ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Information

  • Patent Application
  • 20240218004
  • Publication Number
    20240218004
  • Date Filed
    October 26, 2023
    a year ago
  • Date Published
    July 04, 2024
    5 months ago
Abstract
A compound comprising a first ligand LA of Formula I,
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a compound comprising a first ligand LA of Formula I,




embedded image


wherein:

    • moiety A is a monocyclic ring or a polycyclic fused ring system, wherein the monocyclic ring and each ring of the polycyclic fused ring system is independently a 5-membered or 6-membered carbocyclic or heterocyclic ring;
    • K1 and K2 are each independently selected from the group consisting of single bond, O, S, N(Rα), P(Rα), B(Rα), C(Rα)(Rβ), and Si(Rα)(Rβ);
    • Z1 and Z2 are each independently C or N;
    • RA represents mono to the maximum allowable substitutions, or no substitutions;
    • each of RB and RC independently represents mono to the maximum allowable substitutions;
    • each Rα, Rβ, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, ether, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, selenyl, and combinations thereof;
    • at least one RB substituent and at least one RC substituent is not hydrogen or deuterium;
    • LA is coordinated to a metal M, having an atomic mass of at least 40;
    • metal M can be coordinated to other ligands;
    • LA can be joined with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand;
    • any two substituents can be joined or fused to form a ring; and
    • the compound is not




embedded image


wherein TMS is trimethyl silane.


In another aspect, the present disclosure provides a formulation comprises a compound comprising a first ligand LA of Formula I as described herein.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising a compound comprising a first ligand LA of Formula I as described herein.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising a compound comprising a first ligand LA of Formula I as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “selenyl” refers to a —SeRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)2 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “germyl” refers to a —Ge(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, 0, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the General Substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some instances, the Preferred General Substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the More Preferred General Substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the Most Preferred General Substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same Ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound comprising a first ligand LA of Formula I,




embedded image


wherein:

    • moiety A is a monocyclic ring or a polycyclic fused ring system, wherein the monocyclic ring and each ring of the polycyclic fused ring system is independently a 5-membered or 6-membered carbocyclic or heterocyclic ring;
    • K1 and K2 are each independently selected from the group consisting of single bond, O, S, N(Rα), P(Rα), B(Rα), C(Rα)(Rβ), and Si(Rα)(Rβ);
    • Z1 and Z2 are each independently C or N;
    • RA represents mono to the maximum allowable substitutions, or no substitutions; each of RB and RC independently represents mono to the maximum allowable substitutions;
    • each Rα, Rβ, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein;
    • at least one RB substituent and at least one RC substituent is not hydrogen or deuterium;
    • LA is coordinated to a metal M, having an atomic mass of at least 40;
    • metal M may be coordinated to other ligands;
    • LA may be joined with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand;
    • any two substituents may be joined or fused to form a ring; and
    • the compound is not




embedded image


wherein TMS is trimethyl silane.


In some embodiments, each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the Preferred General Substituents defined herein. In some embodiments, each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the More Preferred General Substituents defined herein. In some embodiments, each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the Most Preferred General Substituents defined herein.


In some embodiments, RA and RB substituents do not join to form a ring. In some embodiments, no two RC substituents are joined to form a 6-membered ring.


In some embodiments, RA and RB substituents do not join to form a ring, and no two RC substituents are joined to form a 6-membered ring.


In some embodiments, metal M is selected from the group consisting of Ir, Rh, Re, Ru, Os, Pt, Pd, Ag, Au, and Cu. In some embodiments, metal M is Ir. In some embodiments, metal M is Pt.


In some embodiments, Z2 is N and Z1 is C. In some embodiments, Z2 is carbene carbon and Z1 is N.


In some embodiments, moiety A is a monocyclic ring. In some embodiments, moiety A is selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, triazole, and thiazole.


In some embodiments, moiety A is a polycyclic fused ring system. In some embodiments, moiety A comprises a pyridine ring that includes Z1 and Z2.


In some embodiments, moiety A is selected from the group consisting of naphthalene, quinazoline, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, dibenzofuran, dibenzothiophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, fluorene, and aza-variations thereof.


In some embodiments, moiety A is a polycyclic fused ring structure. In some embodiments, moiety A is a polycyclic fused ring structure comprising at least three fused rings. In some embodiments, the polycyclic fused ring structure has two 6-membered rings and one 5-membered ring. In some such embodiments, the 5-membered ring is fused to the ring coordinated to metal M and the second 6-membered ring is fused to the 5-membered ring. In some embodiments, moiety A is selected from the group consisting of dibenzofuran, dibenzothiophene, dibenzoselenophene, and aza-variants thereof. In some such embodiments, moiety A is further substituted at the ortho- or meta-position of the O, S, or Se atom by a substituent selected from the group consisting of deuterium, fluorine, nitrile, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof. In some such embodiments, the aza-variants contain exactly one N atom at the 6-position (ortho to the O, S, or Se) with a substituent at the 7-position (meta to the O, S, or Se).


In some embodiments, moiety A is a polycyclic fused ring structure comprising at least four fused rings. In some embodiments, the polycyclic fused ring structure comprises three 6-membered rings and one 5-membered ring. In some such embodiments, the 5-membered ring is fused to the ring coordinated to metal M, the second 6-membered ring is fused to the 5-membered ring, and the third 6-membered ring is fused to the second 6-membered ring. In some such embodiments, the third 6-membered ring is further substituted by a substituent selected from the group consisting of deuterium, fluorine, nitrile, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


In some embodiments, moiety A is a polycyclic fused ring structure comprising at least five fused rings. In some embodiments, the polycyclic fused ring structure comprises four 6-membered rings and one 5-membered ring or three 6-membered rings and two 5-membered rings. In some embodiments comprising two 5-membered rings, the 5-membered rings are fused together. In some embodiments comprising two 5-membered rings, the 5-membered rings are separated by at least one 6-membered ring. In some embodiments with one 5-membered ring, the 5-membered ring is fused to the ring coordinated to metal M, the second 6-membered ring is fused to the 5-membered ring, the third 6-membered ring is fused to the second 6-membered ring, and the fourth 6-membered ring is fused to the third-6-membered ring.


In some embodiments, moiety A is an aza version of the polycyclic fused rings described above. In some such embodiments, moiety A contains exactly one aza N atom. In some such embodiments, moiety A contains exactly two aza N atoms, which can be in one ring, or in two different rings. In some such embodiments, the ring having aza N atom is separated by at least two other rings from the metal M atom. In some such embodiments, the ring having aza N atom is separated by at least three other rings from the metal M atom. In some such embodiments, each of the ortho position of the aza N atom is substituted.


In some embodiments, at least one RA comprises a pendant group selected from the group consisting of alkyl, cycloalkyl, aryl, and heteroaryl. As used herein, “pendant group” refers to a moiety that is bonded to a ring by a single atom (e.g., the RA is only bonded to one atom of moiety A).


In some embodiments where RA is a pendant group, the at least one RA comprises cycloalkyl, aryl, or heteroaryl. In some embodiments where RA is a pendant group, the at least one RA is substituted cycloalkyl, substituted aryl, or substituted heteroaryl. In some embodiments where RA is a pendant group, the at least one RA comprises cyclohexane, benzene, or benzofuran.


In some embodiments where RA is a pendant group, the at least one RA is a ring that is substituted. In some embodiments where RA is a pendant group, the at least one RA is a ring substituted at a position adjacent to the bond with moiety A. In some embodiments where RA is a pendant group, the at least one RA is a ring substituted at both positions adjacent to the bond with moiety A. In some embodiments where RA is a pendant group, the at least one RA is a ring substituted by at least one substituent selected from the group consisting of substituted with alkyl, aryl, partially or fully deuterated variations thereof, partially or fully fluorinated variations thereof, and combinations thereof. In some embodiments where RA is a pendant group, the at least one RA is a ring substituted by at least one alkyl comprising at least 3 carbon atoms. In some such embodiments, RA is a substituted aryl or heteroaryl ring. In some such embodiments, RA is a 5-membered aryl or heteroaryl ring that is further substituted. In some such embodiments, RA is a 6-membered aryl or heteroaryl ring that is further substituted. In some such embodiments, RA is a substituted phenyl ring.


In some embodiments, at least one RB is selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof. In some embodiments, at least one RB is a substituent comprising at least 3 carbon atoms.


In some embodiments, the RB para to metal M is selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof. In some embodiments, the RB para to metal M is alkyl. In some embodiments, the RB para to metal M is t-butyl.


In some embodiments, two RB are joined or fused to form a ring. In some embodiments, two RB are joined or fused to form a ring selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, triazole, thiazole, naphthalene, quinazoline, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, dibenzofuran, dibenzothiophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, fluorene, and aza-variations thereof.


In some embodiments, at least one RC is selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof.


In some embodiments, at least two RC are not hydrogen or deuterium.


In some embodiments, at least two RC are independently selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof. In some such embodiments, the at least two RC are not adjacent to one another.


In some embodiments, at least one RC is a substituent comprising at least 3 carbon atoms. In some embodiments, at least one RC is a substituent comprising at least 4 carbon atoms. In some embodiments, at least one RC is a substituent comprising at least 5 carbon atoms.


In some embodiments, at least one RC is selected from the group consisting of alkyl, cycloalkyl, aryl, and heteroaryl, which can be substituted. In some embodiments, at least one RC is selected from the group consisting of cycloalkyl, aryl, and heteroaryl, which can be substituted.


In some embodiments, two RC substituents are joined to form a 5-membered ring. In some embodiments, two RC substituents are joined or fused to form a ring selected from the group consisting of imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, triazole, thiazole, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, and benzimidazole.


In some embodiments, the compound comprises an electron-withdrawing group. In some embodiments, the electron-withdrawing groups commonly comprise one or more highly electronegative elements including but not limited to fluorine, oxygen, sulfur, nitrogen, chlorine, and bromine. In some embodiments, the electron-withdrawing group has a Hammett constant larger than 0. In some embodiments, the electron-withdrawing group has a Hammett constant equal or larger than 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, or 1.1.


In some embodiments, the compound comprises an electron-withdrawn group selected from the group consisting of the structures of the following EWG1 LIST: F, CF3, CN, COCH3, CHO, COCF3, COOMe, COOCF3, NO2, SF3, SiF3, PF4, SF5, OCF3, SCF3, SeCF3, SOCF3, SeOCF3, SO2F, SO2CF3, SeO2CF3, OSeO2CF3, OCN, SCN, SeCN, NC, +N(Rk2)3, (Rk2)2CCN, (Rk2)2CCF3, CNC(CF3)2, BRk3Rk2, substituted or unsubstituted dibenzoborole, 1-substituted carbazole, 1,9-substituted carbazole, substituted or unsubstituted carbazole, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted pyrazine, substituted or unsubstituted pyridoxine, substituted or unsubstituted triazine, substituted or unsubstituted oxazole, substituted or unsubstituted benzoxazole, substituted or unsubstituted thiazole, substituted or unsubstituted benzothiazole, substituted or unsubstituted imidazole, substituted or unsubstituted benzimidazole, ketone, carboxylic acid, ester, nitrile, isonitrile, sulfinyl, sulfonyl, partially and fully fluorinated alkyl, partially and fully fluorinated aryl, partially and fully fluorinated heteroaryl, cyano-containing alkyl, cyano-containing aryl, cyano-containing heteroaryl, isocyanate,




embedded image


embedded image




    • wherein each Rk1 represents mono to the maximum allowable substitution, or no substitutions;

    • wherein YG is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf′; and

    • wherein each of Rk1, Rk2, Rk3, Re, and Rf is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein.





In some embodiments, the compound comprises an electron-withdrawing group selected from the group consisting of the structures of the following EWG2 List:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound comprises an electron-withdrawing group selected from the group consisting of the structures of the following EWG3 LIST:




embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound comprises an electron-withdrawing group selected from the group consisting of the structures of the following EWG4 LIST:




embedded image


embedded image


In some embodiments, the compound comprises an electron-withdrawing group that is a π-electron deficient electron-withdrawing group. In some embodiments, the π-electron deficient electron-withdrawing group is selected from the group consisting of the structures of the following Pi-EWG LIST: CN, COCH3, CHO, COCF3, COOMe, COOCF3, NO2, SF3, SiF3, PF4, SF5, OCF3, SCF3, SeCF3, SOCF3, SeOCF3, SO2F, SO2CF3, SeO2CF3, OSeO2CF3, OCN, SCN, SeCN, NC, +N(Rk2)3, BRk2Rk3, substituted or unsubstituted dibenzoborole, 1-substituted carbazole, 1,9-substituted carbazole, substituted or unsubstituted carbazole, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted pyrazine, substituted or unsubstituted pyridazine, substituted or unsubstituted triazine, substituted or unsubstituted oxazole, substituted or unsubstituted benzoxazole, substituted or unsubstituted thiazole, substituted or unsubstituted benzothiazole, substituted or unsubstituted imidazole, substituted or unsubstituted benzimidazole, ketone, carboxylic acid, ester, nitrile, isonitrile, sulfinyl, sulfonyl, partially and fully fluorinated aryl, partially and fully fluorinated heteroaryl, cyano-containing aryl, cyano-containing heteroaryl, isocyanate,




embedded image


embedded image


wherein the variables are the same as previously defined.


In some embodiments, at least one Rα, Rβ, RA, RB, or RC is partially or fully deuterated. In some embodiments, at least one RA is partially or fully deuterated. In some embodiments, at least one RB is partially or fully deuterated. In some embodiments, at least one RC is partially or fully deuterated. In some embodiments, at least one Rα or Rβ is partially or fully deuterated.


In some embodiments, at least one Rα, Rβ, RA, RB, or RC is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one Rα, Rβ, RA, RB, or RC is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one Rα, Rβ, RA, RB, or RC is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one Rα, Rβ, RA, RB, or RC is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one Rα, Rβ, RA, RB, or RC is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, at least one Rα or Rβ is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one Rα or Rβ is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one Rα or Rβ is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one Rα or Rβ is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one Rα or Rβ is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, the ligand LA is selected from the group consisting of the structures of the following LIST 1:




embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • each of Y1 to Y13 is independently selected from the group consisting of carbon and nitrogen;
    • each of Y′ and Y″ is independently selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C═O, C═S, C═Se, C═NRe, C═CReRf, S═O, SO2, CReRf, SiReRf, and GeReRf′;
    • each RAA, RB, and RC independently represents mono-substitution up to a maximum allowed number of substitutions, or no substitutions;
    • each of RAA, RB, RC, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and any two substituents can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments where ligand LA is selected from LIST 1, at least one RAA, RB, RC, Re, or Rf is partially or fully deuterated. In some embodiments, at least one RAA is partially or fully deuterated. In some embodiments, at least one RB is partially or fully deuterated. In some embodiments, at least one RC is partially or fully deuterated. In some embodiments, at least one Re, or Rf is partially or fully deuterated.


In some embodiments where ligand LA is selected from LIST 1, at least one RA is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments where ligand LA is selected from LIST 1, at least one RB is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments where ligand LA is selected from LIST 1, at least one RC is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, the ligand LA is selected from the group consisting of the structures of the following LIST 2




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • each of Y′ and Y″ is independently selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C═O, C═S, C═Se, C═NRe, C═CReRf, S═O, SO2, CReRf, SiReRf, and GeReRf′;
    • each RAA and RAB independently represents mono-substitution up to a maximum allowed number of substitutions, or no substitutions;
    • each of RAA, RAB, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and any two substituents can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments where ligand LA is selected from LIST 2, at least one Re, Rf, RAA, RAB, RB, or RC is partially or fully deuterated. In some embodiments, at least one RAA is partially or fully deuterated. In some embodiments, at least one RAB is partially or fully deuterated. In some embodiments, at least one RB is partially or fully deuterated. In some embodiments, at least one RC is partially or fully deuterated. In some embodiments, at least one Re or Rf, is partially or fully deuterated.


In some embodiments where ligand LA is selected from LIST 2, at least one RAA is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RAA is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments where ligand LA is selected from LIST 2, at least one RAB is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RAB is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RAB is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RAB is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RAB is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments where ligand LA is selected from LIST 2, at least one RB is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments where ligand LA is selected from LIST 2, at least one RC is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, the ligand LA is selected from the group consisting of LA-i-(REA)(REB)(REC)(RED) (REE) and LA-i′-(REA)(REB)(REC)(RED)(REE)(REF), wherein i is an integer selected from 1-3, 5-6, and 19-30, i′ is an integer selected from 4, 7-10, and 31-42, and wherein each of REA, REB, REC, RED, REE, and REF is independently selected from R1 to R111, and wherein each of LA-1-(R1)(R1)(R1)(R1)(R1) and LA-i′-(R111)(R111)(R111)(R111)(R111)(R111) is defined in the following LIST 3:















LA
Structures of LA
LA
Structures of LA







LA-1- (REA)(REB)(REC)(RED) (REE), wherein LA-1- (R1)(R1)(R1)(R1) (R1) to LA-1-(R111)( R111) (R111)(R111)(R111) have the structure


embedded image


LA-2- (REA)(REB)(REC)(RED) (REE), wherein LA-2- (R1)(R1)(R1)(R1) (R1) to LA-2-(R111)(R111)(R111) (R111)(R111) have the structure


embedded image







LA-3- (REA)(REB)(REC)(RED) (REE), wherein LA-3- (R1)(R1)(R1)(R1) (R1) to LA-3- (R111)(R111)(R111) (R111)(R111) have the structure


embedded image


LA-4- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-4- (R1)(R1)(R1)(R1) (R1)(R1) to LA-4- (R111)(R111)(R111)(R111 (R111)(R111) have the structure


embedded image







LA-5- (REA)(REB)(REC)(RED) (REE), wherein LA-5- (R1)(R1)(R1)(R1)(R1) to LA-5-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-6 (REA)(REB)(REC)(RED) (REE), wherein LA-6- (R1)(R1)(R1)(R1)(R1) to LA-6-(R111)(R111)(R111) (R111)(R111) have the structure


embedded image







LA-7- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-7- (R1)(R1)(R1)(R1)(R1) (R1) to LA-7- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-8- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-8- (R1)(R1)(R1)(R1)(R1) (R1) to LA-8- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-9- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-9- (R1)(R1)(R1)(R1)(R1) (R1) to LA-9- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-10- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-10- (R1)(R1)(R1)(R1)(R1) (R1) to LA-10- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-11- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-11- (R1)(R1)(R1)(R1)(R1) (R1) to LA-11- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-12- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-12- (R1)(R1)(R1)(R1)(R1) (R1) to LA-12- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-13- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-13- (R1)(R1)(R1)(R1)(R1) (R1) to LA-13- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-14- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-14- (R1)(R1)(R1)(R1)(R1) (R1) to LA-14- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-15- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-15- (R1)(R1)(R1)(R1)(R1) (R1) to LA-15- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-16- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-16- (R1)(R1)(R1)(R1)(R1) (R1) to LA-16- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-17- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-17- (R1)(R1)(R1)(R1)(R1) (R1) to LA-17- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-18- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-18- (R1)(R1)(R1)(R1)(R1) (R1) to LA-18- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-19- (REA)(REB)(REC)(RED) (REE), wherein LA-19- (R1)(R1)(R1)(R1)(R1) to LA-19-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-20- (REA)(REB)(REC)(RED) (REE), wherein LA-20- (R1)(R1)(R1)(R1)(R1) to LA-20-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-21- (REA)(REB)(REC)(RED) (REE), wherein LA-21- (R1)(R1)(R1)(R1)(R1) to LA-21-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-22- (REA)(REB)(REC)(RED) (REE), wherein LA-22- (R1)(R1)(R1)(R1)(R1) to LA-22-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-23- (REA)(REB)(REC)(RED) (REE), wherein LA-23- (R1)(R1)(R1)(R1)(R1) to LA-23-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-24- (REA)(REB)(REC)(RED) (REE), wherein LA-24- (R1)(R1)(R1)(R1)(R1) to LA-24-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-25- (REA)(REB)(REC)(RED) (REE), wherein LA-25- (R1)(R1)(R1)(R1)(R1) to LA-25-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-26- (REA)(REB)(REC)(RED) (REE), wherein LA-26- (R1)(R1)(R1)(R1)(R1) to LA-26-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-27- (REA)(REB)(REC)(RED) (REE), wherein LA-27- (R1)(R1)(R1)(R1)(R1) to LA-27-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-28- (REA)(REB)(REC)(RED) (REE), wherein LA-28- (R1)(R1)(R1)(R1)(R1) to LA-28-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-29- (REA)(REB)(REC)(RED) (REE), wherein LA-29- (R1)(R1)(R1)(R1)(R1) to LA-29-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-30- (REA)(REB)(REC)(RED) (REE), wherein LA-30- (R1)(R1)(R1)(R1)(R1) to LA-30-(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-31- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-31- (R1)(R1)(R1)(R1)(R1) (R1) to LA-31- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-32- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-32- (R1)(R1)(R1)(R1)(R1)(R1) to LA-32- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-33- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-33- (R1)(R1)(R1)(R1)(R1) (R1) to LA-33- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-34- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-34- (R1)(R1)(R1)(R1)(R1) (R1) to LA-34- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-35- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-35- (R1)(R1)(R1)(R1)(R1) (R1) to LA-35- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-36- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-36- (R1)(R1)(R1)(R1)(R1)(R1) to LA-36- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-37- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-37- (R1)(R1)(R1)(R1)(R1) (R1) to LA-37- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-38- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-38- (R1)(R1)(R1)(R1)(R1) (R1) to LA-38- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-39- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-39- (R1)(R1)(R1)(R1)(R1) (R1) to LA-39- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-40- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-40- (R1)(R1)(R1)(R1)(R1) (R1) to LA-40- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image







LA-41- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-41- (R1)(R1)(R1)(R1)(R1) (R1) to LA-41- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image


LA-42- (REA)(REB)(REC)(RED) (REE)(REF), wherein LA-42- (R1)(R1)(R1)(R1)(R1) (R1) to LA-42- (R111)(R111)(R111) (R111)(R111)(R111) have the structure


embedded image













    • wherein R1 to R111 have the structures in the following LIST 3A:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of M(LA)p(LB)q(LC)r wherein LB and LC are each a bidentate ligand; and wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and p+q+r is the oxidation state of the metal M.


In some embodiments, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other.


In some embodiments, LB is a substituted or unsubstituted phenylpyridine, and LC is a substituted or unsubstituted acetylacetonate.


In some embodiments, the compound has a formula of Pt(LA)(LB); and wherein LA and LB can be same or different. In some embodiments, LA and LB are connected to form a tetradentate ligand.


In some embodiments, LB and LC are each independently selected from the group consisting of the structures of the following LIST 4:




embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • T is selected from the group consisting of B, Al, Ga, and In;
    • K1′ is a direct bond or is selected from the group consisting of single bond, O, S, N(Rα), P(Rα), B(Rα), C(Rα)(Rβ), and Si(Rα)(Rβ);
    • each of Y1 to Y13 is independently selected from the group consisting of C and N;
    • Y′ is selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C═O, C═S, C═Se, C═NRe, C═CReRf, S═O, SO2, CReRf, SiReRf, and GeReRf′;
    • Re and Rf can be fused or joined to form a ring;
    • each Ra, Rb, Rc, and Rd independently represents from mono to the maximum allowed number of substitutions, or no substitution;
    • each of Rα, Rβ, Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, Rd, Re, and Rf is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and
    • any two substituents of Rα, Rβ, Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, and Rd can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, LB and LC are each independently selected from the group consisting of the structures of the following LIST 5:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • Ra′, Rb′, Rc′, Rd′, and Re′ each independently represents zero, mono, or up to a maximum allowed number of substitution to its associated ring;
    • Ra′, Rb′, Rc′, Rd′, and Re′ each independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and
    • two substituents of Ra′, Rb′, Rc′, Rd′, and Re′ can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, the compound has formula Ir(LA)3, formula Ir(LA)(LBk)2, formula Ir(LA)2(LBk), formula Ir(LA)2(LCj-I), or formula Ir(LA)2(LCj-II),

    • wherein LA can be any of the structures defined herein (e.g., LA-1-(R1)(R1)(R1)(R1)(R1) to LA-i′-(R111)(R1)(R1)(R111)(R111)(R111) as defined in LIST 3);
    • wherein k is an integer from 1 to 474, and each LBk has the structure defined in the following LIST 6:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein each LCj-I has a structure based on formula




embedded image


and


each LCj-II has a structure based on formula




embedded image


wherein for each LCj in LCj-I and LCj-II, R201 and R202 are each independently defined in the following LIST 7:























LCj
R201
R202
LCj
R201
R202
LCj
R201
R202
LCj
R201
R202







LC1
RD1
RD1
LC193
RD1
RD3
LC385
RD17
RD40
LC577
RD143
RD120


LC2
RD2
RD2
LC194
RD1
RD4
LC386
RD17
RD41
LC578
RD143
RD133


LC3
RD3
RD3
LC195
RD1
RD5
LC387
RD17
RD42
LC579
RD143
RD134


LC4
RD4
RD4
LC196
RD1
RD9
LC388
RD17
RD43
LC580
RD143
RD135


LC5
RD5
RD5
LC197
RD1
RD10
LC389
RD17
RD48
LC581
RD143
RD136


LC6
RD6
RD6
LC198
RD1
RD17
LC390
RD17
RD49
LC582
RD143
RD144


LC7
RD7
RD7
LC199
RD1
RD18
LC391
RD17
RD50
LC583
RD143
RD145


LC8
RD8
RD8
LC200
RD1
RD20
LC392
RD17
RD54
LC584
RD143
RD146


LC9
RD9
RD9
LC201
RD1
RD22
LC393
RD17
RD55
LC585
RD143
RD147


LC10
RD10
RD10
LC202
RD1
RD37
LC394
RD17
RD58
LC586
RD143
RD149


LC11
RD11
RD11
LC203
RD1
RD40
LC395
RD17
RD59
LC587
RD143
RD151


LC12
RD12
RD12
LC204
RD1
RD41
LC396
RD17
RD78
LC588
RD143
RD154


LC13
RD13
RD13
LC205
RD1
RD42
LC397
RD17
RD79
LC589
RD143
RD155


LC14
RD14
RD14
LC206
RD1
RD43
LC398
RD17
RD81
LC590
RD143
RD161


LC15
RD15
RD15
LC207
RD1
RD48
LC399
RD17
RD87
LC591
RD143
RD175


LC16
RD16
RD16
LC208
RD1
RD49
LC400
RD17
RD88
LC592
RD144
RD3


LC17
RD17
RD17
LC209
RD1
RD50
LC401
RD17
RD89
LC593
RD144
RD5


LC18
RD18
RD18
LC210
RD1
RD54
LC402
RD17
RD93
LC594
RD144
RD17


LC19
RD19
RD19
LC211
RD1
RD55
LC403
RD17
RD116
LC595
RD144
RD18


LC20
RD20
RD20
LC212
RD1
RD58
LC404
RD17
RD117
LC596
RD144
RD20


LC21
RD21
RD21
LC213
RD1
RD59
LC405
RD17
RD118
LC597
RD144
RD22


LC22
RD22
RD22
LC214
RD1
RD78
LC406
RD17
RD119
LC598
RD144
RD37


LC23
RD23
RD23
LC215
RD1
RD79
LC407
RD17
RD120
LC599
RD144
RD40


LC24
RD24
RD24
LC216
RD1
RD81
LC408
RD17
RD133
LC600
RD144
RD41


LC25
RD25
RD25
LC217
RD1
RD87
LC409
RD17
RD134
LC601
RD144
RD42


LC26
RD26
RD26
LC218
RD1
RD88
LC410
RD17
RD135
LC602
RD144
RD43


LC27
RD27
RD27
LC219
RD1
RD89
LC411
RD17
RD136
LC603
RD144
RD48


LC28
RD28
RD28
LC220
RD1
RD93
LC412
RD17
RD143
LC604
RD144
RD49


LC29
RD29
RD29
LC221
RD1
RD116
LC413
RD17
RD144
LC605
RD144
RD54


LC30
RD30
RD30
LC222
RD1
RD117
LC414
RD17
RD145
LC606
RD144
RD58


LC31
RD31
RD31
LC223
RD1
RD118
LC415
RD17
RD146
LC607
RD144
RD59


LC32
RD32
RD32
LC224
RD1
RD119
LC416
RD17
RD147
LC608
RD144
RD78


LC33
RD33
RD33
LC225
RD1
RD120
LC417
RD17
RD149
LC609
RD144
RD79


LC34
RD34
RD34
LC226
RD1
RD133
LC418
RD17
RD151
LC610
RD144
RD81


LC35
RD35
RD35
LC227
RD1
RD134
LC419
RD17
RD154
LC611
RD144
RD87


LC36
RD36
RD36
LC228
RD1
RD135
LC420
RD17
RD155
LC612
RD144
RD88


LC37
RD37
RD37
LC229
RD1
RD136
LC421
RD17
RD161
LC613
RD144
RD89


LC38
RD38
RD38
LC230
RD1
RD143
LC422
RD17
RD175
LC614
RD144
RD93


LC39
RD39
RD39
LC231
RD1
RD144
LC423
RD50
RD3
LC615
RD144
RD116


LC40
RD40
RD40
LC232
RD1
RD145
LC424
RD50
RD5
LC616
RD144
RD117


LC41
RD41
RD41
LC233
RD1
RD146
LC425
RD50
RD18
LC617
RD144
RD118


LC42
RD42
RD42
LC234
RD1
RD147
LC426
RD50
RD20
LC618
RD144
RD119


LC43
RD43
RD43
LC235
RD1
RD149
LC427
RD50
RD22
LC619
RD144
RD120


LC44
RD44
RD44
LC236
RD1
RD151
LC428
RD50
RD37
LC620
RD144
RD133


LC45
RD45
RD45
LC237
RD1
RD154
LC429
RD50
RD40
LC621
RD144
RD134


LC46
RD46
RD46
LC238
RD1
RD155
LC430
RD50
RD41
LC622
RD144
RD135


LC47
RD47
RD47
LC239
RD1
RD161
LC431
RD50
RD42
LC623
RD144
RD136


LC48
RD48
RD48
LC240
RD1
RD175
LC432
RD50
RD43
LC624
RD144
RD145


LC49
RD49
RD49
LC241
RD4
RD3
LC433
RD50
RD48
LC625
RD144
RD146


LC50
RD50
RD50
LC242
RD4
RD5
LC434
RD50
RD49
LC626
RD144
RD147


LC51
RD51
RD51
LC243
RD4
RD9
LC435
RD50
RD54
LC627
RD144
RD149


LC52
RD52
RD52
LC244
RD4
RD10
LC436
RD50
RD55
LC628
RD144
RD151


LC53
RD53
RD53
LC245
RD4
RD17
LC437
RD50
RD58
LC629
RD144
RD154


LC54
RD54
RD54
LC246
RD4
RD18
LC438
RD50
RD59
LC630
RD144
RD155


LC55
RD55
RD55
LC247
RD4
RD20
LC439
RD50
RD78
LC631
RD144
RD161


LC56
RD56
RD56
LC248
RD4
RD22
LC440
RD50
RD79
LC632
RD144
RD175


LC57
RD57
RD57
LC249
RD4
RD37
LC441
RD50
RD81
LC633
RD145
RD3


LC58
RD58
RD58
LC250
RD4
RD40
LC442
RD50
RD87
LC634
RD145
RD5


LC59
RD59
RD59
LC251
RD4
RD41
LC443
RD50
RD88
LC635
RD145
RD17


LC60
RD60
RD60
LC252
RD4
RD42
LC444
RD50
RD89
LC636
RD145
RD18


LC61
RD61
RD61
LC253
RD4
RD43
LC445
RD50
RD93
LC637
RD145
RD20


LC62
RD62
RD62
LC254
RD4
RD48
LC446
RD50
RD116
LC638
RD145
RD22


LC63
RD63
RD63
LC255
RD4
RD49
LC447
RD50
RD117
LC639
RD145
RD37


LC64
RD64
RD64
LC256
RD4
RD50
LC448
RD50
RD118
LC640
RD145
RD40


LC65
RD65
RD65
LC257
RD4
RD54
LC449
RD50
RD119
LC641
RD145
RD41


LC66
RD66
RD66
LC258
RD4
RD55
LC450
RD50
RD120
LC642
RD145
RD42


LC67
RD67
RD67
LC259
RD4
RD58
LC451
RD50
RD133
LC643
RD145
RD43


LC68
RD68
RD68
LC260
RD4
RD59
LC452
RD50
RD134
LC644
RD145
RD48


LC69
RD69
RD69
LC261
RD4
RD78
LC453
RD50
RD135
LC645
RD145
RD49


LC70
RD70
RD70
LC262
RD4
RD79
LC454
RD50
RD136
LC646
RD145
RD54


LC71
RD71
RD71
LC263
RD4
RD81
LC455
RD50
RD143
LC647
RD145
RD58


LC72
RD72
RD72
LC264
RD4
RD87
LC456
RD50
RD144
LC648
RD145
RD59


LC73
RD73
RD73
LC265
RD4
RD88
LC457
RD50
RD145
LC649
RD145
RD78


LC74
RD74
RD74
LC266
RD4
RD89
LC458
RD50
RD146
LC650
RD145
RD79


LC75
RD75
RD75
LC267
RD4
RD93
LC459
RD50
RD147
LC651
RD145
RD81


LC76
RD76
RD76
LC268
RD4
RD116
LC460
RD50
RD149
LC652
RD145
RD87


LC77
RD77
RD77
LC269
RD4
RD117
LC461
RD50
RD151
LC653
RD145
RD88


LC78
RD78
RD78
LC270
RD4
RD118
LC462
RD50
RD154
LC654
RD145
RD89


LC79
RD79
RD79
LC271
RD4
RD119
LC463
RD50
RD155
LC655
RD145
RD93


LC80
RD80
RD80
LC272
RD4
RD120
LC464
RD50
RD161
LC656
RD145
RD116


LC81
RD81
RD81
LC273
RD4
RD133
LC465
RD50
RD175
LC657
RD145
RD117


LC82
RD82
RD82
LC274
RD4
RD134
LC466
RD55
RD3
LC658
RD145
RD118


LC83
RD83
RD83
LC275
RD4
RD135
LC467
RD55
RD5
LC659
RD145
RD119


LC84
RD84
RD84
LC276
RD4
RD136
LC468
RD55
RD18
LC660
RD145
RD120


LC85
RD85
RD85
LC277
RD4
RD143
LC469
RD55
RD20
LC661
RD145
RD133


LC86
RD86
RD86
LC278
RD4
RD144
LC470
RD55
RD22
LC662
RD145
RD134


LC87
RD87
RD87
LC279
RD4
RD145
LC471
RD55
RD37
LC663
RD145
RC135


LC88
RD88
RD88
LC280
RD4
RD146
LC472
RD55
RD40
LC664
RD145
RD136


LC89
RD89
RD89
LC281
RD4
RD147
LC473
RD55
RD41
LC665
RD145
RD146


LC90
RD90
RD90
LC282
RD4
RD149
LC474
RD55
RD42
LC666
RD145
RD147


LC91
RD91
RD91
LC283
RD4
RD151
LC475
RD55
RD43
LC667
RD145
RD149


LC92
RD92
RD92
LC284
RD4
RD154
LC476
RD55
RD48
LC668
RD145
RD151


LC93
RD93
RD93
LC285
RD4
RD155
LC477
RD55
RD49
LC669
RD145
RD154


LC94
RD94
RD94
LC286
RD4
RD161
LC478
RD55
RD54
LC670
RD145
RD155


LC95
RD95
RD95
LC287
RD4
RD175
LC479
RD55
RD58
LC671
RD145
RD161


LC96
RD96
RD96
LC288
RD9
RD3
LC480
RD55
RD59
LC672
RD145
RD175


LC97
RD97
RD97
LC289
RD9
RD5
LC481
RD55
RD78
LC673
RD146
RD3


LC98
RD98
RD98
LC290
RD9
RD10
LC482
RD55
RD79
LC674
RD146
RD5


LC99
RD99
RD99
LC291
RD9
RD17
LC483
RD55
RD81
LC675
RD146
RD17


LC100
RD100
RD100
LC292
RD9
RD18
LC484
RD55
RD87
LC676
RD146
RD18


LC101
RD101
RD101
LC293
RD9
RD20
LC485
RD55
RD88
LC677
RD146
RD20


LC102
RD102
RD102
LC294
RD9
RD22
LC486
RD55
RD89
LC678
RD146
RD22


LC103
RD103
RD103
LC295
RD9
RD37
LC487
RD55
RD93
LC679
RD146
RD37


LC104
RD104
RD104
LC296
RD9
RD40
LC488
RD55
RD116
LC680
RD146
RD40


LC105
RD105
RD105
LC297
RD9
RD41
LC489
RD55
RD117
LC681
RD146
RD41


LC106
RD106
RD106
LC298
RD9
RD42
LC490
RD55
RD118
LC682
RD146
RD42


LC107
RD107
RD107
LC299
RD9
RD43
LC491
RD55
RD119
LC683
RD146
RD43


LC108
RD108
RD108
LC300
RD9
RD48
LC492
RD55
RD120
LC684
RD146
RD48


LC109
RD109
RD109
LC301
RD9
RD49
LC493
RD55
RD133
LC685
RD146
RD49


LC110
RD110
RD110
LC302
RD9
RD50
LC494
RD55
RD134
LC686
RD146
RD54


LC111
RD111
RD111
LC303
RD9
RD54
LC495
RD55
RD135
LC687
RD146
RD58


LC112
RD112
RD112
LC304
RD9
RD55
LC496
RD55
RD136
LC688
RD146
RD59


LC113
RD113
RD113
LC305
RD9
RD58
LC497
RD55
RD143
LC689
RD146
RD78


LC114
RD114
RD114
LC306
RD9
RD59
LC498
RD55
RD144
LC690
RD146
RD79


LC115
RD115
RD115
LC307
RD9
RD78
LC499
RD55
RD145
LC691
RD146
RD81


LC116
RD116
RD116
LC308
RD9
RD79
LC500
RD55
RD146
LC692
RD146
RD87


LC117
RD117
RD117
LC309
RD9
RD81
LC501
RD55
RD147
LC693
RD146
RD88


LC118
RD118
RD118
LC310
RD9
RD87
LC502
RD55
RD149
LC694
RD146
RD89


LC119
RD119
RD119
LC311
RD9
RD88
LC503
RD55
RD151
LC695
RD146
RD93


LC120
RD120
RD120
LC312
RD9
RD89
LC504
RD55
RD154
LC696
RD146
RD117


LC121
RD121
RD121
LC313
RD9
RD93
LC505
RD55
RD155
LC697
RD146
RD118


LC122
RD122
RD122
LC314
RD9
RD116
LC506
RD55
RD161
LC698
RD146
RD119


LC123
RD123
RD123
LC315
RD9
RD117
LC507
RD55
RD175
LC699
RD146
RD120


LC124
RD124
RD124
LC316
RD9
RD118
LC508
RD116
RD3
LC700
RD146
RD133


LC125
RD125
RD125
LC317
RD9
RD119
LC509
RD116
RD5
LC701
RD146
RD134


LC126
RD126
RD126
LC318
RD9
RD120
LC510
RD116
RD17
LC702
RD146
RD135


LC127
RD127
RD127
LC319
RD9
RD133
LC511
RD116
RD18
LC703
RD146
RD136


LC128
RD128
RD128
LC320
RD9
RD134
LC512
RD116
RD20
LC704
RD146
RD146


LC129
RD129
RD129
LC321
RD9
RD135
LC513
RD116
RD22
LC705
RD146
RD147


LC130
RD130
RD130
LC322
RD9
RD136
LC514
RD116
RD37
LC706
RD146
RD149


LC131
RD131
RD131
LC323
RD9
RD143
LC515
RD116
RD40
LC707
RD146
RD151


LC132
RD132
RD132
LC324
RD9
RD144
LC516
RD116
RD41
LC708
RD146
RD154


LC133
RD133
RD133
LC325
RD9
RD145
LC517
RD116
RD42
LC709
RD146
RD155


LC134
RD134
RD134
LC326
RD9
RD146
LC518
RD116
RD43
LC710
RD146
RD161


LC135
RD135
RD135
LC327
RD9
RD147
LC519
RD116
RD48
LC711
RD146
RD175


LC136
RD136
RD136
LC328
RD9
RD149
LC520
RD116
RD49
LC712
RD133
RD3


LC137
RD137
RD137
LC329
RD9
RD151
LC521
RD116
RD54
LC713
RD133
RD5


LC138
RD138
RD138
LC330
RD9
RD154
LC522
RD116
RD58
LC714
RD133
RD3


LC139
RD139
RD139
LC331
RD9
RD155
LC523
RD116
RD59
LC715
RD133
RD18


LC140
RD140
RD140
LC332
RD9
RD161
LC524
RD116
RD78
LC716
RD133
RD20


LC141
RD141
RD141
LC333
RD9
RD175
LC525
RD116
RD79
LC717
RD133
RD22


LC142
RD142
RD142
LC334
RD10
RD3
LC526
RD116
RD81
LC718
RD133
RD37


LC143
RD143
RD143
LC335
RD10
RD5
LC527
RD116
RD87
LC719
RD133
RD40


LC144
RD144
RD144
LC336
RD10
RD17
LC528
RD116
RD88
LC720
RD133
RD41


LC145
RD145
RD145
LC337
RD10
RD18
LC529
RD116
RD89
LC721
RD133
RD42


LC146
RD146
RD146
LC338
RD10
RD20
LC530
RD116
RD93
LC722
RD133
RD43


LC147
RD147
RD147
LC339
RD10
RD22
LC531
RD116
RD117
LC723
RD133
RD48


LC148
RD148
RD148
LC340
RD10
RD37
LC532
RD116
RD118
LC724
RD133
RD49


LC149
RD149
RD149
LC341
RD10
RD40
LC533
RD116
RD119
LC725
RD133
RD54


LC150
RD150
RD150
LC342
RD10
RD41
LC534
RD116
RD120
LC726
RD133
RD58


LC151
RD151
RD151
LC343
RD10
RD42
LC535
RD116
RD133
LC727
RD133
RD59


LC152
RD152
RD152
LC344
RD10
RD43
LC536
RD116
RD134
LC728
RD133
RD78


LC153
RD153
RD153
LC345
RD10
RD48
LC537
RD116
RD135
LC729
RD133
RD79


LC154
RD154
RD154
LC346
RD10
RD49
LC538
RD116
RD136
LC730
RD133
RD81


LC155
RD155
RD155
LC347
RD10
RD50
LC539
RD116
RD143
LC731
RD133
RD87


LC156
RD156
RD156
LC348
RD10
RD54
LC540
RD116
RD144
LC732
RD133
RD88


LC157
RD157
RD157
LC349
RD10
RD55
LC541
RD116
RD145
LC733
RD133
RD89


LC158
RD158
RD158
LC350
RD10
RD58
LC542
RD116
RD146
LC734
RD133
RD93


LC159
RD159
RD159
LC351
RD10
RD59
LC543
RD116
RD147
LC735
RD133
RD117


LC160
RD160
RD160
LC352
RD10
RD78
LC544
RD116
RD149
LC736
RD133
RD118


LC161
RD161
RD161
LC353
RD10
RD79
LC545
RD116
RD151
LC737
RD133
RD119


LC162
RD162
RD162
LC354
RD10
RD81
LC546
RD116
RD154
LC738
RD133
RD120


LC163
RD163
RD163
LC355
RD10
RD87
LC547
RD116
RD155
LC739
RD133
RD133


LC164
RD164
RD164
LC356
RD10
RD88
LC548
RD116
RD161
LC740
RD133
RD134


LC165
RD165
RD165
LC357
RD10
RD89
LC549
RD116
RD175
LC741
RD133
RD135


LC166
RD166
RD166
LC358
RD10
RD93
LC550
RD143
RD3
LC742
RD133
RD136


LC167
RD167
RD167
LC359
RD10
RD116
LC551
RD143
RD5
LC743
RD133
RD146


LC168
RD168
RD168
LC360
RD10
RD117
LC552
RD143
RD17
LC744
RD133
RD147


LC169
RD169
RD169
LC361
RD10
RD118
LC553
RD143
RD18
LC745
RD133
RD149


LC170
RD170
RD170
LC362
RD10
RD119
LC554
RD143
RD20
LC746
RD133
RD151


LC171
RD171
RD171
LC363
RD10
RD120
LC555
RD143
RD22
LC747
RD133
RD154


LC172
RD172
RD172
LC364
RD10
RD133
LC556
RD143
RD37
LC748
RD133
RD155


LC173
RD173
RD173
LC365
RD10
RD134
LC557
RD143
RD40
LC749
RD133
RD161


LC174
RD174
RD174
LC366
RD10
RD135
LC558
RD143
RD41
LC750
RD133
RD175


LC175
RD175
RD175
LC367
RD10
RD136
LC559
RD143
RD42
LC751
RD175
RD3


LC176
RD176
RD176
LC368
RD10
RD143
LC560
RD143
RD43
LC752
RD175
RD5


LC177
RD177
RD177
LC369
RD10
RD144
LC561
RD143
RD48
LC753
RD175
RD18


LC178
RD178
RD178
LC370
RD10
RD145
LC562
RD143
RD49
LC754
RD175
RD20


LC179
RD179
RD179
LC371
RD10
RD146
LC563
RD143
RD54
LC755
RD175
RD22


LC180
RD180
RD180
LC372
RD10
RD147
LC564
RD143
RD58
LC756
RD175
RD37


LC181
RD181
RD181
LC373
RD10
RD149
LC565
RD143
RD59
LC757
RD175
RD40


LC182
RD182
RD182
LC374
RD10
RD151
LC566
RD143
RD78
LC758
RD175
RD41


LC183
RD183
RD183
LC375
RD10
RD154
LC567
RD143
RD79
LC759
RD175
RD42


LC184
RD184
RD184
LC376
RD10
RD155
LC568
RD143
RD81
LC760
RD175
RD43


LC185
RD185
RD185
LC377
RD10
RD161
LC569
RD143
RD87
LC761
RD175
RD48


LC186
RD186
RD186
LC378
RD10
RD175
LC570
RD143
RD88
LC762
RD175
RD49


LC187
RD187
RD187
LC379
RD17
RD3
LC571
RD143
RD89
LC763
RD175
RD54


LC188
RD188
RD188
LC380
RD17
RD5
LC572
RD143
RD93
LC764
RD175
RD58


LC189
RD189
RD189
LC381
RD17
RD18
LC573
RD143
RD116
LC765
RD175
RD59


LC190
RD190
RD190
LC382
RD17
RD20
LC574
RD143
RD117
LC766
RD175
RD78


LC191
RD191
RD191
LC383
RD17
RD22
LC575
RD143
RD118
LC767
RD175
RD79


LC192
RD192
RD192
LC384
RD17
RD37
LC576
RD143
RD119
LC768
RD175
RD81


LC769
RD193
RD193
LC877
RD1
RD193
LC985
RD4
RD193
LC1093
RD9
RD193


LC770
RD194
RD194
LC878
RD1
RD194
LC986
RD4
RD194
LC1094
RD9
RD194


LC771
RD195
RD195
LC879
RD1
RD195
LC987
RD4
RD195
LC1095
RD9
RD195


LC772
RD196
RD196
LC880
RD1
RD196
LC988
RD4
RD196
LC1096
RD9
RD196


LC773
RD197
RD197
LC881
RD1
RD197
LC989
RD4
RD197
LC1097
RD9
RD197


LC774
RD198
RD198
LC882
RD1
RD198
LC990
RD4
RD198
LC1098
RD9
RD198


LC775
RD199
RD199
LC883
RD1
RD199
LC991
RD4
RD199
LC1099
RD9
RD199


LC776
RD200
RD200
LC884
RD1
RD200
LC992
RD4
RD200
LC1100
RD9
RD200


LC777
RD201
RD201
LC885
RD1
RD201
LC993
RD4
RD201
LC1101
RD9
RD201


LC778
RD202
RD202
LC886
RD1
RD202
LC994
RD4
RD202
LC1102
RD9
RD202


LC779
RD203
RD203
LC887
RD1
RD203
LC995
RD4
RD203
LC1103
RD9
RD203


LC780
RD204
RD204
LC888
RD1
RD204
LC996
RD4
RD204
LC1104
RD9
RD204


LC781
RD205
RD205
LC889
RD1
RD205
LC997
RD4
RD205
LC1105
RD9
RD205


LC782
RD206
RD206
LC890
RD1
RD206
LC998
RD4
RD206
LC1106
RD9
RD206


LC783
RD207
RD207
LC891
RD1
RD207
LC999
RD4
RD207
LC1107
RD9
RD207


LC784
RD208
RD208
LC892
RD1
RD208
LC1000
RD4
RD208
LC1108
RD9
RD208


LC785
RD209
RD209
LC893
RD1
RD209
LC1001
RD4
RD209
LC1109
RD9
RD209


LC786
RD210
RD210
LC894
RD1
RD210
LC1002
RD4
RD210
LC1110
RD9
RD210


LC787
RD211
RD211
LC895
RD1
RD211
LC1003
RD4
RD211
LC1111
RD9
RD211


LC788
RD212
RD212
LC896
RD1
RD212
LC1004
RD4
RD212
LC1112
RD9
RD212


LC789
RD213
RD213
LC897
RD1
RD213
LC1005
RD4
RD213
LC1113
RD9
RD213


LC790
RD214
RD214
LC898
RD1
RD214
LC1006
RD4
RD214
LC1114
RD9
RD214


LC791
RD215
RD215
LC899
RD1
RD215
LC1007
RD4
RD215
LC1115
RD9
RD215


LC792
RD216
RD216
LC900
RD1
RD216
LC1008
RD4
RD216
LC1116
RD9
RD216


LC793
RD217
RD217
LC901
RD1
RD217
LC1009
RD4
RD217
LC1117
RD9
RD217


LC794
RD218
RD218
LC902
RD1
RD218
LC1010
RD4
RD218
LC1118
RD9
RD218


LC795
RD219
RD219
LC903
RD1
RD219
LC1011
RD4
RD219
LC1119
RD9
RD219


LC796
RD220
RD220
LC904
RD1
RD220
LC1012
RD4
RD220
LC1120
RD9
RD220


LC797
RD221
RD221
LC905
RD1
RD221
LC1013
RD4
RD221
LC1121
RD9
RD221


LC798
RD222
RD222
LC906
RD1
RD222
LC1014
RD4
RD222
LC1122
RD9
RD222


LC799
RD223
RD223
LC907
RD1
RD223
LC1015
RD4
RD223
LC1123
RD9
RD223


LC800
RD224
RD224
LC908
RD1
RD224
LC1016
RD4
RD224
LC1124
RD9
RD224


LC801
RD225
RD225
LC909
RD1
RD225
LC1017
RD4
RD225
LC1125
RD9
RD225


LC802
RD226
RD226
LC910
RD1
RD226
LC1018
RD4
RD226
LC1126
RD9
RD226


LC803
RD227
RD227
LC911
RD1
RD227
LC1019
RD4
RD227
LC1127
RD9
RD227


LC804
RD228
RD228
LC912
RD1
RD228
LC1020
RD4
RD228
LC1128
RD9
RD228


LC805
RD229
RD229
LC913
RD1
RD229
LC1021
RD4
RD229
LC1129
RD9
RD229


LC806
RD230
RD230
LC914
RD1
RD230
LC1022
RD4
RD230
LC1130
RD9
RD230


LC807
RD231
RD231
LC915
RD1
RD231
LC1023
RD4
RD231
LC1131
RD9
RD231


LC808
RD232
RD232
LC916
RD1
RD232
LC1024
RD4
RD232
LC1132
RD9
RD232


LC809
RD233
RD233
LC917
RD1
RD233
LC1025
RD4
RD233
LC1133
RD9
RD233


LC810
RD234
RD234
LC918
RD1
RD234
LC1026
RD4
RD234
LC1134
RD9
RD234


LC811
RD235
RD235
LC919
RD1
RD235
LC1027
RD4
RD235
LC1135
RD9
RD235


LC812
RD236
RD236
LC920
RD1
RD236
LC1028
RD4
RD236
LC1136
RD9
RD236


LC813
RD237
RD237
LC921
RD1
RD237
LC1029
RD4
RD237
LC1137
RD9
RD237


LC814
RD238
RD238
LC922
RD1
RD238
LC1030
RD4
RD238
LC1138
RD9
RD238


LC815
RD239
RD239
LC923
RD1
RD239
LC1031
RD4
RD239
LC1139
RD9
RD239


LC816
RD240
RD240
LC924
RD1
RD240
LC1032
RD4
RD240
LC1140
RD9
RD240


LC817
RD241
RD241
LC925
RD1
RD241
LC1033
RD4
RD241
LC1141
RD9
RD241


LC818
RD242
RD242
LC926
RD1
RD242
LC1034
RD4
RD242
LC1142
RD9
RD242


LC819
RD243
RD243
LC927
RD1
RD243
LC1035
RD4
RD243
LC1143
RD9
RD243


LC820
RD244
RD244
LC928
RD1
RD244
LC1036
RD4
RD244
LC1144
RD9
RD244


LC821
RD245
RD245
LC929
RD1
RD245
LC1037
RD4
RD245
LC1145
RD9
RD245


LC822
RD246
RD246
LC930
RD1
RD246
LC1038
RD4
RD246
LC1146
RD9
RD246


LC823
RD17
RD193
LC931
RD50
RD193
LC1039
RD145
RD193
LC1147
RD168
RD193


LC824
RD17
RD194
LC932
RD50
RD194
LC1040
RD145
RD194
LC1148
RD168
RD194


LC825
RD17
RD195
LC933
RD50
RD195
LC1041
RD145
RD195
LC1149
RD168
RD195


LC826
RD17
RD196
LC934
RD50
RD196
LC1042
RD145
RD196
LC1150
RD168
RD196


LC827
RD17
RD197
LC935
RD50
RD197
LC1043
RD145
RD197
LC1151
RD168
RD197


LC828
RD17
RD198
LC936
RD50
RD198
LC1044
RD145
RD198
LC1152
RD168
RD198


LC829
RD17
RD199
LC937
RD50
RD199
LC1045
RD145
RD199
LC1153
RD168
RD199


LC830
RD17
RD200
LC938
RD50
RD200
LC1046
RD145
RD200
LC1154
RD168
RD200


LC831
RD17
RD201
LC939
RD50
RD201
LC1047
RD145
RD201
LC1155
RD168
RD201


LC832
RD17
RD202
LC940
RD50
RD202
LC1048
RD145
RD202
LC1156
RD168
RD202


LC833
RD17
RD203
LC941
RD50
RD203
LC1049
RD145
RD203
LC1157
RD168
RD203


LC834
RD17
RD204
LC942
RD50
RD204
LC1050
RD145
RD204
LC1158
RD168
RD204


LC835
RD17
RD205
LC943
RD50
RD205
LC1051
RD145
RD205
LC1159
RD168
RD205


LC836
RD17
RD206
LC944
RD50
RD206
LC1052
RD145
RD206
LC1160
RD168
RD206


LC837
RD17
RD207
LC945
RD50
RD207
LC1053
RD145
RD207
LC1161
RD168
RD207


LC838
RD17
RD208
LC946
RD50
RD208
LC1054
RD145
RD208
LC1162
RD168
RD208


LC839
RD17
RD209
LC947
RD50
RD209
LC1055
RD145
RD209
LC1163
RD168
RD209


LC840
RD17
RD210
LC948
RD50
RD210
LC1056
RD145
RD210
LC1164
RD168
RD210


LC841
RD17
RD211
LC949
RD50
RD211
LC1057
RD145
RD211
LC1165
RD168
RD211


LC842
RD17
RD212
LC950
RD50
RD212
LC1058
RD145
RD212
LC1166
RD168
RD212


LC843
RD17
RD213
LC951
RD50
RD213
LC1059
RD145
RD213
LC1167
RD168
RD213


LC844
RD17
RD214
LC952
RD50
RD214
LC1060
RD145
RD214
LC1168
RD168
RD214


LC845
RD17
RD215
LC953
RD50
RD215
LC1061
RD145
RD215
LC1169
RD168
RD215


LC846
RD17
RD216
LC954
RD50
RD216
LC1062
RD145
RD216
LC1170
RD168
RD216


LC847
RD17
RD217
LC955
RD50
RD217
LC1063
RD145
RD217
LC1171
RD168
RD217


LC848
RD17
RD218
LC956
RD50
RD218
LC1064
RD145
RD218
LC1172
RD168
RD218


LC849
RD17
RD219
LC957
RD50
RD219
LC1065
RD145
RD219
LC1173
RD168
RD219


LC850
RD17
RD220
LC958
RD50
RD220
LC1066
RD145
RD220
LC1174
RD168
RD220


LC851
RD17
RD221
LC959
RD50
RD221
LC1067
RD145
RD221
LC1175
RD168
RD221


LC852
RD17
RD222
LC960
RD50
RD222
LC1068
RD145
RD222
LC1176
RD168
RD222


LC853
RD17
RD223
LC961
RD50
RD223
LC1069
RD145
RD223
LC1177
RD168
RD223


LC854
RD17
RD224
LC962
RD50
RD224
LC1070
RD145
RD224
LC1178
RD168
RD224


LC855
RD17
RD225
LC963
RD50
RD225
LC1071
RD145
RD225
LC1179
RD168
RD225


LC856
RD17
RD226
LC964
RD50
RD226
LC1072
RD145
RD226
LC1180
RD168
RD226


LC857
RD17
RD227
LC965
RD50
RD227
LC1073
RD145
RD227
LC1181
RD168
RD227


LC858
RD17
RD228
LC966
RD50
RD228
LC1074
RD145
RD228
LC1182
RD168
RD228


LC859
RD17
RD229
LC967
RD50
RD229
LC1075
RD145
RD229
LC1183
RD168
RD229


LC860
RD17
RD230
LC968
RD50
RD230
LC1076
RD145
RD230
LC1184
RD168
RD230


LC861
RD17
RD231
LC969
RD50
RD231
LC1077
RD145
RD231
LC1185
RD168
RD231


LC862
RD17
RD232
LC970
RD50
RD232
LC1078
RD145
RD232
LC1186
RD168
RD232


LC863
RD17
RD233
LC971
RD50
RD233
LC1079
RD145
RD233
LC1187
RD168
RD233


LC864
RD17
RD234
LC972
RD50
RD234
LC1080
RD145
RD234
LC1188
RD168
RD234


LC865
RD17
RD235
LC973
RD50
RD235
LC1081
RD145
RD235
LC1189
RD168
RD235


LC866
RD17
RD236
LC974
RD50
RD236
LC1082
RD145
RD236
LC1190
RD168
RD236


LC867
RD17
RD237
LC975
RD50
RD237
LC1083
RD145
RD237
LC1191
RD168
RD237


LC868
RD17
RD238
LC976
RD50
RD238
LC1084
RD145
RD238
LC1192
RD168
RD238


LC869
RD17
RD239
LC977
RD50
RD239
LC1085
RD145
RD239
LC1193
RD168
RD239


LC870
RD17
RD240
LC978
RD50
RD240
LC1086
RD145
RD240
LC1194
RD168
RD240


LC871
RD17
RD241
LC979
RD50
RD241
LC1087
RD145
RD241
LC1195
RD168
RD241


LC872
RD17
RD242
LC980
RD50
RD242
LC1088
RD145
RD242
LC1196
RD168
RD242


LC873
RD17
RD243
LC981
RD50
RD243
LC1089
RD145
RD243
LC1197
RD168
RD243


LC874
RD17
RD244
LC982
RD50
RD244
LC1090
RD145
RD244
LC1198
RD168
RD244


LC875
RD17
RD245
LC983
RD50
RD245
LC1091
RD145
RD245
LC1199
RD168
RD245


LC876
RD17
RD246
LC984
RD50
RD246
LC1092
RD145
RD246
LC1200
RD168
RD246


LC1201
RD10
RD193
LC1255
RD55
RD193
LC1309
RD37
RD193
LC1363
RD143
RD193


LC1202
RD10
RD194
LC1256
RD55
RD194
LC1310
RD37
RD194
LC1364
RD143
RD194


LC1203
RD10
RD195
LC1257
RD55
RD195
LC1311
RD37
RD195
LC1365
RD143
RD195


LC1204
RD10
RD196
LC1258
RD55
RD196
LC1312
RD37
RD196
LC1366
RD143
RD196


LC1205
RD10
RD197
LC1259
RD55
RD197
LC1313
RD37
RD197
LC1367
RD143
RD197


LC1206
RD10
RD198
LC1260
RD55
RD198
LC1314
RD37
RD198
LC1368
RD143
RD198


LC1207
RD10
RD199
LC1261
RD55
RD199
LC1315
RD37
RD199
LC1369
RD143
RD199


LC1208
RD10
RD200
LC1262
RD55
RD200
LC1316
RD37
RD200
LC1370
RD143
RD200


LC1209
RD10
RD201
LC1263
RD55
RD201
LC1317
RD37
RD201
LC1371
RD143
RD201


LC1210
RD10
RD202
LC1264
RD55
RD202
LC1318
RD37
RD202
LC1372
RD143
RD202


LC1211
RD10
RD203
LC1265
RD55
RD203
LC1319
RD37
RD203
LC1373
RD143
RD203


LC1212
RD10
RD204
LC1266
RD55
RD204
LC1320
RD37
RD204
LC1374
RD143
RD204


LC1213
RD10
RD205
LC1267
RD55
RD205
LC1321
RD37
RD205
LC1375
RD143
RD205


LC1214
RD10
RD206
LC1268
RD55
RD206
LC1322
RD37
RD206
LC1376
RD143
RD206


LC1215
RD10
RD207
LC1269
RD55
RD207
LC1323
RD37
RD207
LC1377
RD143
RD207


LC1216
RD10
RD208
LC1270
RD55
RD208
LC1324
RD37
RD208
LC1378
RD143
RD208


LC1217
RD10
RD209
LC1271
RD55
RD209
LC1325
RD37
RD209
LC1379
RD143
RD209


LC1218
RD10
RD210
LC1272
RD55
RD210
LC1326
RD37
RD210
LC1380
RD143
RD210


LC1219
RD10
RD211
LC1273
RD55
RD211
LC1327
RD37
RD211
LC1381
RD143
RD211


LC1220
RD10
RD212
LC1274
RD55
RD212
LC1328
RD37
RD212
LC1382
RD143
RD212


LC1221
RD10
RD213
LC1275
RD55
RD213
LC1329
RD37
RD213
LC1383
RD143
RD213


LC1222
RD10
RD214
LC1276
RD55
RD214
LC1330
RD37
RD214
LC1384
RD143
RD214


LC1223
RD10
RD215
LC1277
RD55
RD215
LC1331
RD37
RD215
LC1385
RD143
RD215


LC1224
RD10
RD216
LC1278
RD55
RD216
LC1332
RD37
RD216
LC1386
RD143
RD216


LC1225
RD10
RD217
LC1279
RD55
RD217
LC1333
RD37
RD217
LC1387
RD143
RD217


LC1226
RD10
RD218
LC1280
RD55
RD218
LC1334
RD37
RD218
LC1388
RD143
RD218


LC1227
RD10
RD219
LC1281
RD55
RD219
LC1335
RD37
RD219
LC1389
RD143
RD219


LC1228
RD10
RD220
LC1282
RD55
RD220
LC1336
RD37
RD220
LC1390
RD143
RD220


LC1229
RD10
RD221
LC1283
RD55
RD221
LC1337
RD37
RD221
LC1391
RD143
RD221


LC1230
RD10
RD222
LC1284
RD55
RD222
LC1338
RD37
RD222
LC1392
RD143
RD222


LC1231
RD10
RD223
LC1285
RD55
RD223
LC1339
RD37
RD223
LC1393
RD143
RD223


LC1232
RD10
RD224
LC1286
RD55
RD224
LC1340
RD37
RD224
LC1394
RD143
RD224


LC1233
RD10
RD225
LC1287
RD55
RD225
LC1341
RD37
RD225
LC1395
RD143
RD225


LC1234
RD10
RD226
LC1288
RD55
RD226
LC1342
RD37
RD226
LC1396
RD143
RD226


LC1235
RD10
RD227
LC1289
RD55
RD227
LC1343
RD37
RD227
LC1397
RD143
RD227


LC1236
RD10
RD228
LC1290
RD55
RD228
LC1344
RD37
RD228
LC1398
RD143
RD228


LC1237
RD10
RD229
LC1291
RD55
RD229
LC1345
RD37
RD229
LC1399
RD143
RD229


LC1238
RD10
RD230
LC1292
RD55
RD230
LC1346
RD37
RD230
LC1400
RD143
RD230


LC1239
RD10
RD231
LC1293
RD55
RD231
LC1347
RD37
RD231
LC1401
RD143
RD231


LC1240
RD10
RD232
LC1294
RD55
RD232
LC1348
RD37
RD232
LC1402
RD143
RD232


LC1241
RD10
RD233
LC1295
RD55
RD233
LC1349
RD37
RD233
LC1403
RD143
RD233


LC1242
RD10
RD234
LC1296
RD55
RD234
LC1350
RD37
RD234
LC1404
RD143
RD234


LC1243
RD10
RD235
LC1297
RD55
RD235
LC1351
RD37
RD235
LC1405
RD143
RD235


LC1244
RD10
RD236
LC1298
RD55
RD236
LC1352
RD37
RD236
LC1406
RD143
RD236


LC1245
RD10
RD237
LC1299
RD55
RD237
LC1353
RD37
RD237
LC1407
RD143
RD237


LC1246
RD10
RD238
LC1300
RD55
RD238
LC1354
RD37
RD238
LC1408
RD143
RD238


LC1247
RD10
RD239
LC1301
RD55
RD239
LC1355
RD37
RD239
LC1409
RD143
RD239


LC1248
RD10
RD240
LC1302
RD55
RD240
LC1356
RD37
RD240
LC1410
RD143
RD240


LC1249
RD10
RD241
LC1303
RD55
RD241
LC1357
RD37
RD241
LC1411
RD143
RD241


LC1250
RD10
RD242
LC1304
RD55
RD242
LC1358
RD37
RD242
LC1412
RD143
RD242


LC1251
RD10
RD243
LC1305
RD55
RD243
LC1359
RD37
RD243
LC1413
RD143
RD243


LC1252
RD10
RD244
LC1306
RD55
RD244
LC1360
RD37
RD244
LC1414
RD143
RD244


LC1253
RD10
RD245
LC1307
RD55
RD245
LC1361
RD37
RD245
LC1415
RD143
RD245


LC1254
RD10
RD246
LC1308
RD55
RD246
LC1362
RD37
RD246
LC1416
RD143
RD246











    • wherein RD1 to RD246 have the structures defined in the following LIST 8:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound is selected from the group consisting of only those compounds whose LBk corresponds to one of the following: LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB130, LB132, LB134, LB136, LB138, LB140, LB142, LB144, LB156, LB158, LB160, LB162, LB164, LB168, LB172, LB175, LB204, LB206, LB214, LB216, LB218, LB220, LB222, LB231, LB233, LB235, LB237, LB240, LB242, LB244, LB246, LB248, LB250, LB252, LB254, LB256, LB258, LB260, LB262, LB264, LB265, LB266, LB267, LB268, LB269, and LB270.


In some embodiments, the compound is selected from the group consisting of only those compounds whose LBk corresponds to one of the following: LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB126, LB128, LB132, LB136, LB138, LB142, LB156, LB162, LB204, LB206, LB214, LB216, LB218, LB220, LB231, LB233, LB237, LB264, LB265, LB266, LB267, LB268, LB269, and LB270.


In some embodiments, the compound is selected from the group consisting of only those compounds having LCj-I or LCj-II ligand whose corresponding R201 and R202 are defined to be one of the following structures: RD1, RD3, RD4, RD5, RD9, RD10, RD17, RD18, RD20, RD22, RD37, RD40, RD41, RD42, RD43, RD48, RD49, RD50, RD54, RD55, RD58, RD59, RD78, RD79, RD81, RD87, RD88, RD89, RD93, RD116, RD17, RD118, RD119, RD120, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD147, RD149, RD151, RD154, RD15, RD161, RD175, RD190, RD193, RD200, RD201, RD206, RD210, RD214, RD215, RD216, RD218, RD219, RD220, RD227, RD237, RD241, RD242, RD245, and RD246.


In some embodiments, the compound is selected from the group consisting of only those compounds having LCj-I or LCj-II ligand whose corresponding R201 and R202 are defined to be one of selected from the following structures: RD1, RD3, RD4, RD5, RD9, RD10, RD17, RD22, RD43, RD50, RD78, RD116, RD118, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD149, RD151, RD154, RD155, RD190, RD193, RD200, RD201, RD206, RD210, RD214, RD215, RD216, RD218, RD219, RD220, RD227, RD237, RD241, RD242, RD245, and RD246.


In some embodiments, the compound is selected from the group consisting of only those compounds having one of the following structures for the LCj-I ligand:




embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, LA is selected from the group consisting of the structures of LIST 1, LIST 2, and LIST 3, and LB is selected from the group consisting of the structures of LIST 4, LIST 5, and LIST 6. In some embodiments, LA is selected from the group consisting of the structures of LIST 1 and LB is selected from the group consisting of the structures of LIST 6 (LB1 to LB474). In some embodiments, LA is selected from the group consisting of the structures of LIST 2 and LB is selected from the group consisting of the structures of LIST 6 (LB1 to LB474). In some embodiments, LA is selected from LIST 3, and LB is selected from the group consisting of the structures of LIST 6 (LB to LB474). In some embodiments, LC can has a structure selected from the group consisting of LCj-I, LCj-II, and LIST 7.


In some embodiments, the compound can be Ir(LA)2(LB), Ir(LA)(LB)2, Ir(LA)2(LC), or Ir(LA)(LB)(LC). In some of these embodiments, LA can have a Formula I as defined herein. In some of these embodiments, LA can be selected from the group consisting of the structures of LIST 1, LIST 2, and LIST 3 as defined herein. In some of these embodiments, LB can be selected from the group consisting of the structures of LIST 4, LIST 5, and LIST 6 as defined herein.


In some embodiments, the compound can be Ir(LA-i-(REA)(REB)(REC)(RED)(REE))2(LB), Ir(LA-i′-(REA)(REB)(REC)(RED)(REE)(REF))2(LB), Ir(LA)2(LBk), Ir(LA-i-(REA)(REB)(REC)(RED)(REE))2(LBk), Ir(LA-i′-(REA)(REB)(REC)(RED)(REE)(REF))2(LBk), Ir(LA-i-(REA)(REB)(REC)(RED)(REE))(LB)2, Ir(LA-i′-(REA)(REB)(REC)(RED)(REE)(REF))(LB)2, Ir(LA)(LBk)2, Ir(LA-i-(REA)(REB)(REC)(RED)(REE))(LBk)2, Ir(LA-i′-(REA)(REB)(REC)(RED)(REE)(REF))(LBk)2, Ir(LA-i-(REA)(REB)(REC)(RED)(REE))2(LCJ-I), Ir(LA-i′-(REA)(REB)(REC)(RED)(REE)(REF))2(LCJ-I), Ir(LA-i(REA)(REB)(REC)(RED)(REE))2(LCJ-II), Ir(LA-i′-(REA)(REB)(REC)(RED)(REE)(REF))2(LCJ-II), Ir(LA-i-(REA)(REB)(REC)(RED)(REE))(LBk)(LCJ-I), Ir(LA-i′-(REA)(REB)(REC) (RED)(REE)(REF))(LBk)(LCJ-I), Ir(LA-i-(REA)(REB)(REC)(RED)(REE))(LBk)(LCJ-II), or Ir(LA-i′-(REA)(REB)(REC)(RED)(REE) (REF))LB)(LCJ-II), wherein LA-i-(REA)(REB)(REC)(RED)(REE), LA-i′-(REA)(REB)(REC)(RED)(REE)(REF), LBk, LCJ-I, and LCJ-II are all defined herein.


In some embodiments, the compound is selected from the group consisting of the structures of the following LIST 9:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has the structure of Formula II




embedded image


where:

    • M1 is Pd or Pt;
    • moieties E and F are each independently monocyclic or polycyclic ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;
    • Z1′ and Z2′ are each independently C or N;
    • K1, K2, K1a and K2a are each independently selected from the group consisting of single bond, O, S, N(Rα), P(Rα), B(Rα), C(Rα)(Rβ), and Si(Rα)(Rβ), wherein at least two of them are direct bonds;
    • L1, L2, and L3 are each independently absent or selected from the group consisting of a direct bond, BR, BRR′, NR, PR, P(O)R, a, S, Se, C═O, C═S, C═Se, C═NR, C═CRR′, S═O, SO2, CR, CRR′, SiRR′, GeRR′, alkylene, cycloalkyl, aryl, cycloalkylene, arylene, heteroarylene, and combinations thereof, wherein at least one of L1 and L2 is present;
    • RE and RF each independently represents mono, up to maximum allowed substitutions, or no substitutions;
    • each of Rα, Rβ, R, R′, RE, and RF is independently a hydrogen or a substituent selected from the group consisting of the Preferred General Substituents defined herein; and
    • two adjacent RA, RB, RC, RE, and RF can be joined or fused together to form a ring where chemically feasible.


In some embodiments having a structure of Formula II, moiety E and moiety F are both 6-membered aromatic rings.


In some embodiments having a structure of Formula II, moiety F is a 5-membered or 6-membered heteroaromatic ring.


In some embodiments having a structure of Formula II, L1 is O or CRR′.


In some embodiments having a structure of Formula II, Z2′ is N and Z′ is C.


In some embodiments having a structure of Formula II, Z2′ is C and Z′ is N.


In some embodiments having a structure of Formula II, L2 is a direct bond. In some embodiments having a structure of Formula II, L2 is NR.


In some embodiments having a structure of Formula II, K1, K2, K1a, and K2a are all direct bonds.


In some embodiments having a structure of Formula II, one of K1, K2, K1a, and K2a is 0.


In some embodiments of Formula II, at least one RA, RB, RC, RE, or RF is partially or fully deuterated. In some embodiments, at least one RA is partially or fully deuterated. In some embodiments, at least one RB is partially or fully deuterated. In some embodiments, at least one RC is partially or fully deuterated. In some embodiments, at least one RE is partially or fully deuterated. In some embodiments, at least one RF is partially or fully deuterated. In some embodiments of Formula II, at least R or R′ is present and is partially or fully deuterated.


In some embodiments of Formula II, at least one RA, RB, RC, RE, or RF is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RA, RB, RE, or RF is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RA, RB, RE, or RF is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RA, RB, RE, or RF is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RA, RB, RE, or RF is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments of Formula II, at least one RA is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RA is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments of Formula II, at least one RB is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RB is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments of Formula II, at least one RC is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RC is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments of Formula II, at least one RE is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RE is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RE is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RE is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RE is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments of Formula II, at least one RF is or comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, at least one RF is or comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, at least one RF is or comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, at least one RF is or comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, at least one RF is or comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments, Formula II comprises an electron-withdrawing group from the EWG1 LIST as defined herein. In some embodiments, Formula II comprises an electron-withdrawing group from the EWG2 LIST as defined herein. In some embodiments, Formula II comprises an electron-withdrawing group from the EWG3 LIST as defined herein. In some embodiments, Formula II comprises an electron-withdrawing group from the EWG4 LIST as defined herein. In some embodiments, Formula II comprises an electron-withdrawing group from the Pi-EWG LIST as defined herein.


In some embodiments of heteroleptic compound having the formula of M(LA)p(LB)q(LC)r as defined above, the ligand LA has a first substituent RI, where the first substituent RI has a first atom a-I that is the farthest away from the metal M among all atoms in the ligand LA. Additionally, the ligand LB, if present, has a second substituent RII, where the second substituent RII has a first atom a-II that is the farthest away from the metal M among all atoms in the ligand LB. Furthermore, the ligand LC, if present, has a third substituent RIII, where the third substituent RIII has a first atom a-III that is the farthest away from the metal M among all atoms in the ligand LC.


In such heteroleptic compounds, vectors VD1, VD2, and VD3 can be defined that are defined as follows. VD1 represents the direction from the metal M to the first atom a-I and the vector VD1 has a value D1 that represents the straight line distance between the metal M and the first atom a-I in the first substituent RI. VD2 represents the direction from the metal M to the first atom a-II and the vector VD2 has a value D2 that represents the straight line distance between the metal M and the first atom a-II in the second substituent RII. VD3 represents the direction from the metal M to the first atom a-III and the vector VD3 has a value D3 that represents the straight line distance between the metal M and the first atom a-III in the third substituent RIII.


In such heteroleptic compounds, a sphere having a radius r is defined whose center is the metal M and the radius r is the smallest radius that will allow the sphere to enclose all atoms in the compound that are not part of the substituents RI, RII and RIII; and where at least one of D1, D2, and D3 is greater than the radius r by at least 1.5 Å. In some embodiments, at least one of D1, D2, and D3 is greater than the radius r by at least 2.9, 3.0, 4.3, 4.4, 5.2, 5.9, 7.3, 8.8, 10.3, 13.1, 17.6, or 19.1 Å.


In some embodiments of such heteroleptic compound, the compound has a transition dipole moment axis and angles are defined between the transition dipole moment axis and the vectors VD1, VD2, and VD3, where at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 40°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 30°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 20°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 15°. In some embodiments, at least one of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 is less than 10°. In some embodiments, at least two of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 20°. In some embodiments, at least two of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 15°. In some embodiments, at least two of the angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 10°.


In some embodiments, all three angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 20°. In some embodiments, all three angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 15°. In some embodiments, all three angles between the transition dipole moment axis and the vectors VD1, VD2, and VD3 are less than 10°.


In some embodiments of such heteroleptic compounds, the compound has a vertical dipole ratio (VDR) of 0.33 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.30 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.25 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.20 or less. In some embodiments of such heteroleptic compounds, the compound has a VDR of 0.15 or less.


One of ordinarily skill in the art would readily understand the meaning of the terms transition dipole moment axis of a compound and vertical dipole ratio of a compound. Nevertheless, the meaning of these terms can be found in U.S. Pat. No. 10,672,997 whose disclosure is incorporated herein by reference in its entirety. In U.S. Pat. No. 10,672,997, horizontal dipole ratio (HDR) of a compound, rather than VDR, is discussed. However, one skilled in the art readily understands that VDR=1−HDR.


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the OLED comprises: an anode; a cathode; and an organic layer disposed between the anode and the cathode, where the organic layer comprises a compound comprising a first ligand LA of Formula I as described herein.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the emissive layer comprises one or more quantum dots.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1-Ar2, CnH2n—Ar1, or no substitution, wherein n is an integer from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, triazine, boryl, silyl, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, aza-5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).


In some embodiments, the host can be selected from the group consisting of the structures of the following HOST Group 1:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • each of X1 to X2 is independently C or N;
    • L′ is a direct bond or an organic linker;
    • each YA is independently selected from the group consisting of absent a bond, O, S, Se, CRR′, SiRR′, GeRR′, NR, BR, BRR′;
    • each of RA′, RB′, RC′, RD′, RE′, RF′, and RG′ independently represents mono, up to the maximum substitutions, or no substitutions;
    • each R, R′, RA′, RB′, RC′, RD′, RE′, RF′, and RG′ is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof; and
    • two adjacent of RA′, RB′, RC′, RD′, RE′, RF′, and RG′ are optionally joined or fused to form a ring.


In some embodiments, L′ is an organic linker selected from the group consisting of BR, BRR′, NR, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR, C═CRR′, S═O, SO2, CR, CRR′, SiRR′, GeRR′, alkylene, cycloalkyl, aryl, cycloalkylene, arylene, heteroarylene, and combinations thereof.


In some embodiments, the host may be selected from the HOST Group 2 consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the emissive layer can comprise two hosts, a first host and a second host. In some embodiments, the first host is a hole transporting host, and the second host is an electron transporting host. In some embodiments, the first host and the second host can form an exciplex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region can comprise a compound comprising a first ligand LA of Formula I as described herein.


In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for intervening layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.


The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.


The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors (“DBRs”) in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.


In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.


In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a plurality of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer, and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound comprising a first ligand LA of Formula I as described herein.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP, also referred to as organic vapor jet deposition (OVJD)), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image


wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electrontransport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


E. Experimental Data



embedded image


A suspension of 1-(4-isopropyl-5,7-dimethylnaphthalen-2-yl)-8-neopentylbenzo-[4,5]thieno[2,3-c] (2.31 g, 5.12 mmol, 2.0 equiv) in 2-ethoxy-ethanol (51 mL) and DI water (17 mL) was sparged with nitrogen for 10 minutes. Iridium(III) chloride hydrate (0.810 g, 2.56 mmol, 1.0 equiv) was added then the reaction mixture heated at 100° C. for 18 hours. The reaction mixture was cooled to room temperature and filtered. The solid was washed with methanol (3×2 mL) to give crude di-μ-chloro-tetrakis[1-((4-isopropyl-5,7-di-methylnaphthalen-2-yl)-1′-yl)-8-neopentylbenzo[4,5]thieno[2,3-c]pyridin-2-yl]-diiridium(III) (˜100% yield) as a red solid.


Crude di-μ-chloro-tetrakis[1-((4-isopropyl-5,7-dimethyl-naphthalen-2-yl)-1′-yl)-8-neopentylbenzo [4,5]thieno[2,3-c]pyridin-2-yl]diiridium(III) (˜1.28 mmol, 1.0 equiv), dichloromethane (10 mL), methanol (10 mL), 3,7-di-ethylnonane-4,6-dione (0.815 g, 3.84 mmol, 3.0 equiv) and powdered potassium carbonate (0.708 g, 5.12 mmol, 4.0 equiv) were added sequentially to a 50 mL round bottom flask. The reaction mixture was stirred at 45° C. for 3 hours. The reaction mixture was concentrated under reduced pressure. The red solid was purified on a Biotage automated chroma-tography system (120 g silica gel cartridge), eluting with a gradient of 0-50% dichloromethane in hexanes. to give bis[1-((4-isopropyl-5,7-dimethylnaphthalen-2-yl)-1′-yl)-8-neopentylbenzo[4,5]thieno[2,3-c]-pyridin-2-yl]-[3,7-diethyl-4,6-nonane-dionato-k2O,O′]iridium(III) (1.9 g, 57% yield) as a red solid.




embedded image


A solution 1-(4-isopropyl-6-methylnaphthalen-2-yl)-8-methyl-7-neopentylbenzo[4,5]thieno[2,3-c]pyridine (2.00 g, 4.43 mmol, 2.0 equiv) in 2-ethoxyethanol (40 mL) and DI water (13 mL) was sparged with nitrogen for 10 minutes. Iridium(III) chloride hydrate (821 mg, 2.21 mmol, 1.0 equiv) was added then the reaction mixture heated at 98° C. for 16 hours. The reaction mixture was cooled to room temperature and diluted with methanol (80 mL). The suspension was filtered to give crude di-μ-chloro-tetrakis[(1-(4-isopropyl-6-methylnaphthalen-2-yl)-1′-yl)-8-methyl-7-neopentylbenzo[4,5]thieno-[2,3-c]pyridin-2-yl]diiridium(III) (2.09 g, 84% yield) as a red solid.


Crude di-μ-chloro-tetrakis[(1-(4-isopropyl-6-methylnaphthalen-2-yl)-1′-yl)-8-methyl-7-neopentylbenzo [4,5]thieno[2,3-c]pyridin-2-yl]diiridium(III) (est. 1.11 mmol, 1.0 equiv) was dissolved in dichloromethane (10 mL) and methanol (10 mL). Powdered potassium carbonate (612 mg, 4.43 mmol, 4.0 equiv) and 3,7-diethylnonane-4,6-dione (705 mg, 3.32 mmol, 3.0 equiv) were added then the reaction mixture heated at 44° C. for 18 hours. The reaction mixture was cooled to room temperature, diluted with methanol (50 mL) and the suspension filtered. The solid was adsorbed onto Celite® and purified on a Biotage automated chromatography system (330 g silica gel cartridge), eluting with a gradient of 0-50% dichloro-methane in hexanes to give bis[(1-(4-isopropyl-6-methylnaphthalen-2-yl)-1′-yl)-8-methyl-7-neopentylbenzo-[4,5]thieno[2,3-c]pyridin-2-yl]-(3,7-diethylnonane-4,6-dione-κ2O,O′)iridium(III) (1.88 g, 65% yield) as a red solid.




embedded image


DFT calculations were performed to determine the energy of the lowest singlet (S1) and the lowest triplet (T1) excited state. The data was gathered using the program Gaussian 16. Geometries were optimized using B3LYP functional and CEP-31G basis set. Excited state energies were computed by TDDFT at the optimized ground state geometries. THF solvent was simulated using a self-consistent reaction field to further improve agreement with experiment. The calcuated T1 and S1 energy of the inventive and comparative examples are shown in Table 1.












TABLE 1







T1/nm
T1/eV




















Inventive example 1
678
1.83



Inventive example 2
650
1.91



Comparative example 1
655
1.89



Inventive example 3
671
1.85



Inventive example 4
644
1.93



Comparative example 2
650
1.91










As shown in table 1, the structural difference between the inventive example 1-2 and comparative example 1 is the number and position of methyl substitution on the naphthalene ring. With additional methyl substitutions, the inventive example 1 shows redshift phosphorescent emission in comparison to comparative example 1 as indicated by its lower T1 energy (1.83 eV vs. 1.89 eV), however the emission of the inventive example 2 is unexpectedly blueshifted compared to comparative example 1, as indicated by its higher T1 energy (1.91 eV vs. 1.89 eV). The results are unexpected and dependent on the pattern and position of methyl substitution.


It should be understood that the calculations obtained with the above-identified DFT functional set and basis set are theoretical. Computational composite protocols, such as Gaussian with the CEP-31G basis set used herein, rely on the assumption that electronic effects are additive and, therefore, larger basis sets can be used to extrapolate to the complete basis set (CBS) limit. However, when the goal of a study is to understand variations in HOMO, LUMO, S1, T1, bond dissociation energies, etc. over a series of structurally-related compounds, the additive effects are expected to be similar. Accordingly, while absolute errors from using the B3LYP may be significant compared to other computational methods, the relative differences between the HOMO, LUMO, S1, T1, and bond dissociation energy values calculated with B3LYP protocol are expected to reproduce experiment quite well. See, e.g., Hong et al., Chem. Mater. 2016, 28, 5791-98, 5792-93 and Supplemental Information (discussing the reliability of DFT calculations in the context of OLED materials). Moreover, with respect to iridium or platinum complexes that are useful in the OLED art, the data obtained from DFT calculations correlates very well to actual experimental data. See Tavasli et al., J. Mater. Chem. 2012, 22, 6419-29, 6422 (Table 3) (showing DFT calculations closely correlating with actual data for a variety of emissive complexes); Morello, G. R., J. Mol. Model. 2017, 23:174 (studying of a variety of DFT functional sets and basis sets and concluding the combination of B3LYP and CEP-31G is particularly accurate for emissive complexes).


A photoluminescence (PL) spetra of the inventive example 4 and comparative example 2 were measured in 2-methyl THF and PMMA films at room temperature. The emission peak wavelength measured in solution and PLQY measured in PMMA films are shown in Table 2.












TABLE 2







λmax/nm
PLQY/%




















Inventive example 4
620
91



Comparative example 2
621
78










The photoluminescence measurement (table 2) indicates that the emission peak wavelength of the inventive example 2 is blueshift compared to the comparative example 2, consistent with DFT results. In addition, Inventive example 2 has higher PLQY than comparative example 2. These improvements are beyond any values that could be attributed to experimental error and the observed improvements are significant and unexpected.


DEVICE EXAMPLES

All example devices were fabricated by high vacuum (<10-? Torr) thermal evaporation. The anode electrode was 1,200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of Liq (8-hydroxyquinoline lithium) followed by 1,000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package. The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 of LG101 (purchased from LG Chem) as the hole injection layer (HIL); 400 Å of HTM as a hole transporting layer (HTL); 50 Å of EBM as an electron blocking layer (EBL); 400 Å of an emissive layer (EML) containing RH1 as red host and 3% of emitter, and 350 Å of Liq (8-hydroxyquinolinelithium) doped with 35% of ETM as the electron transporting layer (ETL). Table 3 shows the thickness of the device layers and materials.









TABLE 3







Device layer materials and thicknesses











Layer
Material
Thickness [Å]















Anode
ITO
1,200



HIL
LG101
100



HTL
HTM
400



EBL
EBM
50



EML
RH1: Red emitter 3%
400



ETL
Liq: ETM 35%
350



EIL
Liq
10



Cathode
Al
1,000










The chemical structures of the device materials are shown below:




embedded image


Upon fabrication devices have been EL and JVL tested. For this purpose, the sample was energized by the 2 channel Keysight B2902A SMU at a current density of 10 mA/cm2 and measured by the Photo Research PR735 Spectroradiometer. Radiance (W/str/cm2) from 380 nm to 1080 nm, and total integrated photon count were collected. The device is then placed under a large area silicon photodiode for the JVL sweep. The integrated photon count of the device at 10 mA/cm2 is used to convert the photodiode current to photon count. The voltage is swept from 0 to a voltage equating to 200 mA/cm2. The EQE of the device is calculated using the total integrated photon count. All results are summarized in Table 4. EQE, LE, and LT95 of inventive example are reported as relative numbers normalized to the results of the comparative example.














TABLE 4









λ max

At 10 mA/cm2














Device
Red emitter
[nm]
CIE (X, Y)
EQE
LE
LT95
















Device 1
Inventive
624
0.684, 0.315
1.04
1.10
1.19



Compound 2


Device 2
Comparative
625
0.687, 0.312
1.0
1.0
1.0



Compound 2









Table 4 summarizes performance of electroluminescence devices using inventive and comparative example 2 as emissive dopants. The inventive devices (device 1) using the inventive compound 2 as the emissive dopants showed blueshift emission (λmax=624 m) compared to the device 2 using the comparative compound 2 (max=625 un). The result is consistent with both photoluminescence measurements and DFT calculations. In addition, device 1 gave higher external quantum efficiency, luminescence efficiency, and better device lifetime than the device 2. These improvements are beyond any values that could be attributed to experimental error and the observed improvements are significant. As a result, the inventive compound 2 can be used as emissive dopant to improve OLED device performance.

Claims
  • 1. A compound comprising a first ligand LA of Formula I,
  • 2. The compound of claim 1, wherein each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, and combinations thereof.
  • 3. The compound of claim 1, wherein metal M is selected from the group consisting of Ir, Rh, Re, Ru, Os, Pt, Pd, Ag, Au, and Cu.
  • 4. The compound of claim 1, wherein moiety A is selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, triazole, thiazole, naphthalene, quinazoline, benzofuran, benzoxazole, benzotophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, dibenzofuran, dibenzotophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, fluorene, and aza-variations thereof; and/or wherein at least one RA comprises a pendant group selected from the group consisting of alkyl, cycloalkyl, aryl, and heteroaryl; and/or wherein at least one RB is selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof; and/or wherein the RB para to metal M is selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof.
  • 5. The compound of claim 1, wherein two RB are joined or fused to form a ring selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, triazole, thiazole, naphthalene, quinazoline, benzofuran, benzoxazole, benzotophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, dibenzofuran, dibenzotophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, fluorene, and aza-variations thereof.
  • 6. The compound of claim 1, wherein at least one RC is selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof; and/or wherein at least two RC are independently selected from the group consisting of fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, germyl, partially or fully deuterated variations thereof, and combinations thereof.
  • 7. The compound of claim 1, wherein two RC substituents are joined or fused to form a ring selected from the group consisting of imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, triazole, thiazole, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, and benzimidazole.
  • 8. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 9. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 10. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LA-i-(REA)(REB)(REC)(RED)(REE) and LA-i′-(REA)(REB)(REC)(RED)(REE)(REF), wherein i is an integer selected from 1-3, 5-6, and 19-30, i′ is an integer selected from 4, 7-10, and 31-42, and wherein each of REA, REBREC, RED, REE, and REF is independently selected from R1 to R111, and wherein each of LA-1-(R1)(R1)(R1)(R1)(R1) and LA-i′-(R111)(R111)(R111)(R111)(R111)(R111) is defined as follows:
  • 11. The compound of claim 1, wherein the compound has a formula of M(LA)p(LB)q(LC)r wherein LB and LC are each a bidentate ligand; and wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and p+q+r is the oxidation state of the metal M.
  • 12. The compound of claim 11, wherein the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other; or a formula of Pt(LA)(LB); and wherein LA and LB can be same or different.
  • 13. The compound of claim 11, wherein LB and LC are each independently selected from the group consisting of:
  • 14. The compound of claim 11, wherein the compound has formula Ir(LA)3, formula Ir(LA)(LBk)2, formula Ir(LA)2(LBk), formula Ir(LA)2(LCj-I), or formula Ir(LA)2(LCj-II), wherein k is an integer from 1 to 474, and each LBk has the structure defined as follows:
  • 15. The compound of claim 1, wherein the compound is selected from the group consisting of the structures of LIST 9 defined herein.
  • 16. The compound of claim 11, wherein the compound has the Formula II:
  • 17. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound according to claim 1.
  • 18. The OLED of claim 17, wherein the organic layer further comprises a host, wherein the host comprises at least one chemical moiety selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, triazine, boryl, silyl, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, aza-5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).
  • 19. The OLED of claim 17, wherein the organic layer further comprises a host, wherein the host is selected from the group consisting of:
  • 20. A consumer product comprising an organic light-emitting device comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound according to claim 1.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/383,351, filed on Nov. 11, 2022, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63383351 Nov 2022 US