1. Field of the Invention
The present invention generally relates to a light-emitting device. More particularly, the present invention relates to an organic electroluminescent device, a cover plate of the organic electroluminescent device, and a method for fabricating the cover plate.
2. Description of Related Art
Organic electroluminescent device (OELD) utilizes the self-illuminating property of an organic functional material to illuminate an image. According to the molecular weight of the organic functional material, the OELD can be classified into small molecule organic electroluminescent device (SM-OELD) and polymer electroluminescent device (PELD). The light-emitting structure of both types of OELD comprises a pair of electrodes and an organic functional material layer sandwiched between the two. When a DC voltage is applied to the electrodes, holes are injected from the anode into the organic functional material layer while electrons are injected from the cathode into the organic functional material layer. Due to the potential produced by an external electric field, hole and electron carriers moving inside the organic functional material layer may collide and recombine with each other. A portion of the energy released by the recombination of electron-hole pairs may excite the organic functional molecules into an excited state. When an excited molecule releases its energy and falls back to a ground state, a definite portion of the energy is released as photons. Hence, the organic electroluminescent device (OELD) will emit light on activation.
In general, since the organic functional material layer is easily deteriorated in presence of moisture, a desiccant layer is formed on a cover plate of the organic electroluminescent device. The conventional method for fabricating the cover plate, for example, forms a liquid-state desiccant layer within a concave of the substrate first, and then cures the liquid-state desiccant layer to form the desiccant layer. It should be noted that, in the process of curing the liquid-state desiccant layer, a solvent used in the liquid-state desiccant layer may remain not only in a processing apparatus but on a bonding region of the cover plate. The solvent remaining on the bonding region of the cover plate may reduce the adhesive strength between the cover plate and a device substrate. In other words, the apparatus must be cleaned after performing the fabricating process in predetermined times.
Accordingly, the present invention is directed to a method for fabricating a cover plate of an organic electroluminescent device to reduce the frequency of cleaning the curing apparatus.
In addition, the present invention is directed to a cover plate of an organic electroluminescent device, which provides superior water absorptivity.
Furthermore, the present invention is directed to an organic electroluminescent device, which has superior adhesive strength between the cover plate and the device substrate.
The present invention provides a method for fabricating a cover plate of an organic electroluminescent device comprising the following steps. First, a substrate is provided, wherein the substrate has a bonding region. Then, a liquid-state desiccant layer is formed on the substrate, wherein the liquid-state desiccant layer is surrounded by the bonding region. Next, the liquid-state desiccant layer is cured to form a desiccant layer. Then, the bonding region of the substrate is cleaned.
The present invention provides a cover plate of an organic electroluminescent device. The cover plate comprises a substrate and a desiccant layer. Wherein, the substrate has a bonding region, and the desiccant layer is disposed on the substrate and surrounded by the bonding region. In addition, the desiccant layer has a rough surface.
The present invention provides an organic electroluminescent device, which comprises a device substrate, a cover plate, and a sealant. Wherein, the device substrate has a device layer disposed thereon, and the cover plate is disposed over the device substrate for covering the device layer. The cover plate comprises a substrate and a desiccant layer, wherein the substrate has a bonding region, and the desiccant layer is disposed on the substrate and surrounded by the bonding region. In addition, the desiccant layer has a rough surface, and the sealant is disposed between the device substrate and the bonding region of the cover plate.
Since the bonding region of the substrate is cleaned after the desiccant layer is formed, the present invention provides higher adhesive strength between the cover plate and the sealant. In addition, the desiccant layer has the rough surface for providing superior water absorptivity.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Then, a liquid-state desiccant layer is formed within the concave 110b of the substrate 110. For example, a liquid-state desiccant material is filled into the concave 110b in a manner of dropping, and then the liquid-state desiccant material will spread within the concave 110b to form the liquid-state desiccant layer. The liquid-state desiccant layer comprises solute and solvent, wherein the solvent may be organic solute, and the solute may be barium oxide, calcium oxide, barium sulfate, or calcium sulfate.
Referring to
Referring to
After the cleaning process, a wetting angle of the bonding region is usually smaller than 35°. It should be noted that the embodiment is not limited to clean only the bonding region 110a. For simplifying the process, the plasma or the excimer laser is usually applied to the whole substrate 110, thus the original smooth surface of the desiccant layer 120 is turned into a rough surface. Unlike the prior art, the desiccant layer 120 has the rough surface for providing superior water absorptivity.
In addition, the steps of curing the liquid-state desiccant layer and cleaning the substrate 110 can be performed not only in different chambers, but in the same chamber. In other words, the steps of curing the liquid-state desiccant layer and cleaning the substrate 110 may be performed through an in-situ process.
Referring to
Referring to
In summary, the organic electroluminescent device, the cover plate of the organic electroluminescent device, and the method for fabricating the cover plate according to the present invention has the following advantages.
1. The present provides higher adhesive strength between the cover plate and the sealant.
2. Since the desiccant layer has the rough surface for providing superior water absorptivity, the organic electroluminescent device of the present invention has higher reliability.
3. The present invention is compatible with existing processes, thus the organic electroluminescent device having higher reliability can be easily fabricated without any additional processing apparatus.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.