The present invention relates to an organic electroluminescence (hereinafter referred to as an organic EL) display panel and a method of manufacturing the organic EL display panel.
An organic EL element is known in the art which includes an organic light-emitting material having luminescent characteristic. The organic EL element includes a transparent electrode, an organic functional layer having an organic light-emitting material, and a metal electrode, which are sequentially laminated on a transparent substrate.
There is, for example, an organic EL display panel having the organic EL elements which are arranged in a matrix pattern. Application of a flexible display panel is proposed for the organic EL display panel, in which a flexible substrate is made of, for example, a resin material. Since the flexible display panel has light weight and flexible properties as compared with the display panel having a glass substrate, the flexible display panel has less limitations in terms of the installation place.
The resin material, however, has a poor blocking characteristic against passage of moisture and gases such as oxygen. Specifically, the resin material has a poor gas barrier characteristic. Therefore, the moisture and gases may pass through the flexible substrate. If the moisture and gases come into contact with the organic functional layer, a light-emitting-function of the layer may deteriorate which produces light-emission disabled regions, i.e., so-called dark spots.
In order to prevent this deterioration in the flexible substrate, a gas barrier layer is proposed. The gas barrier layer is made of silicon nitride oxide, and is deposited on a resin base material (for example, Akira Sugimoto, “Development of organic EL film display,” Optronics, Vol. 3, 2001, pp. 122-126).
Forming the gas barrier layer on the substrate imparts gas barrier characteristic to the flexible substrate. However, if a minute defect such as a pinhole is formed during the deposition of the gas barrier layer, moisture may pass through the substrate via such defect. Accordingly, the dark spot cannot be completely eliminated.
The problems to be solved by the present invention includes the above-described problem.
According to one aspect of the present invention, an organic electroluminescence display panel is provided which includes a plurality of electrode line groups arranged in parallel to each other, an insulation layer having a plurality of windows arranged along electrode lines of the first electrode line groups so at to define light-emitting areas, and an organic functional layer formed in the light-emitting areas. The insulation layer includes a gas barrier layer which covers peripheries of the windows. The display panel may also include a plurality of second electrode line groups arranged to cross the first electrode lines via the organic functional layer.
Since intrusion of moisture into the organic functional layer from the surrounding of the display panel is blocked by the gas barrier layer, the display panel having the organic functional layer causing no deterioration can be obtained.
FIGS. 6 to 12 are top views showing a series of manufacturing steps of the organic EL display panel according to the present invention;
An embodiment of an organic EL display panel according to the present invention will be described in detail with reference to the accompanying drawings. It should be noted that similar reference numerals and symbols are assigned to similar elements. Although the organic EL display panel includes a wiring, a driving section necessary for driving the display panel and so on, these devices are omitted from the following description.
As shown in
The display area 2 includes light-emitting pixels (not shown) each consisting of three light-emitting sections which respectively emit, for example, red light, green light and blue light. It should be noted that instead of the light-emitting sections of red, green and blue colors, the display panel may be a monochrome display panel in which all the light-emitting sections are monochrome.
As shown in
The organic insulation layer 7 is covered with a gas barrier layer 9. It is preferable that the gas barrier layer 9 has an excellent insulation characteristic as well as an excellent gas barrier characteristic. It is also preferable that the gas barrier layer is made of a material that allows easy formation of a fine pattern. The material which can provide the above characteristic are, for example, an inorganic material such as silicon oxide, silicon nitride, or silicon nitride oxide. At least peripheries of the windows 8 are covered with the gas barrier layer 9 so as to define light-emitting areas 10 of the light-emitting sections. Specifically, in the embodiment of
In the light-emitting areas 10, the organic functional layer 11 including light-emitting layer is formed. The light-emitting layer is made of an organic compound exhibiting an electroluminescence characteristic. The organic functional layer 11 is in contact with the anode lines 4 in the light-emitting areas 10. It should be noted that the organic functional layer 11 may have a laminated structure including, for example, a functional layer. The functional layer improves a current injection efficiency when a current is injected into the light-emitting layer.
The cathode lines 5 are provided to cross the anode lines 4 via the organic functional layer 11. The cathode lines 5 are made of a metal having a low electrical resistance such as Al alloy. The organic functional layer 11 and the cathode lines 5 are sealed with the protection layer 6 made of an inorganic material having a gas barrier characteristic such as silicon nitride.
As described above, in the organic EL display panel, the anode lines or the gas barrier layer, which are both made of an inorganic material, is formed between the organic functional layer and the substrate. The inorganic material has a blocking characteristic as compared with the organic material against the passage of gases such as gases including organic substances and moisture. Accordingly, even though gases such as oxygen and moisture may pass through the substrate 3 from the surrounding air of the panel, they cannot pass through the anode lines 4 and the gas barrier 9. Therefore, the organic functional layer 11 can be protected from these gases.
As an alternate embodiment, the display area of the organic EL display panel may include ramparts (i.e., partition walls) which define a light-emitting pattern.
For example, as shown in
As shown in
The organic insulation layer 7 is covered with the gas barrier layer 9. At least peripheries of the windows 8 are covered with the gas barrier layer 9 so as to define light-emitting areas 10 of the light-emitting sections. Specifically, although the gas barrier layer 9 is formed in such a manner as to connect the peripheries of the adjacent windows 8 in
In regions of the gas barrier layer 9 other than the windows 8, the linear-shaped ramparts 12 are provided so as to perpendicularly cross the anode lines 4. The ramparts 12 are formed so as to protrude from the gas barrier layer 9. The ramparts 12 may be formed, for example, by firstly providing a photoresist on the substrate, and then carrying out an exposure process using a mask followed by a development process. The ramparts 12 are formed to have a cross section of, for example, inverse truncated triangle shapes, and are arranged in parallel to each other.
In the light-emitting areas 10, the organic functional layer 11 including the light-emitting layer is formed. The organic functional layer 11 is in contact with the anode lines 4 in the light-emitting areas 10. Since the light-emitting areas 10 are defined by the gas barrier layer 9, the organic functional layer 11 is not in contact with the organic insulation layer 7.
On the organic functional layer 11, the cathode lines 5 are formed which are made of a metal having a low electrical resistance such as Al alloy. The cathode lines 5 are electrically separated from each other by the ramparts 12.
The organic functional layer 11, the cathode lines 5, and the ramparts 12 are sealed with the protection layer 6 which is made of an inorganic material having a gas barrier characteristic such as silicon nitride.
In the above-described organic EL panel, diffusion of moisture coming from the outside of the panel can be blocked by the gas barrier layer thereby preventing formation of the dark spots. Furthermore, deterioration caused by an internal factor, particularly, deterioration inherent in the display panel provided with the ramparts, can be prevented.
The internal factor includes the gases such as moisture or organic compounds which are released from the ramparts when the organic EL display panel provided with the ramparts becomes high temperature. These gases are generated by a heat-up of a water and/or an organic solvent, which are included in the photoresist used for the rampart material, and which remain in the ramparts.
In the above-described organic EL panel, diffusion of these gases released from the ramparts is blocked by the gas barrier layer. Accordingly, a deterioration caused by the contact between these gases and the organic functional layer can be prevented.
The ramparts 12 are sealed with the gas barrier layer 9 and the protection layer 6 which are both made of inorganic materials, and therefore the gases generated in the ramparts 12 cannot diffuse therefrom. Consequently, these gases are trapped in the ramparts 12. Since these gases do not intrude into the organic functional layer 11, deterioration caused by these gases, i.e., dark spots, can be prevented.
Note that the gas barrier layer may not be provided between the rampart and organic insulation layer. Such structure (alternative embodiment) will be hereinafter described. For example, as shown in
In the organic EL display panel having the structure described above, the ramparts are provided on the organic insulation layer made of the organic substance. Accordingly, adhesiveness between the ramparts and the organic insulation layer is improved. Since it is difficult to remove the ramparts from the substrate, damages of the panel caused by the separation of the ramparts do not occur.
Furthermore, since the gas barrier layer is formed between the organic functional layer and the organic insulation layer, those gases which intrude into the organic insulation layer from the ramparts cannot pass through the gas barrier layer thereby preventing the diffusion to the organic functional layer. Accordingly, deterioration caused by the internal factor can be prevented.
It should be noted that the display area may be sealed with a can sealing which has a hollow portion and includes an adsorbent in the hollow portion. Application of the can sealing may omit the protection layer.
The substrate may also be flexible, which is made of, for example, film resin.
A method of manufacturing the above-described organic EL display panel will be hereinafter described.
As shown in
After the anode formation process, as shown in FIG. 7, an organic insulation layer formation process is carried out in which the organic insulation layer 7 is formed by means of a photo-lithograph method. The organic insulation layer 7 has a plurality of windows 8 which are arranged along the anode lines 4. The organic insulation layer forming process includes a process to deposit a photosensitive resin such as polyimide by means of a deposition method such as spin coating. It is preferable that an organic insulation material used for the organic insulation layer has sufficient coating property when applied on a stepped section.
As shown in
As shown in
After the rampart formation process, as shown in
The organic functional layers are formed, as shown for example in
Alternatively, the organic functional layers may be formed by a single deposition process applied on the whole display area without using the deposition mask. Because of the height of the ramparts, isolation of the deposited substances between the rampart sections and the sections other than the locations of the ramparts is made by this deposition method. Accordingly, the organic functional layers formed in the sections other than the locations of the ramparts are defined by the ramparts. Specifically, a pattern of the organic functional layer is formed by the ramparts.
After the formation of the organic functional layers, as shown in
As shown in
Upon performing the above-described processes, the organic EL display panel 1a shown in
It should be noted that when the organic insulation layer is formed to have sloped surfaces in order to cover stepped sections at ends of the anode lines in the above manufacturing method, the deposition material can be deposited on the sloped surfaces, even though a deposition method using an anisotropic flow of the deposited material is applied for the formation of the organic functional layer and the cathode lines. Consequently, no disconnection of the organic functional layer and the cathode line occurs between the light-emitting areas thereby improving reliability of the display panel.
The method of manufacturing the organic EL display panel having the structure shown in
As an alternative embodiment, as shown in
The above embodiments deal with the display panel of a passive drive type. The present invention, however, is not limited to the passive drive type. Specifically, the present invention can be applied to the display panel of an active drive type.
In the above embodiments, the insulation layer defining the light-emitting areas includes the laminated layers having the organic insulation layer and the gas barrier layer. The present invention, however, is not limited to the laminated layers. Specifically, the insulation layer may be formed only by the gas barrier layer.
Furthermore, in the above embodiments, the anode electrodes and the cathode electrodes may be converted into one another. Specifically, the cathode lines, the organic functional layer, and the anode lines may be sequentially laminated on the substrate in the described order.
Further, as shown in
This application is based on a Japanese patent application No. 2003-143213, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2003-143213 | May 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/07207 | 5/20/2004 | WO | 2/5/2007 |