The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate an embodiment of the present invention and together with the description serve to explain the principles of that invention.
Reference will now be made in detail to an illustrated embodiment of the present invention, examples of which are shown in the accompanying drawings.
In
The first transistor T1 is connected to one of the scan lines S(n−1) and Sn and one of the data lines Dm and D(m+1). That is, a gate electrode of the first transistor T1 is connected to one of the scan lines S(n−1) and Sn, and a source electrode of the first transistor T1 is connected to one of the data lines Dm and D(m+1). A gate electrode of the second transistor T2 is connected to a drain electrode of the first transistor T1, a drain electrode of the third transistor T3, and one electrode of the capacitor C. A source electrode of the second transistor T2 is connected to the other electrode of the capacitor C and a ground GND. A drain electrode of the second transistor T2 is connected to a cathode electrode of the organic light-emitting diode OLED. An anode electrode of the organic light-emitting diode OLED is connected to a power supply line VDD.
A source electrode of the third transistor T3 is connected to a pre-charge line PL. A gate electrode of the third transistor T3, which is connected to the second transistors T2 of pixels P supplied with a signal from the nth scan line Sn, is connected to the (n−1)th scan line S(n−1). A pre-charge voltage Vpre is applied to the third transistor T3 through the pre-charge line PL, and the third transistor T3 connected to one scan line provides the pre-charge voltage Vpre to the second transistors T2 and the capacitors C of the pixels P connected to the next scan line. For convenience of explanation, there shows only the third transistor T3 connected to the (n−1)th scan line S(n−1) in the figure.
The first, second and third transistors T1, T2 and T3 preferably all include amorphous silicon and have the same type channel. The first, second and third transistors T1, T2 and T3 may have an n-type channel, for example. The third transistor T3 and the pre-charge line PL may be disposed in a non-display area where images are not displayed.
The first transistor T1 is switched ON and OFF by a scan signal and outputs a data voltage applied from the data line Dm and D(m+1) into the second transistor T2. The second transistor T2 adjusts currents flowing through its channel according to the data voltage and controls a brightness of light emitted from the organic light-emitting diode OLED. The capacitor C stores the data voltage output from the first transistor T1 and provides the stored data voltage to the second transistor T2 when the first transistor T1 finishes outputting the data voltage, thereby continuing light-emitting time of the organic light-emitting diode OLED.
When a scan signal is applied to the (n−1)th scan line S(n−1) in order to operate the pixels P in an (n−1)th horizontal row in the context of the figure, the third transistor T3 connected to the (n−1)th scan line S(n−1) turns ON and provides a pre-charge voltage Vpre to the second transistors T2 and the capacitors C of the pixels P in an nth horizontal row in the context of the figure. The pre-charge voltage Vpre has an opposite polarity to the data voltage. That is, if the second transistor T2 has an n-type channel, the data voltage may be positive. Accordingly, the pre-charge voltage Vpre may be negative. For example, the pre-charge voltage Vpre may have a value within a range of about −5V to about −10V. If the second transistor T2 has a p-type channel, the data voltage may be negative, and the pre-charge voltage Vpre may be positive.
In
In
When a scan signal, that is, a high level voltage, is applied to the (n−1)th scan line S(n−1), the third transistor T3 provides the second transistors T2 and the capacitors C of the pixels P connected with the nth scan line Sn with a low level voltage of the nth scan line Sn as a pre-charge voltage Vpre.
The first, second and third transistors T1, T2 and T3 all include amorphous silicon and have the same type channel. The first, second and third transistors T1, T2 and T3 may have an n-type channel, for example. The third transistor T3 may be disposed in a non-display area where images are not displayed.
The first transistor Ti is switched ON and OFF by a scan signal and outputs a data voltage applied from the data line Dm and D(m+1) into the second transistor T2. The second transistor T2 adjusts currents flowing through its channel according to the data voltage and controls a brightness of light emitted from the organic light-emitting diode OLED. The capacitor C stores the data voltage output from the first transistor T1 and provides the stored data voltage to the second transistor T2 when the first transistor T1 finishes outputting the data voltage, thereby continuing light-emitting time of the organic light-emitting diode OLED.
With reference to
In the same way as the first embodiment, the negative pre-charge voltage Vpre is applied to the second transistors T2 and the capacitors C of the pixels P in a horizontal row that will be driven next time through the third transistor T3. After that, a positive data voltage is applied to the second transistors T2 and the capacitors C of the pixels P in the horizontal row in the context of the figure. Accordingly, the second transistors T2 are prevented from deteriorating and having changed characteristics due to continuous supply of the positive data voltage. Charges remaining in the capacitors C are discharged due to the negative pre-charge voltage Vpre. Therefore, the next data voltage Vdata is not stored with the previous data voltage Vdata, and more definite images can be displayed.
It will be apparent to those skilled in the art that various modifications and variation can be made in an organic electroluminescent display device of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-0057983 | Jun 2006 | KR | national |