolyl, purinyl, quinolyl, benzothiazole, and carbazolyl; and 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl, and the like.


The “unsubstituted alkyloxy” used in the present disclosure means a monovalent functional group represented by RO—. In this case, R may include a linear, branched, or cyclic structure as an alkyl having 1 to 40 carbon atoms. Non-limiting examples of the alkyloxy include methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy, and the like.


The “unsubstituted aryloxy” used in the present disclosure means a monovalent functional group represented by R′O—. In this case, R′ is an aryl having 6 to 60 carbon atoms. Non-limiting examples of the aryloxy include phenyloxy, naphthyloxy, diphenyloxy, and the like.


The “unsubstituted alkylsilyl” used in the present disclosure means a silyl which is substituted with an alkyl having 1 to 40 carbon atoms, the “unsubstituted arylsilyl” means a silyl which is substituted with an aryl having 6 to 60 carbon atoms, the “unsubstituted alkylboron group” means a boron group which is substituted with an alkyl having 1 to 40 carbon atoms, the “unsubstituted arylboron group” means a boron group which is substituted with an aryl having 6 to 60 carbon atoms, the “unsubstituted arylphosphine group” means a phosphine group which is substituted with an aryl having 1 to 60 carbon atoms, and the “unsubstituted arylamine” means an amine which is substituted with an aryl having 6 to 60 carbon atoms.


The “fused ring” used in the present disclosure means a fused aliphatic ring, a fused aromatic ring, a fused heteroaliphatic ring, a fused heteroaromatic ring, or a combined form thereof.


The compound of Chemical Formula 1 of the present disclosure may be synthesized by a general synthesis method (see Chem. Rev., 60:313 (1960); J. Chem. SOC. 4482 (1955); Chem. Rev. 95: 2457 (1995), and the like). The detailed synthesis process of the compound of the present disclosure will be described in detail in the Synthesis Examples to be described below.


2. Organic Electroluminescent Element


Meanwhile, the present disclosure provides an organic electroluminescent element including the above-described compound represented by Chemical Formula 1.


Specifically, the present disclosure provides an organic electroluminescent element including an anode, a cathode, and one or more organic material layers interposed between the anode and the cathode, in which at least one of the organic material layers includes the compound represented by Chemical Formula 1. In this case, the compounds represented by Chemical Formula 1 may be used either alone or in mixture of two or more thereof.


According to an exemplary embodiment of the present disclosure, the one or more organic material layers include a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injection layer, and among them, at least one organic material layer may include the compound represented by Chemical Formula 1. Preferably, the organic material layer including the compound of Chemical Formula 1 may be a light emitting layer or an electron transporting layer. Optionally, a hole blocking layer may be interposed between the light emitting layer and the electron transporting layer.


For example, when the light emitting layer of the organic electroluminescent element includes a host material, in this case, the light emitting layer may include the compound represented by Chemical Formula 1 as the host material. As described above, when the compound represented by Chemical Formula 1 is included as a light emitting layer material, preferably a green or red phosphorescent host of the organic electroluminescent element, the efficiency (light emitting efficiency and power efficiency), lifetime, brightness, driving voltage, and the like of the organic electroluminescent element may be improved because the binding force of holes and electrons is increased in the light emitting layer.


According to another exemplary embodiment of the present disclosure, the one or more organic material layers may include a hole injection layer, a hole transporting layer, a light emitting auxiliary layer, a light emitting layer, an electron transporting layer, and an electron injection layer, and in this case, at least one of the organic material layers, preferably a light emitting auxiliary layer may include the compound of Chemical Formula 1. Optionally, a hole blocking layer may be interposed between the light emitting layer and the electron transporting layer.


Further, according to still another exemplary embodiment of the present disclosure, the one or more organic material layers may include a hole injection layer, a hole transporting layer, a light emitting layer, a lifetime enhancement layer, an electron transporting layer, and an electron injection layer, and in this case, at least one of the organic material layers, preferably a lifetime enhancement layer may include the compound of Chemical Formula 1. When the compound of Chemical Formula 1 is used as a material for the lifetime enhancement layer, the compound has a higher triplet energy than that of BCP in the related art, and thus may improve the lifetime of the organic electroluminescent element.


The structure of the above-described organic electroluminescent element according to the present disclosure is not particularly limited, and may be, for example, a structure in which an anode, one or more organic material layers, and a cathode are sequentially laminated on a substrate, and an insulation layer or an adhesion layer is inserted into the interface between the electrode and the organic material layer.


Specifically, the structure of the organic electroluminescent element may be a structure in which an anode, a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injection layer, and a cathode are sequentially laminated on a substrate. Optionally, a light emitting auxiliary layer may be interposed between the hole transporting layer and the light emitting layer. Further, a lifetime enhancement layer may be interposed between the light emitting layer and the electron transporting layer. In this case, one or more of the hole injection layer, the hole transporting layer, the light emitting layer, the electron transporting layer, the electron injection layer, the light emitting auxiliary layer, and the lifetime enhancement layer may include the compound represented by Chemical Formula 1, and preferably, one or more of the phosphorescent light emitting layer, the electron transporting layer, the lifetime enhancement layer, and the light emitting auxiliary layer may include the compound represented by Chemical Formula 1.


The organic electroluminescent element of the present disclosure may be manufactured by forming other organic material layers and electrodes using materials and methods known in the art, except that at least one of the the organic material layers (for example, one or more of the light emitting layer, the electron transporting layer, the light emitting auxiliary layer, and the lifetime enhancement layer) are formed so as to include the compound represented by Chemical Formula 1.


The organic material layers may be formed by a vacuum deposition method or a solution application method. Examples of the solution application method include spin coating, dip coating, doctor blading, inkjet printing, or a thermal transferring method, and the like, but are not limited thereto.


A substrate which may be used in the present disclosure is not particularly limited, and a silicon wafer, quartz, a glass plate, a metal plate, a plastic film and sheet or the like may be used.


Further, examples of an anode material include: a metal, such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; a metal oxide, such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); a combination of metal and oxide, such as ZnO:Al or SnO2:Sb; an electrically conductive polymer, such as polythiophene, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole, and polyaniline; carbon black, and the like, but are not limited thereto.


Further, examples of a cathode material include: a metal, such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin or lead, or alloys thereof; and a multi-layered structural material, such as LiF/Al or LiO2/Al, and the like, but are not limited thereto.


Hereinafter, the present disclosure will be described in detail through the Examples. However, the following Examples only exemplify the present disclosure, and the present disclosure is not limited by the following Examples.


[Preparation Example 1] Synthesis of Compound IAz-1
<Step 1> Synthesis of 1-(5H-dibenzo[b,f]azepin-5-yl)ethanone



embedded image


5H-dibenzo[b,f]azepine (100.0 g, 517.5 mmol), acetyl chloride (44.3 ml, 621.0 mmol), and toluene (1,000 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 80° C. for 2 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then concentrated and recrystallized with ethanol to obtain 1-(5H-dibenzo[b,f]azepin-5-yl)ethanone (113.2 g, yield 93%).



1H-NMR: δ 1.86 (s, 3H), 6.92 (d, 1H), 6.98 (d, 1H), 7.26-7.45 (m, 8H)


<Step 2> Synthesis of 1-(1aH-dibenzo[b,f]oxireno[2,3-d]azepin-6(10bH)-yl)ethanone



embedded image


1-(5H-dibenzo[b,f]azepin-5-yl)ethanone (113.2 g, 481.3 mmol) obtained in <Step 1> of Preparation Example 1, meta-chloroperoxybenzoic acid (99.7 g, 577.5 mmol), silica (226.5 g), NaOCl (226.5 g), and acetonitrile (1,100 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 80° C. for 2 hours.


After the reaction was terminated, the organic layer was extracted with methylene chloride, MgSO4 was added thereto, and the resulting product was filtered. The solvent was removed from the obtained organic layer, and then recrystallized with ethanol to obtain 1-(1aH-dibenzo[b,f]oxireno[2,3-d]azepin-6(10bH)-yl)ethanone (87.1 g, yield 72%).



1H-NMR: δ 1.95 (s, 3H), 4.28 (s, 2H), 7.26-7.53 (m, 8H)


<Step 3> Synthesis of 5-acetyl-5H-dibenzo[b,f]azepin-10(11H)-one



embedded image


1-(1aH-dibenzo[b,f]oxireno[2,3-d]azepin-6(10bH)-yl)ethanone (87.1 g, 346.5 mmol) obtained in <Step 2> of Preparation Example 1, lithium iodide (55.7 g, 415.8 mmol), and chloroform (870 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 60° C. for 1 hour.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-acetyl-5H-dibenzo[b,f]azepin-10(11H)-one (70.5 g, yield 81%).



1H-NMR: δ 2.10 (s, 3H), 3.85 (d, 1H), 4.33 (d, 1H), 7.30-7.40 (m, 5H), 7.51-7.59 (m, 2H), 8.10 (d, 1H)


<Step 4> Synthesis of 5H-dibenzo[b,f]azepin-10(11H)-one



embedded image


5-acetyl-5H-dibenzo[b,f]azepin-10(11H)-one (70.5 g, 280.7 mmol) obtained in <Step 3> of Preparation Example 1, potassium hydroxide (17.3 g, 308.7 mmol), and ethylene glycol (700 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 200° C. for 6 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and purification was performed by column chromatography (hexane:EA=6:1 (v/v)) to obtain 5H-dibenzo[b,f]azepin-10(11H)-one.



1H-NMR: δ 3.80 (d, 1H), 4.25 (d, 1H), 7.20-7.35 (m, 5H), 7.45-7.51 (m, 2H), 7.61 (b, 1H), 8.07 (d, 1H)


<Step 5> Synthesis of Compound IAz-1



embedded image


5H-dibenzo[b,f]azepin-10(11H)-one (52.9 g, 252.6 mmol) obtained in <Step 4> of Preparation Example 1, N,N-diphenylhydrazine (51.2 g, 277.9 mmol), and acetic acid (500 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-1 (66.1 g, yield 73%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=4:1 (v:v)).



1H-NMR of IAz-1: δ 6.68-6.70 (m, 2H), 6.91-6.99 (m, 2H), 7.09 (t, 1H), 7.19-7.25 (m, 7H), 7.34-7.39 (m, 3H), 7.60 (b, 1H), 7.88 (d, 1H), 8.02 (d, 1H)


[Preparation Example 2] Synthesis of Compound IAz-2
<Step 1> Synthesis of 5-phenyl-5H-dibenzo[b,f]azepine



embedded image


5-H-dibenzo[b,f]azepine (100 g, 517.5 mmol), iodobenzene (126.7 g, 621.0 mmol), Cu (16.4 g, 258.7 mmol), K2CO3 (143.0 g, 1,035.0 mmol), and nitrobenzene (1,000 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then concentrated and recrystallized with ethanol to obtain 5-phenyl-5H-dibenzo[b,f]azepine (100.4 g, yield 72%).



1H-NMR: δ 6.63-6.81 (m, 3H), 6.92 (d, 1H), 6.98 (d, 1H), 7.20 (d, 2H), 7.26-7.45 (m, 8H)


<Step 2> Synthesis of 6-phenyl-6,10b-dihydro-1aH-dibenzo[b,f]oxireno[2,3-d]azepine



embedded image


5-phenyl-5H-dibenzo[b,f]azepine (100.4 g, 372.6 mmol) obtained in <Step 1> of Preparation Example 2, meta-chloroperoxybenzoic acid (77.2 g, 447.1 mmol), silica (200.7 g), NaOCl (200.7 g), and acetonitrile (1,000 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 80° C. for 2 hours.


After the reaction was terminated, the organic layer was extracted with methylene chloride, MgSO4 was added thereto, and the resulting product was filtered. The solvent was removed from the obtained organic layer, and then recrystallization was performed with ethanol to obtain 6-phenyl-6,10b-dihydro-1aH-dibenzo[b,f]oxireno[2,3-d]azepine (84.0 g, yield 79%).



1H-NMR: δ 4.31 (s, 2H), 6.63-6.81 (m, 3H), 7.24-7.53 (m, 10H)


<Step 3> Synthesis of 5-phenyl-5H-dibenzo[b,f]azepin-10(11H)-one



embedded image


6-phenyl-6,10b-dihydro-1aH-dibenzo[b,f]oxireno[2,3-d]azepine (84.0 g, 294.3 mmol) obtained in <Step 2> of Preparation Example 2, lithium iodide (47.3 g, 353.2 mmol), and chloroform (840 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 60° C. for 1 hour.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-phenyl-5H-dibenzo[b,f]azepin-10(11H)-one (68.0 g, yield 81%).



1H-NMR: 3.42 (d, 1H), 4.21 (d, 1H), 6.62-6.74 (m, 3H), 7.25-7.40 (m, 7H), 7.51-7.59 (m, 2H), 8.10 (d, 1H)


<Step 4> Synthesis of Compound IAz-2



embedded image


5-phenyl-5H-dibenzo[b,f]azepin-10(11H)-one (68.0 g, 238.4 mmol) obtained in <Step 3> of Preparation Example 2, phenylhydrazine (28.4 g, 262.3 mmol), and acetic acid (700 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-2 (60.7 g, yield 71%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=3:1 (v:v)).



1H-NMR of IAz-2: δ 6.63-6.69 (m, 4H), 6.81-6.87 (m, 3H), 7.08-7.20 (m, 6H), 7.44-7.56 (m, 3H), 8.83 (d, 1H), 11.36 (b, 1H)


[Preparation Example 3] Synthesis of Compound IAz-3
<Step 1> Synthesis of 5-(1-bromo-3,5-diphenylbenzene)-5H-dibenzo[b,f]azepine



embedded image


5-H-dibenzo[b,f]azepine (100 g, 517.5 mmol), 1-bromo-3,5-diphenylbenzene (192.0 g, 621.0 mmol), Cu (16.4 g, 258.7 mmol), K2CO3 (143.0 g, 1,035.0 mmol), and nitrobenzene (1,000 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then concentrated and recrystallized with ethanol to obtain 5-(1-bromo-3,5-diphenylbenzene)-5H-dibenzo[b,f]azepine (146.2 g, yield 67%).



1H-NMR: δ 6.63 (d, 2H), 6.81-6.85 (m, 4H), 6.99-7.06 (m, 5H), 7.25 (d, 2H), 7.41-7.52 (m, 10H)


<Step 2> Synthesis of 6-(1-bromo-3,5-diphenylbenzene)-6,10b-dihydro-1aH-dibenzo[b,f]oxireno[2,3-d]azepin



embedded image


5-(1-bromo-3,5-diphenylbenzene)-5H-dibenzo[b,f]azepine (146.2 g, 346.7 mmol) obtained in <Step 1> of Preparation Example 3, meta-chloroperoxybenzoic acid (71.8 g, 416.1 mmol), silica (292.3 g), NaOCl (292.3 g), and acetonitrile (1,500 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 80° C. for 2 hours.


After the reaction was terminated, the organic layer was extracted with methylene chloride, MgSO4 was added thereto, and the resulting product was filtered. The solvent was removed from the obtained organic layer, and then recrystallization was performed with ethanol to obtain 6-(1-bromo-3,5-diphenylbenzene)-6,10b-dihydro-1aH-dibenzo[b,f]oxireno[2,3-d]azepine (113.8 g, yield 75%).



1H-NMR: δ 4.20 (s, 2H), 6.56 (d, 2H), 6.74 (t, 2H), 6.85 (s, 2H), 7.06-7.13 (m, 5H), 7.41-7.52 (m, 10H)


<Step 3> Synthesis of 5-(1-bromo-3,5-diphenylbenzene)-5H-dibenzo[b,f]azepin-10(11H)-one



embedded image


6-(1-bromo-3,5-diphenylbenzene)-6,10b-dihydro-1aH-dibenzo[b,f]oxireno[2,3-d]azepine (113.8 g, 260.0 mmol) obtained in <Step 2> of Preparation Example 3, lithium iodide (41.8 g, 312.0 mmol), and chloroform (1,100 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 60° C. for 1 hour.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-(1-bromo-3,5-diphenylbenzene)-5H-dibenzo[b,f]azepin-10(11H)-one (89.9 g, yield 79%).



1H-NMR: δ 3.41 (d, 1H), 4.20 (d, 1H), 6.51 (d, 1H), 6.69-6.74 (m, 2H), 6.85 (s, 2H), 6.92-7.06 (m, 4H), 7.39-7.54 (m, 12H)


<Step 4> Synthesis of Compound IAz-3



embedded image


5-(1-bromo-3,5-diphenylbenzene)-5H-dibenzo[b,f]azepin-10(11H)-one (89.9 g, 205.4 mmol) obtained in <Step 3> of Preparation Example 3, phenylhydrazine (24.4 g, 226.0 mmol), and acetic acid (900 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-3 (69.2 g, yield 66%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=2:1 (v:v)).



1H-NMR of IAz-3: δ 6.69-6.70 (m, 2H), 6.85-6.87 (m, 4H), 7.08-7.16 (m, 5H), 7.41-7.54 (m, 13H), 8.83 (d, 1H), 11.36 (b, 1H)


[Preparation Example 4] Synthesis of Compound IAz-4
<Step 1> Synthesis of 5-acetyl-10,11-(1H-indolo)-5H-dibenzo[b,f]azepin



embedded image


5-acetyl-5H-dibenzo[b,f]azepin-10(11H)-one (70.5 g, 280.7 mmol) obtained in <Step 3> of Preparation Example 1, phenylhydrazine (33.4 g, 308.7 mmol), and acetic acid (700 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-acetyl-10,11-(1H-indolo)-5H-dibenzo[b,f]azepin (59.2 g, yield 65%).



1H-NMR: δ 2.04 (s, 3H), 7.08-7.10 (m, 2H), 7.25-7.27 (m, 2H), 7.39-7.44 (m, 3H), 7.56 (d, 1H), 7.77-7.87 (m, 3H), 9.06 (d, 1H), 11.36 (b, 1H)


<Step 2> Synthesis of 5-acetyl-10,11-[1-(1-bromo-3,5-diphenylbenzene)-1H-indolo]-5H-dibenzo[b,f]azepin



embedded image


5-acetyl-10,11-(1H-indolo)-5H-dibenzo[b,f]azepin (59.2 g, 182.4 mmol) obtained in <Step 1> of Preparation Example 4, 1-bromo-3,5-diphenylbenzene (67.7 g, 218.9 mmol), Cu (5.8 g, 91.2 mmol), K2CO3 (50.4 g, 364.9 mmol), and nitrobenzene (600 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-acetyl-10,11-[1-(1-bromo-3,5-diphenylbenzene)-1H-indolo]-5H-dibenzo[b,f]azepin (67.6 g, yield 67%).



1H-NMR: δ 2.04 (s, 3H), 7.25-7.26 (m, 2H), 7.39-7.52 (m, 14H), 7.71-7.77 (m, 2H), 7.87-7.88 (m, 3H), 8.05-8.06 (m, 2H), 8.17 (d, 1H), 9.06 (d, 1H)


<Step 3> Synthesis of Compound IAz-4



embedded image


5-acetyl-10,11-[1-(1-bromo-3,5-diphenylbenzene)-1H-indolo]-5H-dibenzo[b,f]azepin (67.6 g, 122.2 mmol) obtained in <Step 2> of Preparation Example 4, potassium hydroxide (7.5 g, 134.4 mmol), and ethylene glycol (700 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 200° C. for 6 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and purification was performed by column chromatography (hexane:EA=4:1 (v/v)) to obtain Compound IAz-4 (53.1 g, yield 85%).



1H-NMR of IAz-4: δ 6.68-6.69 (m, 2H), 6.87-6.88 (m, 2H), 7.16-7.17 (m, 2H), 7.42-7.54 (m, 13H), 7.60 (b, 1H), 7.71 (d, 1H), 7.88 (s, 1H), 8.05-8.06 (m, 2H), 8.17 (d, 1H), 8.83 (d, 1H)


[Preparation Example 5] Synthesis of Compound IAz-5
<Step 1> Synthesis of 5-acetyl-10,11-(7-phenyl-1H-indolo)-5H-dibenzo[b,f]azepin



embedded image


5-acetyl-5H-dibenzo[b,f]azepin-10(11H)-one (70.5 g, 280.7 mmol) obtained in <Step 3> of Preparation Example 1, biphenyl-2-ylhydrazine (56.9 g, 308.7 mmol), and acetic acid (700 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-acetyl-10,11-(7-phenyl-1H-indolo)-5H-dibenzo[b,f]azepin (66.3 g, yield 59%).



1H-NMR: δ 2.03 (s, 3H), 7.14-7.25 (m, 5H), 7.39-7.52 (m, 6H), 7.77-7.87 (m, 4H), 9.06 (d, 1H), 11.36 (b, 1H)


<Step 2> Synthesis of 5-acetyl-10,11-(1,7-diphenyl-1H-indolo)-5H-dibenzo[b,f]azepin



embedded image


5-acetyl-10,11-(7-phenyl-1H-indolo)-5H-dibenzo[b,f]azepin (66.3 g, 165.6 mmol) obtained in <Step 1> of Preparation Example 4, iodobenzene (40.5 g, 198.7 mmol), Cu (5.3 g, 82.8 mmol), K2CO3 (45.8 g, 331.2 mmol), and nitrobenzene (650 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain 5-acetyl-10,11-(1,7-diphenyl-1H-indolo)-5H-dibenzo[b,f]azepin (56.0 g, yield 71%).



1H-NMR: δ 2.03 (s, 3H), 7.19-7.25 (m, 4H), 7.39-7.58 (m, 11H), 7.77 (d, 1H), 7.87-7.88 (m, 2H), 8.13 (d, 1H), 8.39 (d, 1H), 9.06 (d, 1H)


<Step 3> Synthesis of Compound IAz-5



embedded image


5-acetyl-10,11-(1,7-diphenyl-1H-indolo)-5H-dibenzo[b,f]azepin (56.0 g, 117.6 mmol) obtained in <Step 2> of Preparation Example 4, potassium hydroxide (7.3 g, 129.3 mmol), and ethylene glycol (550 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 200° C. for 6 hours.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and purification was performed by column chromatography (hexane:EA=3:1 (v/v)) to obtain Compound IAz-5 (45.0 g, yield 88%).



1H-NMR of IAz-5: δ 6.69-6.70 (m, 2H), 6.86-6.87 (m, 2H), 7.16-7.19 (m, 4H), 7.41-7.58 (m, 10H), 7.60 (b, 1H), 8.13 (d, 1H), 8.39 (d, 1H), 8.83 (d, 1H)


[Preparation Example 6] Synthesis of Compound IAz-6
<Step 1> Synthesis of 1a,10b-dihydrodibenzo[b,f]oxireno[2,3-d]oxepine



embedded image


Dibenzo[b,f]oxepine (100.0 g, 514.9 mmol), meta-chloroperoxybenzoic acid (106.6 g, 617.8 mmol), silica (200.0 g), NaOCl (200.0 g), and acetonitrile (1,000 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 80° C. for 2 hours.


After the reaction was terminated, the organic layer was extracted with methylene chloride, MgSO4 was added thereto, and the resulting product was filtered. The solvent was removed from the obtained organic layer, and then recrystallization was performed with ethanol to obtain 1a,10b-dihydrodibenzo[b,f]oxireno[2,3-d]oxepine (87.7 g, yield 81%).



1H-NMR: δ 4.30 (s, 2H), 7.10 (d, 2H), 7.26-7.34 (m, 6H)


<Step 2> Synthesis of dibenzo[b,f]oxepin-10(11H)-one



embedded image


1a,10b-dihydrodibenzo[b,f]oxireno[2,3-b]oxepine (87.7 g, 417.0 mmol) obtained in <Step 1> of Preparation Example 6, lithium iodide (67.0 g, 500.4 mmol), and chloroform (900 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 60° C. for 1 hour.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain dibenzo[b,f]oxepin-10(11H)-one (69.3 g, yield 79%).



1H-NMR: δ 3.51 (d, 1H), 4.42 (d, 1H), 7.05 (t, 1H), 7.19-7.28 (m, 4H), 7.43-7.44 (m, 2H), 7.60 (t, 1H)


<Step 3> Synthesis of Compound IAz-6



embedded image


Dibenzo[b,f]oxepin-10(11H)-one (69.3 g, 329.5 mmol) obtained in <Step 2> of Preparation Example 6, phenylhydrazine (39.2 g, 362.4 mmol), and acetic acid (700 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-6 (60.7 g, yield 65%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=3:1 (v:v)).



1H-NMR of IAz-6: δ 7.08-7.09 (m, 2H), 7.20-7.23 (m, 4H), 7.37-7.44 (m, 3H), 7.56 (d, 1H), 7.75 (d, 1H), 8.39 (d, 1H), 11.36 (b, 1H)


[Preparation Example 7] Synthesis of Compound IAz-7



embedded image


Dibenzo[b,f]oxepin-10(11H)-one (69.3 g, 329.5 mmol) obtained in <Step 2> of Preparation Example 6, biphenyl-2-ylhydrazine (66.8 g, 362.4 mmol), and acetic acid (700 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-7 (55.1 g, yield 59%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=2:1 (v:v)).



1H-NMR of IAz-7: δ 7.14-7.23 (m, 7H), 7.37-7.52 (m, 6H), 7.75-7.78 (m, 2H), 8.39 (d, 1H), 11.36 (b, 1H)


[Preparation Example 8] Synthesis of Compound IAz-8
<Step 1> Synthesis of 1a,10b-dihydrodibenzo[b,f]oxireno[2,3-d]thiepine



embedded image


Dibenzo[b,f]oxepine (100.0 g, 475.5 mmol), meta-chloroperoxybenzoic acid (98.5 g, 570.6 mmol), silica (200.0 g), NaOCl (200.0 g), and acetonitrile (1,000 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 80° C. for 2 hours.


After the reaction was terminated, the organic layer was extracted with methylene chloride, MgSO4 was added thereto, and the resulting product was filtered. The solvent was removed from the obtained organic layer, and then recrystallization was performed with ethanol to obtain 1a,10b-dihydrodibenzo[b,f]oxireno[2,3-d]thiepine (80.7 g, yield 75%).



1H-NMR: δ 4.40 (s, 2H), 7.12-7.16 (m, 4H), 7.45 (t, 2H), 7.70 (d, 2H)


<Step 2> Synthesis of dibenzo[b,f]thiepin-10(11H)-one



embedded image


1a,10b-dihydrodibenzo[b,f]oxireno[2,3-d]thiepine (80.7 g, 356.7 mmol) obtained in <Step 1> of Preparation Example 8, lithium iodide (57.3.0 g, 428.0 mmol), and chloroform (800 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 60° C. for 1 hour.


After the reaction was terminated, the organic layer was extracted with ethyl acetate, and then moisture was removed using MgSO4, and recrystallization was performed in ethanol to obtain dibenzo[b,f]thiepin-10(11H)-one (59.7 g, yield 74%).



1H-NMR: δ 3.61 (d, 1H), 4.47 (d, 1H), 7.03-7.07 (m, 2H), 7.30-7.33 (m, 2H), 7.44-7.52 (m, 2H), 7.65 (d, 1H), 7.74 (d, 1H)


<Step 3> Synthesis of Compound IAz-8



embedded image


Dibenzo[b,f]thiepin-10(11H)-one (59.7 g, 263.9 mmol) obtained in <Step 2> of Preparation Example 8, phenylhydrazine (31.4 g, 290.3 mmol), and acetic acid (600 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-8 (42.7 g, yield 54%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=3:1 (v:v)).



1H-NMR of IAz-8: δ 7.09-7.10 (m, 2H), 7.21-7.25 (m, 4H), 7.44-7.59 (m, 6H), 11.36 (b, 1H)


[Preparation Example 9] Synthesis of Compound IAz-9



embedded image


Dibenzo[b,f]thiepin-10(11H)-one (59.7 g, 263.9 mmol) obtained in <Step 2> of Preparation Example 8, biphenyl-2-ylhydrazine (53.5 g, 290.3 mmol), and acetic acid (600 ml) were mixed under nitrogen flow, and then the resulting mixture was stirred at 120° C. for 12 hours.


After the reaction was terminated, the organic layer was extracted with dichloromethane, MgSO4 was added thereto, and the resulting product was filtered. Compound IAz-9 (50.5 g, yield 51%) was obtained by removing the solvent from the obtained organic layer, and then purifying the residue with column chromatography (hexane:MC=2:1 (v:v)).



1H-NMR of IAz-9: δ 7.14-7.25 (m, 7H), 7.41-7.59 (m, 8H), 7.78 (d, 1H), 11.36 (b, 1H)


[Synthesis Example 1] Synthesis of Compound A-1



embedded image


IAz-1 (2.4 g, 6.7 mmol) synthesized in Preparation Example 1, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, a solid salt was filtered, and then, purified with recrystallization to obtain Compound A-1 (2.5 g, yield 64%).


Mass (theoretical value: 587.24, measured value: 587 g/mol)


[Synthesis Example 2] Synthesis of Compound A-2



embedded image


Compound A-2 (2.4 g, yield 61%) was obtained by performing the same process as in Synthesis Example 1, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 587.24, measured value: 587 g/mol)


[Synthesis Example 3] Synthesis of Compound A-3



embedded image


Compound A-3 (2.7 g, yield 69%) was obtained by performing the same process as in Synthesis Example 1, except that 2-bromo-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 588.23, measured value: 588 g/mol)


[Synthesis Example 4] Synthesis of Compound A-4



embedded image


Compound A-4 (2.5 g, yield 73%) was obtained by performing the same process as in Synthesis Example 1, except that 4-bromo-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 588.23, measured value: 588 g/mol)


[Synthesis Example 5] Synthesis of Compound A-5



embedded image


Compound A-5 (2.8 g, yield 70%) was obtained by performing the same process as in Synthesis Example 1, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 589.23, measured value: 589 g/mol)


[Synthesis Example 6] Synthesis of Compound A-6



embedded image


Compound A-6 (3.0 g, yield 68%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 7] Synthesis of Compound A-7



embedded image


Compound A-7 (2.7 g, yield 61%) was obtained by performing the same process as in Synthesis Example 1, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 8] Synthesis of Compound A-8



embedded image


Compound A-8 (3.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 9] Synthesis of Compound A-9



embedded image


Compound A-9 (3.3 g, yield 74%) was obtained by performing the same process as in Synthesis Example 1, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 10] Synthesis of Compound A-10



embedded image


Compound A-10 (2.9 g, yield 65%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 665.26, measured value: 665 g/mol)


[Synthesis Example 11] Synthesis of Compound A-11



embedded image


Compound A-11 (2.8 g, yield 62%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 12] Synthesis of Compound A-12



embedded image


Compound A-12 (3.0 g, yield 68%) was obtained by performing the same process as in Synthesis Example 1, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 13] Synthesis of Compound A-13



embedded image


Compound A-13 (2.9 g, yield 66%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 14] Synthesis of Compound A-14



embedded image


Compound A-14 (3.2 g, yield 73%) was obtained by performing the same process as in Synthesis Example 1, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 15] Synthesis of Compound A-15



embedded image


Compound A-15 (3.2 g, yield 71%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 665.26, measured value: 665 g/mol)


[Synthesis Example 16] Synthesis of Compound A-16



embedded image


Compound A-16 (2.6 g, yield 68%) was obtained by performing the same process as in Synthesis Example 1, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 562.22, measured value: 562 g/mol)


[Synthesis Example 17] Synthesis of Compound A-17



embedded image


Compound A-17 (3.1 g, yield 67%) was obtained by performing the same process as in Synthesis Example 1, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 688.26, measured value: 688 g/mol)


[Synthesis Example 18] Synthesis of Compound A-18



embedded image


Compound A-18 (3.2 g, yield 78%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 616.20, measured value: 616 g/mol)


[Synthesis Example 19] Synthesis of Compound A-19



embedded image


Compound A-19 (2.5 g, yield 71%) was obtained by performing the same process as in Synthesis Example 1, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 524.19, measured value: 524 g/mol)


[Synthesis Example 20] Synthesis of Compound A-20



embedded image


Compound A-20 (3.3 g, yield 75%) was obtained by performing the same process as in Synthesis Example 1, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 660.26, measured value: 660 g/mol)


[Synthesis Example 21] Synthesis of Compound A-21



embedded image


Compound A-21 (2.2 g, yield 64%) was obtained by performing the same process as in Synthesis Example 1, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1. Mass (theoretical value: 512.20, measured value: 512 g/mol)


[Synthesis Example 22] Synthesis of Compound A-22



embedded image


Compound A-22 (2.4 g, yield 68%) was obtained by performing the same process as in Synthesis Example 1, except that 3′-bromobiphenyl-4-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 535.21, measured value: 535 g/mol)


[Synthesis Example 23] Synthesis of Compound A-23



embedded image


Compound A-23 (3.1 g, yield 62%) was obtained by performing the same process as in Synthesis Example 1, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 1.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 24] Synthesis of Compound B-1



embedded image


Compound IAz-2 (2.4 g, 6.7 mmol) synthesized in Preparation Example 2, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound B-1 (2.6 g, yield 66%).


Mass (theoretical value: 587.24, measured value: 587 g/mol)


[Synthesis Example 25] Synthesis of Compound B-2



embedded image


Compound B-2 (2.7 g, yield 69%) was obtained by performing the same process as in Synthesis Example 24, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 587.24, measured value: 587 g/mol)


[Synthesis Example 26] Synthesis of Compound B-3



embedded image


Compound B-3 (2.4 g, yield 62%) was obtained by performing the same process as in Synthesis Example 24, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 588.23, measured value: 588 g/mol)


[Synthesis Example 27] Synthesis of Compound B-4



embedded image


Compound B-4 (2.8 g, yield 72%) was obtained by performing the same process as in Synthesis Example 24, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 588.23, measured value: 588 g/mol)


[Synthesis Example 28] Synthesis of Compound B-5



embedded image


Compound B-5 (2.4 g, yield 61%) was obtained by performing the same process as in Synthesis Example 24, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 589.23, measured value: 589 g/mol)


[Synthesis Example 29] Synthesis of Compound B-6



embedded image


Compound B-6 (2.9 g, yield 65%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 30] Synthesis of Compound B-7



embedded image


Compound B-7 (3.3 g, yield 74%) was obtained by performing the same process as in Synthesis Example 24, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 31] Synthesis of Compound B-8



embedded image


Compound B-8 (3.5 g, yield 78%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 32] Synthesis of Compound B-9



embedded image


Compound B-9 (3.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 24, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 33] Synthesis of Compound B-10



embedded image


Compound B-10 (2.7 g, yield 61%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 665.26, measured value: 665 g/mol)


[Synthesis Example 34] Synthesis of Compound B-11



embedded image


Compound B-11 (3.0 g, yield 61%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 35] Synthesis of Compound B-12



embedded image


Compound B-12 (2.8 g, yield 64%) was obtained by performing the same process as in Synthesis Example 24, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 36] Synthesis of Compound B-13



embedded image


Compound B-13 (3.1 g, yield 65%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 37] Synthesis of Compound B-14



embedded image


Compound B-14 (3.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 24, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 38] Synthesis of Compound B-15



embedded image


Compound B-15 (3.3 g, yield 73%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 665.26, measured value: 665 g/mol)


[Synthesis Example 39] Synthesis of Compound B-16



embedded image


Compound B-16 (2.7 g, yield 72%) was obtained by performing the same process as in Synthesis Example 24, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 562.22, measured value: 562 g/mol)


[Synthesis Example 40] Synthesis of Compound B-17



embedded image


Compound B-17 (3.6 g, yield 77%) was obtained by performing the same process as in Synthesis Example 24, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 688.26, measured value: 688 g/mol)


[Synthesis Example 41] Synthesis of Compound B-18



embedded image


Compound B-18 (2.7 g, yield 66%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 616.20, measured value: 616 g/mol)


[Synthesis Example 42] Synthesis of Compound B-19



embedded image


Compound B-19 (2.3 g, yield 65%) was obtained by performing the same process as in Synthesis Example 24, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 524.19, measured value: 524 g/mol)


[Synthesis Example 43] Synthesis of Compound B-20



embedded image


Compound B-20 (3.1 g, yield 69%) was obtained by performing the same process as in Synthesis Example 24, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 660.26, measured value: 660 g/mol)


[Synthesis Example 44] Synthesis of Compound B-21



embedded image


Compound B-21 (2.1 g, yield 61%) was obtained by performing the same process as in Synthesis Example 24, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 512.20, measured value: 512 g/mol)


[Synthesis Example 45] Synthesis of Compound B-22



embedded image


Compound B-22 (2.2 g, yield 60%) was obtained by performing the same process as in Synthesis Example 24, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 535.21, measured value: 535 g/mol)


[Synthesis Example 46] Synthesis of Compound B-23



embedded image


Compound B-23 (3.5 g, yield 70%) was obtained by performing the same process as in Synthesis Example 24, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 24.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 47] Synthesis of Compound C-1



embedded image


Compound IAz-3 (3.4 g, 6.7 mmol) synthesized in Preparation Example 3, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound C-1 (3.0 g, yield 61%).


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 48] Synthesis of Compound C-2



embedded image


Compound C-2 (3.6 g, yield 73%) was obtained by performing the same process as in Synthesis Example 47, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 49] Synthesis of Compound C-3



embedded image


Compound C-3 (3.7 g, yield 75%) was obtained by performing the same process as in Synthesis Example 47, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 50] Synthesis of Compound C-4



embedded image


Compound C-4 (3.2 g, yield 65%) was obtained by performing the same process as in Synthesis Example 47, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 51] Synthesis of Compound C-5



embedded image


Compound C-5 (3.3 g, yield 66%) was obtained by performing the same process as in Synthesis Example 47, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 741.29, measured value: 741 g/mol)


[Synthesis Example 52] Synthesis of Compound C-6



embedded image


Compound C-6 (4.3 g, yield 78%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 53] Synthesis of Compound C-7



embedded image


Compound C-7 (3.9 g, yield 71%) was obtained by performing the same process as in Synthesis Example 47, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 54] Synthesis of Compound C-8



embedded image


Compound C-8 (3.8 g, yield 70%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 55] Synthesis of Compound C-9



embedded image


Compound C-9 (3.7 g, yield 68%) was obtained by performing the same process as in Synthesis Example 47, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 56] Synthesis of Compound C-10



embedded image


Compound C-10 (3.7 g, yield 67%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 817.32, measured value: 817 g/mol)


[Synthesis Example 57] Synthesis of Compound C-11



embedded image


Compound C-11 (3.3 g, yield 60%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 58] Synthesis of Compound C-12



embedded image


Compound C-12 (3.3 g, yield 61%) was obtained by performing the same process as in Synthesis Example 47, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 59] Synthesis of Compound C-13



embedded image


Compound C-13 (3.6 g, yield 65%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 60] Synthesis of Compound C-14



embedded image


Compound C-14 (3.9 g, yield 72%) was obtained by performing the same process as in Synthesis Example 47, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 61] Synthesis of Compound C-15



embedded image


Compound C-15 (4.2 g, yield 77%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 817.32, measured value: 817 g/mol)


[Synthesis Example 62] Synthesis of Compound C-16



embedded image


Compound C-16 (3.6 g, yield 76%) was obtained by performing the same process as in Synthesis Example 47, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 714.28, measured value: 714 g/mol)


[Synthesis Example 63] Synthesis of Compound C-17



embedded image


Compound C-17 (3.6 g, yield 64%) was obtained by performing the same process as in Synthesis Example 47, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 840.32, measured value: 840 g/mol)


[Synthesis Example 64] Synthesis of Compound C-18



embedded image


Compound C-18 (3.2 g, yield 62%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 768.26, measured value: 768 g/mol)


[Synthesis Example 65] Synthesis of Compound C-19



embedded image


Compound C-19 (3.1 g, yield 68%) was obtained by performing the same process as in Synthesis Example 47, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 676.25, measured value: 676 g/mol)


[Synthesis Example 66] Synthesis of Compound C-20



embedded image


Compound C-20 (3.9 g, yield 72%) was obtained by performing the same process as in Synthesis Example 47, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 812.32, measured value: 812 g/mol)


[Synthesis Example 67] Synthesis of Compound C-21



embedded image


Compound C-21 (2.4 g, yield 76%) was obtained by performing the same process as in Synthesis Example 47, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 68] Synthesis of Compound C-22



embedded image


Compound C-22 (3.5 g, yield 75%) was obtained by performing the same process as in Synthesis Example 47, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 687.27, measured value: 687 g/mol)


[Synthesis Example 69] Synthesis of Compound C-23



embedded image


Compound C-23 (3.9 g, yield 65%) was obtained by performing the same process as in Synthesis Example 47, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 47.


Mass (theoretical value: 892.35, measured value: 892 g/mol)


[Synthesis Example 70] Synthesis of Compound D-1



embedded image


Compound IAz-4 (3.4 g, 6.7 mmol) synthesized in Preparation Example 4, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound D-1 (3.1 g, yield 63%).


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 71] Synthesis of Compound D-2



embedded image


Compound D-2 (3.3 g, yield 66%) was obtained by performing the same process as in Synthesis Example 70, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 72] Synthesis of Compound D-3



embedded image


Compound D-3 (3.4 g, yield 68%) was obtained by performing the same process as in Synthesis Example 70, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 73] Synthesis of Compound D-4



embedded image


Compound D-4 (3.1 g, yield 62%) was obtained by performing the same process as in Synthesis Example 70, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 74] Synthesis of Compound D-5



embedded image


Compound D-5 (3.4 g, yield 69%) was obtained by performing the same process as in Synthesis Example 70, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 741.29, measured value: 741 g/mol)


[Synthesis Example 75] Synthesis of Compound D-6



embedded image


Compound D-6 (3.9 g, yield 71%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 76] Synthesis of Compound D-7



embedded image


Compound D-7 (3.6 g, yield 65%) was obtained by performing the same process as in Synthesis Example 70, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 77] Synthesis of Compound D-8



embedded image


Compound D-8 (3.4 g, yield 63%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 78] Synthesis of Compound D-9



embedded image


Compound D-9 (3.7 g, yield 67%) was obtained by performing the same process as in Synthesis Example 70, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 79] Synthesis of Compound D-10



embedded image


Compound D-10 (3.5 g, yield 64%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 817.32, measured value: 817 g/mol)


[Synthesis Example 80] Synthesis of Compound D-11



embedded image


Compound D-11 (3.6 g, yield 66%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 81] Synthesis of Compound D-12



embedded image


Compound D-12 (3.3 g, yield 60%) was obtained by performing the same process as in Synthesis Example 70, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 815.33, measured value: 815 g/mol)


[Synthesis Example 82] Synthesis of Compound D-13



embedded image


Compound D-13 (3.4 g, yield 62%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 83] Synthesis of Compound D-14



embedded image


Compound D-14 (3.7 g, yield 68%) was obtained by performing the same process as in Synthesis Example 70, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 84] Synthesis of Compound D-15



embedded image


Compound D-15 (3.8 g, yield 70%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 817.32, measured value: 817 g/mol)


[Synthesis Example 85] Synthesis of Compound D-16



embedded image


Compound D-16 (3.0 g, yield 63%) was obtained by performing the same process as in Synthesis Example 70, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 714.28, measured value: 714 g/mol)


[Synthesis Example 86] Synthesis of Compound D-17



embedded image


Compound D-17 (4.0 g, yield 71%) was obtained by performing the same process as in Synthesis Example 70, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 840.32, measured value: 840 g/mol)


[Synthesis Example 87] Synthesis of Compound D-18



embedded image


Compound D-18 (3.8 g, yield 74%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 768.26, measured value: 768 g/mol)


[Synthesis Example 88] Synthesis of Compound D-19



embedded image


Compound D-19 (3.3 g, yield 72%) was obtained by performing the same process as in Synthesis Example 70, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 676.25, measured value: 676 g/mol)


[Synthesis Example 89] Synthesis of Compound D-20



embedded image


Compound D-20 (3.8 g, yield 70%) was obtained by performing the same process as in Synthesis Example 70, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 812.32, measured value: 812 g/mol)


[Synthesis Example 90] Synthesis of Compound D-21



embedded image


Compound D-21 (2.9 g, yield 65%) was obtained by performing the same process as in Synthesis Example 70, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 91] Synthesis of Compound D-22



embedded image


Compound D-22 (2.8 g, yield 61%) was obtained by performing the same process as in Synthesis Example 70, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 687.27, measured value: 687 g/mol)


[Synthesis Example 92] Synthesis of Compound D-23



embedded image


Compound D-23 (3.9 g, yield 66%) was obtained by performing the same process as in Synthesis Example 70, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 70.


Mass (theoretical value: 892.35, measured value: 892 g/mol)


[Synthesis Example 93] Synthesis of Compound E-1



embedded image


Compound IAz-5 (2.9 g, 6.7 mmol) synthesized in Preparation Example 5, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound E-1 (2.9 g, yield 65%).


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 94] Synthesis of Compound E-2



embedded image


Compound E-2 (3.2 g, yield 71%) was obtained by performing the same process as in Synthesis Example 93, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 663.27, measured value: 663 g/mol)


[Synthesis Example 95] Synthesis of Compound E-3



embedded image


Compound E-3 (2.9 g, yield 66%) was obtained by performing the same process as in Synthesis Example 93, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 96] Synthesis of Compound E-4



embedded image


Compound E-4 (3.0 g, yield 67%) was obtained by performing the same process as in Synthesis Example 93, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 664.26, measured value: 664 g/mol)


[Synthesis Example 97] Synthesis of Compound E-5



embedded image


Compound E-5 (2.7 g, yield 61%) was obtained by performing the same process as in Synthesis Example 93, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 665.26, measured value: 665 g/mol)


[Synthesis Example 98] Synthesis of Compound E-6



embedded image


Compound E-6 (3.8 g, yield 76%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 99] Synthesis of Compound E-7



embedded image


Compound E-7 (3.4 g, yield 69%) was obtained by performing the same process as in Synthesis Example 93, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 100] Synthesis of Compound E-8



embedded image


Compound E-8 (3.2 g, yield 64%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 101] Synthesis of Compound E-9



embedded image


Compound E-9 (3.1 g, yield 62%) was obtained by performing the same process as in Synthesis Example 93, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 102] Synthesis of Compound E-10



embedded image


Compound E-10 (3.6 g, yield 73%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 741.29, measured value: 741 g/mol)


[Synthesis Example 103] Synthesis of Compound E-11



embedded image


Compound E-11 (3.5 g, yield 70%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 104] Synthesis of Compound E-12



embedded image


Compound E-12 (3.7 g, yield 75%) was obtained by performing the same process as in Synthesis Example 93, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 739.30, measured value: 739 g/mol)


[Synthesis Example 105] Synthesis of Compound E-13



embedded image


Compound E-13 (3.6 g, yield 72%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.6 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 106] Synthesis of Compound E-14



embedded image


Compound E-14 (3.5 g, yield 71%) was obtained by performing the same process as in Synthesis Example 93, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 740.29, measured value: 740 g/mol)


[Synthesis Example 107] Synthesis of Compound E-15



embedded image


Compound E-15 (3.4 g, yield 68%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 741.29, measured value: 741 g/mol)


[Synthesis Example 108] Synthesis of Compound E-16



embedded image


Compound E-16 (2.8 g, yield 65%) was obtained by performing the same process as in Synthesis Example 93, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 638.25, measured value: 638 g/mol)


[Synthesis Example 109] Synthesis of Compound E-17



embedded image


Compound E-17 (3.3 g, yield 64%) was obtained by performing the same process as in Synthesis Example 93, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 764.29, measured value: 764 g/mol)


[Synthesis Example 110] Synthesis of Compound E-18



embedded image


Compound E-18 (3.1 g, yield 66%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 692.23, measured value: 692 g/mol)


[Synthesis Example 111] Synthesis of Compound E-19



embedded image


Compound E-19 (2.7 g, yield 68%) was obtained by performing the same process as in Synthesis Example 93, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 600.22, measured value: 600 g/mol)


[Synthesis Example 112] Synthesis of Compound E-20



embedded image


Compound E-20 (3.1 g, yield 62%) was obtained by performing the same process as in Synthesis Example 93, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 736.29, measured value: 736 g/mol)


[Synthesis Example 113] Synthesis of Compound E-21



embedded image


Compound E-21 (2.5 g, yield 63%) was obtained by performing the same process as in Synthesis Example 93, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 588.23, measured value: 588 g/mol)


[Synthesis Example 114] Synthesis of Compound E-22



embedded image


Compound E-22 (2.8 g, yield 68%) was obtained by performing the same process as in Synthesis Example 93, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 611.24, measured value: 611 g/mol)


[Synthesis Example 115] Synthesis of Compound E-23



embedded image


Compound E-23 (4.0 g, yield 73%) was obtained by performing the same process as in Synthesis Example 93, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 93.


Mass (theoretical value: 816.32, measured value: 816 g/mol)


[Synthesis Example 116] Synthesis of Compound F-1



embedded image


Compound IAz-6 (1.9 g, 6.7 mmol) synthesized in Preparation Example 6, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain target compound F-1 (1.9 g, yield 62%).


Mass (theoretical value: 467.19, measured value: 467 g/mol)


[Synthesis Example 117] Synthesis of Compound F-2



embedded image


Compound F-2 (2.1 g, yield 66%) was obtained by performing the same process as in Synthesis Example 116, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 467.19, measured value: 467 g/mol)


[Synthesis Example 118] Synthesis of Compound F-3



embedded image


Compound F-3 (2.3 g, yield 73%) was obtained by performing the same process as in Synthesis Example 116, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 468.18, measured value: 468 g/mol)


[Synthesis Example 119] Synthesis of Compound F-4



embedded image


Compound F-4 (2.1 g, yield 68%) was obtained by performing the same process as in Synthesis Example 116, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 468.18, measured value: 468 g/mol)


[Synthesis Example 120] Synthesis of Compound F-5



embedded image


Compound F-5 (2.0 g, yield 65%) was obtained by performing the same process as in Synthesis Example 116, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 469.18, measured value: 469 g/mol)


[Synthesis Example 121] Synthesis of Compound F-6



embedded image


Compound F-6 (2.2 g, yield 61%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 543.22, measured value: 543 g/mol)


[Synthesis Example 122] Synthesis of Compound F-7



embedded image


Compound F-7 (2.6 g, yield 71%) was obtained by performing the same process as in Synthesis Example 116, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-2,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 543.22, measured value: 543 g/mol)


[Synthesis Example 123] Synthesis of Compound F-8



embedded image


Compound F-8 (2.7 g, yield 73%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 544.21, measured value: 544 g/mol)


[Synthesis Example 124] Synthesis of Compound F-9



embedded image


Compound F-9 (2.4 g, yield 65%) was obtained by performing the same process as in Synthesis Example 116, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 544.21, measured value: 544 g/mol)


[Synthesis Example 125] Synthesis of Compound F-10



embedded image


Compound F-10 (2.5 g, yield 68%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 545.21, measured value: 545 g/mol)


[Synthesis Example 126] Synthesis of Compound F-11



embedded image


Compound F-11 (2.4 g, yield 65%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 543.22, measured value: 543 g/mol)


[Synthesis Example 127] Synthesis of Compound F-12



embedded image


Compound F-12 (2.3 g, yield 63%) was obtained by performing the same process as in Synthesis Example 116, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 543.22, measured value: 543 g/mol)


[Synthesis Example 128] Synthesis of Compound F-13



embedded image


Compound F-13 (2.5 g, yield 68%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 544.21, measured value: 544 g/mol)


[Synthesis Example 129] Synthesis of Compound F-14



embedded image


Compound F-14 (2.3 g, yield 63%) was obtained by performing the same process as in Synthesis Example 116, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 544.21, measured value: 544 g/mol)


[Synthesis Example 130] Synthesis of Compound F-15



embedded image


Compound F-15 (2.4 g, yield 65%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 545.21, measured value: 545 g/mol)


[Synthesis Example 131] Synthesis of Compound F-16



embedded image


Compound F-16 (2.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 116, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 442.17, measured value: 442 g/mol)


[Synthesis Example 132] Synthesis of Compound F-17



embedded image


Compound F-17 (2.3 g, yield 61%) was obtained by performing the same process as in Synthesis Example 116, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 568.21, measured value: 568 g/mol)


[Synthesis Example 133] Synthesis of Compound F-18



embedded image


Compound F-18 (2.1 g, yield 63%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 496.15, measured value: 496 g/mol)


[Synthesis Example 134] Synthesis of Compound F-19



embedded image


Compound F-19 (1.9 g, yield 69%) was obtained by performing the same process as in Synthesis Example 116, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 404.14, measured value: 404 g/mol)


[Synthesis Example 135] Synthesis of Compound F-20



embedded image


Compound F-20 (2.6 g, yield 71%) was obtained by performing the same process as in Synthesis Example 116, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 540.21, measured value: 540 g/mol)


[Synthesis Example 136] Synthesis of Compound F-21



embedded image


Compound F-21 (1.9 g, yield 73%) was obtained by performing the same process as in Synthesis Example 116, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 392.15, measured value: 392 g/mol)


[Synthesis Example 137] Synthesis of Compound F-22



embedded image


Compound F-22 (1.9 g, yield 70%) was obtained by performing the same process as in Synthesis Example 116, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 415.16, measured value: 415 g/mol)


[Synthesis Example 138] Synthesis of Compound F-23



embedded image


Compound F-23 (2.7 g, yield 64%) was obtained by performing the same process as in Synthesis Example 116, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 116.


Mass (theoretical value: 620.24, measured value: 620 g/mol)


[Synthesis Example 139] Synthesis of Compound G-1



embedded image


Compound IAz-7 (2.4 g, 6.7 mmol) synthesized in Preparation Example 7, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound G-1 (2.6 g, yield 65%).


Mass (theoretical value: 588.22, measured value: 588 g/mol)


[Synthesis Example 140] Synthesis of Compound G-2



embedded image


Compound G-2 (2.4 g, yield 62%) was obtained by performing the same process as in Synthesis Example 139, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 588.22, measured value: 588 g/mol)


[Synthesis Example 141] Synthesis of Compound G-3



embedded image


Compound G-3 (2.6 g, yield 67%) was obtained by performing the same process as in Synthesis Example 139, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 589.21, measured value: 589 g/mol)


[Synthesis Example 142] Synthesis of Compound G-4



embedded image


Compound G-4 (2.5 g, yield 64%) was obtained by performing the same process as in Synthesis Example 139, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 589.21, measured value: 589 g/mol)


[Synthesis Example 143] Synthesis of Compound G-5



embedded image


Compound G-5 (2.7 g, yield 68%) was obtained by performing the same process as in Synthesis Example 139, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 590.21, measured value: 590 g/mol)


[Synthesis Example 144] Synthesis of Compound G-6



embedded image


Compound G-6 (3.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 664.25, measured value: 664 g/mol)


[Synthesis Example 145] Synthesis of Compound G-7



embedded image


Compound G-7 (3.2 g, yield 72%) was obtained by performing the same process as in Synthesis Example 139, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 664.25, measured value: 664 g/mol)


[Synthesis Example 146] Synthesis of Compound G-8



embedded image


Compound G-8 (3.0 g, yield 67%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 665.24, measured value: 665 g/mol)


[Synthesis Example 147] Synthesis of Compound G-9



embedded image


Compound G-9 (2.8 g, yield 63%) was obtained by performing the same process as in Synthesis Example 139, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 665.24, measured value: 665 g/mol)


[Synthesis Example 148] Synthesis of Compound G-10



embedded image


Compound G-10 (3.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 666.24, measured value: 666 g/mol)


[Synthesis Example 149] Synthesis of Compound G-11



embedded image


Compound G-11 (2.8 g, yield 62%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 664.25, measured value: 664 g/mol)


[Synthesis Example 150] Synthesis of Compound G-12



embedded image


Compound G-12 (2.9 g, yield 66%) was obtained by performing the same process as in Synthesis Example 139, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 664.25, measured value: 664 g/mol)


[Synthesis Example 151] Synthesis of Compound G-13



embedded image


Compound G-13 (2.9 g, yield 65%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 665.24, measured value: 665 g/mol)


[Synthesis Example 152] Synthesis of Compound G-14



embedded image


Compound G-14 (3.0 g, yield 68%) was obtained by performing the same process as in Synthesis Example 139, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 665.24, measured value: 665 g/mol)


[Synthesis Example 153] Synthesis of Compound G-15



embedded image


Compound G-15 (2.8 g, yield 63%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 666.24, measured value: 666 g/mol)


[Synthesis Example 154] Synthesis of Compound G-16



embedded image


Compound G-16 (2.5 g, yield 65%) was obtained by performing the same process as in Synthesis Example 139, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 563.20, measured value: 563 g/mol)


[Synthesis Example 155] Synthesis of Compound G-17



embedded image


Compound G-17 (3.0 g, yield 65%) was obtained by performing the same process as in Synthesis Example 139, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 689.24, measured value: 689 g/mol)


[Synthesis Example 156] Synthesis of Compound G-18



embedded image


Compound G-18 (2.7 g, yield 68%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 617.18, measured value: 617 g/mol)


[Synthesis Example 157] Synthesis of Compound G-19



embedded image


Compound G-19 (2.1 g, yield 60%) was obtained by performing the same process as in Synthesis Example 139, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 525.17, measured value: 525 g/mol)


[Synthesis Example 158] Synthesis of Compound G-20



embedded image


Compound G-20 (3.1 g, yield 70%) was obtained by performing the same process as in Synthesis Example 139, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 661.24, measured value: 661 g/mol)


[Synthesis Example 159] Synthesis of Compound G-21



embedded image


Compound G-21 (2.2 g, yield 65%) was obtained by performing the same process as in Synthesis Example 139, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 513.18, measured value: 513 g/mol)


[Synthesis Example 160] Synthesis of Compound G-22



embedded image


Compound G-22 (2.6 g, yield 71%) was obtained by performing the same process as in Synthesis Example 139, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 536.19, measured value: 536 g/mol)


[Synthesis Example 161] Synthesis of Compound G-23



embedded image


Compound G-23 (3.3 g, yield 66%) was obtained by performing the same process as in Synthesis Example 139, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 139.


Mass (theoretical value: 741.27, measured value: 741 g/mol)


[Synthesis Example 162] Synthesis of Compound H-1



embedded image


Compound IAz-8 (2.0 g, 6.7 mmol) synthesized in Preparation Example 8, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound H-1 (2.5 g, yield 71%).


Mass (theoretical value: 528.17, measured value: 528 g/mol)


[Synthesis Example 163] Synthesis of Compound H-2



embedded image


Compound H-2 (2.4 g, yield 69%) was obtained by performing the same process as in Synthesis Example 162, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 528.17, measured value: 528 g/mol)


[Synthesis Example 164] Synthesis of Compound H-3



embedded image


Compound H-3 (2.6 g, yield 73%) was obtained by performing the same process as in Synthesis Example 162, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 529.16, measured value: 529 g/mol)


[Synthesis Example 165] Synthesis of Compound H-4



embedded image


Compound H-4 (2.7 g, yield 76%) was obtained by performing the same process as in Synthesis Example 162, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 529.16, measured value: 529 g/mol)


[Synthesis Example 166] Synthesis of Compound H-5



embedded image


Compound H-5 (2.2 g, yield 63%) was obtained by performing the same process as in Synthesis Example 162, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 530.16, measured value: 530 g/mol)


[Synthesis Example 167] Synthesis of Compound H-6



embedded image


Compound H-6 (2.5 g, yield 62%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 604.20, measured value: 604 g/mol)


[Synthesis Example 168] Synthesis of Compound H-7



embedded image


Compound H-7 (2.8 g, yield 68%) was obtained by performing the same process as in Synthesis Example 162, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 604.20, measured value: 604 g/mol)


[Synthesis Example 169] Synthesis of Compound H-8



embedded image


Compound H-8 (2.6 g, yield 64%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 605.19, measured value: 605 g/mol)


[Synthesis Example 170] Synthesis of Compound H-9



embedded image


Compound H-9 (2.6 g, yield 64%) was obtained by performing the same process as in Synthesis Example 162, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 605.19, measured value: 605 g/mol)


[Synthesis Example 171] Synthesis of Compound H-10



embedded image


Compound H-10 (2.7 g, yield 66%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 606.19, measured value: 606 g/mol)


[Synthesis Example 172] Synthesis of Compound H-11



embedded image


Compound H-11 (2.8 g, yield 68%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 604.20, measured value: 604 g/mol)


[Synthesis Example 173] Synthesis of Compound H-12



embedded image


Compound H-12 (2.4 g, yield 60%) was obtained by performing the same process as in Synthesis Example 162, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 604.20, measured value: 604 g/mol)


[Synthesis Example 174] Synthesis of Compound H-13



embedded image


Compound H-13 (2.5 g, yield 62%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 605.19, measured value: 605 g/mol)


[Synthesis Example 175] Synthesis of Compound H-14



embedded image


Compound H-14 (3.0 g, yield 73%) was obtained by performing the same process as in Synthesis Example 162, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 605.19, measured value: 605 g/mol)


[Synthesis Example 176] Synthesis of Compound H-15



embedded image


Compound H-15 (2.9 g, yield 71%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 606.19, measured value: 606 g/mol)


[Synthesis Example 177] Synthesis of Compound H-16



embedded image


Compound H-16 (2.3 g, yield 69%) was obtained by performing the same process as in Synthesis Example 162, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 503.15, measured value: 503 g/mol)


[Synthesis Example 178] Synthesis of Compound H-17



embedded image


Compound H-17 (2.8 g, yield 67%) was obtained by performing the same process as in Synthesis Example 162, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 629.19, measured value: 629 g/mol)


[Synthesis Example 179] Synthesis of Compound H-18



embedded image


Compound H-18 (2.7 g, yield 71%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 557.13, measured value: 557 g/mol)


[Synthesis Example 180] Synthesis of Compound H-19



embedded image


Compound H-19 (2.3 g, yield 75%) was obtained by performing the same process as in Synthesis Example 162, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 465.12, measured value: 465 g/mol)


[Synthesis Example 181] Synthesis of Compound H-20



embedded image


Compound H-20 (2.6 g, yield 65%) was obtained by performing the same process as in Synthesis Example 162, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 601.19, measured value: 601 g/mol)


[Synthesis Example 182] Synthesis of Compound H-21



embedded image


Compound H-21 (2.1 g, yield 68%) was obtained by performing the same process as in Synthesis Example 162, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 453.13, measured value: 453 g/mol)


[Synthesis Example 183] Synthesis of Compound H-22



embedded image


Compound H-22 (2.2 g, yield 69%) was obtained by performing the same process as in Synthesis Example 162, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 476.14, measured value: 476 g/mol)


[Synthesis Example 184] Synthesis of Compound H-23



embedded image


Compound H-23 (2.9 g, yield 63%) was obtained by performing the same process as in Synthesis Example 162, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 162.


Mass (theoretical value: 681.22, measured value: 681 g/mol)


[Synthesis Example 185] Synthesis of Compound I-1



embedded image


Compound IAz-9 (2.5 g, 6.7 mmol) synthesized in Preparation Example 9, 2-bromo-4,6-diphenylpyridine (2.5 g, 8.0 mmol), Pd(OAc)2 (0.08 g, 0.34 mmol), P(t-Bu)3 (0.16 ml, 0.67 mmol), NaO(t-Bu) (1.29 g, 13.4 mmol), and toluene (70 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 110° C. for 5 hours. After the reaction was terminated, toluene was concentrated, and a solid salt was filtered and then purified with recrystallization to obtain Compound I-1 (2.6 g, yield 65%).


Mass (theoretical value: 604.20, measured value: 604 g/mol)


[Synthesis Example 186] Synthesis of Compound I-2



embedded image


Compound I-2 (2.5 g, yield 61%) was obtained by performing the same process as in Synthesis Example 185, except that 4-bromo-2,6-diphenylpyridine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 604.20, measured value: 604 g/mol)


[Synthesis Example 187] Synthesis of Compound I-3



embedded image


Compound I-3 (2.8 g, yield 68%) was obtained by performing the same process as in Synthesis Example 185, except that 2-chloro-4,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 605.19, measured value: 605 g/mol)


[Synthesis Example 188] Synthesis of Compound I-4



embedded image


Compound I-4 (2.8 g, yield 70%) was obtained by performing the same process as in Synthesis Example 185, except that 4-chloro-2,6-diphenylpyrimidine (2.5 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 605.19, measured value: 605 g/mol)


[Synthesis Example 189] Synthesis of Compound I-5



embedded image


Compound I-5 (3.0 g, yield 74%) was obtained by performing the same process as in Synthesis Example 185, except that 2-chloro-4,6-diphenyl-1,3,5-triazine (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 606.19, measured value: 606 g/mol)


[Synthesis Example 190] Synthesis of Compound I-6



embedded image


Compound I-6 (3.0 g, yield 65%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(4-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 680.23, measured value: 680 g/mol)


[Synthesis Example 191] Synthesis of Compound I-7



embedded image


Compound I-7 (2.8 g, yield 61%) was obtained by performing the same process as in Synthesis Example 185, except that 4-(4-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 680.23, measured value: 680 g/mol)


[Synthesis Example 192] Synthesis of Compound I-8



embedded image


Compound I-8 (2.9 g, yield 63%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(4-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 680.22, measured value: 680 g/mol)


[Synthesis Example 193] Synthesis of Compound I-9



embedded image


Compound I-9 (2.9 g, yield 64%) was obtained by performing the same process as in Synthesis Example 185, except that 4-(4-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 681.22, measured value: 681 g/mol)


[Synthesis Example 194] Synthesis of Compound I-10



embedded image


Compound I-10 (3.2 g, yield 70%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 682.22, measured value: 682 g/mol)


[Synthesis Example 195] Synthesis of Compound I-11



embedded image


Compound I-11 (3.5 g, yield 76%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(3-bromophenyl)-4,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 680.23, measured value: 680 g/mol)


[Synthesis Example 196] Synthesis of Compound I-12



embedded image


Compound I-12 (3.3 g, yield 73%) was obtained by performing the same process as in Synthesis Example 185, except that 4-(3-bromophenyl)-2,6-diphenylpyridine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 680.23, measured value: 680 g/mol)


[Synthesis Example 197] Synthesis of Compound I-13



embedded image


Compound I-13 (3.2 g, yield 71%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(3-bromophenyl)-4,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 681.22, measured value: 681 g/mol)


[Synthesis Example 198] Synthesis of Compound I-14



embedded image


Compound I-14 (3.1 g, yield 68%) was obtained by performing the same process as in Synthesis Example 185, except that 4-(3-bromophenyl)-2,6-diphenylpyrimidine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 681.22, measured value: 681 g/mol)


[Synthesis Example 199] Synthesis of Compound I-15



embedded image


Compound I-15 (3.0 g, yield 65%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 682.22, measured value: 682 g/mol)


[Synthesis Example 200] Synthesis of Compound I-16



embedded image


Compound I-16 (2.6 g, yield 66%) was obtained by performing the same process as in Synthesis Example 185, except that 2-chloro-4-phenylquinazoline (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 579.18, measured value: 579 g/mol)


[Synthesis Example 201] Synthesis of Compound I-17



embedded image


Compound I-17 (3.2 g, yield 67%) was obtained by performing the same process as in Synthesis Example 185, except that 2-chloro-4-(4-(naphthalen-1-yl)phenyl)quinazoline (2.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 705.22, measured value: 705 g/mol)


[Synthesis Example 202] Synthesis of Compound I-18



embedded image


Compound I-18 (3.3 g, yield 77%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(3-bromophenyl)dibenzo[b,d]thiophene (2.7 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 633.16, measured value: 633 g/mol)


[Synthesis Example 203] Synthesis of Compound I-19



embedded image


Compound I-19 (2.7 g, yield 74%) was obtained by performing the same process as in Synthesis Example 185, except that 2-bromodibenzo[b,d]furan (2.0 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 541.15, measured value: 541 g/mol)


[Synthesis Example 204] Synthesis of Compound I-20



embedded image


Compound I-20 (3.3 g, yield 72%) was obtained by performing the same process as in Synthesis Example 185, except that 2-(4-bromophenyl)triphenylene (3.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 677.22, measured value: 677 g/mol)


[Synthesis Example 205] Synthesis of Compound I-21



embedded image


Compound I-21 (2.3 g, yield 65%) was obtained by performing the same process as in Synthesis Example 185, except that 5-bromo-2,2′-bipyridine (1.9 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 529.16, measured value: 529 g/mol)


[Synthesis Example 206] Synthesis of Compound I-22



embedded image


Compound I-22 (2.5 g, yield 68%) was obtained by performing the same process as in Synthesis Example 185, except that 4′-bromobiphenyl-3-carbonitrile (2.1 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 552.17, measured value: 552 g/mol)


[Synthesis Example 207] Synthesis of Compound I-23



embedded image


Compound I-23 (3.4 g, yield 67%) was obtained by performing the same process as in Synthesis Example 185, except that 4-(4′-chlorobiphenyl-4-yl)-2,6-diphenylpyrimidine (3.4 g, 8.0 mmol) was used instead of 2-bromo-4,6-diphenylpyridine used in Synthesis Example 185.


Mass (theoretical value: 757.25, measured value: 757 g/mol)


[Synthesis Example 208] Synthesis of Compound L-1



embedded image


Compound IAz-3 (3.4 g, 6.7 mmol) synthesized in Preparation Example 3, 5′-bromo-(1,1′,3′,1″)terphenyl (2.5 g, 8.0 mmol), CuI (0.13 g, 0.67 mmol), 1,10-phenanthroline (0.24 g, 1.34 mmol), Cs2CO3 (4.37 g, 13.4 mmol), and nitrobenzene (25 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 3 hours. After the reaction was terminated, a solid salt was filtered and then purified with column chromatography to obtain Compound L-1 (3.2 g, yield 65%).


Mass (theoretical value: 738.3, measured value: 738 g/mol)


[Synthesis Example 209] Synthesis of Compound L-2



embedded image


Compound L-2 (3.0 g, yield 68%) was obtained by performing the same process as in Synthesis Example 208, except that 4-bromobiphenyl (1.90 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 208. Mass (theoretical value: 662.27, measured value: 662 g/mol)


[Synthesis Example 210] Synthesis of Compound L-3



embedded image


Compound L-3 (3.4 g, yield 72%) was obtained by performing the same process as in Synthesis Example 208, except that 2-bromo-9,9-dimethyl-9H-fluorene (2.18 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 208.


Mass (theoretical value: 702.3, measured value: 702 g/mol)


[Synthesis Example 211] Synthesis of Compound M-1



embedded image


Compound IAz-4 (3.4 g, 6.7 mmol) synthesized in Preparation Example 4, 5′-bromo-(1,1′,3′,1″)terphenyl (2.5 g, 8.0 mmol), CuI (0.13 g, 0.67 mmol), 1,10-phenanthroline (0.24 g, 1.34 mmol), Cs2CO3 (4.37 g, 13.4 mmol), and nitrobenzene (25 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 3 hours. After the reaction was terminated, a solid salt was filtered and then purified with column chromatography to obtain Compound M-1 (3.4 g, yield 68%).


Mass (theoretical value: 738.3, measured value: 738 g/mol)


[Synthesis Example 212] Synthesis of Compound M-2



embedded image


Compound M-2 (2.8 g, yield 63%) was obtained by performing the same process as in Synthesis Example 211, except that 4-bromobiphenyl (1.90 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 211. Mass (theoretical value: 622.27, measured value: 622 g/mol)


[Synthesis Example 213] Synthesis of Compound M-3



embedded image


Compound M-3 (3.5 g, yield 75%) was obtained by performing the same process as in Synthesis Example 211, except that 2-bromo-9,9-dimethyl-9H-fluorene (2.18 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 211.


Mass (theoretical value: 702.3, measured value: 702 g/mol)


[Synthesis Example 214] Synthesis of Compound N-1



embedded image


Compound IAz-6 (1.9 g, 6.7 mmol) synthesized in Preparation Example 6, 5′-bromo-(1,1′,3′,1″)terphenyl (2.5 g, 8.0 mmol), CuI (0.13 g, 0.67 mmol), 1,10-phenanthroline (0.24 g, 1.34 mmol), Cs2CO3 (4.37 g, 13.4 mmol), and nitrobenzene (25 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 3 hours. After the reaction was terminated, a solid salt was filtered and then purified with column chromatography to obtain Compound N-1 (2.5 g, yield 73%).


Mass (theoretical value: 511.19, measured value: 511 g/mol)


[Synthesis Example 215] Synthesis of Compound N-2



embedded image


Compound N-2 (2.2 g, yield 77%) was obtained by performing the same process as in Synthesis Example 214, except that 4-bromobiphenyl (1.90 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 214.


Mass (theoretical value: 435.16, measured value: 435 g/mol)


[Synthesis Example 216] Synthesis of Compound N-3



embedded image


Compound N-3 (2.3 g, yield 72%) was obtained by performing the same process as in Synthesis Example 214, except that 2-bromo-9,9-dimethyl-9H-fluorene (2.18 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 214.


Mass (theoretical value: 475.19, measured value: 475 g/mol)


[Synthesis Example 217] Synthesis of Compound O-1



embedded image


Compound IAz-7 (2.4 g, 6.7 mmol) synthesized in Preparation Example 7, 5′-bromo-(1,1′,3′,1″)terphenyl (2.5 g, 8.0 mmol), CuI (0.13 g, 0.67 mmol), 1,10-phenanthroline (0.24 g, 1.34 mmol), Cs2CO3 (4.37 g, 13.4 mmol), and nitrobenzene (25 ml) were mixed under nitrogen flow, and the resulting mixture was stirred at 210° C. for 3 hours. After the reaction was terminated, a solid salt was filtered and then purified with column chromatography to obtain Compound O-1 (2.3 g, yield 66%).


Mass (theoretical value: 511.19, measured value: 511 g/mol)


[Synthesis Example 218] Synthesis of Compound O-2



embedded image


Compound O-2 (1.9 g, yield 64%) was obtained by performing the same process as in Synthesis Example 217, except that 4-bromobiphenyl (1.90 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 217.


Mass (theoretical value: 435.16, measured value: 435 g/mol)


[Synthesis Example 219] Synthesis of Compound O-3



embedded image


Compound O-3 (2.2 g, yield 69%) was obtained by performing the same process as in Synthesis Example 217, except that 2-bromo-9,9-dimethyl-9H-fluorene (2.18 g, 8.0 mmol) was used instead of 5′-bromo-(1,1′,3′,1″)terphenyl used in Synthesis Example 217.


Mass (theoretical value: 475.19, measured value: 475 g/mol)


[Example 1] Manufacture of Green Organic EL Element

Compound A-1 synthesized in Synthesis Example 1 was subjected to highly pure sublimation purification by a typically known method, and then a green organic EL element was manufactured according to the following procedure.


First, a glass substrate thinly coated with indium tin oxide (ITO) to have a thickness of 1,500 Å was ultrasonically washed with distilled water. When the ultrasonic washing with distilled water was completed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, and methanol, dried, transferred to a UV ozone cleaner (Power sonic 405, manufactured by Hwashin Tech), washed for 5 minutes by using UV, and then transferred to a vacuum evaporator.


An organic EL element was manufactured by laminating m-MTDATA (60 nm)/TCTA (80 nm)/90% Compound A-1+10% Ir(ppy)3 (30 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) in this order on the thus prepared ITO transparent electrode. The structures of m-MTDATA, TCTA, Ir(ppy)3, and BCP are as follows.




embedded image


[Example 2] to [Example 189] Manufacture of Green Organic EL Element

A green organic EL element was manufactured by the same procedure as in Example 1, except that when a light emitting layer is formed in Example 1, Compounds A-2 to I-23 each synthesized in Synthesis Examples 2 to 189 were used instead of Compound A-1 used as a light emitting host material (see Table 1).


[Comparative Example 1] Manufacture of Green Organic EL Element

A green organic EL element was manufactured by the same procedure as in Example 1, except that when a light emitting layer is formed in Example 1, CBP was used instead of Compound A-1 used as a light emitting host material. The structure of CBP used is as follows.




embedded image


Evaluation Example 1

For each of the green organic EL elements manufactured in Examples 1 to 189 and Comparative Example 1, the driving voltage, current efficiency, and light emitting peaks thereof were measured at a current density of 10 mA/cm2, and the results are shown in the following Table 1.













TABLE 1







Driving

Current


Sample
Host
voltage (V)
EL peak (nm)
efficiency (cd/A)



















Example 1
A-1
6.7
517
41.3


Example 2
A-2
6.7
515
43.1


Example 3
A-3
6.51
518
43.5


Example 4
A-4
6.77
518
41.4


Example 5
A-5
6.46
518
41.3


Example 6
A-6
6.81
517
41.2


Example 7
A-7
6.68
515
41.3


Example 8
A-8
6.66
518
39.7


Example 9
A-9
6.48
518
38.9


Example 10
A-10
6.86
517
41.3


Example 11
A-11
6.77
515
41.3


Example 12
A-12
6.66
518
43.1


Example 13
A-13
6.65
518
43.5


Example 14
A-14
6.71
517
41.4


Example 15
A-15
6.65
518
42.2


Example 16
A-18
6.71
517
42


Example 17
A-19
6.72
515
41.6


Example 18
A-20
6.72
518
41.5


Example 19
A-21
6.73
518
41.4


Example 20
A-22
6.73
518
41.9


Example 21
A-23
6.73
517
41.6


Example 22
B-1
6.48
515
41.5


Example 23
B-2
6.86
518
39.2


Example 24
B-3
6.77
518
41.3


Example 25
B-4
6.66
517
39.7


Example 26
B-5
6.65
518
38.9


Example 27
B-6
6.65
517
41.3


Example 28
B-7
6.64
515
41.3


Example 29
B-8
6.64
518
41.3


Example 30
B-9
6.64
518
41.2


Example 31
B-10
6.63
518
41.2


Example 32
B-11
6.72
518
41.3


Example 33
B-12
6.73
517
41.3


Example 34
B-13
6.73
515
41.2


Example 35
B-14
6.73
518
41.3


Example 36
B-15
6.48
518
39.7


Example 37
B-18
6.86
517
38.9


Example 38
B-19
6.77
518
41.3


Example 39
B-20
6.66
517
41.3


Example 40
B-21
6.77
515
43.1


Example 41
B-22
6.66
518
43.5


Example 42
B-23
6.66
518
41.4


Example 43
C-1
6.81
517
42.2


Example 44
C-2
6.66
515
42


Example 45
C-3
6.81
518
39.7


Example 46
C-4
6.68
518
38.9


Example 47
C-5
6.66
518
41.3


Example 48
C-6
6.7
517
41.3


Example 49
C-7
6.7
515
43.1


Example 50
C-8
6.51
518
43.5


Example 51
C-9
6.77
518
41.4


Example 52
C-10
6.46
518
42.2


Example 53
C-11
6.81
517
42


Example 54
C-12
6.68
515
41.8


Example 55
C-13
6.66
518
41.3


Example 56
C-14
6.48
518
41.2


Example 57
C-15
6.86
517
41.2


Example 58
C-18
6.77
515
41.4


Example 59
C-19
6.66
518
42.2


Example 60
C-20
6.81
518
39.7


Example 61
C-21
6.68
518
38.9


Example 62
C-22
6.66
518
41.3


Example 63
C-23
6.7
517
41.3


Example 64
D-1
6.7
515
43.1


Example 65
D-2
6.51
518
43.5


Example 66
D-3
6.77
518
41.4


Example 67
D-4
6.46
518
42.2


Example 68
D-5
6.81
517
42


Example 69
D-6
6.68
515
41.8


Example 70
D-7
6.66
515
41.3


Example 71
D-8
6.48
518
41.2


Example 72
D-9
6.66
518
41.3


Example 73
D-10
6.81
517
39.7


Example 74
D-11
6.68
515
38.9


Example 75
D-12
6.66
517
41.3


Example 76
D-13
6.7
515
41.3


Example 77
D-14
6.7
518
43.1


Example 78
D-15
6.51
518
43.5


Example 79
D-18
6.77
517
41.4


Example 80
D-19
6.46
515
42.2


Example 81
D-20
6.81
515
42


Example 82
D-21
6.68
515
41.8


Example 83
D-22
6.66
518
41.3


Example 84
D-23
6.48
518
41.2


Example 85
E-1
6.86
517
41.2


Example 86
E-2
6.77
515
41.4


Example 87
E-3
6.66
518
42.2


Example 88
E-4
6.81
518
39.7


Example 89
E-5
6.7
515
43.1


Example 90
E-6
6.51
518
43.5


Example 91
E-7
6.77
518
41.4


Example 92
E-8
6.46
518
42.2


Example 93
E-9
6.81
517
42


Example 94
E-10
6.68
515
41.8


Example 95
E-11
6.66
518
41.3


Example 96
E-12
6.48
518
41.2


Example 97
E-13
6.86
517
41.3


Example 98
E-14
6.77
515
41.2


Example 99
E-15
6.66
517
41.3


Example 100
E-18
6.65
515
39.7


Example 101
E-19
6.71
518
38.9


Example 102
E-20
6.65
518
41.3


Example 103
E-21
6.71
517
41.3


Example 104
E-22
6.72
515
43.1


Example 105
E-23
6.72
515
43.5


Example 106
F-1
6.73
518
41.4


Example 107
F-2
6.73
518
42.2


Example 108
F-3
6.73
517
42


Example 109
F-4
6.48
515
41.5


Example 110
F-5
6.86
518
39.2


Example 111
F-6
6.77
518
41.3


Example 112
F-7
6.66
517
39.7


Example 113
F-8
6.65
518
38.9


Example 114
F-9
6.65
517
41.3


Example 115
F-10
6.64
515
41.3


Example 116
F-11
6.64
518
41.3


Example 117
F-12
6.64
518
41.2


Example 118
F-13
6.63
517
41.2


Example 119
F-14
6.72
515
41.3


Example 120
F-15
6.73
517
41.3


Example 121
F-18
6.73
515
41.3


Example 122
F-19
6.73
518
41.2


Example 123
F-20
6.48
518
41.2


Example 124
F-21
6.86
517
41.4


Example 125
F-22
6.77
515
42.2


Example 126
F-23
6.66
515
42


Example 127
G-1
6.77
515
41.8


Example 128
G-2
6.66
518
42


Example 129
G-3
6.66
518
42.5


Example 130
G-4
6.81
517
41.3


Example 131
G-5
6.66
515
41.3


Example 132
G-6
6.81
518
41.2


Example 133
G-7
6.68
518
41.3


Example 134
G-8
6.66
518
39.7


Example 135
G-9
6.7
517
38.9


Example 136
G-10
6.7
515
41.3


Example 137
G-11
6.51
518
41.3


Example 138
G-12
6.77
518
43.1


Example 139
G-13
6.46
517
43.5


Example 140
G-14
6.81
515
41.4


Example 141
G-15
6.68
517
42.2


Example 142
G-18
6.66
515
42


Example 143
G-19
6.48
518
41.2


Example 144
G-20
6.86
518
41.2


Example 145
G-21
6.77
517
41.4


Example 146
G-22
6.66
515
42.2


Example 147
G-23
6.81
515
39.7


Example 148
H-1
6.68
518
38.9


Example 149
H-2
6.66
518
41.3


Example 150
H-3
6.7
517
41.3


Example 151
H-4
6.7
515
43.1


Example 152
H-5
6.51
518
43.5


Example 153
H-6
6.77
518
41.4


Example 154
H-7
6.46
518
42.2


Example 155
H-8
6.81
517
42


Example 156
H-9
6.68
515
41.8


Example 157
H-10
6.66
515
41.3


Example 158
H-11
6.48
518
41.2


Example 159
H-12
6.66
518
41.3


Example 160
H-13
6.81
517
39.7


Example 161
H-14
6.68
515
38.9


Example 162
H-15
6.66
517
41.3


Example 163
H-18
6.7
515
41.3


Example 164
H-19
6.7
518
43.1


Example 165
H-20
6.51
518
43.5


Example 166
H-21
6.77
517
41.4


Example 167
H-22
6.46
515
42.2


Example 168
H-23
6.81
515
42


Example 169
I-1
6.68
515
41.8


Example 170
I-2
6.66
518
41.3


Example 171
I-3
6.48
518
41.2


Example 172
I-4
6.86
517
41.2


Example 173
I-5
6.77
515
41.4


Example 174
I-6
6.66
518
42.2


Example 175
I-7
6.81
518
39.7


Example 176
I-8
6.7
515
43.1


Example 177
I-9
6.51
518
43.5


Example 178
I-10
6.77
518
41.4


Example 179
I-11
6.61
517
41.1


Example 180
I-12
6.51
515
42.5


Example 181
I-13
6.77
517
39.2


Example 182
I-14
6.66
515
41.3


Example 183
I-15
6.65
518
39.7


Example 184
I-18
6.65
518
41.1


Example 185
I-19
6.77
517
41.3


Example 186
I-20
6.65
515
39.7


Example 187
I-21
6.77
515
41.1


Example 188
I-22
6.66
515
42.5


Example 189
I-23
6.65
515
42.5


Comparative
CBP
6.93
516
38.2


Example 1









As shown in Table 1, it could be confirmed that the green organic EL elements of Examples 1 to 189 in which the compounds (A-1 to I-23) according to the present disclosure are used as a material for the light emitting layer exhibit better performance in terms of efficiency and driving voltage than the green organic EL element of Comparative Example 1 in the related art in which the CBP is used.


[Example 190] Manufacture of Red Organic EL Element

Compound A-16 synthesized in Synthesis Example 16 was subjected to highly pure sublimation purification by a typically known method, and then a red organic electroluminescent element was manufactured according to the following procedure.


First, a glass substrate thinly coated with indium tin oxide (ITO) to have a thickness of 1,500 Å was ultrasonically washed with distilled water. When the ultrasonic washing with distilled water was completed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, and methanol, dried, transferred to a UV ozone cleaner (Power sonic 405, manufactured by Hwashin Tech), washed for 5 minutes by using UV, and then transferred to a vacuum evaporator.


An organic electroluminescent element was manufactured by laminating m-MTDATA (60 nm)/TCTA (80 nm)/90% Compound A-16+10% (piq)2Ir(acac) (30 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) in this order on the thus prepared ITO transparent electrode. The structures of m-MTDATA, TCTA, and BCP used are the same as described in Example 1, and the structure of (piq)2Ir(acac) is as follows.




embedded image


[Example 191] to [Example 207] Manufacture of Red Organic EL Element

A red organic EL element was manufactured by the same procedure as in Example 190, except that when a light emitting layer is formed in Example 190, Compounds A-16 to I-17 each synthesized in Synthesis Examples 17 to 201 were used instead of Compound A-16 used as a light emitting host material (see Table 2).


Comparative Example 2

A red organic electroluminescent element was manufactured by the same procedure as in Example 190, except that when a light emitting layer is formed in Example 190, CBP was used instead of Compound A-16 used as a light emitting host material. The structure of CBP used is the same as described in Comparative Example 1.


Evaluation Example 2

For each of the organic electroluminescent elements manufactured in Examples 190 to 207 and Comparative Example 2, the driving voltage and current efficiency thereof were measured at a current density of 10 mA/cm2, and the results are shown in the following Table 2.












TABLE 2





Sample
Host
Driving voltage (V)
Current efficiency (cd/A)


















Example 190
A-16
4.76
10.1


Example 191
A-17
4.53
11.5


Example 192
B-16
4.65
11.8


Example 193
B-17
4.74
11.5


Example 194
C-16
4.87
11.8


Example 195
C-17
4.56
9.6


Example 196
D-16
4.64
9.7


Example 197
D-17
4.55
9.1


Example 198
E-16
4.68
9.2


Example 199
E-17
4.55
11.5


Example 200
F-16
4.32
11.8


Example 201
F-17
4.74
11.5


Example 202
G-16
4.87
11.8


Example 203
G-17
4.53
9.6


Example 204
H-16
4.65
9.7


Example 205
H-17
4.74
11.8


Example 206
I-16
4.87
9.6


Example 207
I-17
4.76
9.7


Comparative
CBP
5.25
8.2


Example 2









As shown in Table 2, it could be confirmed that the red organic EL elements of Examples 190 to 207 in which the compounds (A-16 to I-17) according to the present disclosure are used as a material for the light emitting layer exhibit better performance in terms of efficiency and driving voltage than the red organic electroluminescent element of Comparative Example 2 in the related art in which the CBP is used.


[Example 208] Manufacture of Green Organic EL Element

Compound L-1 synthesized in Synthesis Example 208 was subjected to highly pure sublimation purification by a typically known method, and then a green organic electroluminescent element was manufactured as follows.


A glass substrate thinly coated with indium tin oxide (ITO) to have a thickness of 1,500 Å was ultrasonically washed with distilled water. When the ultrasonic washing with distilled water was completed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, and methanol, dried, transferred to a UV ozone cleaner (Power sonic 405, manufactured by Hwashin Tech), washed for 5 minutes by using UV, and then transferred to a vacuum evaporator.


An organic electroluminescent element was manufactured by laminating m-MTDATA (60 nm)/TCTA (80 nm)/Compound L-1 (40 nm)/CBP+10% Ir(ppy)3 (30 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) in this order on the thus prepared ITO transparent electrode.


[Example 209] to [Example 219] Manufacture of Green Organic EL Element

A green organic EL element was manufactured by the same procedure as in Example 208, except that when a light emitting layer is formed in Example 208, Compounds L-2 to O-3 each synthesized in Synthesis Examples 209 to 219 were used instead of Compound L-1 used as a light emitting auxiliary layer material.


Comparative Example 3

A green organic electroluminescent element was manufactured by the same procedure as in Example 208, except that Compound L-1 was not used as a light emitting auxiliary layer material in Example 208.


Evaluation Example 3

For each of the organic electroluminescent elements manufactured in Examples 208 to 219 and Comparative Example 3, the driving voltage and current efficiency thereof were measured at a current density of 10 mA/cm2, and the results are shown in the following Table 3.












TABLE 3






Light emitting

Current efficiency


Sample
auxiliary layer
Driving voltage (V)
(cd/A)


















Example 208
L-1
6.80
42.9


Example 209
L-2
6.85
42.6


Example 210
L-3
6.80
42.4


Example 211
M-1
6.80
42.0


Example 212
M-2
6.75
42.7


Example 213
M-3
6.90
42.7


Example 214
N-1
6.80
41.8


Example 215
N-2
6.80
42.5


Example 216
N-3
6.90
42.9


Example 217
O-1
6.85
41.9


Example 218
O-2
6.70
42.6


Example 219
0-3
6.85
42.9


Comparative

6.93
38.2


Example 2









As shown in Table 3, it could be seen that the green organic electroluminescent elements of Examples 208 to 219, in which the compounds (L-1 to O-3) represented by Chemical Formula 1 according to the present disclosure are used as a light emitting auxiliary layer material had a slightly lower driving voltage and a significantly improved light emitting efficiency than the green organic electroluminescent element of Comparative Example 3, in which the light emitting auxiliary layer material is not used.


[Example 220] Manufacture of Blue Organic EL Element

Compound A-9 synthesized in Synthesis Example 9 was subjected to highly pure sublimation purification by a typically known method, and then a blue organic electroluminescent element was manufactured as follows.


A glass substrate thinly coated with indium tin oxide (ITO) to have a thickness of 1,500 Å was ultrasonically washed with distilled water. When the ultrasonic washing with distilled water was completed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, and methanol, dried, transferred to a UV ozone cleaner (Power sonic 405, manufactured by Hwashin Tech), washed for 5 minutes by using UV, and then transferred to a vacuum evaporator.


An organic electroluminescent element was manufactured by laminating DS-205 (80 nm)/NPB (15 nm)/AND+5% DS-405 (30 nm)/Compound A-9 (5 nm)/Alq3 (25 nm)/LiF (1 nm)/Al (200 nm) in this order on the thus prepared ITO transparent electrode.


In this case, the structures of NPB, AND, and Alga used are as follows.




embedded image


[Example 221] to [Example 231] Manufacture of Blue Organic EL Element

A blue organic EL element was manufactured by the same procedure as in Example 220, except that each compound shown in Table 4 was used instead of Compound A-9 used as a lifetime enhancement layer material in Example 220.


[Example 232] Manufacture of Blue Organic EL Element

Compound A-3 synthesized in Synthesis Example 3 was subjected to highly pure sublimation purification by a typically known method, and then a blue organic electroluminescent element was manufactured as follows.


A glass substrate thinly coated with indium tin oxide (ITO) to have a thickness of 1,500 Å was ultrasonically washed with distilled water. When the ultrasonic washing with distilled water was completed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, and methanol, dried, transferred to a UV ozone cleaner (Power sonic 405, manufactured by Hwashin Tech), washed for 5 minutes by using UV, and then transferred to a vacuum evaporator.


An organic electroluminescent element was manufactured by laminating DS-205 (80 nm)/NPB (15 nm)/AND+5% DS-405 (30 nm)/Compound A-3 (30 nm)/LiF (1 nm)/Al (200 nm) in this order on the thus prepared ITO transparent electrode.


[Example 233] to [Example 235] Manufacture of Blue Organic EL Element

A blue organic EL element was manufactured by the same procedure as in Example 232, except that each compound shown in Table 5 was used instead of Compound A-3 used as an electron transporting layer material in Example 232.


[Comparative Example 4] Manufacture of Blue Organic Electroluminescent Element

A blue organic electroluminescent element was manufactured by the same procedure as in Example 220, except that a lifetime enhancement layer was not included, and the electron transporting layer material Alq3 was deposited to have a thickness of 30 nm instead of 25 nm.


[Comparative Example 5] Manufacture of Blue Organic Electroluminescent Element

An organic electroluminescent element was manufactured by the same procedure as in Example 1, except that BCP was used instead of using Compound A-9 used as a lifetime enhancement layer material in Example 220.


In this case, the structure of BCP used is as follows.




embedded image


Evaluation Example 4

For each of the organic electroluminescent elements manufactured in Examples 220 to 235 and Comparative Examples 4 and 5, the driving voltage, current efficiency, light emitting peaks, and lifetime (T97) thereof were measured at a current density of 10 mA/cm2, and the results are shown in the following Tables 4 and 5.














TABLE 4









Light




Lifetime
Driving
Current
emitting



enhancement
voltage
efficiency
peak
Lifetime


Sample
layer
(V)
(cd/A)
(nm)
(hr, T97)




















Example 220
A-9
4.4
6.2
457
45


Example 221
A-10
4.1
6.3
458
62


Example 222
A-15
4.2
6.6
458
55


Example 223
B-10
4.5
6.2
458
75


Example 224
B-15
4.3
6.5
458
59


Example 225
F-9
4.3
6.1
458
78


Example 226
F-14
4.4
6.4
457
60


Example 227
H-9
4.1
6.2
458
64


Example 228
H-14
4.7
6.0
458
50


Example 229
K-6
4.7
6.4
457
85


Example 230
P-1
4.5
6.1
458
55


Example 231
P-5
4.2
6.0
458
75


Comparative

4.7
5.6
458
32


Example 4


Comparative
BCP
5.3
5.9
458
28


Example 5




















TABLE 5






Electron
Driving
Current




transporting
voltage
efficiency
Light emitting peak


Sample
layer
(V)
(cd/A)
(nm)



















Example 232
A-3
4.5
6.3
458


Example 233
A-8
4.4
6.3
458


Example 234
A-21
4.3
6.1
458


Example 235
A-22
4.1
6.5
458


Comparative

4.7
5.6
458


Example 4









As can be seen from Table 4, the blue organic EL elements of Examples 220 to 231, in which Compounds A-9 to P-5 are used as a lifetime enhancement layer material, had a driving voltage which is similar to or slightly better than that of the blue organic EL element of Comparative Example 4 in which a lifetime enhancement layer was not used, but had the significantly improved current efficiency and lifetime.


Further, the blue organic EL elements of Examples 220 to 231 had better driving voltage and current efficiency than the blue organic EL element of Comparative Example 5, in which the CBP in the related art is used as a hole blocking layer material instead of the lifetime enhancement layer, and had the significantly improved lifetime.


As can be seen in Table 5, the blue organic EL elements of Examples 232 to 235, in which Compounds A-3 to A22 are used as an electron transporting layer material, had more improved driving voltage and current efficiency than the blue organic EL element of Comparative Example 4 in which Alga is used as an electron transporting layer material.


As described above, it could be confirmed that when the compound of Chemical Formula 1 according to the present disclosure is used as a lifetime enhancement layer material or an electron transporting layer material, the driving voltage and current efficiency are improved, and furthermore, lifetime characteristics may be significantly improved.

Claims
  • 1. A compound of the following Chemical Formula 1:
  • 2. The compound of claim 1, wherein the compound of the Chemical Formula 1 is represented by any one of the following Chemical Formulae 2 to 10:
  • 3. The compound of claim 1, wherein X1 and X2 are the same as or different from each other, and are each independently selected from the group consisting of O, S, and N(Ar1), and in this case, at least one of X1 and X2 is N(Ar1), and Ar1 is the same as that defined in claim 1.
  • 4. The compound of claim 1, wherein Ar1 to Ar5 and R1 are the same as or different from each other, and are each independently selected from the group consisting of a C1 to C40 alkyl group, a C6 to C60 aryl group, and a heteroaryl group having 5 to 60 nuclear atoms, and the alkyl group, the aryl group, and the heteroaryl group of Ar1 to Ar5 and R1 are optionally each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, wherein the substituent optionally combines with an adjacent group to form a fused ring, provided that when the substituent is present in a plural number, these are optionally the same as or different from each other.
  • 5. The compound of claim 1, wherein Ar1 to R1 are each independently a substituent of the following Chemical Formula 11, or a C6 to C60 aryl group, and the aryl group of Ar1 and R1 are optionally each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, wherein the substituent optionally combines with an adjacent group to form a fused ring, provided that when the substituent is present in a plural number, these are optionally the same as or different from each other:
  • 6. The compound of claim 1, wherein Ar1 and R1 are each independently a substituent represented by any one of the following Chemical Formulae A-1 to A-15:
  • 7. An organic electroluminescent element comprising an anode, a cathode, and one or more organic material layers interposed between the anode and the cathode, wherein at least one of the organic material layers comprises the compound described in claim 1.
  • 8. The organic electroluminescent element of claim 7, wherein the one or more organic material layers comprise a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injection layer, and the one or more organic material layers comprising the compound are a light emitting layer or an electron transporting layer.
  • 9. The organic electroluminescent element of claim 7, wherein the one or more organic material layers comprise a hole injection layer, a hole transporting layer, a light emitting auxiliary layer, a light emitting layer, an electron transporting layer, and an electron injection layer, and the one or more organic material layers comprising the compound are a light emitting auxiliary layer.
  • 10. The organic electroluminescent element of claim 7, wherein the one or more organic material layers comprise a hole injection layer, a hole transporting layer, a light emitting layer, a lifetime enhancement layer, an electron transporting layer, and an electron injection layer, and the one or more organic material layers comprising the compound are a lifetime enhancement layer.
  • 11. The organic electroluminescent element of claim 7, wherein the compound of the Chemical Formula 1 is represented by any one of the following Chemical Formulae 2 to 10:
  • 12. The organic electroluminescent element of claim 7, wherein X1 and X2 are the same as or different from each other, and are each independently selected from the group consisting of O, S, and N(Ar1), and in this case, at least one of X1 and X2 is N(Ar1), and Ar1 is the same as that defined in claim 1.
  • 13. The organic electroluminescent element of claim 7, wherein Ar1 to Ar5 and R1 are the same as or different from each other, and are each independently selected from the group consisting of a C1 to C40 alkyl group, a C6 to C60 aryl group, and a heteroaryl group having 5 to 60 nuclear atoms, and the alkyl group, the aryl group, and the heteroaryl group of Ar1 to Ar5 and R1 are optionally each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, wherein the substituent optionally combines with an adjacent group to form a fused ring, provided that when the substituent is present in a plural number, these are optionally the same as or different from each other.
  • 14. The organic electroluminescent element of claim 7, wherein Ar1 to R1 are each independently a substituent represented by the following Chemical Formula 11, or a C6 to C60 aryl group, wherein the aryl group of Ar1 and R1 are optionally each independently unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, halogen, a cyano group, a C1 to C40 alkyl group, a C3 to C40 cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, a C6 to C60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C6 to C60 arylphosphine group, a C6 to C60 arylphosphine oxide group, and a C6 to C60 arylamine group, wherein the substituent optionally combines with an adjacent group to form a fused ring, provided that when the substituent is present in a plural number, these are optionally the same as or different from each other:
  • 15. The organic electroluminescent element of claim 7, wherein Ar1 and R1 are each independently a substituent represented by any one of the following Chemical Formulae A-1 to A-15:
Priority Claims (1)
Number Date Country Kind
10-2013-0157627 Dec 2013 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2014/012386 12/16/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/093812 6/25/2015 WO A
Foreign Referenced Citations (1)
Number Date Country
2014-0119642 Oct 2014 KR
Non-Patent Literature Citations (5)
Entry
R. Rodrigo, et al., “Cancentrine. IV. Acetolysis Products of Cancertrine Methiodide”, Canadian Journal of Chemistry, Aug. 2, 1972, p. 3900-3910, vol. 50.
A. Nová{hacek over (c)}ek, et al., “Reaction of 8-Chloro-10-Phenylhydrazono-10,11-Dihydro-Dibenzo[b, f]Thiepine With Aromatic Aldehydes”, Collection Czechoslov. Chem. Commun, 1976, pp. 785-787, vol. 41.
Luca Vaghi, et al., “A Structurally Diverse Heterocyclic Library by Decoration of Oxcarbazepine Scaffold”, Molecules, 2013, pp. 13705-13722, vol. 18.
International Searching Authority, International Search Report for PCT/KR2014/012386 dated Mar. 27, 2015 [PCT/ISA/210].
International Searching Authority, Written Opinion for PCT/KR2014/012386 dated Mar. 27, 2015 [PCT/ISA/237].
Related Publications (1)
Number Date Country
20160351825 A1 Dec 2016 US