ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Abstract
Provided are organometallic compounds. Also provided are formulations comprising these organometallic compounds. Further provided are OLEDs and related consumer products that utilize these organometallic compounds.
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a compound comprising a ligand LA of




embedded image


wherein ring A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; ring A1 if present is a 5-membered or 6-membered carbocyclic or heterocyclic ring; the maximum number of N atoms that can connect to each other within a ring is three; RA represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA, and R1-R4 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; at least one of R1-R4 is an electron-withdrawing group; at least one of R1-R4 is a 5-membered or 6-membered carbocyclic or heterocyclic ring which can be further fused to form a fused ring structure; and any two adjacent R1, R2, R3, R4, and RA can be joined or fused to form a ring, wherein the ligand LA is coordinated to a metal M through the two indicated dashed lines; wherein the metal M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, Ag, and Au; and


wherein the ligand LA can be joined with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand, with a proviso that R2 is not a pyrimidine ring or a triazine ring.


In another aspect, the present disclosure provides a formulation of a compound comprising a ligand LA of Formula I as described herein.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising a compound comprising a ligand LA of Formula I as described herein.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising a compound comprising a ligand LA of Formula I as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 shows the photoluminescence spectra of some inventive and comparative compounds.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “selenyl” refers to a —SeRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “germyl” refers to a —Ge(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound comprising a ligand LA of




embedded image


wherein:


ring A is a 5-membered or 6-membered carbocyclic or heterocyclic ring;


ring A1 if present is a 5-membered or 6-membered carbocyclic or heterocyclic ring;


the maximum number of N atoms that can connect to each other within a ring is three;


RA represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring;


each of RA, and R1-R4 is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein;


at least one of R1-R4 is an electron-withdrawing group;


at least one of R1-R4 is a 5-membered or 6-membered carbocyclic or heterocyclic ring which can be further fused to form a fused ring structure; and


any two adjacent R1, R2, R3, R4, and RA can be joined or fused to form a ring,


wherein the ligand LA is coordinated to a metal M through the two indicated dashed lines;


wherein the metal M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, Ag, and Au; and


wherein the ligand LA can be joined with other ligands to form a tridentate, tetradentate, pentadentate, or


hexadentate ligand, with a proviso that R2 is not a pyrimidine ring or a triazine ring.


In some embodiments, each of RA, and R1-R4 can be independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some embodiments the ligand LA can have a structure of




embedded image


In some embodiments, the ligand LA can have a structure of


Formula II




embedded image


wherein all the variables are the same as previously defined.


In some embodiments, the ligand LA can have a structure of


Formula III



embedded image


wherein all the variables are the same as previously defined.


In some embodiments, the electron-drawing group can be selected from the group consisting of CN, COCH3, CHO, COCF3, COOMe, COOCF3, NO2, SF3, SiF3, PF4, SF5, OCF3, SCF3, SeCF3, SOCF3, SeOCF3, SO2F, SO2CF3, SeO2CF3, OSO2CF3, OSeO2CF3, OCN, SCN, SeCN, NC, +N(R)3, (R)2CCN, (R)2CCF3, CNC(CF3)2,




embedded image


wherein each R is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some embodiments, R2 can be a cyano, nitro, CHO, SF5, acyl, or +N(R)3. In some embodiments, R2 can be a cyano group.


In some embodiments, R3 can be a 5-membered or 6-membered aromatic ring. In some embodiments, R3 can be a 5-membered or 6-membered aromatic ring which is further fused to form a 5-membered or 6-membered ring. In some embodiments, R3 can be a phenyl, pyridyl, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, isothiazole, or thiazole ring. In some embodiments, R3 can be phenyl, thiophene, or thiazole group. In some embodiments, R3 can be further substituted with an alkyl, aryl, or heteroaryl group.


In some embodiments, one of R1 and R4 can be a cyano, nitro, CHO, SF5, acyl, or +N(R)3.


In some embodiments, ring A can be benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, or thiazole. In some embodiments, ring A1 can be benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, or thiazole. In some embodiments, both ring A and ring A1 can be benzene. In some embodiments, one of ring A and ring A1 can be a pyridine ring, and the other can be abenzene ring.


In some embodiments, one RA can be a t-butyl group. In some embodiments, two adjacent RA substituents can be joined to form a 5-membered or 6-membered ring. In some embodiments, one RA and one R4 can be joined to form a 5-membered or 6-membered ring.


In some embodiments, M can be Ir or Pt.


In some embodiments, the compound can further comprise a substituted or unsubstituted phenyl-pyridine ligand.


In some embodiments, the compound can further comprise a substituted or unsubstituted acetylacetonate ligand.


In some embodiments, the ligand LA can be selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


wherein each X is independently C, CR, or N; each Y is independently BR, NR, PR, O, S, Se, C═O, S═O, SO2, C(R)2, Si(R)2, and Ge(R)2; and the remaining variables are the same as previously defined.


In some embodiments, the ligand LA can be selected from the group consisting of LAi-m, wherein i is an integer from 1 to 3696, and m is an integer from 1 to 138, and the structure of each LAi-m is defined below in LIST 1:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein for each LAi, RE, RF, and G are defined as provided in the following LIST 2:























LAi
RE
RF
G
LAi
RE
RF
G
LAi
RE
RF
G







LA1
R1′
RF1
G2
LA1201
R1′
RF11
G5
LA2401
R1′
RF1
G9


LA2
R2′
RF1
G2
LA1202
R2′
RF11
G5
LA2402
R4′
RF1
G9


LA3
R3′
RF1
G2
LA1203
R3′
RF11
G5
LA2403
R7
RF1
G9


LA4
R4′
RF1
G2
LA1204
R4′
RF11
G5
LA2404
R11
RF1
G9


LA5
R5
RF1
G2
LA1205
R5
RF11
G5
LA2405
R13
RF1
G9


LA6
R6
RF1
G2
LA1206
R6
RF11
G5
LA2406
R22
RF1
G9


LA7
R7
RF1
G2
LA1207
R7
RF11
G5
LA2407
R25
RF1
G9


LA8
R8
RF1
G2
LA1208
R8
RF11
G5
LA2408
R26
RF1
G9


LA9
R9
RF1
G2
LA1209
R9
RF11
G5
LA2409
R28
RF1
G9


LA10
R10
RF1
G2
LA1210
R10
RF11
G5
LA2410
R30
RF1
G9


LA11
R11
RF1
G2
LA1211
R11
RF11
G5
LA2411
R1′
RF4
G9


LA12
R12
RF1
G2
LA1212
R12
RF11
G5
LA2412
R4′
RF4
G9


LA13
R13
RF1
G2
LA1213
R13
RF11
G5
LA2413
R7
RF4
G9


LA14
R14
RF1
G2
LA1214
R14
RF11
G5
LA2414
R11
RF4
G9


LA15
R15
RF1
G2
LA1215
R15
RF11
G5
LA2415
R13
RF4
G9


LA16
R16
RF1
G2
LA1216
R16
RF11
G5
LA2416
R22
RF4
G9


LA17
R17
RF1
G2
LA1217
R17
RF11
G5
LA2417
R25
RF4
G9


LA18
R18
RF1
G2
LA1218
R18
RF11
G5
LA2418
R26
RF4
G9


LA19
R19
RF1
G2
LA1219
R19
RF11
G5
LA2419
R28
RF4
G9


LA20
R20
RF1
G2
LA1220
R20
RF11
G5
LA2420
R30
RF4
G9


LA21
R21
RF1
G2
LA1221
R21
RF11
G5
LA2421
R1′
RF5
G9


LA22
R22
RF1
G2
LA1222
R22
RF11
G5
LA2422
R4′
RF5
G9


LA23
R23
RF1
G2
LA1223
R23
RF11
G5
LA2423
R7
RF5
G9


LA24
R24
RF1
G2
LA1224
R24
RF11
G5
LA2424
R11

rF5

G9


LA25
R25
RF1
G2
LA1225
R25
RF11
G5
LA2425
R13
RF5
G9


LA26
R26
RF1
G2
LA1226
R26
RF11
G5
LA2426
R22
RF5
G9


LA27
R27
RF1
G2
LA1227
R27
RF11
G5
LA2427
R25
RF5
G9


LA28
R28
RF1
G2
LA1228
R28
RF11
G5
LA2428
R26
RF5
G9


LA29
R29
RF1
G2
LA1229
R29
RF11
G5
LA2429
R28
RF5
G9


LA30
R30
RF1
G2
LA1230
R30
RF11
G5
LA2430
R30
RF5
G9


LA31
R1′
RF2
G2
LA1231
R1′
RF12
G5
LA2431
R1′
RF7
G9


LA32
R2′
RF2
G2
LA1232
R2′
RF12
G5
LA2432
R4′
RF7
G9


LA33
R3′
RF2
G2
LA1233
R3′
RF12
G5
LA2433
R7
RF7
G9


LA34
R4′
RF2
G2
LA1234
R4′
RF12
G5
LA2434
R11
RF7
G9


LA35
R5
RF2
G2
LA1235
R5
RF12
G5
LA2435
R13
RF7
G9


LA36
R6
RF2
G2
LA1236
R6
RF12
G5
LA2436
R22
RF7
G9


LA37
R7
RF2
G2
LA1237
R7
RF12
G5
LA2437
R25
RF7
G9


LA38
R8
RF2
G2
LA1238
R8
RF12
G5
LA2438
R26
RF7
G9


LA39
R9
RF2
G2
LA1239
R9
RF12
G5
LA2439
R28
RF7
G9


LA40
R10
RF2
G2
LA1240
R10
RF12
G5
LA2440
R30
RF7
G9


LA41
R11
RF2
G2
LA1241
R11
RF12
G5
LA2441
R1′
RF8
G9


LA42
R12
RF2
G2
LA1242
R12
RF12
G5
LA2442
R4′
RF8
G9


LA43
R13
RF2
G2
LA1243
R13
RF12
G5
LA2443
R7
RF8
G9


LA44
R14
RF2
G2
LA1244
R14
RF12
G5
LA2444
R11
RF8
G9


LA45
R15
RF2
G2
LA1245
R15
RF12
G5
LA2445
R13
RF8
G9


LA46
R16
RF2
G2
LA1246
R16
RF12
G5
LA2446
R22
RF8
G9


LA47
R17
RF2
G2
LA1247
R17
RF12
G5
LA2447
R25
RF8
G9


LA48
R18
RF2
G2
LA1248
R18
RF12
G5
LA2448
R26
RF8
G9


LA49
R19
RF2
G2
LA1249
R19
RF12
G5
LA2449
R28
RF8
G9


LA50
R20
RF2
G2
LA1250
R20
RF12
G5
LA2450
R30
RF8
G9


LA51
R21
RF2
G2
LA1251
R21
RF12
G5
LA2451
R1′
RF16
G9


LA52
R22
RF2
G2
LA1252
R22
RF12
G5
LA2452
R4′
RF16
G9


LA53
R23
RF2
G2
LA1253
R23
RF12
G5
LA2453
R7
RF16
G9


LA54
R24
RF2
G2
LA1254
R24
RF12
G5
LA2454
R11
RF16
G9


LA55
R25
RF2
G2
LA1255
R25
RF12
G5
LA2455
R13
RF16
G9


LA56
R26
RF2
G2
LA1256
R26
RF12
G5
LA2456
R22
RF16
G9


LA57
R27
RF2
G2
LA1257
R27
RF12
G5
LA2457
R25
RF16
G9


LA58
R28
RF2
G2
LA1258
R28
RF12
G5
LA2458
R26
RF16
G9


LA59
R29
RF2
G2
LA1259
R29
RF12
G5
LA2459
R28
RF16
G9


LA60
R30
RF2
G2
LA1260
R30
RF12
G5
LA2460
R30
RF16
G9


LA61
R1′
RF3
G2
LA1261
R1′
RF13
G5
LA2461
R1′
RF19
G9


LA62
R2′
RF3
G2
LA1262
R2′
RF13
G5
LA2462
R4′
RF19
G9


LA63
R3′
RF3
G2
LA1263
R3′
RF13
G5
LA2463
R7
RF19
G9


LA64
R4′
RF3
G2
LA1264
R4′
RF13
G5
LA2464
R11
RF19
G9


LA65
R5
RF3
G2
LA1265
R5
RF13
G5
LA2465
R13
RF19
G9


LA66
R6
RF3
G2
LA1266
R6
RF13
G5
LA2466
R22
RF19
G9


LA67
R7
RF3
G2
LA1267
R7
RF13
G5
LA2467
R25
RF19
G9


LA68
R8
RF3
G2
LA1268
R8
RF13
G5
LA2468
R26
RF19
G9


LA69
R9
RF3
G2
LA1269
R9
RF13
G5
LA2469
R28
RF19
G9


LA70
R10
RF3
G2
LA1270
R10
RF13
G5
LA2470
R30
RF19
G9


LA71
R11
RF3
G2
LA1271
R11
RF13
G5
LA2471
R1′
RF21
G9


LA72
R12
RF3
G2
LA1272
R12
RF13
G5
LA2472
R4′
RF21
G9


LA73
R13
RF3
G2
LA1273
R13
RF13
G5
LA2473
R7
RF21
G9


LA74
R14
RF3
G2
LA1274
R14
RF13
G5
LA2474
R11
RF21
G9


LA75
R15
RF3
G2
LA1275
R15
RF13
G5
LA2475
R13
RF21
G9


LA76
R16
RF3
G2
LA1276
R16
RF13
G5
LA2476
R22
RF21
G9


LA77
R17
RF3
G2
LA1277
R17
RF13
G5
LA2477
R25
RF21
G9


LA78
R18
RF3
G2
LA1278
R18
RF13
G5
LA2478
R26
RF21
G9


LA79
R19
RF3
G2
LA1279
R19
RF13
G5
LA2479
R28
RF21
G9


LA80
R20
RF3
G2
LA1280
R20
RF13
G5
LA2480
R30
RF21
G9


LA81
R21
RF3
G2
LA1281
R21
RF13
G5
LA2481
R1′
RF22
G9


LA82
R22
RF3
G2
LA1282
R22
RF13
G5
LA2482
R4′
RF22
G9


LA83
R23
RF3
G2
LA1283
R23
RF13
G5
LA2483
R7
RF22
G9


LA84
R24
RF3
G2
LA1284
R24
RF13
G5
LA2484
R11
RF22
G9


LA85
R25
RF3
G2
LA1285
R25
RF13
G5
LA2485
R13
RF22
G9


LA86
R26
RF3
G2
LA1286
R26
RF13
G5
LA2486
R22
RF22
G9


LA87
R27
RF5
G2
LA1287
R27
RF13
G5
LA2487
R25
RF22
G9


LA88
R28
RF3
G2
LA1288
R28
RF13
G5
LA2488
R26
RF22
G9


LA89
R29
RF3
G2
LA1289
R29
RF13
G5
LA2489
R28
RF22
G9


LA90
R30
RF3
G2
LA1290
R30
RF13
G5
LA2490
R30
RF22
G9


LA91
R1′
RF4
G2
LA1291
R1′
RF14
G5
LA2491
R1′
RF30
G9


LA92
R2′
RF4
G2
LA1292
R2′
RF14
G5
LA2492
R4′
RF30
G9


LA93
R3′
RF4
G2
LA1293
R3′
RF14
G5
LA2493
R7
RF30
G9


LA94
R4′
RF4
G2
LA1294
R4′
RF14
G5
LA2494
R11
RF30
G9


LA95
R5
RF4
G2
LA1295
R5
RF14
G5
LA2495
R13
RF30
G9


LA96
R6
RF4
G2
LA1296
R6
RF14
G5
LA2496
R22
RF30
G9


LA97
R7
RF4
G2
LA1297
R7
RF14
G5
LA2497
R25
RF30
G9


LA98
R8
RF4
G2
LA1298
R8
RF14
G5
LA2498
R26
RF30
G9


LA99
R9
RF4
G2
LA1299
R9
RF14
G5
LA2499
R28
RF30
G9


LA100
R10
RF4
G2
LA1300
R10
RF14
G5
LA2500
R30
RF30
G9


LA101
R11
RF4
G2
LA1301
R11
RF14
G5
LA2501
R1′
RF1
G10


LA102
R12
RF4
G2
LA1302
R12
RF14
G5
LA2502
R4′
RF1
G10


LA103
R13
RF4
G2
LA1303
R13
RF14
G5
LA2503
R7
RF1
G10


LA104
R14
RF4
G2
LA1304
R14
RF14
G5
LA2504
R11
RF1
G10


LA105
R15
RF4
G2
LA1305
R15
RF14
G5
LA2505
R13
RF1
G10


LA106
R16
RF4
G2
LA1306
R16
RF14
G5
LA2506
R22
RF1
G10


LA107
R17
RF4
G2
LA1307
R17
RF14
G5
LA2507
R25
RF1
G10


LA108
R18
RF4
G2
LA1308
R18
RF14
G5
LA2508
R26
RF1
G10


LA109
R19
RF4
G2
LA1309
R19
RF14
G5
LA2509
R28
RF1
G10


LA110
R20
RF4
G2
LA1310
R20
RF14
G5
LA2510
R30
RF1
G10


LA111
R21
RF4
G2
LA1311
R21
RF14
G5
LA2511
R1′
RF4
G10


LA112
R22
RF4
G2
LA1312
R22
RF14
G5
LA2512
R4′
RF4
G10


LA113
R23
RF4
G2
LA1313
R23
RF14
G5
LA2513
R7
RF4
G10


LA114
R24
RF4
G2
LA1314
R24
RF14
G5
LA2514
R11
RF4
G10


LA115
R25
RF4
G2
LA1315
R25
RF14
G5
LA2515
R13
RF4
G10


LA116
R26
RF4
G2
LA1316
R26
RF14
G5
LA2516
R22
RF4
G10


LA117
R27
RF4
G2
LA1317
R27
RF14
G5
LA2517
R25
RF4
G10


LA118
R28
RF4
G2
LA1318
R28
RF14
G5
LA2518
R26
RF4
G10


LA119
R29
RF4
G2
LA1319
R29
RF14
G5
LA2519
R28
RF4
G10


LA120
R30
RF4
G2
LA1320
R30
RF14
G5
LA2520
R30
RF4
G10


LA121
R1′
RF5
G2
LA1321
R1′
RF15
G5
LA2521
R1′
RF5
G10


LA122
R2′
RF5
G2
LA1322
R2′
RF15
G5
LA2522
R4′
RF5
G10


LA123
R3′
RF5
G2
LA1323
R3′
RF15
G5
LA2523
R7
RF5
G10


LA124
R4′
RF5
G2
LA1324
R4′
RF15
G5
LA2524
R11
RF5
G10


LA125
R5
RF5
G2
LA1325
R5
RF15
G5
LA2525
R13
RF5
G10


LA126
R6
RF5
G2
LA1326
R6
RF15
G5
LA2526
R22
RF5
G10


LA127
R7
RF5
G2
LA1327
R7
RF15
G5
LA2527
R25
RF5
G10


LA128
R8
RF5
G2
LA1328
R8
RF15
G5
LA2528
R26
RF5
G10


LA129
R9
RF5
G2
LA1329
R9
RF15
G5
LA2529
R28
RF5
G10


LA130
R10
RF5
G2
LA1330
R10
RF15
G5
LA2530
R30
RF5
G10


LA131
R11
RF5
G2
LA1331
R11
RF15
G5
LA2531
R1′
RF7
G10


LA132
R12
RF5
G2
LA1332
R12
RF15
G5
LA2532
R4′
RF7
G10


LA133
R13
RF5
G2
LA1333
R13
RF15
G5
LA2533
R7
RF7
G10


LA134
R14
RF5
G2
LA1334
R14
RF15
G5
LA2534
R11
RF7
G10


LA135
R15
RF5
G2
LA1335
R15
RF15
G5
LA2535
R13
RF7
G10


LA136
R16
RF5
G2
LA1336
R16
RF15
G5
LA2536
R22
RF7
G10


LA137
R17
RF5
G2
LA1337
R17
RF15
G5
LA2537
R25
RF7
G10


LA138
R18
RF5
G2
LA1338
R18
RF15
G5
LA2538
R26
RF7
G10


LA139
R19
RF5
G2
LA1339
R19
RF15
G5
LA2539
R28
RF7
G10


LA140
R20
RF5
G2
LA1340
R20
RF15
G5
LA2540
R30
RF7
G10


LA141
R21
RF5
G2
LA1341
R21
RF15
G5
LA2541
R1′
RF8
G10


LA142
R22
RF5
G2
LA1342
R22
RF15
G5
LA2542
R4′
RF8
G10


LA143
R23
RF5
G2
LA1343
R23
RF15
G5
LA2543
R7
RF8
G10


LA144
R24
RF5
G2
LA1344
R24
RF15
G5
LA2544
R11
RF8
G10


LA145
R25
RF5
G2
LA1345
R25
RF15
G5
LA2545
R13
RF8
G10


LA146
R26
RF5
G2
LA1346
R26
RF15
G5
LA2546
R22
RF8
G10


LA147
R27
RF5
G2
LA1347
R27
RF15
G5
LA2547
R25
RF8
G10


LA148
R28
RF5
G2
LA1348
R28
RF15
G5
LA2548
R26
RF8
G10


LA149
R29
RF5
G2
LA1349
R29
RF15
G5
LA2549
R28
RF8
G10


LA150
R30
RF5
G2
LA1350
R30
RF15
G5
LA2550
R30
RF8
G10


LA151
R1′
RF6
G2
LA1351
R1′
RF16
G5
LA2551
R1′
RF16
G10


LA152
R2′
RF6
G2
LA1352
R2′
RF16
G5
LA2552
R4′
RF16
G10


LA153
R3′
RF6
G2
LA1353
R3′
RF16
G5
LA2553
R7
RF16
G10


LA154
R4′
RF6
G2
LA1354
R4′
RF16
G5
LA2554
R11
RF16
G10


LA155
R5
RF6
G2
LA1355
R5
RF16
G5
LA2555
R13
RF16
G10


LA156
R6
RF6
G2
LA1356
R6
RF16
G5
LA2556
R22
RF16
G10


LA157
R7
RF6
G2
LA1357
R7
RF16
G5
LA2557
R25
RF16
G10


LA158
R8
RF6
G2
LA1358
R8
RF16
G5
LA2558
R26
RF16
G10


LA159
R9
RF6
G2
LA1359
R9
RF16
G5
LA2559
R28
RF16
G10


LA160
R10
RF6
G2
LA1360
R10
RF16
G5
LA2560
R30
RF16
G10


LA161
R11
RF6
G2
LA1361
R11
RF16
G5
LA2561
R1′
RF19
G10


LA162
R12
RF6
G2
LA1362
R12
RF16
G5
LA2562
R4′
RF19
G10


LA163
R13
RF6
G2
LA1363
R13
RF16
G5
LA2563
R7
RF19
G10


LA164
R14
RF6
G2
LA1364
R14
RF16
G5
LA2564
R11
RF19
G10


LA165
R15
RF6
G2
LA1365
R15
RF16
G5
LA2565
R13
RF19
G10


LA166
R16
RF6
G2
LA1366
R16
RF16
G5
LA2566
R22
RF19
G10


LA167
R17
RF6
G2
LA1367
R17
RF16
G5
LA2567
R25
RF19
G10


LA168
R18
RF6
G2
LA1368
R18
RF16
G5
LA2568
R26
RF19
G10


LA169
R19
RF6
G2
LA1369
R19
RF16
G5
LA2569
R28
RF19
G10


LA170
R20
RF6
G2
LA1370
R20
RF16
G5
LA2570
R30
RF19
G10


LA171
R21
RF6
G2
LA1371
R21
RF16
G5
LA2571
R1′
RF21
G10


LA172
R22
RF6
G2
LA1372
R22
RF16
G5
LA2572
R4′
RF21
G10


LA173
R23
RF6
G2
LA1373
R23
RF16
G5
LA2573
R7
RF21
G10


LA174
R24
RF6
G2
LA1374
R24
RF16
G5
LA2574
R11
RF21
G10


LA175
R25
RF6
G2
LA1375
R25
RF16
G5
LA2575
R13
RF21
G10


LA176
R26
RF6
G2
LA1376
R26
RF16
G5
LA2576
R22
RF21
G10


LA177
R27
RF6
G2
LA1377
R27
RF16
G5
LA2577
R25
RF21
G10


LA178
R28
RF6
G2
LA1378
R28
RF16
G5
LA2578
R26
RF21
G10


LA179
R29
RF6
G2
LA1379
R29
RF16
G5
LA2579
R28
RF21
G10


LA180
R30
RF6
G2
LA1380
R30
RF16
G5
LA2580
R30
RF21
G10


LA181
R1′
RF7
G2
LA1381
R1′
RF17
G5
LA2581
R1′
RF22
G10


LA182
R2′
RF7
G2
LA1382
R2′
RF17
G5
LA2582
R4′
RF22
G10


LA183
R3′
RF7
G2
LA1383
R3′
RF17
G5
LA2583
R7
RF22
G10


LA184
R4′
RF7
G2
LA1384
R4′
RF17
G5
LA2584
R11
RF22
G10


LA185
R5
RF7
G2
LA1385
R5
RF17
G5
LA2585
R13
RF22
G10


LA186
R6
RF7
G2
LA1386
R6
RF17
G5
LA2586
R22
RF22
G10


LA187
R7
RF7
G2
LA1387
R7
RF17
G5
LA2587
R25
RF22
G10


LA188
R8
RF7
G2
LA1388
R8
RF17
G5
LA2588
R26
RF22
G10


LA189
R9
RF7
G2
LA1389
R9
RF17
G5
LA2589
R28
RF22
G10


LA190
R10
RF7
G2
LA1390
R10
RF17
G5
LA2590
R30
RF22
G10


LA191
R11
RF7
G2
LA1391
R11
RF17
G5
LA2591
R1′
RF30
G10


LA192
R12
RF7
G2
LA1392
R12
RF17
G5
LA2592
R4′
RF30
G10


LA193
R13
RF7
G2
LA1393
R13
RF17
G5
LA2593
R7
RF30
G10


LA194
R14
RF7
G2
LA1394
R14
RF17
G5
LA2594
R11
RF30
G10


LA195
R15
RF7
G2
LA1395
R15
RF17
G5
LA2595
R13
RF30
G10


LA196
R16
RF7
G2
LA1396
R16
RF17
G5
LA2596
R22
RF30
G10


LA197
R17
RF7
G2
LA1397
R17
RF17
G5
LA2597
R25
RF30
G10


LA198
R18
RF7
G2
LA1398
R18
RF17
G5
LA2598
R26
RF30
G10


LA199
R19
RF7
G2
LA1399
R19
RF17
G5
LA2599
R28
RF30
G10


LA200
R20
RF7
G2
LA1400
R20
RF17
G5
LA2600
R30
RF30
G10


LA201
R21
RF7
G2
LA1401
R21
RF17
G5
LA2601
R1′
RF1
G11


LA202
R22
RF7
G2
LA1402
R22
RF17
G5
LA2602
R4′
RF1
G11


LA203
R23
RF7
G2
LA1403
R23
RF17
G5
LA2603
R7
RF1
G11


LA204
R24
RF7
G2
LA1404
R24
RF17
G5
LA2604
R11
RF1
G11


LA205
R25
RF7
G2
LA1405
R25
RF17
G5
LA2605
R13
RF1
G11


LA206
R26
RF7
G2
LA1406
R26
RF17
G5
LA2606
R22
RF1
G11


LA207
R27
RF?
G2
LA1407
R27
RF17
G5
LA2607
R25
RF1
G11


LA208
R28
RF7
G2
LA1408
R28
RF17
G5
LA2608
R26
RF1
G11


LA209
R29
RF7
G2
LA1409
R29
RF17
G5
LA2609
R28
RF1
G11


LA210
R30
RF7
G2
LA1410
R30
RF17
G5
LA2610
R30
RF1
G11


LA211
R1′
RF8
G2
LA1411
R1′
RF18
G5
LA2611
R1′
RF4
G11


LA212
R2′
RF8
G2
LA1412
R2′
RF18
G5
LA2612
R4′
RF4
G11


LA213
R3′
RF8
G2
LA1413
R3′
RF18
G5
LA2613
R7
RF4
G11


LA214
R4′
RF8
G2
LA1414
R4′
RF18
G5
LA2614
R11
RF4
G11


LA215
R5
RF8
G2
LA1415
R5
RF18
G5
LA2615
R13
RF4
G11


LA216
R6
RF8
G2
LA1416
R6
RF18
G5
LA2616
R22
RF4
G11


LA217
R7
RF8
G2
LA1417
R7
RF18
G5
LA2617
R25
RF4
G11


LA218
R8
RF8
G2
LA1418
R8
RF18
G5
LA2618
R26
RF4
G11


LA219
R9
RF8
G2
LA1419
R9
RF18
G5
LA2619
R28
RF4
G11


LA220
R10
RF8
G2
LA1420
R10
RF18
G5
LA2620
R30
RF4
G11


LA221
R11
RF8
G2
LA1421
R11
RF18
G5
LA2621
R1′
RF5
G11


LA222
R12
RF8
G2
LA1422
R12
RF18
G5
LA2622
R4′
RF5
G11


LA223
R13
RF8
G2
LA1423
R13
RF18
G5
LA2623
R7
RF5
G11


LA224
R14
RF8
G2
LA1424
R14
RF18
G5
LA2624
R11
RF5
G11


LA225
R15
RF8
G2
LA1425
R15
RF18
G5
LA2625
R13
RF5
G11


LA226
R16
RF8
G2
LA1426
R16
RF18
G5
LA2626
R22
RF5
G11


LA227
R17
RF8
G2
LA1427
R17
RF18
G5
LA2627
R25
RF5
G11


LA228
R18
RF8
G2
LA1428
R18
RF18
G5
LA2628
R26
RF5
G11


LA229
R19
RF8
G2
LA1429
R19
RF18
G5
LA2629
R28
RF5
G11


LA230
R20
RF8
G2
LA1430
R20
RF18
G5
LA2630
R30
RF5
G11


LA231
R21
RF8
G2
LA1431
R21
RF18
G5
LA2631
R1′
RF7
G11


LA232
R22
RF8
G2
LA1432
R22
RF18
G5
LA2632
R4′
RF7
G11


LA233
R23
RF8
G2
LA1433
R23
RF18
G5
LA2633
R7
RF7
G11


LA234
R24
RF8
G2
LA1434
R24
RF18
G5
LA2634
R11
RF7
G11


LA235
R25
RF8
G2
LA1435
R25
RF18
G5
LA2635
R13
RF7
G11


LA236
R26
RF8
G2
LA1436
R26
RF18
G5
LA2636
R22
RF7
G11


LA237
R27
RF8
G2
LA1437
R27
RF18
G5
LA2637
R25
RF7
G11


LA238
R28
RF8
G2
LA1438
R28
RF18
G5
LA2638
R26
RF7
G11


LA239
R29
RF8
G2
LA1439
R29
RF18
G5
LA2639
R28
RF7
G11


LA240
R30
RF8
G2
LA1440
R30
RF18
G5
LA2640
R30
RF7
G11


LA241
R1′
RF9
G2
LA1441
R1′
RF19
G5
LA2641
R1′
RF8
G11


LA242
R2′
RF9
G2
LA1442
R2′
RF19
G5
LA2642
R4′
RF8
G11


LA243
R3′
RF9
G2
LA1443
R3′
RF19
G5
LA2643
R7
RF8
G11


LA244
R4′
RF9
G2
LA1444
R4′
RF19
G5
LA2644
R11
RF8
G11


LA245
R5
RF9
G2
LA1445
R5
RF19
G5
LA2645
R13
RF8
G11


LA246
R6
RF9
G2
LA1446
R6
RF19
G5
LA2646
R22
RF8
G11


LA247
R7
RF9
G2
LA1447
R7
RF19
G5
LA2647
R25
RF8
G11


LA248
R8
RF9
G2
LA1448
R8
RF19
G5
LA2648
R26
RF8
G11


LA249
R9
RF9
G2
LA1449
R9
RF19
G5
LA2649
R28
RF8
G11


LA250
R10
RF9
G2
LA1450
R10
RF19
G5
LA2650
R30
RF8
G11


LA251
R11
RF9
G2
LA1451
R11
RF19
G5
LA2651
R1′
RF16
G11


LA252
R12
RF9
G2
LA1452
R12
RF19
G5
LA2652
R4′
RF16
G11


LA253
R13
RF9
G2
LA1453
R13
RF19
G5
LA2653
R7
RF16
G11


LA254
R14
RF9
G2
LA1454
R14
RF19
G5
LA2654
R11
RF16
G11


LA255
R15
RF9
G2
LA1455
R15
RF19
G5
LA2655
R13
RF16
G11


LA256
R16
RF9
G2
LA1456
R16
RF19
G5
LA2656
R22
RF16
G11


LA257
R17
RF9
G2
LA1457
R17
RF19
G5
LA2657
R25
RF16
G11


LA258
R18
RF9
G2
LA1458
R18
RF19
G5
LA2658
R26
RF16
G11


LA259
R19
RF9
G2
LA1459
R19
RF19
G5
LA2659
R28
RF16
G11


LA260
R20
RF9
G2
LA1460
R20
RF19
G5
LA2660
R30
RF16
G11


LA261
R21
RF9
G2
LA1461
R21
RF19
G5
LA2661
R1′
RF19
G11


LA262
R22
RF9
G2
LA1462
R22
RF19
G5
LA2662
R4′
RF19
G11


LA263
R23
RF9
G2
LA1463
R23
RF19
G5
LA2663
R7
RF19
G11


LA264
R24
RF9
G2
LA1464
R24
RF19
G5
LA2664
R11
RF19
G11


LA265
R25
RF9
G2
LA1465
R25
RF19
G5
LA2665
R13
RF19
G11


LA266
R26
RF9
G2
LA1466
R26
RF19
G5
LA2666
R22
RF19
G11


LA267
R27
RF9
G2
LA1467
R27
RF19
G5
LA2667
R25
RF19
G11


LA268
R28
RF9
G2
LA1468
R28
RF19
G5
LA2668
R26
RF19
G11


LA269
R29
RF9
G2
LA1469
R29
RF19
G5
LA2669
R28
RF19
G11


LA270
R30
RF9
G2
LA1470
R30
RF19
G5
LA2670
R30
RF19
G11


LA271
R1′
RF10
G2
LA1471
R1′
RF20
G5
LA2671
R1′
RF21
G11


LA272
R2′
RF10
G2
LA1472
R2′
RF20
G5
LA2672
R4′
RF21
G11


LA273
R3′
RF10
G2
LA1473
R3′
RF20
G5
LA2673
R7
RF21
G11


LA274
R4′
RF10
G2
LA1474
R4′
RF20
G5
LA2674
R11
RF21
G11


LA275
R5
RF10
G2
LA1475
R5
RF20
G5
LA2675
R13
RF21
G11


LA276
R6
RF10
G2
LA1476
R6
RF20
G5
LA2676
R22
RF21
G11


LA277
R7
RF10
G2
LA1477
R7
RF20
G5
LA2677
R25
RF21
G11


LA278
R8
RF10
G2
LA1478
R8
RF20
G5
LA2678
R26
RF21
G11


LA279
R9
RF10
G2
LA1479
R9
RF20
G5
LA2679
R28
RF21
G11


LA280
R10
RF10
G2
LA1480
R10
RF20
G5
LA2680
R30
RF21
G11


LA281
R11
RF10
G2
LA1481
R11
RF20
G5
LA2681
R1′
RF22
G11


LA282
R12
RF10
G2
LA1482
R12
RF20
G5
LA2682
R4′
RF22
G11


LA283
R13
RF10
G2
LA1483
R13
RF20
G5
LA2683
R7
RF22
G11


LA284
R14
RF10
G2
LA1484
R14
RF20
G5
LA2684
R11
RF22
G11


LA285
R15
RF10
G2
LA1485
R15
RF20
G5
LA2685
R13
RF22
G11


LA286
R16
RF10
G2
LA1486
R16
RF20
G5
LA2686
R22
RF22
G11


LA287
R17
RF10
G2
LA1487
R17
RF20
G5
LA2687
R25
RF22
G11


LA288
R18
RF10
G2
LA1488
R18
RF20
G5
LA2688
R26
RF22
G11


LA289
R19
RF10
G2
LA1489
R19
RF20
G5
LA2689
R28
RF22
G11


LA290
R20
RF10
G2
LA1490
R20
RF20
G5
LA2690
R30
RF22
G11


LA291
R21
RF10
G2
LA1491
R21
RF20
G5
LA2691
R1′
RF30
G11


LA292
R22
RF10
G2
LA1492
R22
RF20
G5
LA2692
R4′
RF30
G11


LA293
R23
RF10
G2
LA1493
R23
RF20
G5
LA2693
R7
RF30
G11


LA294
R24
RF10
G2
LA1494
R24
RF20
G5
LA2694
R11
RF30
G11


LA295
R25
RF10
G2
LA1495
R25
RF20
G5
LA2695
R13
RF30
G11


LA296
R26
RF10
G2
LA1496
R26
RF20
G5
LA2696
R22
RF30
G11


LA297
R27
RF10
G2
LA1497
R27
RF20
G5
LA2697
R25
RF30
G11


LA298
R28
RF10
G2
LA1498
R28
RF20
G5
LA2698
R26
RF30
G11


LA299
R29
RF10
G2
LA1499
R29
RF20
G5
LA2699
R28
RF30
G11


LA300
R30
RF10
G2
LA1500
R30
RF20
G5
LA2700
R30
RF30
G11


LA301
R1′
RF11
G2
LA1501
R1′
RF21
G5
LA2701
R1′
RF1
G12


LA302
R2′
RF11
G2
LA1502
R2′
RF21
G5
LA2702
R4′
RF1
G12


LA303
R3′
RF11
G2
LA1503
R3′
RF21
G5
LA2703
R7
RF1
G12


LA304
R4′
RF11
G2
LA1504
R4′
RF21
G5
LA2704
R11
RF1
G12


LA305
R5
RF11
G2
LA1505
R5
RF21
G5
LA2705
R13
RF1
G12


LA306
R6
RF11
G2
LA1506
R6
RF21
G5
LA2706
R22
RF1
G12


LA307
R7
RF11
G2
LA1507
R7
RF21
G5
LA2707
R25
RF1
G12


LA308
R8
RF11
G2
LA1508
R8
RF21
G5
LA2708
R26
RF1
G12


LA309
R9
RF11
G2
LA1509
R9
RF21
G5
LA2709
R28
RF1
G12


LA310
R10
RF11
G2
LA1510
R10
RF21
G5
LA2710
R30
RF1
G12


LA311
R11
RF11
G2
LA1511
R11
RF21
G5
LA2711
R1′
RF4
G12


LA312
R12
RF11
G2
LA1512
R12
RF21
G5
LA2712
R4′
RF4
G12


LA313
R13
RF11
G2
LA1513
R13
RF21
G5
LA2713
R7
RF4
G12


LA314
R14
RF11
G2
LA1514
R14
RF21
G5
LA2714
R11
RF4
G12


LA315
R15
RF11
G2
LA1515
R15
RF21
G5
LA2715
R13
RF4
G12


LA316
R16
RF11
G2
LA1516
R16
RF21
G5
LA2716
R22
RF4
G12


LA317
R17
RF11
G2
LA1517
R17
RF21
G5
LA2717
R25
RF4
G12


LA318
R18
RF11
G2
LA1518
R18
RF21
G5
LA2718
R26
RF4
G12


LA319
R19
RF11
G2
LA1519
R19
RF21
G5
LA2719
R28
RF4
G12


LA320
R20
RF11
G2
LA1520
R20
RF21
G5
LA2720
R30
RF4
G12


LA321
R21
RF11
G2
LA1521
R21
RF21
G5
LA2721
R1′
RF5
G12


LA322
R22
RF11
G2
LA1522
R22
RF21
G5
LA2722
R4′
RF5
G12


LA323
R23
RF11
G2
LA1523
R23
RF21
G5
LA2723
R7
RF5
G12


LA324
R24
RF11
G2
LA1524
R24
RF21
G5
LA2724
R11
RF5
G12


LA325
R25
RF11
G2
LA1525
R25
RF21
G5
LA2725
R13
RF5
G12


LA326
R26
RF11
G2
LA1526
R26
RF21
G5
LA2726
R22
RF5
G12


LA327
R27
RF11
G2
LA1527
R27
RF21
G5
LA2727
R25
RF5
G12


LA328
R28
RF11
G2
LA1528
R28
RF21
G5
LA2728
R26
RF5
G12


LA329
R29
RF11
G2
LA1529
R29
RF21
G5
LA2729
R28
RF5
G12


LA330
R30
RF11
G2
LA1530
R30
RF21
G5
LA2730
R30
RF5
G12


LA331
R1′
RF12
G2
LA1531
R1′
RF22
G5
LA2731
R1′
RF7
G12


LA332
R2′
RF12
G2
LA1532
R2′
RF22
G5
LA2732
R4′
RF7
G12


LA333
R3′
RF12
G2
LA1533
R3′
RF22
G5
LA2733
R7
RF7
G12


LA334
R4′
RF12
G2
LA1534
R4′
RF22
G5
LA2734
R11
RF7
G12


LA335
R5
RF12
G2
LA1535
R5
RF22
G5
LA2735
R13
RF7
G12


LA336
R6
RF12
G2
LA1536
R6
RF22
G5
LA2736
R22
RF7
G12


LA337
R7
RF12
G2
LA1537
R7
RF22
G5
LA2737
R25
RF7
G12


LA338
R8
RF12
G2
LA1538
R8
RF22
G5
LA2738
R26
RF7
G12


LA339
R9
RF12
G2
LA1539
R9
RF22
G5
LA2739
R28
RF7
G12


LA340
R10
RF12
G2
LA1540
R10
RF22
G5
LA2740
R30
RF7
G12


LA341
R11
RF12
G2
LA1541
R11
RF22
G5
LA2741
R1′
RF8
G12


LA342
R12
RF12
G2
LA1542
R12
RF22
G5
LA2742
R4′
RF8
G12


LA343
R13
RF12
G2
LA1543
R13
RF22
G5
LA2743
R7
RF8
G12


LA344
R14
RF12
G2
LA1544
R14
RF22
G5
LA2744
R11
RF8
G12


LA345
R15
RF12
G2
LA1545
R15
RF22
G5
LA2745
R13
RF8
G12


LA346
R16
RF12
G2
LA1546
R16
RF22
G5
LA2746
R22
RF8
G12


LA347
R17
RF12
G2
LA1547
R17
RF22
G5
LA2747
R25
RF8
G12


LA348
R18
RF12
G2
LA1548
R18
RF22
G5
LA2748
R26
RF8
G12


LA349
R19
RF12
G2
LA1549
R19
RF22
G5
LA2749
R28
RF8
G12


LA350
R20
RF12
G2
LA1550
R20
RF22
G5
LA2750
R30
RF8
G12


LA351
R21
RF12
G2
LA1551
R21
RF22
G5
LA2751
R1′
RF16
G12


LA352
R22
RF12
G2
LA1552
R22
RF22
G5
LA2752
R4′
RF16
G12


LA353
R23
RF12
G2
LA1553
R23
RF22
G5
LA2753
R7
RF16
G12


LA354
R24
RF12
G2
LA1554
R24
RF22
G5
LA2754
R11
RF16
G12


LA355
R25
RF12
G2
LA1555
R25
RF22
G5
LA2755
R13
RF16
G12


LA356
R26
RF12
G2
LA1556
R26
RF22
G5
LA2756
R22
RF16
G12


LA357
R27
RF12
G2
LA1557
R27
RF22
G5
LA2757
R25
RF16
G12


LA358
R28
RF12
G2
LA1558
R28
RF22
G5
LA2758
R26
RF16
G12


LA359
R29
RF12
G2
LA1559
R29
RF22
G5
LA2759
R28
RF16
G12


LA360
R30
RF12
G2
LA1560
R30
RF22
G5
LA2760
R30
RF16
G12


LA361
R1′
RF13
G2
LA1561
R1′
RF23
G5
LA2761
R1′
RF19
G12


LA362
R2′
RF13
G2
LA1562
R2′
RF23
G5
LA2762
R4′
RF19
G12


LA363
R3′
RF13
G2
LA1563
R3′
RF23
G5
LA2763
R7
RF19
G12


LA364
R4′
RF13
G2
LA1564
R4′
RF23
G5
LA2764
R11
RF19
G12


LA365
R5
RF13
G2
LA1565
R5
RF23
G5
LA2765
R13
RF19
G12


LA366
R6
RF13
G2
LA1566
R6
RF23
G5
LA2766
R22
RF19
G12


LA367
R7
RF13
G2
LA1567
R7
RF23
G5
LA2767
R25
RF19
G12


LA368
R8
RF13
G2
LA1568
R8
RF23
G5
LA2768
R26
RF19
G12


LA369
R9
RF13
G2
LA1569
R9
RF23
G5
LA2769
R28
RF19
G12


LA370
R10
RF13
G2
LA1570
R10
RF23
G5
LA2770
R30
RF19
G12


LA371
R11
RF13
G2
LA1571
R11
RF23
G5
LA2771
R1′
RF21
G12


LA372
R12
RF13
G2
LA1572
R12
RF23
G5
LA2772
R4′
RF21
G12


LA373
R13
RF13
G2
LA1573
R13
RF23
G5
LA2773
R7
RF21
G12


LA374
R14
RF13
G2
LA1574
R14
RF23
G5
LA2774
R11
RF21
G12


LA375
R15
RF13
G2
LA1575
R15
RF23
G5
LA2775
R13
RF21
G12


LA376
R16
RF13
G2
LA1576
R16
RF23
G5
LA2776
R22
RF21
G12


LA377
R17
RF13
G2
LA1577
R17
RF23
G5
LA2777
R25
RF21
G12


LA378
R18
RF13
G2
LA1578
R18
RF23
G5
LA2778
R26
RF21
G12


LA379
R19
RF13
G2
LA1579
R19
RF23
G5
LA2779
R28
RF21
G12


LA380
R20
RF13
G2
LA1580
R20
RF23
G5
LA2780
R30
RF21
G12


LA381
R21
RF13
G2
LA1581
R21
RF23
G5
LA2781
R1′
RF22
G12


LA382
R22
RF13
G2
LA1582
R22
RF23
G5
LA2782
R4′
RF22
G12


LA383
R23
RF13
G2
LA1583
R23
RF23
G5
LA2783
R7
RF22
G12


LA384
R24
RF13
G2
LA1584
R24
RF23
G5
LA2784
R11
RF22
G12


LA385
R25
RF13
G2
LA1585
R25
RF23
G5
LA2785
R13
RF22
G12


LA386
R26
RF13
G2
LA1586
R26
RF23
G5
LA2786
R22
RF22
G12


LA387
R27
RF13
G2
LA1587
R27
RF23
G5
LA2787
R25
RF22
G12


LA388
R28
RF13
G2
LA1588
R28
RF23
G5
LA2788
R26
RF22
G12


LA389
R29
RF13
G2
LA1589
R29
RF23
G5
LA2789
R28
RF22
G12


LA390
R30
RF13
G2
LA1590
R30
RF23
G5
LA2790
R30
RF22
G12


LA391
R1′
RF14
G2
LA1591
R1′
RF24
G5
LA2791
R1′
RF30
G12


LA392
R2′
RF14
G2
LA1592
R2′
RF24
G5
LA2792
R4′
RF30
G12


LA393
R3′
RF14
G2
LA1593
R3′
RF24
G5
LA2793
R7
RF30
G12


LA394
R4′
RF14
G2
LA1594
R4′
RF24
G5
LA2794
R11
RF30
G12


LA395
R5
RF14
G2
LA1595
R5
RF24
G5
LA2795
R13
RF30
G12


LA396
R6
RF14
G2
LA1596
R6
RF24
G5
LA2796
R22
RF30
G12


LA397
R7
RF14
G2
LA1597
R7
RF24
G5
LA2797
R25
RF30
G12


LA398
R8
RF14
G2
LA1598
R8
RF24
G5
LA2798
R26
RF30
G12


LA399
R9
RF14
G2
LA1599
R9
RF24
G5
LA2799
R28
RF30
G12


LA400
R10
RF14
G2
LA1600
R10
RF24
G5
LA2800
R30
RF30
G12


LA401
R11
RF14
G2
LA1601
R11
RF24
G5
LA2801
R1′
RF1
G13


LA402
R12
RF14
G2
LA1602
R12
RF24
G5
LA2802
R4′
RF1
G13


LA403
R13
RF14
G2
LA1603
R13
RF24
G5
LA2803
R7
RF1
G13


LA404
R14
RF14
G2
LA1604
R14
RF24
G5
LA2804
R11
RF1
G13


LA405
R15
RF14
G2
LA1605
R15
RF24
G5
LA2805
R13
RF1
G13


LA406
R16
RF14
G2
LA1606
R16
RF24
G5
LA2806
R22
RF1
G13


LA407
R17
RF14
G2
LA1607
R17
RF24
G5
LA2807
R25
RF1
G13


LA408
R18
RF14
G2
LA1608
R18
RF24
G5
LA2808
R26
RF1
G13


LA409
R19
RF14
G2
LA1609
R19
RF24
G5
LA2809
R28
RF1
G13


LA410
R20
RF14
G2
LA1610
R20
RF24
G5
LA2810
R30
RF1
G13


LA411
R21
RF14
G2
LA1611
R21
RF24
G5
LA2811
R1′
RF4
G13


LA412
R22
RF14
G2
LA1612
R22
RF24
G5
LA2812
R4′
RF4
G13


LA413
R23
RF14
G2
LA1613
R23
RF24
G5
LA2813
R7
RF4
G13


LA414
R24
RF14
G2
LA1614
R24
RF24
G5
LA2814
R11
RF4
G13


LA415
R25
RF14
G2
LA1615
R25
RF24
G5
LA2815
R13
RF4
G13


LA416
R26
RF14
G2
LA1616
R26
RF24
G5
LA2816
R22
RF4
G13


LA417
R27
RF14
G2
LA1617
R27
RF24
G5
LA2817
R25
RF4
G13


LA418
R28
RF14
G2
LA1618
R28
RF24
G5
LA2818
R26
RF4
G13


LA419
R29
RF14
G2
LA1619
R29
RF24
G5
LA2819
R28
RF4
G13


LA420
R30
RF14
G2
LA1620
R30
RF24
G5
LA2820
R30
RF4
G13


LA421
R1′
RF15
G2
LA1621
R1′
RF25
G5
LA2821
R1′
RF5
G13


LA422
R2′
RF15
G2
LA1622
R2′
RF25
G5
LA2822
R4′
RF5
G13


LA423
R3′
RF15
G2
LA1623
R3′
RF25
G5
LA2823
R7
RF5
G13


LA424
R4′
RF15
G2
LA1624
R4′
RF25
G5
LA2824
R11
RF5
G13


LA425
R5
RF15
G2
LA1625
R5
RF25
G5
LA2825
R13
RF5
G13


LA426
R6
RF15
G2
LA1626
R6
RF25
G5
LA2826
R22
RF5
G13


LA427
R7
RF15
G2
LA1627
R7
RF25
G5
LA2827
R25
RF5
G13


LA428
R8
RF15
G2
LA1628
R8
RF25
G5
LA2828
R26
RF5
G13


LA429
R9
RF15
G2
LA1629
R9
RF25
G5
LA2829
R28
RF5
G13


LA430
R10
RF15
G2
LA1630
R10
RF25
G5
LA2830
R30
RF5
G13


LA431
R11
RF15
G2
LA1631
R11
RF25
G5
LA2831
R1′
RF7
G13


LA432
R12
RF15
G2
LA1632
R12
RF25
G5
LA2832
R4′
RF7
G13


LA433
R13
RF15
G2
LA1633
R13
RF25
G5
LA2833
R7
RF7
G13


LA434
R14
RF15
G2
LA1634
R14
RF25
G5
LA2834
R11
RF7
G13


LA435
R15
RF15
G2
LA1635
R15
RF25
G5
LA2835
R13
RF7
G13


LA436
R16
RF15
G2
LA1636
R16
RF25
G5
LA2836
R22
RF7
G13


LA437
R17
RF15
G2
LA1637
R17
RF25
G5
LA2837
R25
RF7
G13


LA438
R18
RF15
G2
LA1638
R18
RF25
G5
LA2838
R26
RF7
G13


LA439
R19
RF15
G2
LA1639
R19
RF25
G5
LA2839
R28
RF7
G13


LA440
R20
RF15
G2
LA1640
R20
RF25
G5
LA2840
R30
RF7
G13


LA441
R21
RF15
G2
LA1641
R21
RF25
G5
LA2841
R1′
RF8
G13


LA442
R22
RF15
G2
LA1642
R22
RF25
G5
LA2842
R4′
RF8
G13


LA443
R23
RF15
G2
LA1643
R23
RF25
G5
LA2843
R7
RF8
G13


LA444
R24
RF15
G2
LA1644
R24
RF25
G5
LA2844
R11
RF8
G13


LA445
R25
RF15
G2
LA1645
R25
RF25
G5
LA2845
R13
RF8
G13


LA446
R26
RF15
G2
LA1646
R26
RF25
G5
LA2846
R22
RF8
G13


LA447
R27
RF15
G2
LA1647
R27
RF25
G5
LA2847
R25
RF8
G13


LA448
R28
RF15
G2
LA1648
R28
RF25
G5
LA2848
R26
RF8
G13


LA449
R29
RF15
G2
LA1649
R29
RF25
G5
LA2849
R28
RF8
G13


LA450
R30
RF15
G2
LA1650
R30
RF25
G5
LA2850
R30
RF8
G13


LA451
R1′
RF16
G2
LA1651
R1′
RF26
G5
LA2851
R1′
RF16
G13


LA452
R2′
RF16
G2
LA1652
R2′
RF26
G5
LA2852
R4′
RF16
G13


LA453
R3′
RF16
G2
LA1653
R3′
RF26
G5
LA2853
R7
RF16
G13


LA454
R4′
RF16
G2
LA1654
R4′
RF26
G5
LA2854
R11
RF16
G13


LA455
R5
RF16
G2
LA1655
R5
RF26
G5
LA2855
R13
RF16
G13


LA456
R6
RF16
G2
LA1656
R6
RF26
G5
LA2856
R22
RF16
G13


LA457
R7
RF16
G2
LA1657
R7
RF26
G5
LA2857
R25
RF16
G13


LA458
R8
RF16
G2
LA1658
R8
RF26
G5
LA2858
R26
RF16
G13


LA459
R9
RF16
G2
LA1659
R9
RF26
G5
LA2859
R28
RF16
G13


LA460
R10
RF16
G2
LA1660
R10
RF26
G5
LA2860
R30
RF16
G13


LA461
R11
RF16
G2
LA1661
R11
RF26
G5
LA2861
R1′
RF19
G13


LA462
R12
RF16
G2
LA1662
R12
RF26
G5
LA2862
R4′
RF19
G13


LA463
R13
RF16
G2
LA1663
R13
RF26
G5
LA2863
R7
RF19
G13


LA464
R14
RF16
G2
LA1664
R14
RF26
G5
LA2864
R11
RF19
G13


LA465
R15
RF16
G2
LA1665
R15
RF26
G5
LA2865
R13
RF19
G13


LA466
R16
RF16
G2
LA1666
R16
RF26
G5
LA2866
R22
RF19
G13


LA467
R17
RF16
G2
LA1667
R17
RF26
G5
LA2867
R25
RF19
G13


LA468
R18
RF16
G2
LA1668
R18
RF26
G5
LA2868
R26
RF19
G13


LA469
R19
RF16
G2
LA1669
R19
RF26
G5
LA2869
R28
RF19
G13


LA470
R20
RF16
G2
LA1670
R20
RF26
G5
LA2870
R30
RF19
G13


LA471
R21
RF16
G2
LA1671
R21
RF26
G5
LA2871
R1′
RF21
G13


LA472
R22
RF16
G2
LA1672
R22
RF26
G5
LA2872
R4′
RF21
G13


LA473
R23
RF16
G2
LA1673
R23
RF26
G5
LA2873
R7
RF21
G13


LA474
R24
RF16
G2
LA1674
R24
RF26
G5
LA2874
R11
RF21
G13


LA475
R25
RF16
G2
LA1675
R25
RF26
G5
LA2875
R13
RF21
G13


LA476
R26
RF16
G2
LA1676
R26
RF26
G5
LA2876
R22
RF21
G13


LA477
R27
RF16
G2
LA1677
R27
RF26
G5
LA2877
R25
RF21
G13


LA478
R28
RF16
G2
LA1678
R28
RF26
G5
LA2878
R26
RF21
G13


LA479
R29
RF16
G2
LA1679
R29
RF26
G5
LA2879
R28
RF21
G13


LA480
R30
RF16
G2
LA1680
R30
RF26
G5
LA2880
R30
RF21
G13


LA481
R1′
RF17
G2
LA1681
R1′
RF27
G5
LA2881
R1′
RF22
G13


LA482
R2′
RF17
G2
LA1682
R2′
RF27
G5
LA2882
R4′
RF22
G13


LA483
R3′
RF17
G2
LA1683
R3′
RF27
G5
LA2883
R7
RF22
G13


LA484
R4′
RF17
G2
LA1684
R4′
RF27
G5
LA2884
R11
RF22
G13


LA485
R5
RF17
G2
LA1685
R5
RF27
G5
LA2885
R13
RF22
G13


LA486
R6
RF17
G2
LA1686
R6
RF27
G5
LA2886
R22
RF22
G13


LA487
R7
RF17
G2
LA1687
R7
RF27
G5
LA2887
R25
RF22
G13


LA488
R8
RF17
G2
LA1688
R8
RF27
G5
LA2888
R26
RF22
G13


LA489
R9
RF17
G2
LA1689
R9
RF27
G5
LA2889
R28
RF22
G13


LA490
R10
RF17
G2
LA1690
R10
RF27
G5
LA2890
R30
RF22
G13


LA491
R11
RF17
G2
LA1691
R11
RF27
G5
LA2891
R1′
RF30
G13


LA492
R12
RF17
G2
LA1692
R12
RF27
G5
LA2892
R4′
RF30
G13


LA493
R13
RF17
G2
LA1693
R13
RF27
G5
LA2893
R7
RF30
G13


LA494
R14
RF17
G2
LA1694
R14
RF27
G5
LA2894
R11
RF30
G13


LA495
R15
RF17
G2
LA1695
R15
RF27
G5
LA2895
R13
RF30
G13


LA496
R16
RF17
G2
LA1696
R16
RF27
G5
LA2896
R22
RF30
G13


LA497
R17
RF17
G2
LA1697
R17
RF27
G5
LA2897
R25
RF30
G13


LA498
R18
RF17
G2
LA1698
R18
RF27
G5
LA2898
R26
RF30
G13


LA499
R19
RF17
G2
LA1699
R19
RF27
G5
LA2899
R28
RF30
G13


LA500
R20
RF17
G2
LA1700
R20
RF27
G5
LA2900
R30
RF30
G13


LA501
R21
RF17
G2
LA1701
R21
RF27
G5
LA2901
R1′
RF1
G14


LA502
R22
RF17
G2
LA1702
R22
RF27
G5
LA2902
R4′
RF1
G14


LA503
R23
RF17
G2
LA1703
R23
RF27
G5
LA2903
R7
RF1
G14


LA504
R24
RF17
G2
LA1704
R24
RF27
G5
LA2904
R11
RF1
G14


LA505
R25
RF17
G2
LA1705
R25
RF27
G5
LA2905
R13
RF1
G14


LA506
R26
RF17
G2
LA1706
R26
RF27
G5
LA2906
R22
RF1
G14


LA507
R27
RF17
G2
LA1707
R27
RF27
G5
LA2907
R25
RF1
G14


LA508
R28
RF17
G2
LA1708
R28
RF27
G5
LA2908
R26
RF1
G14


LA509
R29
RF17
G2
LA1709
R29
RF27
G5
LA2909
R28
RF1
G14


LA510
R30
RF17
G2
LA1710
R30
RF27
G5
LA2910
R30
RF1
G14


LA511
R1′
RF18
G2
LA1711
R1′
RF28
G5
LA2911
R1′
RF4
G14


LA512
R2′
RF18
G2
LA1712
R2′
RF28
G5
LA2912
R4′
RF4
G14


LA513
R3′
RF18
G2
LA1713
R3′
RF28
G5
LA2913
R7
RF4
G14


LA514
R4′
RF18
G2
LA1714
R4′
RF28
G5
LA2914
R11
RF4
G14


LA515
R5
RF18
G2
LA1715
R5
RF28
G5
LA2915
R13
RF4
G14


LA516
R6
RF18
G2
LA1716
R6
RF28
G5
LA2916
R22
RF4
G14


LA517
R7
RF18
G2
LA1717
R7
RF28
G5
LA2917
R25
RF4
G14


LA518
R8
RF18
G2
LA1718
R8
RF28
G5
LA2918
R26
RF4
G14


LA519
R9
RF18
G2
LA1719
R9
RF28
G5
LA2919
R28
RF4
G14


LA520
R10
RF18
G2
LA1720
R10
RF28
G5
LA2920
R30
RF4
G14


LA521
R11
RF18
G2
LA1721
R11
RF28
G5
LA2921
R1′
RF5
G14


LA522
R12
RF18
G2
LA1722
R12
RF28
G5
LA2922
R4′
RF5
G14


LA523
R13
RF18
G2
LA1723
R13
RF28
G5
LA2923
R7
RF5
G14


LA524
R14
RF18
G2
LA1724
R14
RF28
G5
LA2924
R11
RF5
G14


LA525
R15
RF18
G2
LA1725
R15
RF28
G5
LA2925
R13
RF5
G14


LA526
R16
RF18
G2
LA1726
R16
RF28
G5
LA2926
R22
RF5
G14


LA527
R17
RF18
G2
LA1727
R17
RF28
G5
LA2927
R25
RF5
G14


LA528
R18
RF18
G2
LA1728
R18
RF28
G5
LA2928
R26
RF5
G14


LA529
R19
RF18
G2
LA1729
R19
RF28
G5
LA2929
R28
RF5
G14


LA530
R20
RF18
G2
LA1730
R20
RF28
G5
LA2930
R30
RF5
G14


LA531
R21
RF18
G2
LA1731
R21
RF28
G5
LA2931
R1′
RF7
G14


LA532
R22
RF18
G2
LA1732
R22
RF28
G5
LA2932
R4′
RF7
G14


LA533
R23
RF18
G2
LA1733
R23
RF28
G5
LA2933
R7
RF7
G14


LA534
R24
RF18
G2
LA1734
R24
RF28
G5
LA2934
R11
RF7
G14


LA535
R25
RF18
G2
LA1735
R25
RF28
G5
LA2935
R13
RF7
G14


LA536
R26
RF18
G2
LA1736
R26
RF28
G5
LA2936
R22
RF7
G14


LA537
R27
RF18
G2
LA1737
R27
RF28
G5
LA2937
R25
RF7
G14


LA538
R28
RF18
G2
LA1738
R28
RF28
G5
LA2938
R26
RF7
G14


LA539
R29
RF18
G2
LA1739
R29
RF28
G5
LA2939
R28
RF7
G14


LA540
R30
RF18
G2
LA1740
R30
RF28
G5
LA2940
R30
RF7
G14


LA541
R1′
RF19
G2
LA1741
R1′
RF29
G5
LA2941
R1′
RF8
G14


LA542
R2′
RF19
G2
LA1742
R2′
RF29
G5
LA2942
R4′
RF8
G14


LA543
R3′
RF19
G2
LA1743
R3′
RF29
G5
LA2943
R7
RF8
G14


LA544
R4′
RF19
G2
LA1744
R4′
RF29
G5
LA2944
R11
RF8
G14


LA545
R5
RF19
G2
LA1745
R5
RF29
G5
LA2945
R13
RF8
G14


LA546
R6
RF19
G2
LA1746
R6
RF29
G5
LA2946
R22
RF8
G14


LA547
R7
RF19
G2
LA1747
R7
RF29
G5
LA2947
R25
RF8
G14


LA548
R8
RF19
G2
LA1748
R8
RF29
G5
LA2948
R26
RF8
G14


LA549
R9
RF19
G2
LA1749
R9
RF29
G5
LA2949
R28
RF8
G14


LA550
R10
RF19
G2
LA1750
R10
RF29
G5
LA2950
R30
RF8
G14


LA551
R11
RF19
G2
LA1751
R11
RF29
G5
LA2951
R1′
RF16
G14


LA552
R12
RF19
G2
LA1752
R12
RF29
G5
LA2952
R4′
RF16
G14


LA553
R13
RF19
G2
LA1753
R13
RF29
G5
LA2953
R7
RF16
G14


LA554
R14
RF19
G2
LA1754
R14
RF29
G5
LA2954
R11
RF16
G14


LA555
R15
RF19
G2
LA1755
R15
RF29
G5
LA2955
R13
RF16
G14


LA556
R16
RF19
G2
LA1756
R16
RF29
G5
LA2956
R22
RF16
G14


LA557
R17
RF19
G2
LA1757
R17
RF29
G5
LA2957
R25
RF16
G14


LA558
R18
RF19
G2
LA1758
R18
RF29
G5
LA2958
R26
RF16
G14


LA559
R19
RF19
G2
LA1759
R19
RF29
G5
LA2959
R28
RF16
G14


LA560
R20
RF19
G2
LA1760
R20
RF29
G5
LA2960
R30
RF16
G14


LA561
R21
RF19
G2
LA1761
R21
RF29
G5
LA2961
R1′
RF19
G14


LA562
R22
RF19
G2
LA1762
R22
RF29
G5
LA2962
R4′
RF19
G14


LA563
R23
RF19
G2
LA1763
R23
RF29
G5
LA2963
R7
RF19
G14


LA564
R24
RF19
G2
LA1764
R24
RF29
G5
LA2964
R11
RF19
G14


LA565
R25
RF19
G2
LA1765
R25
RF29
G5
LA2965
R13
RF19
G14


LA566
R26
RF19
G2
LA1766
R26
RF29
G5
LA2966
R22
RF19
G14


LA567
R27
RF19
G2
LA1767
R27
RF29
G5
LA2967
R25
RF19
G14


LA568
R28
RF19
G2
LA1768
R28
RF29
G5
LA2968
R26
RF19
G14


LA569
R29
RF19
G2
LA1769
R29
RF29
G5
LA2969
R28
RF19
G14


LA570
R30
RF19
G2
LA1770
R30
RF29
G5
LA2970
R30
RF19
G14


LA571
R1′
RF20
G2
LA1771
R1′
RF30
G5
LA2971
R1′
RF21
G14


LA572
R2′
RF20
G2
LA1772
R2′
RF30
G5
LA2972
R4′
RF21
G14


LA573
R3′
RF20
G2
LA1773
R3′
RF30
G5
LA2973
R7
RF21
G14


LA574
R4′
RF20
G2
LA1774
R4′
RF30
G5
LA2974
R11
RF21
G14


LA575
R5
RF20
G2
LA1775
R5
RF30
G5
LA2975
R13
RF21
G14


LA576
R6
RF20
G2
LA1776
R6
RF30
G5
LA2976
R22
RF21
G14


LA577
R7
RF20
G2
LA1777
R7
RF30
G5
LA2977
R25
RF21
G14


LA578
R8
RF20
G2
LA1778
R8
RF30
G5
LA2978
R26
RF21
G14


LA579
R9
RF20
G2
LA1779
R9
RF30
G5
LA2979
R28
RF21
G14


LA580
R10
RF20
G2
LA1780
R10
RF30
G5
LA2980
R30
RF21
G14


LA581
R11
RF20
G2
LA1781
R11
RF30
G5
LA2981
R1′
RF22
G14


LA582
R12
RF20
G2
LA1782
R12
RF30
G5
LA2982
R4′
RF22
G14


LA583
R13
RF20
G2
LA1783
R13
RF30
G5
LA2983
R7
RF22
G14


LA584
R14
RF20
G2
LA1784
R14
RF30
G5
LA2984
R11
RF22
G14


LA585
R15
RF20
G2
LA1785
R15
RF30
G5
LA2985
R13
RF22
G14


LA586
R16
RF20
G2
LA1786
R16
RF30
G5
LA2986
R22
RF22
G14


LA587
R17
RF20
G2
LA1787
R17
RF30
G5
LA2987
R25
RF22
G14


LA588
R18
RF20
G2
LA1788
R18
RF30
G5
LA2988
R26
RF22
G14


LA589
R19
RF20
G2
LA1789
R19
RF30
G5
LA2989
R28
RF22
G14


LA590
R20
RF20
G2
LA1790
R20
RF30
G5
LA2990
R30
RF22
G14


LA591
R21
RF20
G2
LA1791
R21
RF30
G5
LA2991
R1′
RF30
G14


LA592
R22
RF20
G2
LA1792
R22
RF30
G5
LA2992
R4′
RF30
G14


LA593
R23
RF20
G2
LA1793
R23
RF30
G5
LA2993
R7
RF30
G14


LA594
R24
RF20
G2
LA1794
R24
RF30
G5
LA2994
R11
RF30
G14


LA595
R25
RF20
G2
LA1795
R25
RF30
G5
LA2995
R13
RF30
G14


LA596
R26
RF20
G2
LA1796
R26
RF30
G5
LA2996
R22
RF30
G14


LA597
R27
RF20
G2
LA1797
R27
RF30
G5
LA2997
R25
RF30
G14


LA598
R28
RF20
G2
LA1798
R28
RF30
G5
LA2998
R26
RF30
G14


LA599
R29
RF20
G2
LA1799
R29
RF30
G5
LA2999
R28
RF30
G14


LA600
R30
RF20
G2
LA1800
R30
RF30
G5
LA3000
R30
RF30
G14


LA601
R1′
RF21
G2
LA1801
R1′
RF1
G1
LA3001
R1′
RF1
G15


LA602
R2′
RF21
G2
LA1802
R4′
RF1
G1
LA3002
R4′
RF1
G15


LA603
R3′
RF21
G2
LA1803
R7
RF1
G1
LA3003
R7
RF1
G15


LA604
R4′
RF21
G2
LA1804
R11
RF1
G1
LA3004
R11
RF1
G15


LA605
R5
RF21
G2
LA1805
R13
RF1
G1
LA3005
R13
RF1
G15


LA606
R6
RF21
G2
LA1806
R22
RF1
G1
LA3006
R22
RF1
G15


LA607
R7
RF21
G2
LA1807
R25
RF1
G1
LA3007
R25
RF1
G15


LA608
R8
RF21
G2
LA1808
R26
RF1
G1
LA3008
R26
RF1
G15


LA609
R9
RF21
G2
LA1809
R28
RF1
G1
LA3009
R28
RF1
G15


LA610
R10
RF21
G2
LA1810
R30
RF1
G1
LA3010
R30
RF1
G15


LA611
R11
RF21
G2
LA1811
R1′
RF4
G1
LA3011
R1′
RF4
G15


LA612
R12
RF21
G2
LA1812
R4′
RF4
G1
LA3012
R4′
RF4
G15


LA613
R13
RF21
G2
LA1813
R7
RF4
G1
LA3013
R7
RF4
G15


LA614
R14
RF21
G2
LA1814
R11
RF4
G1
LA3014
R11
RF4
G15


LA615
R15
RF21
G2
LA1815
R13
RF4
G1
LA3015
R13
RF4
G15


LA616
R16
RF21
G2
LA1816
R22
RF4
G1
LA3016
R22
RF4
G15


LA617
R17
RF21
G2
LA1817
R25
RF4
G1
LA3017
R25
RF4
G15


LA618
R18
RF21
G2
LA1818
R26
RF4
G1
LA3018
R26
RF4
G15


LA619
R19
RF21
G2
LA1819
R28
RF4
G1
LA3019
R28
RF4
G15


LA620
R20
RF21
G2
LA1820
R30
RF4
G1
LA3020
R30
RF4
G15


LA621
R21
RF21
G2
LA1821
R1′
RF5
G1
LA3021
R1′
RF5
G15


LA622
R22
RF21
G2
LA1822
R4′
RF5
G1
LA3022
R4′
RF5
G15


LA623
R23
RF21
G2
LA1823
R7
RF5
G1
LA3023
R7
RF5
G15


LA624
R24
RF21
G2
LA1824
R11
RF5
G1
LA3024
R11
RF5
G15


LA625
R25
RF21
G2
LA1825
R13
RF5
G1
LA3025
R13
RF5
G15


LA626
R26
RF21
G2
LA1826
R22
RF5
G1
LA3026
R22
RF5
G15


LA627
R27
RF21
G2
LA1827
R25
RF5
G1
LA3027
R25
RF5
G15


LA628
R28
RF21
G2
LA1828
R26
RF5
G1
LA3028
R26
RF5
G15


LA629
R29
RF21
G2
LA1829
R28
RF5
G1
LA3029
R28
RF5
G15


LA630
R30
RF21
G2
LA1830
R30
RF5
G1
LA3030
R30
RF5
G15


LA631
R1′
RF22
G2
LA1831
R1′
RF7
G1
LA3031
R1′
RF7
G15


LA632
R2′
RF22
G2
LA1832
R4′
RF7
G1
LA3032
R4′
RF7
G15


LA633
R3′
RF22
G2
LA1833
R7
RF7
G1
LA3033
R7
RF7
G15


LA634
R4′
RF22
G2
LA1834
R11
RF7
G1
LA3034
R11
RF7
G15


LA635
R5
RF22
G2
LA1835
R13
RF7
G1
LA3035
R13
RF7
G15


LA636
R6
RF22
G2
LA1836
R22
RF7
G1
LA3036
R22
RF7
G15


LA637
R7
RF22
G2
LA1837
R25
RF7
G1
LA3037
R25
RF7
G15


LA638
R8
RF22
G2
LA1838
R26
RF7
G1
LA3038
R26
RF7
G15


LA639
R9
RF22
G2
LA1839
R28
RF7
G1
LA3039
R28
RF7
G15


LA640
R10
RF22
G2
LA1840
R30
RF7
G1
LA3040
R30
RF7
G15


LA641
R11
RF22
G2
LA1841
R1′
RF8
G1
LA3041
R1′
RF8
G15


LA642
R12
RF22
G2
LA1842
R4′
RF8
G1
LA3042
R4′
RF8
G15


LA643
R13
RF22
G2
LA1843
R7
RF8
G1
LA3043
R7
RF8
G15


LA644
R14
RF22
G2
LA1844
R11
RF8
G1
LA3044
R11
RF8
G15


LA645
R15
RF22
G2
LA1845
R13
RF8
G1
LA3045
R13
RF8
G15


LA646
R16
RF22
G2
LA1846
R22
RF8
G1
LA3046
R22
RF8
G15


LA647
R17
RF22
G2
LA1847
R25
RF8
G1
LA3047
R25
RF8
G15


LA648
R18
RF22
G2
LA1848
R26
RF8
G1
LA3048
R26
RF8
G15


LA649
R19
RF22
G2
LA1849
R28
RF8
G1
LA3049
R28
RF8
G15


LA650
R20
RF22
G2
LA1850
R30
RF8
G1
LA3050
R30
RF8
G15


LA651
R21
RF22
G2
LA1851
R1′
RF16
G1
LA3051
R1′
RF16
G15


LA652
R22
RF22
G2
LA1852
R4′
RF16
G1
LA3052
R4′
RF16
G15


LA653
R23
RF22
G2
LA1853
R7
RF16
G1
LA3053
R7
RF16
G15


LA654
R24
RF22
G2
LA1854
R11
RF16
G1
LA3054
R11
RF16
G15


LA655
R25
RF22
G2
LA1855
R13
RF16
G1
LA3055
R13
RF16
G15


LA656
R26
RF22
G2
LA1856
R22
RF16
G1
LA3056
R22
RF16
G15


LA657
R27
RF22
G2
LA1857
R25
RF16
G1
LA3057
R25
RF16
G15


LA658
R28
RF22
G2
LA1858
R26
RF16
G1
LA3058
R26
RF16
G15


LA659
R29
RF22
G2
LA1859
R28
RF16
G1
LA3059
R28
RF16
G15


LA660
R30
RF22
G2
LA1860
R30
RF16
G1
LA3060
R30
RF16
G15


LA661
R1′
RF23
G2
LA1861
R1′
RF19
G1
LA3061
R1′
RF19
G15


LA662
R2′
RF23
G2
LA1862
R4′
RF19
G1
LA3062
R4′
RF19
G15


LA663
R3′
RF23
G2
LA1863
R7
RF19
G1
LA3063
R7
RF19
G15


LA664
R4′
RF23
G2
LA1864
R11
RF19
G1
LA3064
R11
RF19
G15


LA665
R5
RF23
G2
LA1865
R13
RF19
G1
LA3065
R13
RF19
G15


LA666
R6
RF23
G2
LA1866
R22
RF19
G1
LA3066
R22
RF19
G15


LA667
R7
RF23
G2
LA1867
R25
RF19
G1
LA3067
R25
RF19
G15


LA668
R8
RF23
G2
LA1868
R26
RF19
G1
LA3068
R26
RF19
G15


LA669
R9
RF23
G2
LA1869
R28
RF19
G1
LA3069
R28
RF19
G15


LA670
R10
RF23
G2
LA1870
R30
RF19
G1
LA3070
R30
RF19
G15


LA671
R11
RF23
G2
LA1871
R1′
RF21
G1
LA3071
R1′
RF21
G15


LA672
R12
RF23
G2
LA1872
R4′
RF21
G1
LA3072
R4′
RF21
G15


LA673
R13
RF23
G2
LA1873
R7
RF21
G1
LA3073
R7
RF21
G15


LA674
R14
RF23
G2
LA1874
R11
RF21
G1
LA3074
R11
RF21
G15


LA675
R15
RF23
G2
LA1875
R13
RF21
G1
LA3075
R13
RF21
G15


LA676
R16
RF23
G2
LA1876
R22
RF21
G1
LA3076
R22
RF21
G15


LA677
R17
RF23
G2
LA1877
R25
RF21
G1
LA3077
R25
RF21
G15


LA678
R18
RF23
G2
LA1878
R26
RF21
G1
LA3078
R26
RF21
G15


LA679
R19
RF23
G2
LA1879
R28
RF21
G1
LA3079
R28
RF21
G15


LA680
R20
RF23
G2
LA1880
R30
RF21
G1
LA3080
R30
RF21
G15


LA681
R21
RF23
G2
LA1881
R1′
RF22
G1
LA3081
R1′
RF22
G15


LA682
R22
RF23
G2
LA1882
R4′
RF22
G1
LA3082
R4′
RF22
G15


LA683
R23
RF23
G2
LA1883
R7
RF22
G1
LA3083
R7
RF22
G15


LA684
R24
RF23
G2
LA1884
R11
RF22
G1
LA3084
R11
RF22
G15


LA685
R25
RF23
G2
LA1885
R13
RF22
G1
LA3085
R13
RF22
G15


LA686
R26
RF23
G2
LA1886
R22
RF22
G1
LA3086
R22
RF22
G15


LA687
R27
RF23
G2
LA1887
R25
RF22
G1
LA3087
R25
RF22
G15


LA688
R28
RF23
G2
LA1888
R26
RF22
G1
LA3088
R26
RF22
G15


LA689
R29
RF23
G2
LA1889
R28
RF22
G1
LA3089
R28
RF22
G15


LA690
R30
RF23
G2
LA1890
R30
RF22
G1
LA3090
R30
RF22
G15


LA691
R1′
RF24
G2
LA1891
R1′
RF30
G1
LA3091
R1′
RF30
G15


LA692
R2′
RF24
G2
LA1892
R4′
RF30
G1
LA3092
R4′
RF30
G15


LA693
R3′
RF24
G2
LA1893
R7
RF30
G1
LA3093
R7
RF30
G15


LA694
R4′
RF24
G2
LA1894
R11
RF30
G1
LA3094
R11
RF30
G15


LA695
R5
RF24
G2
LA1895
R13
RF30
G1
LA3095
R13
RF30
G15


LA696
R6
RF24
G2
LA1896
R22
RF30
G1
LA3096
R22
RF30
G15


LA697
R7
RF24
G2
LA1897
R25
RF30
G1
LA3097
R25
RF30
G15


LA698
R8
RF24
G2
LA1898
R26
RF30
G1
LA3098
R26
RF30
G15


LA699
R9
RF24
G2
LA1899
R28
RF30
G1
LA3099
R28
RF30
G15


LA700
R10
RF24
G2
LA1900
R30
RF30
G1
LA3100
R30
RF30
G15


LA701
R11
RF24
G2
LA1901
R1′
RF1
G3
LA3101
R1′
RF1
G16


LA702
R12
RF24
G2
LA1902
R4′
RF1
G3
LA3102
R4′
RF1
G16


LA703
R13
RF24
G2
LA1903
R7
RF1
G3
LA3103
R7
RF1
G16


LA704
R14
RF24
G2
LA1904
R11
RF1
G3
LA3104
R11
RF1
G16


LA705
R15
RF24
G2
LA1905
R13
RF1
G3
LA3105
R13
RF1
G16


LA706
R16
RF24
G2
LA1906
R22
RF1
G3
LA3106
R22
RF1
G16


LA707
R17
RF24
G2
LA1907
R25
RF1
G3
LA3107
R25
RF1
G16


LA708
R18
RF24
G2
LA1908
R26
RF1
G3
LA3108
R26
RF1
G16


LA709
R19
RF24
G2
LA1909
R28
RF1
G3
LA3109
R28
RF1
G16


LA710
R20
RF24
G2
LA1910
R30
RF1
G3
LA3110
R30
RF1
G16


LA711
R21
RF24
G2
LA1911
R1′
RF4
G3
LA3111
R1′
RF4
G16


LA712
R22
RF24
G2
LA1912
R4′
RF4
G3
LA3112
R4′
RF4
G16


LA713
R23
RF24
G2
LA1913
R7
RF4
G3
LA3113
R7
RF4
G16


LA714
R24
RF24
G2
LA1914
R11
RF4
G3
LA3114
R11
RF4
G16


LA715
R25
RF24
G2
LA1915
R13
RF4
G3
LA3115
R13
RF4
G16


LA716
R26
RF24
G2
LA1916
R22
RF4
G3
LA3116
R22
RF4
G16


LA717
R27
RF24
G2
LA1917
R25
RF4
G3
LA3117
R25
RF4
G16


LA718
R28
RF24
G2
LA1918
R26
RF4
G3
LA3118
R26
RF4
G16


LA719
R29
RF24
G2
LA1919
R28
RF4
G3
LA3119
R28
RF4
G16


LA720
R30
RF24
G2
LA1920
R30
RF4
G3
LA3120
R30
RF4
G16


LA721
R1′
RF25
G2
LA1921
R1′
RF5
G3
LA3121
R1′
RF5
G16


LA722
R2′
RF25
G2
LA1922
R4′
RF5
G3
LA3122
R4′
RF5
G16


LA723
R3′
RF25
G2
LA1923
R7
RF5
G3
LA3123
R7
RF5
G16


LA724
R4′
RF25
G2
LA1924
R11
RF5
G3
LA3124
R11
RF5
G16


LA725
R5
RF25
G2
LA1925
R13
RF5
G3
LA3125
R13
RF5
G16


LA726
R6
RF25
G2
LA1926
R22
RF5
G3
LA3126
R22
RF5
G16


LA727
R7
RF25
G2
LA1927
R25
RF5
G3
LA3127
R25
RF5
G16


LA728
R8
RF25
G2
LA1928
R26
RF5
G3
LA3128
R26
RF5
G16


LA729
R9
RF25
G2
LA1929
R28
RF5
G3
LA3129
R28
RF5
G16


LA730
R10
RF25
G2
LA1930
R30
RF5
G3
LA3130
R30
RF5
G16


LA731
R11
RF25
G2
LA1931
R1′
RF7
G3
LA3131
R1′
RF7
G16


LA732
R12
RF25
G2
LA1932
R4′
RF7
G3
LA3132
R4′
RF7
G16


LA733
R13
RF25
G2
LA1933
R7
RF7
G3
LA3133
R7
RF7
G16


LA734
R14
RF25
G2
LA1934
R11
RF7
G3
LA3134
R11
RF7
G16


LA735
R15
RF25
G2
LA1935
R13
RF7
G3
LA3135
R13
RF7
G16


LA736
R16
RF25
G2
LA1936
R22
RF7
G3
LA3136
R22
RF7
G16


LA737
R17
RF25
G2
LA1937
R25
RF7
G3
LA3137
R25
RF7
G16


LA738
R18
RF25
G2
LA1938
R26
RF7
G3
LA3138
R26
RF7
G16


LA739
R19
RF25
G2
LA1939
R28
RF7
G3
LA3139
R28
RF7
G16


LA740
R20
RF25
G2
LA1940
R30
RF7
G3
LA3140
R30
RF7
G16


LA741
R21
RF25
G2
LA1941
R1′
RF8
G3
LA3141
R1′
RF8
G16


LA742
R22
RF25
G2
LA1942
R4′
RF8
G3
LA3142
R4′
RF8
G16


LA743
R23
RF25
G2
LA1943
R7
RF8
G3
LA3143
R7
RF8
G16


LA744
R24
RF25
G2
LA1944
R11
RF8
G3
LA3144
R11
RF8
G16


LA745
R25
RF25
G2
LA1945
R13
RF8
G3
LA3145
R13
RF8
G16


LA746
R26
RF25
G2
LA1946
R22
RF8
G3
LA3146
R22
RF8
G16


LA747
R27
RF25
G2
LA1947
R25
RF8
G3
LA3147
R25
RF8
G16


LA748
R28
RF25
G2
LA1948
R26
RF8
G3
LA3148
R26
RF8
G16


LA749
R29
RF25
G2
LA1949
R28
RF8
G3
LA3149
R28
RF8
G16


LA750
R30
RF25
G2
LA1950
R30
RF8
G3
LA3150
R30
RF8
G16


LA751
R1′
RF26
G2
LA1951
R1′
RF16
G3
LA3151
R1′
RF16
G16


LA752
R2′
RF26
G2
LA1952
R4′
RF16
G3
LA3152
R4′
RF16
G16


LA753
R3′
RF26
G2
LA1953
R7
RF16
G3
LA3153
R7
RF16
G16


LA754
R4′
RF26
G2
LA1954
R11
RF16
G3
LA3154
R11
RF16
G16


LA755
R5
RF26
G2
LA1955
R13
RF16
G3
LA3155
R13
RF16
G16


LA756
R6
RF26
G2
LA1956
R22
RF16
G3
LA3156
R22
RF16
G16


LA757
R7
RF26
G2
LA1957
R25
RF16
G3
LA3157
R25
RF16
G16


LA758
R8
RF26
G2
LA1958
R26
RF16
G3
LA3158
R26
RF16
G16


LA759
R9
RF26
G2
LA1959
R28
RF16
G3
LA3159
R28
RF16
G16


LA760
R10
RF26
G2
LA1960
R30
RF16
G3
LA3160
R30
RF16
G16


LA761
R11
RF26
G2
LA1961
R1′
RF19
G3
LA3161
R1′
RF19
G16


LA762
R12
RF26
G2
LA1962
R4′
RF19
G3
LA3162
R4′
RF19
G16


LA763
R13
RF26
G2
LA1963
R7
RF19
G3
LA3163
R7
RF19
G16


LA764
R14
RF26
G2
LA1964
R11
RF19
G3
LA3164
R11
RF19
G16


LA765
R15
RF26
G2
LA1965
R13
RF19
G3
LA3165
R13
RF19
G16


LA766
R16
RF26
G2
LA1966
R22
RF19
G3
LA3166
R22
RF19
G16


LA767
R17
RF26
G2
LA1967
R25
RF19
G3
LA3167
R25
RF19
G16


LA768
R18
RF26
G2
LA1968
R26
RF19
G3
LA3168
R26
RF19
G16


LA769
R19
RF26
G2
LA1969
R28
RF19
G3
LA3169
R28
RF19
G16


LA770
R20
RF26
G2
LA1970
R30
RF19
G3
LA3170
R30
RF19
G16


LA771
R21
RF26
G2
LA1971
R1′
RF21
G3
LA3171
R1′
RF21
G16


LA772
R22
RF26
G2
LA1972
R4′
RF21
G3
LA3172
R4′
RF21
G16


LA773
R23
RF26
G2
LA1973
R7
RF21
G3
LA3173
R7
RF21
G16


LA774
R24
RF26
G2
LA1974
R11
RF21
G3
LA3174
R11
RF21
G16


LA775
R25
RF26
G2
LA1975
R13
RF21
G3
LA3175
R13
RF21
G16


LA776
R26
RF26
G2
LA1976
R22
RF21
G3
LA3176
R22
RF21
G16


LA777
R27
RF26
G2
LA1977
R25
RF21
G3
LA3177
R25
RF21
G16


LA778
R28
RF26
G2
LA1978
R26
RF21
G3
LA3178
R26
RF21
G16


LA779
R29
RF26
G2
LA1979
R28
RF21
G3
LA3179
R28
RF21
G16


LA780
R30
RF26
G2
LA1980
R30
RF21
G3
LA3180
R30
RF21
G16


LA781
R1′
RF27
G2
LA1981
R1′
RF22
G3
LA3181
R1′
RF22
G16


LA782
R2′
RF27
G2
LA1982
R4′
RF22
G3
LA3182
R4′
RF22
G16


LA783
R3′
RF27
G2
LA1983
R7
RF22
G3
LA3183
R7
RF22
G16


LA784
R4′
RF27
G2
LA1984
R11
RF22
G3
LA3184
R11
RF22
G16


LA785
R5
RF27
G2
LA1985
R13
RF22
G3
LA3185
R13
RF22
G16


LA786
R6
RF27
G2
LA1986
R22
RF22
G3
LA3186
R22
RF22
G16


LA787
R7
RF27
G2
LA1987
R25
RF22
G3
LA3187
R25
RF22
G16


LA788
R8
RF27
G2
LA1988
R26
RF22
G3
LA3188
R26
RF22
G16


LA789
R9
RF27
G2
LA1989
R28
RF22
G3
LA3189
R28
RF22
G16


LA790
R10
RF27
G2
LA1990
R30
RF22
G3
LA3190
R30
RF22
G16


LA791
R11
RF27
G2
LA1991
R1
RF30
G3
LA3191
R1
RF30
G16


LA792
R12
RF27
G2
LA1992
R4′
RF30
G3
LA3192
R4′
RF30
G16


LA793
R13
RF27
G2
LA1993
R7
RF30
G3
LA3193
R7
RF30
G16


LA794
R14
RF27
G2
LA1994
R11
RF30
G3
LA3194
R11
RF30
G16


LA795
R15
RF27
G2
LA1995
R13
RF30
G3
LA3195
R13
RF30
G16


LA796
R16
RF27
G2
LA1996
R22
RF30
G3
LA3196
R22
RF30
G16


LA797
R17
RF27
G2
LA1997
R25
RF30
G3
LA3197
R25
RF30
G16


LA798
R18
RF27
G2
LA1998
R26
RF30
G3
LA3198
R26
RF30
G16


LA799
R19
RF27
G2
LA1999
R28
RF30
G3
LA3199
R28
RF30
G16


LA800
R20
RF27
G2
LA2000
R30
RF30
G3
LA3200
R30
RF30
G16


LA801
R21
RF27
G2
LA2001
R1′
RF1
G4
LA3201
R1′
RF1
G17


LA802
R22
RF27
G2
LA2002
R4′
RF1
G4
LA3202
R4′
RF1
G17


LA803
R23
RF27
G2
LA2003
R7
RF1
G4
LA3203
R7
RF1
G17


LA804
R24
RF27
G2
LA2004
R11
RF1
G4
LA3204
R11
RF1
G17


LA805
R25
RF27
G2
LA2005
R13
RF1
G4
LA3205
R13
RF1
G17


LA806
R26
RF27
G2
LA2006
R22
RF1
G4
LA3206
R22
RF1
G17


LA807
R27
RF27
G2
LA2007
R25
RF1
G4
LA3207
R25
RF1
G17


LA808
R28
RF27
G2
LA2008
R26
RF1
G4
LA3208
R26
RF1
G17


LA809
R29
RF27
G2
LA2009
R28
RF1
G4
LA3209
R28
RF1
G17


LA810
R30
RF27
G2
LA2010
R30
RF1
G4
LA3210
R30
RF1
G17


LA811
R1′
RF28
G2
LA2011
R1′
RF4
G4
LA3211
R1′
RF4
G17


LA812
R2′
RF28
G2
LA2012
R4′
RF4
G4
LA3212
R4′
RF4
G17


LA813
R3′
RF28
G2
LA2013
R7
RF4
G4
LA3213
R7
RF4
G17


LA814
R4′
RF28
G2
LA2014
R11
RF4
G4
LA3214
R11
RF4
G17


LA815
R5
RF28
G2
LA2015
R13
RF4
G4
LA3215
R13
RF4
G17


LA816
R6
RF28
G2
LA2016
R22
RF4
G4
LA3216
R22
RF4
G17


LA817
R7
RF28
G2
LA2017
R25
RF4
G4
LA3217
R25
RF4
G17


LA818
R8
RF28
G2
LA2018
R26
RF4
G4
LA3218
R26
RF4
G17


LA819
R9
RF28
G2
LA2019
R28
RF4
G4
LA3219
R28
RF4
G17


LA820
R10
RF28
G2
LA2020
R30
RF4
G4
LA3220
R30
RF4
G17


LA821
R11
RF28
G2
LA2021
R1′
RF5
G4
LA3221
R1′
RF5
G17


LA822
R12
RF28
G2
LA2022
R4′
RF5
G4
LA3222
R4′
RF5
G17


LA823
R13
RF28
G2
LA2023
R7
RF5
G4
LA3223
R7
RF5
G17


LA824
R14
RF28
G2
LA2024
R11
RF5
G4
LA3224
R11
RF5
G17


LA825
R15
RF28
G2
LA2025
R13
RF5
G4
LA3225
R13
RF5
G17


LA826
R16
RF28
G2
LA2026
R22
RF5
G4
LA3226
R22
RF5
G17


LA827
R17
RF28
G2
LA2027
R25
RF5
G4
LA3227
R25
RF5
G17


LA828
R18
RF28
G2
LA2028
R26
RF5
G4
LA3228
R26
RF5
G17


LA829
R19
RF28
G2
LA2029
R28
RF5
G4
LA3229
R28
RF5
G17


LA830
R20
RF28
G2
LA2030
R30
RF5
G4
LA3230
R30
RF5
G17


LA831
R21
RF28
G2
LA2031
R1′
RF7
G4
LA3231
R1′
RF7
G17


LA832
R22
RF28
G2
LA2032
R4′
RF7
G4
LA3232
R4′
RF7
G17


LA833
R23
RF28
G2
LA2033
R7
RF7
G4
LA3233
R7
RF7
G17


LA834
R24
RF28
G2
LA2034
R11
RF7
G4
LA3234
R11
RF7
G17


LA835
R25
RF28
G2
LA2035
R13
RF7
G4
LA3235
R13
RF7
G17


LA836
R26
RF28
G2
LA2036
R22
RF7
G4
LA3236
R22
RF7
G17


LA837
R27
RF28
G2
LA2037
R25
RF7
G4
LA3237
R25
RF7
G17


LA838
R28
RF28
G2
LA2038
R26
RF7
G4
LA3238
R26
RF7
G17


LA839
R29
RF28
G2
LA2039
R28
RF7
G4
LA3239
R28
RF7
G17


LA840
R30
RF28
G2
LA2040
R30
RF7
G4
LA3240
R30
RF7
G17


LA841
R1′
RF29
G2
LA2041
R1′
RF8
G4
LA3241
R1′
RF8
G17


LA842
R2′
RF29
G2
LA2042
R4′
RF8
G4
LA3242
R4′
RF8
G17


LA843
R3′
RF29
G2
LA2043
R7
RF8
G4
LA3243
R7
RF8
G17


LA844
R4′
RF29
G2
LA2044
R11
RF8
G4
LA3244
R11
RF8
G17


LA845
R5
RF29
G2
LA2045
R13
RF8
G4
LA3245
R13
RF8
G17


LA846
R6
RF29
G2
LA2046
R22
RF8
G4
LA3246
R22
RF8
G17


LA847
R7
RF29
G2
LA2047
R25
RF8
G4
LA3247
R25
RF8
G17


LA848
R8
RF29
G2
LA2048
R26
RF8
G4
LA3248
R26
RF8
G17


LA849
R9
RF29
G2
LA2049
R28
RF8
G4
LA3249
R28
RF8
G17


LA850
R10
RF29
G2
LA2050
R30
RF8
G4
LA3250
R30
RF8
G17


LA851
R11
RF29
G2
LA2051
R1′
RF16
G4
LA3251
R1′
RF16
G17


LA852
R12
RF29
G2
LA2052
R4′
RF16
G4
LA3252
R4′
RF16
G17


LA853
R13
RF29
G2
LA2053
R7
RF16
G4
LA3253
R7
RF16
G17


LA854
R14
RF29
G2
LA2054
R11
RF16
G4
LA3254
R11
RF16
G17


LA855
R15
RF29
G2
LA2055
R13
RF16
G4
LA3255
R13
RF16
G17


LA856
R16
RF29
G2
LA2056
R22
RF16
G4
LA3256
R22
RF16
G17


LA857
R17
RF29
G2
LA2057
R25
RF16
G4
LA3257
R25
RF16
G17


LA858
R18
RF29
G2
LA2058
R26
RF16
G4
LA3258
R26
RF16
G17


LA859
R19
RF29
G2
LA2059
R28
RF16
G4
LA3259
R28
RF16
G17


LA860
R20
RF29
G2
LA2060
R30
RF16
G4
LA3260
R30
RF16
G17


LA861
R21
RF29
G2
LA2061
R1′
RF19
G4
LA3261
R1′
RF19
G17


LA862
R22
RF29
G2
LA2062
R4′
RF19
G4
LA3262
R4′
RF19
G17


LA863
R23
RF29
G2
LA2063
R7
RF19
G4
LA3263
R7
RF19
G17


LA864
R24
RF29
G2
LA2064
R11
RF19
G4
LA3264
R11
RF19
G17


LA865
R25
RF29
G2
LA2065
R13
RF19
G4
LA3265
R13
RF19
G17


LA866
R26
RF29
G2
LA2066
R22
RF19
G4
LA3266
R22
RF19
G17


LA867
R27
RF29
G2
LA2067
R25
RF19
G4
LA3267
R25
RF19
G17


LA868
R28
RF29
G2
LA2068
R26
RF19
G4
LA3268
R26
RF19
G17


LA869
R29
RF29
G2
LA2069
R28
RF19
G4
LA3269
R28
RF19
G17


LA870
R30
RF29
G2
LA2070
R30
RF19
G4
LA3270
R30
RF19
G17


LA871
R1′
RF30
G2
LA2071
R1′
RF21
G4
LA3271
R1′
RF21
G17


LA872
R2′
RF30
G2
LA2072
R4′
RF21
G4
LA3272
R4′
RF21
G17


LA873
R3′
RF30
G2
LA2073
R7
RF21
G4
LA3273
R7
RF21
G17


LA874
R4′
RF30
G2
LA2074
R11
RF21
G4
LA3274
R11
RF21
G17


LA875
R5
RF30
G2
LA2075
R13
RF21
G4
LA3275
R13
RF21
G17


LA876
R6
RF30
G2
LA2076
R22
RF21
G4
LA3276
R22
RF21
G17


LA877
R7
RF30
G2
LA2077
R25
RF21
G4
LA3277
R25
RF21
G17


LA878
R8
RF30
G2
LA2078
R26
RF21
G4
LA3278
R26
RF21
G17


LA879
R9
RF30
G2
LA2079
R28
RF21
G4
LA3279
R28
RF21
G17


LA880
R10
RF30
G2
LA2080
R30
RF21
G4
LA3280
R30
RF21
G17


LA881
R11
RF30
G2
LA2081
R1′
RF22
G4
LA3281
R1′
RF22
G17


LA882
R12
RF30
G2
LA2082
R4′
RF22
G4
LA3282
R4′
RF22
G17


LA883
R13
RF30
G2
LA2083
R7
RF22
G4
LA3283
R7
RF22
G17


LA884
R14
RF30
G2
LA2084
R11
RF22
G4
LA3284
R11
RF22
G17


LA885
R15
RF30
G2
LA2085
R13
RF22
G4
LA3285
R13
RF22
G17


LA886
R16
RF30
G2
LA2086
R22
RF22
G4
LA3286
R22
RF22
G17


LA887
R17
RF30
G2
LA2087
R25
RF22
G4
LA3287
R25
RF22
G17


LA888
R18
RF30
G2
LA2088
R26
RF22
G4
LA3288
R26
RF22
G17


LA889
R19
RF30
G2
LA2089
R28
RF22
G4
LA3289
R28
RF22
G17


LA890
R20
RF30
G2
LA2090
R30
RF22
G4
LA3290
R30
RF22
G17


LA891
R21
RF30
G2
LA2091
R1′
RF30
G4
LA3291
R1′
RF30
G17


LA892
R22
RF30
G2
LA2092
R4′
RF30
G4
LA3292
R4′
RF30
G17


LA893
R23
RF30
G2
LA2093
R7
RF30
G4
LA3293
R7
RF30
G17


LA894
R24
RF30
G2
LA2094
R11
RF30
G4
LA3294
R11
RF30
G17


LA895
R25
RF30
G2
LA2095
R13
RF30
G4
LA3295
R13
RF30
G17


LA896
R26
RF30
G2
LA2096
R22
RF30
G4
LA3296
R22
RF30
G17


LA897
R27
RF30
G2
LA2097
R25
RF30
G4
LA3297
R25
RF30
G17


LA898
R28
RF30
G2
LA2098
R26
RF30
G4
LA3298
R26
RF30
G17


LA899
R29
RF30
G2
LA2099
R28
RF30
G4
LA3299
R28
RF30
G17


LA900
R30
RF30
G2
LA2100
R30
RF30
G4
LA3300
R30
RF30
G17


LA901
R1′
RF1
G5
LA2101
R1′
RF1
G6
LA3301
R1′
RF1
G18


LA902
R2′
RF1
G5
LA2102
R4′
RF1
G6
LA3302
R4′
RF1
G18


LA903
R3′
RF1
G5
LA2103
R7
RF1
G6
LA3303
R7
RF1
G18


LA904
R4′
RF1
G5
LA2104
R11
RF1
G6
LA3304
R11
RF1
G18


LA905
R5
RF1
G5
LA2105
R13
RF1
G6
LA3305
R13
RF1
G18


LA906
R6
RF1
G5
LA2106
R22
RF1
G6
LA3306
R22
RF1
G18


LA907
R7
RF1
G5
LA2107
R25
RF1
G6
LA3307
R25
RF1
G18


LA908
R8
RF1
G5
LA2108
R26
RF1
G6
LA3308
R26
RF1
G18


LA909
R9
RF1
G5
LA2109
R28
RF1
G6
LA3309
R28
RF1
G18


LA910
R10
RF1
G5
LA2110
R30
RF1
G6
LA3310
R30
RF1
G18


LA911
R11
RF1
G5
LA2111
R1′
RF4
G6
LA3311
R1′
RF4
G18


LA912
R12
RF1
G5
LA2112
R4′
RF4
G6
LA3312
R4′
RF4
G18


LA913
R13
RF1
G5
LA2113
R7
RF4
G6
LA3313
R7
RF4
G18


LA914
R14
RF1
G5
LA2114
R11
RF4
G6
LA3314
R11
RF4
G18


LA915
R15
RF1
G5
LA2115
R13
RF4
G6
LA3315
R13
RF4
G18


LA916
R16
RF1
G5
LA2116
R22
RF4
G6
LA3316
R22
RF4
G18


LA917
R17
RF1
G5
LA2117
R25
RF4
G6
LA3317
R25
RF4
G18


LA918
R18
RF1
G5
LA2118
R26
RF4
G6
LA3318
R26
RF4
G18


LA919
R19
RF1
G5
LA2119
R28
RF4
G6
LA3319
R28
RF4
G18


LA920
R20
RF1
G5
LA2120
R30
RF4
G6
LA3320
R30
RF4
G18


LA921
R21
RF1
G5
LA2121
R1′
RF5
G6
LA3321
R1′
RF5
G18


LA922
R22
RF1
G5
LA2122
R4′
RF5
G6
LA3322
R4′
RF5
G18


LA923
R23
RF1
G5
LA2123
R7
RF5
G6
LA3323
R7
RF5
G18


LA924
R24
RF1
G5
LA2124
R11
RF5
G6
LA3324
R11
RF5
G18


LA925
R25
RF1
G5
LA2125
R13
RF5
G6
LA3325
R13
RF5
G18


LA926
R26
RF1
G5
LA2126
R22
RF5
G6
LA3326
R22
RF5
G18


LA927
R27
RFi
G5
LA2127
R25
RF5
G6
LA3327
R25
RF5
G18


LA928
R28
RF1
G5
LA2128
R26
RF5
G6
LA3328
R26
RF5
G18


LA929
R29
RF1
G5
LA2129
R28
RF5
G6
LA3329
R28
RF5
G18


LA930
R30
RF1
G5
LA2130
R30
RF5
G6
LA3330
R30
RF5
G18


LA931
R1′
RF2
G5
LA2131
R1′
RF7
G6
LA3331
R1′
RF7
G18


LA932
R2′
RF2
G5
LA2132
R4′
RF7
G6
LA3332
R4′
RF7
G18


LA933
R3′
RF2
G5
LA2133
R7
RF7
G6
LA3333
R7
RF7
G18


LA934
R4′
RF2
G5
LA2134
R11
RF7
G6
LA3334
R11
RF7
G18


LA935
R5
RF2
G5
LA2135
R13
RF7
G6
LA3335
R13
RF7
G18


LA936
R6
RF2
G5
LA2136
R22
RF7
G6
LA3336
R22
RF7
G18


LA937
R7
RF2
G5
LA2137
R25
RF7
G6
LA3337
R25
RF7
G18


LA938
R8
RF2
G5
LA2138
R26
RF7
G6
LA3338
R26
RF7
G18


LA939
R9
RF2
G5
LA2139
R28
RF7
G6
LA3339
R28
RF7
G18


LA940
R10
RF2
G5
LA2140
R30
RF7
G6
LA3340
R30
RF7
G18


LA941
R11
RF2
G5
LA2141
R1′
RF8
G6
LA3341
R1′
RF8
G18


LA942
R12
RF2
G5
LA2142
R4′
RF8
G6
LA3342
R4′
RF8
G18


LA943
R13
RF2
G5
LA2143
R7
RF8
G6
LA3343
R7
RF8
G18


LA944
R14
RF2
G5
LA2144
R11
RF8
G6
LA3344
R11
RF8
G18


LA945
R15
RF2
G5
LA2145
R13
RF8
G6
LA3345
R13
RF8
G18


LA946
R16
RF2
G5
LA2146
R22
RF8
G6
LA3346
R22
RF8
G18


LA947
R17
RF2
G5
LA2147
R25
RF8
G6
LA3347
R25
RF8
G18


LA948
R18
RF2
G5
LA2148
R26
RF8
G6
LA3348
R26
RF8
G18


LA949
R19
RF2
G5
LA2149
R28
RF8
G6
LA3349
R28
RF8
G18


LA950
R20
RF2
G5
LA2150
R30
RF8
G6
LA3350
R30
RF8
G18


LA951
R21
RF2
G5
LA2151
R1′
RF16
G6
LA3351
R1′
RF16
G18


LA952
R22
RF2
G5
LA2152
R4′
RF16
G6
LA3352
R4′
RF16
G18


LA953
R23
RF2
G5
LA2153
R7
RF16
G6
LA3353
R7
RF16
G18


LA954
R24
RF2
G5
LA2154
R11
RF16
G6
LA3354
R11
RF16
G18


LA955
R25
RF2
G5
LA2155
R13
RF16
G6
LA3355
R13
RF16
G18


LA956
R26
RF2
G5
LA2156
R22
RF16
G6
LA3356
R22
RF16
G18


LA957
R27
RF2
G5
LA2157
R25
RF16
G6
LA3357
R25
RF16
G18


LA958
R28
RF2
G5
LA2158
R26
RF16
G6
LA3358
R26
RF16
G18


LA959
R29
RF2
G5
LA2159
R28
RF16
G6
LA3359
R28
RF16
G18


LA960
R30
RF2
G5
LA2160
R30
RF16
G6
LA3360
R30
RF16
G18


LA961
R1′
RF3
G5
LA2161
R1′
RF19
G6
LA3361
R1′
RF19
G18


LA962
R2′
RF3
G5
LA2162
R4′
RF19
G6
LA3362
R4′
RF19
G18


LA963
R3′
RF3
G5
LA2163
R7
RF19
G6
LA3363
R7
RF19
G18


LA964
R4′
RF3
G5
LA2164
R11
RF19
G6
LA3364
R11
RF19
G18


LA965
R5
RF3
G5
LA2165
R13
RF19
G6
LA3365
R13
RF19
G18


LA966
R6
RF3
G5
LA2166
R22
RF19
G6
LA3366
R22
RF19
G18


LA967
R7
RF3
G5
LA2167
R25
RF19
G6
LA3367
R25
RF19
G18


LA968
R8
RF3
G5
LA2168
R26
RF19
G6
LA3368
R26
RF19
G18


LA969
R9
RF3
G5
LA2169
R28
RF19
G6
LA3369
R28
RF19
G18


LA970
R10
RF3
G5
LA2170
R30
RF19
G6
LA3370
R30
RF19
G18


LA971
R11
RF3
G5
LA2171
R1′
RF21
G6
LA3371
R1′
RF21
G18


LA972
R12
RF3
G5
LA2172
R4′
RF21
G6
LA3372
R4′
RF21
G18


LA973
R13
RF3
G5
LA2173
R7
RF21
G6
LA3373
R7
RF21
G18


LA974
R14
RF3
G5
LA2174
R11
RF21
G6
LA3374
R11
RF21
G18


LA975
R15
RF3
G5
LA2175
R13
RF21
G6
LA3375
R13
RF21
G18


LA976
R16
RF3
G5
LA2176
R22
RF21
G6
LA3376
R22
RF21
G18


LA977
R17
RF3
G5
LA2177
R25
RF21
G6
LA3377
R25
RF21
G18


LA978
R18
RF3
G5
LA2178
R26
RF21
G6
LA3378
R26
RF21
G18


LA979
R19
RF3
G5
LA2179
R28
RF21
G6
LA3379
R28
RF21
G18


LA980
R20
RF3
G5
LA2180
R30
RF21
G6
LA3380
R30
RF21
G18


LA981
R21
RF3
G5
LA2181
R1′
RF22
G6
LA3381
R1′
RF22
G18


LA982
R22
RF3
G5
LA2182
R4′
RF22
G6
LA3382
R4′
RF22
G18


LA983
R23
RF3
G5
LA2183
R7
RF22
G6
LA3383
R7
RF22
G18


LA984
R24
RF3
G5
LA2184
R11
RF22
G6
LA3384
R11
RF22
G18


LA985
R25
RF3
G5
LA2185
R13
RF22
G6
LA3385
R13
RF22
G18


LA986
R26
RF3
G5
LA2186
R22
RF22
G6
LA3386
R22
RF22
G18


LA987
R27
RF3
G5
LA2187
R25
RF22
G6
LA3387
R25
RF22
G18


LA988
R28
RF3
G5
LA2188
R26
RF22
G6
LA3388
R26
RF22
G18


LA989
R29
RF3
G5
LA2189
R28
RF22
G6
LA3389
R28
RF22
G18


LA990
R30
RF3
G5
LA2190
R30
RF22
G6
LA3390
R30
RF22
G18


LA991
R1′
RF4
G5
LA2191
R1′
RF30
G6
LA3391
R1′
RF30
G18


LA992
R2′
RF4
G5
LA2192
R4′
RF30
G6
LA3392
R4′
RF30
G18


LA993
R3′
RF4
G5
LA2193
R7
RF30
G6
LA3393
R7
RF30
G18


LA994
R4′
RF4
G5
LA2194
R11
RF30
G6
LA3394
R11
RF30
G18


LA995
R5
RF4
G5
LA2195
R13
RF30
G6
LA3395
R13
RF30
G18


LA996
R6
RF4
G5
LA2196
R22
RF30
G6
LA3396
R22
RF30
G18


LA997
R7
RF4
G5
LA2197
R25
RF30
G6
LA3397
R25
RF30
G18


LA998
R8
RF4
G5
LA2198
R26
RF30
G6
LA3398
R26
RF30
G18


LA999
R9
RF4
G5
LA2199
R28
RF30
G6
LA3399
R28
RF30
G18


LA1000
R10
RF4
G5
LA2200
R30
RF30
G6
LA3400
R30
RF30
G18


LA1001
R11
RF4
G5
LA2201
R1′
RF1
G7
LA3401
R1′
RF1
G19


LA1002
R12
RF4
G5
LA2202
R4′
RF1
G7
LA3402
R4′
RF1
G19


LA1003
R13
RF4
G5
LA2203
R7
RF1
G7
LA3403
R7
RF1
G19


LA1004
R14
RF4
G5
LA2204
R11
RF1
G7
LA3404
R11
RF1
G19


LA1005
R15
RF4
G5
LA2205
R13
RF1
G7
LA3405
R13
RF1
G19


LA1006
R16
RF4
G5
LA2206
R22
RF1
G7
LA3406
R22
RF1
G19


LA1007
R17
RF4
G5
LA2207
R25
RF1
G7
LA3407
R25
RF1
G19


LA1008
R18
RF4
G5
LA2208
R26
RF1
G7
LA3408
R26
RF1
G19


LA1009
R19
RF4
G5
LA2209
R28
RF1
G7
LA3409
R28
RF1
G19


LA1010
R20
RF4
G5
LA2210
R30
RF1
G7
LA3410
R30
RF1
G19


LA1011
R21
RF4
G5
LA2211
R1′
RF4
G7
LA3411
R1′
RF4
G19


LA1012
R22
RF4
G5
LA2212
R4′
RF4
G7
LA3412
R4′
RF4
G19


LA1013
R23
RF4
G5
LA2213
R7
RF4
G7
LA3413
R7
RF4
G19


LA1014
R24
RF4
G5
LA2214
R11
RF4
G7
LA3414
R11
RF4
G19


LA1015
R25
RF4
G5
LA2215
R13
RF4
G7
LA3415
R13
RF4
G19


LA1016
R26
RF4
G5
LA2216
R22
RF4
G7
LA3416
R22
RF4
G19


LA1017
R27
RF4
G5
LA2217
R25
RF4
G7
LA3417
R25
RF4
G19


LA1018
R28
RF4
G5
LA2218
R26
RF4
G7
LA3418
R26
RF4
G19


LA1019
R29
RF4
G5
LA2219
R28
RF4
G7
LA3419
R28
RF4
G19


LA1020
R30
RF4
G5
LA2220
R30
RF4
G7
LA3420
R30
RF4
G19


LA1021
R1′
RF5
G5
LA2221
R1′
RF5
G7
LA3421
R1′
RF5
G19


LA1022
R2′
RF5
G5
LA2222
R4′
RF5
G7
LA3422
R4′
RF5
G19


LA1023
R3′
RF5
G5
LA2223
R7
RF5
G7
LA3423
R7
RF5
G19


LA1024
R4′
RF5
G5
LA2224
R11
RF5
G7
LA3424
R11
RF5
G19


LA1025
R5
RF5
G5
LA2225
R13
RF5
G7
LA3425
R13
RF5
G19


LA1026
R6
RF5
G5
LA2226
R22
RF5
G7
LA3426
R22
RF5
G19


LA1027
R7
RF5
G5
LA2227
R25
RF5
G7
LA3427
R25
RF5
G19


LA1028
R8
RF5
G5
LA2228
R26
RF5
G7
LA3428
R26
RF5
G19


LA1029
R9
RF5
G5
LA2229
R28
RF5
G7
LA3429
R28
RF5
G19


LA1030
R10
RF5
G5
LA2230
R30
RF5
G7
LA3430
R30
RF5
G19


LA1031
R11
RF5
G5
LA2231
R1′
RF7
G7
LA3431
R1′
RF7
G19


LA1032
R12
RF5
G5
LA2232
R4′
RF7
G7
LA3432
R4′
RF7
G19


LA1033
R13
RF5
G5
LA2233
R7
RF7
G7
LA3433
R7
RF7
G19


LA1034
R14
RF5
G5
LA2234
R11
RF7
G7
LA3434
R11
RF7
G19


LA1035
R15
RF5
G5
LA2235
R13
RF7
G7
LA3435
R13
RF7
G19


LA1036
R16
RF5
G5
LA2236
R22
RF7
G7
LA3436
R22
RF7
G19


LA1037
R17
RF5
G5
LA2237
R25
RF7
G7
LA3437
R25
RF7
G19


LA1038
R18
RF5
G5
LA2238
R26
RF7
G7
LA3438
R26
RF7
G19


LA1039
R19
RF5
G5
LA2239
R28
RF7
G7
LA3439
R28
RF7
G19


LA1040
R20
RF5
G5
LA2240
R30
RF7
G7
LA3440
R30
RF7
G19


LA1041
R21
RF5
G5
LA2241
R1′
RF8
G7
LA3441
R1′
RF8
G19


LA1042
R22
RF5
G5
LA2242
R4′
RF8
G7
LA3442
R4′
RF8
G19


LA1043
R23
RF5
G5
LA2243
R7
RF8
G7
LA3443
R7
RF8
G19


LA1044
R24
RF5
G5
LA2244
R11
RF8
G7
LA3444
R11
RF8
G19


LA1045
R25
RF5
G5
LA2245
R13
RF8
G7
LA3445
R13
RF8
G19


LA1046
R26
RF5
G5
LA2246
R22
RF8
G7
LA3446
R22
RF8
G19


LA1047
R27
RF5
G5
LA2247
R25
RF8
G7
LA3447
R25
RF8
G19


LA1048
R28
RF5
G5
LA2248
R26
RF8
G7
LA3448
R26
RF8
G19


LA1049
R29
RF5
G5
LA2249
R28
RF8
G7
LA3449
R28
RF8
G19


LA1050
R30
RF5
G5
LA2250
R30
RF8
G7
LA3450
R30
RF8
G19


LA1051
R1′
RF6
G5
LA2251
R1′
RF16
G7
LA3451
R1′
RF16
G19


LA1052
R2′
RF6
G5
LA2252
R4′
RF16
G7
LA3452
R4′
RF16
G19


LA1053
R3′
RF6
G5
LA2253
R7
RF16
G7
LA3453
R7
RF16
G19


LA1054
R4′
RF6
G5
LA2254
R11
RF16
G7
LA3454
R11
RF16
G19


LA1055
R5
RF6
G5
LA2255
R13
RF16
G7
LA3455
R13
RF16
G19


LA1056
R6
RF6
G5
LA2256
R22
RF16
G7
LA3456
R22
RF16
G19


LA1057
R7
RF6
G5
LA2257
R25
RF16
G7
LA3457
R25
RF16
G19


LA1058
R8
RF6
G5
LA2258
R26
RF16
G7
LA3458
R26
RF16
G19


LA1059
R9
RF6
G5
LA2259
R28
RF16
G7
LA3459
R28
RF16
G19


LA1060
R10
RF6
G5
LA2260
R30
RF16
G7
LA3460
R30
RF16
G19


LA1061
R11
RF6
G5
LA2261
R1′
RF19
G7
LA3461
R1′
RF19
G19


LA1062
R12
RF6
G5
LA2262
R4′
RF19
G7
LA3462
R4′
RF19
G19


LA1063
R13
RF6
G5
LA2263
R7
RF19
G7
LA3463
R7
RF19
G19


LA1064
R14
RF6
G5
LA2264
R11
RF19
G7
LA3464
R11
RF19
G19


LA1065
R15
RF6
G5
LA2265
R13
RF19
G7
LA3465
R13
RF19
G19


LA1066
R16
RF6
G5
LA2266
R22
RF19
G7
LA3466
R22
RF19
G19


LA1067
R17
RF6
G5
LA2267
R25
RF19
G7
LA3467
R25
RF19
G19


LA1068
R18
RF6
G5
LA2268
R26
RF19
G7
LA3468
R26
RF19
G19


LA1069
R19
RF6
G5
LA2269
R28
RF19
G7
LA3469
R28
RF19
G19


LA1070
R20
RF6
G5
LA2270
R30
RF19
G7
LA3470
R30
RF19
G19


LA1071
R21
RF6
G5
LA2271
R1′
RF21
G7
LA3471
R1′
RF21
G19


LA1072
R22
RF6
G5
LA2272
R4′
RF21
G7
LA3472
R4′
RF21
G19


LA1073
R23
RF6
G5
LA2273
R7
RF21
G7
LA3473
R7
RF21
G19


LA1074
R24
RF6
G5
LA2274
R11
RF21
G7
LA3474
R11
RF21
G19


LA1075
R25
RF6
G5
LA2275
R13
RF21
G7
LA3475
R13
RF21
G19


LA1076
R26
RF6
G5
LA2276
R22
RF21
G7
LA3476
R22
RF21
G19


LA1077
R27
RF6
G5
LA2277
R25
RF21
G7
LA3477
R25
RF21
G19


LA1078
R28
RF6
G5
LA2278
R26
RF21
G7
LA3478
R26
RF21
G19


LA1079
R29
RF6
G5
LA2279
R28
RF21
G7
LA3479
R28
RF21
G19


LA1080
R30
RF6
G5
LA2280
R30
RF21
G7
LA3480
R30
RF21
G19


LA1081
R1′
RF7
G5
LA2281
R1′
RF22
G7
LA3481
R1′
RF22
G19


LA1082
R2′
RF7
G5
LA2282
R4′
RF22
G7
LA3482
R4′
RF22
G19


LA1083
R3′
RF7
G5
LA2283
R7
RF22
G7
LA3483
R7
RF22
G19


LA1084
R4′
RF7
G5
LA2284
R11
RF22
G7
LA3484
R11
RF22
G19


LA1085
R5
RF7
G5
LA2285
R13
RF22
G7
LA3485
R13
RF22
G19


LA1086
R6
RF7
G5
LA2286
R22
RF22
G7
LA3486
R22
RF22
G19


LA1087
R7
RF7
G5
LA2287
R25
RF22
G7
LA3487
R25
RF22
G19


LA1088
R8
RF7
G5
LA2288
R26
RF22
G7
LA3488
R26
RF22
G19


LA1089
R9
RF7
G5
LA2289
R28
RF22
G7
LA3489
R28
RF22
G19


LA1090
R10
RF7
G5
LA2290
R30
RF22
G7
LA3490
R30
RF22
G19


LA1091
R11
RF7
G5
LA2291
R1′
RF30
G7
LA3491
R1′
RF30
G19


LA1092
R12
RF7
G5
LA2292
R4′
RF30
G7
LA3492
R4′
RF30
G19


LA1093
R13
RF7
G5
LA2293
R7
RF30
G7
LA3493
R7
RF30
G19


LA1094
R14
RF7
G5
LA2294
R11
RF30
G7
LA3494
R11
RF30
G19


LA1095
R15
RF7
G5
LA2295
R13
RF30
G7
LA3495
R13
RF30
G19


LA1096
R16
RF7
G5
LA2296
R22
RF30
G7
LA3496
R22
RF30
G19


LA1097
R17
RF7
G5
LA2297
R25
RF30
G7
LA3497
R25
RF30
G19


LA1098
R18
RF7
G5
LA2298
R26
RF30
G7
LA3498
R26
RF30
G19


LA1099
R19
RF7
G5
LA2299
R28
RF30
G7
LA3499
R28
RF30
G19


LA1100
R20
RF7
G5
LA2300
R30
RF30
G7
LA3500
R30
RF30
G19


LA1101
R21
RF7
G5
LA2301
R1′
RF1
G8
LA3501
R1′
RF1
G20


LA1102
R22
RF7
G5
LA2302
R4′
RF1
G8
LA3502
R4′
RF1
G20


LA1103
R23
RF7
G5
LA2303
R7
RF1
G8
LA3503
R7
RF1
G20


LA1104
R24
RF7
G5
LA2304
R11
RF1
G8
LA3504
R11
RF1
G20


LA1105
R25
RF7
G5
LA2305
R13
RF1
G8
LA3505
R13
RF1
G20


LA1106
R26
RF7
G5
LA2306
R22
RF1
G8
LA3506
R22
RF1
G20


LA1107
R27
RF7
G5
LA2307
R25
RF1
G8
LA3507
R25
RF1
G20


LA1108
R28
RF7
G5
LA2308
R26
RF1
G8
LA3508
R26
RF1
G20


LA1109
R29
RF7
G5
LA2309
R28
RF1
G8
LA3509
R28
RF1
G20


LA1110
R30
RF7
G5
LA2310
R30
RF1
G8
LA3510
R30
RF1
G20


LA1111
R1′
RF8
G5
LA2311
R1′
RF4
G8
LA3511
R1′
RF4
G20


LA1112
R2′
RF8
G5
LA2312
R4′
RF4
G8
LA3512
R4′
RF4
G20


LA1113
R3′
RF8
G5
LA2313
R7
RF4
G8
LA3513
R7
RF4
G20


LA1114
R4′
RF8
G5
LA2314
R11
RF4
G8
LA3514
R11
RF4
G20


LA1115
R5
RF8
G5
LA2315
R13
RF4
G8
LA3515
R13
RF4
G20


LA1116
R6
RF8
G5
LA2316
R22
RF4
G8
LA3516
R22
RF4
G20


LA1117
R7
RF8
G5
LA2317
R25
RF4
G8
LA3517
R25
RF4
G20


LA1118
R8
RF8
G5
LA2318
R26
RF4
G8
LA3518
R26
RF4
G20


LA1119
R9
RF8
G5
LA2319
R28
RF4
G8
LA3519
R28
RF4
G20


LA1120
R10
RF8
G5
LA2320
R30
RF4
G8
LA3520
R30
RF4
G20


LA1121
R11
RF8
G5
LA2321
R1′
RF5
G8
LA3521
R1′
RF5
G20


LA1122
R12
RF8
G5
LA2322
R4′
RF5
G8
LA3522
R4′
RF5
G20


LA1123
R13
RF8
G5
LA2323
R7
RF5
G8
LA3523
R7
RF5
G20


LA1124
R14
RF8
G5
LA2324
R11
RF5
G8
LA3524
R11
RF5
G20


LA1125
R15
RF8
G5
LA2325
R13
RF5
G8
LA3525
R13
RF5
G20


LA1126
R16
RF8
G5
LA2326
R22
RF5
G8
LA3526
R22
RF5
G20


LA1127
R17
RF8
G5
LA2327
R25
RF5
G8
LA3527
R25
RF5
G20


LA1128
R18
RF8
G5
LA2328
R26
RF5
G8
LA3528
R26
RF5
G20


LA1129
R19
RF8
G5
LA2329
R28
RF5
G8
LA3529
R28
RF5
G20


LA1130
R20
RF8
G5
LA2330
R30
RF5
G8
LA3530
R30
RF5
G20


LA1131
R21
RF8
G5
LA2331
R1′
RF7
G8
LA3531
R1′
RF7
G20


LA1132
R22
RF8
G5
LA2332
R4′
RF7
G8
LA3532
R4′
RF7
G20


LA1133
R23
RF8
G5
LA2333
R7
RF7
G8
LA3533
R7
RF7
G20


LA1134
R24
RF8
G5
LA2334
R11
RF7
G8
LA3534
R11
RF7
G20


LA1135
R25
RF8
G5
LA2335
R13
RF7
G8
LA3535
R13
RF7
G20


LA1136
R26
RF8
G5
LA2336
R22
RF7
G8
LA3536
R22
RF7
G20


LA1137
R27
RF8
G5
LA2337
R25
RF7
G8
LA3537
R25
RF7
G20


LA1138
R28
RF8
G5
LA2338
R26
RF7
G8
LA3538
R26
RF7
G20


LA1139
R29
RF8
G5
LA2339
R28
RF7
G8
LA3539
R28
RF7
G20


LA1140
R30
RF8
G5
LA2340
R30
RF7
G8
LA3540
R30
RF7
G20


LA1141
R1′
RF9
G5
LA2341
R1′
RF8
G8
LA3541
R1′
RF8
G20


LA1142
R2′
RF9
G5
LA2342
R4′
RF8
G8
LA3542
R4′
RF8
G20


LA1143
R3′
RF9
G5
LA2343
R7
RF8
G8
LA3543
R7
RF8
G20


LA1144
R4′
RF9
G5
LA2344
R11
RF8
G8
LA3544
R11
RF8
G20


LA1145
R5
RF9
G5
LA2345
R13
RF8
G8
LA3545
R13
RF8
G20


LA1146
R6
RF9
G5
LA2346
R22
RF8
G8
LA3546
R22
RF8
G20


LA1147
R7
RF9
G5
LA2347
R25
RF8
G8
LA3547
R25
RF8
G20


LA1148
R8
RF9
G5
LA2348
R26
RF8
G8
LA3548
R26
RF8
G20


LA1149
R9
RF9
G5
LA2349
R28
RF8
G8
LA3549
R28
RF8
G20


LA1150
R10
RF9
G5
LA2350
R30
RF8
G8
LA3550
R30
RF8
G20


LA1151
R11
RF9
G5
LA2351
R1′
RF16
G8
LA3551
R1′
RF16
G20


LA1152
R12
RF9
G5
LA2352
R4′
RF16
G8
LA3552
R4′
RF16
G20


LA1153
R13
RF9
G5
LA2353
R7
RF16
G8
LA3553
R7
RF16
G20


LA1154
R14
RF9
G5
LA2354
R11
RF16
G8
LA3554
R11
RF16
G20


LA1155
R15
RF9
G5
LA2355
R13
RF16
G8
LA3555
R13
RF16
G20


LA1156
R16
RF9
G5
LA2356
R22
RF16
G8
LA3556
R22
RF16
G20


LA1157
R17
RF9
G5
LA2357
R25
RF16
G8
LA3557
R25
RF16
G20


LA1158
R18
RF9
G5
LA2358
R26
RF16
G8
LA3558
R26
RF16
G20


LA1159
R19
RF9
G5
LA2359
R28
RF16
G8
LA3559
R28
RF16
G20


LA1160
R20
RF9
G5
LA2360
R30
RF16
G8
LA3560
R30
RF16
G20


LA1161
R21
RF9
G5
LA2361
R1′
RF19
G8
LA3561
R1′
RF19
G20


LA1162
R22
RF9
G5
LA2362
R4′
RF19
G8
LA3562
R4′
RF19
G20


LA1163
R23
RF9
G5
LA2363
R7
RF19
G8
LA3563
R7
RF19
G20


LA1164
R24
RF9
G5
LA2364
R11
RF19
G8
LA3564
R11
RF19
G20


LA1165
R25
RF9
G5
LA2365
R13
RF19
G8
LA3565
R13
RF19
G20


LA1166
R26
RF9
G5
LA2366
R22
RF19
G8
LA3566
R22
RF19
G20


LA1167
R27
RF9
G5
LA2367
R25
RF19
G8
LA3567
R25
RF19
G20


LA1168
R28
RF9
G5
LA2368
R26
RF19
G8
LA3568
R26
RF19
G20


LA1169
R29
RF9
G5
LA2369
R28
RF19
G8
LA3569
R28
RF19
G20


LA1170
R30
RF9
G5
LA2370
R30
RF19
G8
LA3570
R30
RF19
G20


LA1171
R1′
RF10
G5
LA2371
R1′
RF21
G8
LA3571
R1′
RF21
G20


LA1172
R2′
RF10
G5
LA2372
R4′
RF21
G8
LA3572
R4′
RF21
G20


LA1173
R3′
RF10
G5
LA2373
R7
RF21
G8
LA3573
R7
RF21
G20


LA1174
R4′
RF10
G5
LA2374
R11
RF21
G8
LA3574
R11
RF21
G20


LA1175
R5
RF10
G5
LA2375
R13
RF21
G8
LA3575
R13
RF21
G20


LA1176
R6
RF10
G5
LA2376
R22
RF21
G8
LA3576
R22
RF21
G20


LA1177
R7
RF10
G5
LA2377
R25
RF21
G8
LA3577
R25
RF21
G20


LA1178
R8
RF10
G5
LA2378
R26
RF21
G8
LA3578
R26
RF21
G20


LA1179
R9
RF10
G5
LA2379
R28
RF21
G8
LA3579
R28
RF21
G20


LA1180
R10
RF10
G5
LA2380
R30
RF21
G8
LA3580
R30
RF21
G20


LA1181
R11
RF10
G5
LA2381
R1′
RF22
G8
LA3581
R1′
RF22
G20


LA1182
R12
RF10
G5
LA2382
R4′
RF22
G8
LA3582
R4′
RF22
G20


LA1183
R13
RF10
G5
LA2383
R7
RF22
G8
LA3583
R7
RF22
G20


LA1184
R14
RF10
G5
LA2384
R11
RF22
G8
LA3584
R11
RF22
G20


LA1185
R15
RF10
G5
LA2385
R13
RF22
G8
LA3585
R13
RF22
G20


LA1186
R16
RF10
G5
LA2386
R22
RF22
G8
LA3586
R22
RF22
G20


LA1187
R17
RF10
G5
LA2387
R25
RF22
G8
LA3587
R25
RF22
G20


LA1188
R18
RF10
G5
LA2388
R26
RF22
G8
LA3588
R26
RF22
G20


LA1189
R19
RF10
G5
LA2389
R28
RF22
G8
LA3589
R28
RF22
G20


LA1190
R20
RF10
G5
LA2390
R30
RF22
G8
LA3590
R30
RF22
G20


LA1191
R21
RF10
G5
LA2391
R1′
RF30
G8
LA3591
R1′
RF30
G20


LA1192
R22
RF10
G5
LA2392
R4′
RF30
G8
LA3592
R4′
RF30
G20


LA1193
R23
RF10
G5
LA2393
R7
RF30
G8
LA3593
R7
RF30
G20


LA1194
R24
RF10
G5
LA2394
R11
RF30
G8
LA3594
R11
RF30
G20


LA1195
R25
RF10
G5
LA2395
R13
RF30
G8
LA3595
R13
RF30
G20


LA1196
R26
RF10
G5
LA2396
R22
RF30
G8
LA3596
R22
RF30
G20


LA1197
R27
RF10
G5
LA2397
R25
RF30
G8
LA3597
R25
RF30
G20


LA1198
R28
RF10
G5
LA2398
R26
RF30
G8
LA3598
R26
RF30
G20


LA1199
R29
RF10
G5
LA2399
R28
RF30
G8
LA3599
R28
RF30
G20


LA1200
R30
RF10
G5
LA2400
R30
RF30
G8
LA3600
R30
RF30
G20


LA3601
R31
RF1
G2
LA3633
R32
RF19
G2
LA3665
R33
RF7
G5


LA3602
R31
RF4
G2
LA3634
R32
RF21
G2
LA3666
R33
RF8
G5


LA3603
R31
RF5
G2
LA3635
R32
RF22
G2
LA3667
R33
RF16
G5


LA3604
R31
RF6
G2
LA3636
R32
RF30
G2
LA3668
R33
RF17
G5


LA3605
R31
RF7
G2
LA3637
R32
RF1
G5
LA3669
R33
RF19
G5


LA3606
R31
RF8
G2
LA3638
R32
RF4
G5
LA3670
R33
RF21
G5


LA3607
R31
RF16
G2
LA3639
R32
RF5
G5
LA3671
R33
RF22
G5


LA3608
R31
RF17
G2
LA3640
R32
RF6
G5
LA3672
R33
RF30
G5


LA3609
R31
RF19
G2
LA3641
R32
RF7
G5
LA3673
R34
RF1
G2


LA3610
R31
RF21
G2
LA3642
R32
RF8
G5
LA3674
R34
RF4
G2


LA3611
R31
RF22
G2
LA3643
R32
RF16
G5
LA3675
R34
RF5
G2


LA3612
R31
RF30
G2
LA3644
R32
RF17
G5
LA3676
R34
RF6
G2


LA3613
R31
RF1
G5
LA3645
R32
RF19
G5
LA3677
R34
RF7
G2


LA3614
R31
RF4
G5
LA3646
R32
RF21
G5
LA3678
R34
RF8
G2


LA3615
R31
RF5
G5
LA3647
R32
RF22
G5
LA3679
R34
RF16
G2


LA3616
R31
RF6
G5
LA3648
R32
RF30
G5
LA3680
R34
RF17
G2


LA3617
R31
RF7
G5
LA3649
R33
RF1
G2
LA3681
R34
RF19
G2


LA3618
R31
RF8
G5
LA3650
R33
RF4
G2
LA3682
R34
RF21
G2


LA3619
R31
RF16
G5
LA3651
R33
RF5
G2
LA3683
R34
RF22
G2


LA3620
R31
RF17
G5
LA3652
R33
RF6
G2
LA3684
R34
RF30
G2


LA3621
R31
RF19
G5
LA3653
R33
RF7
G2
LA3685
R34
RF1
G5


LA3622
R31
RF21
G5
LA3654
R33
RF8
G2
LA3686
R34
RF4
G5


LA3623
R31
RF22
G5
LA3655
R33
RF16
G2
LA3687
R34
RF5
G5


LA3624
R31
RF30
G5
LA3656
R33
RF17
G2
LA3688
R34
RF6
G5


LA3625
R32
RF1
G2
LA3657
R33
RF19
G2
LA3689
R34
RF7
G5


LA3626
R32
RF4
G2
LA3658
R33
RF21
G2
LA3690
R34
RF8
G5


LA3627
R32
RF5
G2
LA3659
R33
RF22
G2
LA3691
R34
RF16
G5


LA3628
R32
RF6
G2
LA3660
R33
RF30
G2
LA3692
R34
RF17
G5


LA3629
R32
RF7
G2
LA3661
R33
RF1
G5
LA3693
R34
RF19
G5


LA3630
R32
RF8
G2
LA3662
R33
RF4
G5
LA3694
R34
RF21
G5


LA3631
R32
RF16
G2
LA3663
R33
RF5
G5
LA3695
R34
RF22
G5


LA3632
R32
RF17
G2
LA3664
R33
RF6
G5
LA3696
R34
RF30
G5










wherein the structures of R1′, R2′, R3′, R4′, R5 to R34 are as defined below:




embedded image


embedded image


wherein the structure of RF1 to RF30 are as defined below:




embedded image


embedded image


embedded image


wherein G1 to G20 are each defined below:




embedded image


embedded image


embedded image


In some embodiments, the ligand LA can be selected from the group consisting of the structures in the following LIST 3:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound can have a formula of M(LA)p(LB)q(LC)r wherein LB and LC are each a bidentate ligand; and wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and p+q+r is the oxidation state of the metal M. In some embodiments, the compound can have a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other. In some embodiments, the compound can have a formula of Pt(LA)(LB); and wherein LA and LB can be same or different. In some embodiments, LA and LB can be connected to form a tetradentate ligand.


In some embodiments, LB and LC can be each independently selected from the group consisting of:




embedded image


embedded image


embedded image


wherein:


T is selected from the group consisting of B, Al, Ga, and In;


each of Y1 to Y13 is independently selected from the group consisting of carbon and nitrogen;


Y′ is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf;


Re and Rf can be fused or joined to form a ring;


each Ra, Rb, Rc, and Rd independently represent zero, mono, or up to the maximum allowed number of substitutions to its associated ring;


each of Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and


two adjacent Ra, Rb, Rc, and Rd can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, LB and LC can be each independently selected from the group consisting of the following structures (LIST 4):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein:


Ra′, Rb′, and Rc′ each independently represent zero, mono, or up to the maximum allowed number of substitutions to its associated ring;


each of Ra1, Rb1, Rc1, RB, RN, Ra′, Rb′, and Rc′ is independently hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and


two adjacent Ra′, Rb′, and Rc′ can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, the compound can be selected from the group consisting of Ir(LA)3, Ir(LA)(LBk)2, Ir(LA)2(LBk), Ir(LA)2(LCj-I), Ir(LA)2(LCj-II, Ir(LA) (LBk) (LCj-I), and Ir(LA) (LBk) (LCj-II),


wherein LA is selected from the structures defined herein; each LBk is defined herein; and each of LCj-I and LCj-II is defined herein.


In some embodiments, when the compound has formula Ir(LAi-m)3, Is an integer from 1 to 3696; m is an integer from 1 to 138; and the compound is selected from the group consisting of Ir(LA1-1)3 to Ir(LA3696-138)3; when the compound has formula Ir(LAi-m)(LBk)2, i is an integer from 1 to 3696; m is an integer from 1 to 138; k is an integer from 1 to 324; and the compound is selected from the group consisting of Ir(LA1-1)(LB1)2 to Ir(LA3696-138)(LB324)2;


when the compound has formula Ir(LAi-m)2(LBk), i is an integer from 1 to 3696; m is an integer from 1 to 138; k is an integer from 1 to 324; and the compound is selected from the group consisting of Ir(LA1-1)2(LB1) to Ir(LA3696-138)2(LB324),


when the compound has formula Ir(LAi-m)2(LCj-I), i is an integer from 1 to 3696; m is an integer from 1 to 138; j is an integer from 1 to 1416; and the compound is selected from the group consisting of Ir(LA1-1)2(Lc1-I) to Ir(LA3696-138)(LC1416-I); and


when the compound has formula Ir(LAi-m)2(LCj-II), i is an integer from 1 to 3696; m is an integer from 1 to 138j is an integer from 1 to 1416; and the compound is selected from the group consisting of Ir(LA1-1)2(LC1-II) to Ir(LA3696-138) (LC1416-II);


wherein each of LAi-m is defined herein;


wherein each LBk of LB1 to LB324 is defined below in LIST 5:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein each LCj-I has a structure based on formula




embedded image


and


each LCj-II has a structure based on formula




embedded image


wherein for each LCj in LCj-I and LCj-II, R201 and R202 are each independently defined as provided in the following LIST 6:























LCj
R201
R202
LCj
R201
R202
LCj
R201
R202
LCj
R201
R202







LC1
RD1
RD1
LC193
RD1
RD3
LC385
RD17
RD40
LC577
RD143
RD120


LC2
RD2
RD2
LC194
RD1
RD4
LC386
RD17
RD41
LC578
RD143
RD133


LC3
RD3
RD3
LC195
RD1
RD5
LC387
RD17
RD42
LC579
RD143
RD134


LC4
RD4
RD4
LC196
RD1
RD9
LC388
RD17
RD43
LC580
RD143
RD135


LC5
RD5
RD5
LC197
RD1
RD10
LC389
RD17
RD48
LC581
RD143
RD136


LC6
RD6
RD6
LC198
RD1
RD17
LC390
RD17
RD49
LC582
RD143
RD144


LC7
RD7
RD7
LC199
RD1
RD18
LC391
RD17
RD50
LC583
RD143
RD145


LC8
RD8
RD8
LC200
RD1
RD20
LC392
RD17
RD54
LC584
RD143
RD146


LC9
RD9
RD9
LC201
RD1
RD22
LC393
RD17
RD55
LC585
RD143
RD147


LC10
RD10
RD10
LC202
RD1
RD37
LC394
RD17
RD58
LC586
RD143
RD149


LC11
RD11
RD11
LC203
RD1
RD40
LC395
RD17
RD59
LC587
RD143
RD151


LC12
RD12
RD12
LC204
RD1
RD41
LC396
RD17
RD78
LC588
RD143
RD154


LC13
RD13
RD13
LC205
RD1
RD42
LC397
RD17
RD79
LC589
RD143
RD155


LC14
RD14
RD14
LC206
RD1
RD43
LC398
RD17
RD81
LC590
RD143
RD161


LC15
RD15
RD15
LC207
RD1
RD48
LC399
RD17
RD87
LC591
RD143
RD175


LC16
RD16
RD16
LC208
RD1
RD49
LC400
RD17
RD88
LC592
RD144
RD3


LC17
RD17
RD17
LC209
RD1
RD50
LC401
RD17
RD89
LC593
RD144
RD5


LC18
RD18
RD18
LC210
RD1
RD54
LC402
RD17
RD93
LC594
RD144
RD17


LC19
RD19
RD19
LC211
RD1
RD55
LC403
RD17
RD116
LC595
RD144
RD18


LC20
RD20
RD20
LC212
RD1
RD58
LC404
RD17
RD117
LC596
RD144
RD20


LC21
RD21
RD21
LC213
RD1
RD59
LC405
RD17
RD118
LC597
RD144
RD22


LC22
RD22
RD22
LC214
RD1
RD78
LC406
RD17
RD119
LC598
RD144
RD37


LC23
RD23
RD23
LC215
RD1
RD79
LC407
RD17
RD120
LC599
RD144
RD40


LC24
RD24
RD24
LC216
RD1
RD81
LC408
RD17
RD133
LC600
RD144
RD41


LC25
RD25
RD25
LC217
RD1
RD87
LC409
RD17
RD134
LC601
RD144
RD42


LC26
RD26
RD26
LC218
RD1
RD88
LC410
RD17
RD135
LC602
RD144
RD43


LC27
RD27
RD27
LC219
RD1
RD89
LC411
RD17
RD136
LC603
RD144
RD48


LC28
RD28
RD28
LC220
RD1
RD93
LC412
RD17
RD143
LC604
RD144
RD49


LC29
RD29
RD29
LC221
RD1
RD116
LC413
RD17
RD144
LC605
RD144
RD54


LC30
RD30
RD30
LC222
RD1
RD117
LC414
RD17
RD145
LC606
RD144
RD58


LC31
RD31
RD31
LC223
RD1
RD118
LC415
RD17
RD146
LC607
RD144
RD59


LC32
RD32
RD32
LC224
RD1
RD119
LC416
RD17
RD147
LC608
RD144
RD78


LC33
RD33
RD33
LC225
RD1
RD120
LC417
RD17
RD149
LC609
RD144
RD79


LC34
RD34
RD34
LC226
RD1
RD133
LC418
RD17
RD151
LC610
RD144
RD81


LC35
RD35
RD35
LC227
RD1
RD134
LC419
RD17
RD154
LC611
RD144
RD87


LC36
RD36
RD36
LC228
RD1
RD135
LC420
RD17
RD155
LC612
RD144
RD88


LC37
RD37
RD37
LC229
RD1
RD136
LC421
RD17
RD161
LC613
RD144
RD89


LC38
RD38
RD38
LC230
RD1
RD143
LC422
RD17
RD175
LC614
RD144
RD93


LC39
RD39
RD39
LC231
RD1
RD144
LC423
RD50
RD3
LC615
RD144
RD116


LC40
RD40
RD40
LC232
RD1
RD145
LC424
RD50
RD5
LC616
RD144
RD117


LC41
RD41
RD41
LC233
RD1
RD146
LC425
RD50
RD18
LC617
RD144
RD118


LC42
RD42
RD42
LC234
RD1
RD147
LC426
RD50
RD20
LC618
RD144
RD119


LC43
RD43
RD43
LC235
RD1
RD149
LC427
RD50
RD22
LC619
RD144
RD120


LC44
RD44
RD44
LC236
RD1
RD151
LC428
RD50
RD37
LC620
RD144
RD133


LC45
RD45
RD45
LC237
RD1
RD154
LC429
RD50
RD40
LC621
RD144
RD134


LC46
RD46
RD46
LC238
RD1
RD155
LC430
RD50
RD41
LC622
RD144
RD135


LC47
RD47
RD47
LC239
RD1
RD161
LC431
RD50
RD42
LC623
RD144
RD136


LC48
RD48
RD48
LC240
RD1
RD175
LC432
RD50
RD43
LC624
RD144
RD145


LC49
RD49
RD49
LC241
RD4
RD3
LC433
RD50
RD48
LC625
RD144
RD146


LC50
RD50
RD50
LC242
RD4
RD5
LC434
RD50
RD49
LC626
RD144
RD147


LC51
RD51
RD51
LC243
RD4
RD9
LC435
RD50
RD54
LC627
RD144
RD149


LC52
RD52
RD52
LC244
RD4
RD10
LC436
RD50
RD55
LC628
RD144
RD151


LC53
RD53
RD53
LC245
RD4
RD17
LC437
RD50
RD58
LC629
RD144
RD154


LC54
RD54
RD54
LC246
RD4
RD18
LC438
RD50
RD59
LC630
RD144
RD155


LC55
RD55
RD55
LC247
RD4
RD20
LC439
RD50
RD78
LC631
RD144
RD161


LC56
RD56
RD56
LC248
RD4
RD22
LC440
RD50
RD79
LC632
RD144
RD175


LC57
RD57
RD57
LC249
RD4
RD37
LC441
RD50
RD81
LC633
RD145
RD3


LC58
RD58
RD58
LC250
RD4
RD40
LC442
RD50
RD87
LC634
RD145
RD5


LC59
RD59
RD59
LC251
RD4
RD41
LC443
RD50
RD88
LC635
RD145
RD17


LC60
RD60
RD60
LC252
RD4
RD42
LC444
RD50
RD89
LC636
RD145
RD18


LC61
RD61
RD61
LC253
RD4
RD43
LC445
RD50
RD93
LC637
RD145
RD20


LC62
RD62
RD62
LC254
RD4
RD48
LC446
RD50
RD116
LC638
RD145
RD22


LC63
RD63
RD63
LC255
RD4
RD49
LC447
RD50
RD117
LC639
RD145
RD37


LC64
RD64
RD64
LC256
RD4
RD50
LC448
RD50
RD118
LC640
RD145
RD40


LC65
RD65
RD65
LC257
RD4
RD54
LC449
RD50
RD119
LC641
RD145
RD41


LC66
RD66
RD66
LC258
RD4
RD55
LC450
RD50
RD120
LC642
RD145
RD42


LC67
RD67
RD67
LC259
RD4
RD58
LC451
RD50
RD133
LC643
RD145
RD43


LC68
RD68
RD68
LC260
RD4
RD59
LC452
RD50
RD134
LC644
RD145
RD48


LC69
RD69
RD69
LC261
RD4
RD78
LC453
RD50
RD135
LC645
RD145
RD49


LC70
RD70
RD70
LC262
RD4
RD79
LC454
RD50
RD136
LC646
RD145
RD54


LC71
RD71
RD71
LC263
RD4
RD81
LC455
RD50
RD143
LC647
RD145
RD58


LC72
RD72
RD72
LC264
RD4
RD87
LC456
RD50
RD144
LC648
RD145
RD59


LC73
RD73
RD73
LC265
RD4
RD88
LC457
RD50
RD145
LC649
RD145
RD78


LC74
RD74
RD74
LC266
RD4
RD89
LC458
RD50
RD146
LC650
RD145
RD79


LC75
RD75
RD75
LC267
RD4
RD93
LC459
RD50
RD147
LC651
RD145
RD81


LC76
RD76
RD76
LC268
RD4
RD116
LC460
RD50
RD149
LC652
RD145
RD87


LC77
RD77
RD77
LC269
RD4
RD117
LC461
RD50
RD151
LC653
RD145
RD88


LC78
RD78
RD78
LC270
RD4
RD118
LC462
RD50
RD154
LC654
RD145
RD89


LC79
RD79
RD79
LC271
RD4
RD119
LC463
RD50
RD155
LC655
RD145
RD93


LC80
RD80
RD80
LC272
RD4
RD120
LC464
RD50
RD161
LC656
RD145
RD116


LC81
RD81
RD81
LC273
RD4
RD133
LC465
RD50
RD175
LC657
RD145
RD117


LC82
RD82
RD82
LC274
RD4
RD134
LC466
RD55
RD3
LC658
RD145
RD118


LC83
RD83
RD83
LC275
RD4
RD135
LC467
RD55
RD5
LC659
RD145
RD119


LC84
RD84
RD84
LC276
RD4
RD136
LC468
RD55
RD18
LC660
RD145
RD120


LC85
RD85
RD85
LC277
RD4
RD143
LC469
RD55
RD20
LC661
RD145
RD133


LC86
RD86
RD86
LC278
RD4
RD144
LC470
RD55
RD22
LC662
RD145
RD134


LC87
RD87
RD87
LC279
RD4
RD145
LC471
RD55
RD37
LC663
RD145
RD135


LC88
RD88
RD88
LC280
RD4
RD146
LC472
RD55
RD40
LC664
RD145
RD136


LC89
RD89
RD89
LC281
RD4
RD147
LC473
RD55
RD41
LC665
RD145
RD146


LC90
RD90
RD90
LC282
RD4
RD149
LC474
RD55
RD42
LC666
RD145
RD147


LC91
RD91
RD91
LC283
RD4
RD151
LC475
RD55
RD43
LC667
RD145
RD149


LC92
RD92
RD92
LC284
RD4
RD154
LC476
RD55
RD48
LC668
RD145
RD151


LC93
RD93
RD93
LC285
RD4
RD155
LC477
RD55
RD49
LC669
RD145
RD154


LC94
RD94
RD94
LC286
RD4
RD161
LC478
RD55
RD54
LC670
RD145
RD155


LC95
RD95
RD95
LC287
RD4
RD175
LC479
RD55
RD58
LC671
RD145
RD161


LC96
RD96
RD96
LC288
RD9
RD3
LC480
RD55
RD59
LC672
RD145
RD175


LC97
RD97
RD97
LC289
RD9
RD5
LC481
RD55
RD78
LC673
RD146
RD3


LC98
RD98
RD98
LC290
RD9
RD10
LC482
RD55
RD79
LC674
RD146
RD5


LC99
RD99
RD99
LC291
RD9
RD17
LC483
RD55
RD81
LC675
RD146
RD17


LC100
RD100
RD100
LC292
RD9
RD18
LC484
RD55
RD87
LC676
RD146
RD18


LC101
RD101
RD101
LC293
RD9
RD20
LC485
RD55
RD88
LC677
RD146
RD20


LC102
RD102
RD102
LC294
RD9
RD22
LC486
RD55
RD89
LC678
RD146
RD22


LC103
RD103
RD103
LC295
RD9
RD37
LC487
RD55
RD93
LC679
RD146
RD37


LC104
RD104
RD104
LC296
RD9
RD40
LC488
RD55
RD116
LC680
RD146
RD40


LC105
RD105
RD105
LC297
RD9
RD41
LC489
RD55
RD117
LC681
RD146
RD41


LC106
RD106
RD106
LC298
RD9
RD42
LC490
RD55
RD118
LC682
RD146
RD42


LC107
RD107
RD107
LC299
RD9
RD43
LC491
RD55
RD119
LC683
RD146
RD43


LC108
RD108
RD108
LC300
RD9
RD48
LC492
RD55
RD120
LC684
RD146
RD48


LC109
RD109
RD109
LC301
RD9
RD49
LC493
RD55
RD133
LC685
RD146
RD49


LC110
RD110
RD110
LC302
RD9
RD50
LC494
RD55
RD134
LC686
RD146
RD54


LC111
RD111
RD111
LC303
RD9
RD54
LC495
RD55
RD135
LC687
RD146
RD58


LC112
RD112
RD112
LC304
RD9
RD55
LC496
RD55
RD136
LC688
RD146
RD59


LC113
RD113
RD113
LC305
RD9
RD58
LC497
RD55
RD143
LC689
RD146
RD78


LC114
RD114
RD114
LC306
RD9
RD59
LC498
RD55
RD144
LC690
RD146
RD79


LC115
RD115
RD115
LC307
RD9
RD78
LC499
RD55
RD145
LC691
RD146
RD81


LC116
RD116
RD116
LC308
RD9
RD79
LC500
RD55
RD146
LC692
RD146
RD87


LC117
RD117
RD117
LC309
RD9
RD81
LC501
RD55
RD147
LC693
RD146
RD88


LC118
RD118
RD118
LC310
RD9
RD87
LC502
RD55
RD149
LC694
RD146
RD89


LC119
RD119
RD119
LC311
RD9
RD88
LC503
RD55
RD151
LC695
RD146
RD93


LC120
RD120
RD120
LC312
RD9
RD89
LC504
RD55
RD154
LC696
RD146
RD117


LC121
RD121
RD121
LC313
RD9
RD93
LC505
RD55
RD155
LC697
RD146
RD118


LC122
RD122
RD122
LC314
RD9
RD116
LC506
RD55
RD161
LC698
RD146
RD119


LC123
RD123
RD123
LC315
RD9
RD117
LC507
RD55
RD175
LC699
RD146
RD120


LC124
RD124
RD124
LC316
RD9
RD118
LC508
RD116
RD3
LC700
RD146
RD133


LC125
RD125
RD125
LC317
RD9
RD119
LC509
RD116
RD5
LC701
RD146
RD134


LC126
RD126
RD126
LC318
RD9
RD120
LC510
RD116
RD17
LC702
RD146
RD135


LC127
RD127
RD127
LC319
RD9
RD133
LC511
RD116
RD18
LC703
RD146
RD136


LC128
RD128
RD128
LC320
RD9
RD134
LC512
RD116
RD20
LC704
RD146
RD146


LC129
RD129
RD129
LC321
RD9
RD135
LC513
RD116
RD22
LC705
RD146
RD147


LC130
RD130
RD130
LC322
RD9
RD136
LC514
RD116
RD37
LC706
RD146
RD149


LC131
RD131
RD131
LC323
RD9
RD143
LC515
RD116
RD40
LC707
RD146
RD151


LC132
RD132
RD132
LC324
RD9
RD144
LC516
RD116
RD41
LC708
RD146
RD154


LC133
RD133
RD133
LC325
RD9
RD145
LC517
RD116
RD42
LC709
RD146
RD155


LC134
RD134
RD134
LC326
RD9
RD146
LC518
RD116
RD43
LC710
RD146
RD161


LC135
RD135
RD135
LC327
RD9
RD147
LC519
RD116
RD48
LC711
RD146
RD175


LC136
RD136
RD136
LC328
RD9
RD149
LC520
RD116
RD49
LC712
RD133
RD3


LC137
RD137
RD137
LC329
RD9
RD151
LC521
RD116
RD54
LC713
RD133
RD5


LC138
RD138
RD138
LC330
RD9
RD154
LC522
RD116
RD58
LC714
RD133
RD3


LC139
RD139
RD139
LC331
RD9
RD155
LC523
RD116
RD59
LC715
RD133
RD18


LC140
RD140
RD140
LC332
RD9
RD161
LC524
RD116
RD78
LC716
RD133
RD20


LC141
RD141
RD141
LC333
RD9
RD175
LC525
RD116
RD79
LC717
RD133
RD22


LC142
RD142
RD142
LC334
RD10
RD3
LC526
RD116
RD81
LC718
RD133
RD37


LC143
RD143
RD143
LC335
RD10
RD5
LC527
RD116
RD87
LC719
RD133
RD40


LC144
RD144
RD144
LC336
RD10
RD17
LC528
RD116
RD88
LC720
RD133
RD41


LC145
RD145
RD145
LC337
RD10
RD18
LC529
RD116
RD89
LC721
RD133
RD42


LC146
RD146
RD146
LC338
RD10
RD20
LC530
RD116
RD93
LC722
RD133
RD43


LC147
RD147
RD147
LC339
RD10
RD22
LC531
RD116
RD117
LC723
RD133
RD48


LC148
RD148
RD148
LC340
RD10
RD37
LC532
RD116
RD118
LC724
RD133
RD49


LC149
RD149
RD149
LC341
RD10
RD40
LC533
RD116
RD119
LC725
RD133
RD54


LC150
RD150
RD150
LC342
RD10
RD41
LC534
RD116
RD120
LC726
RD133
RD58


LC151
RD151
RD151
LC343
RD10
RD42
LC535
RD116
RD133
LC727
RD133
RD59


LC152
RD152
RD152
LC344
RD10
RD43
LC536
RD116
RD134
LC728
RD133
RD78


LC153
RD153
RD153
LC345
RD10
RD48
LC537
RD116
RD135
LC729
RD133
RD79


LC154
RD154
RD154
LC346
RD10
RD49
LC538
RD116
RD136
LC730
RD133
RD81


LC155
RD155
RD155
LC347
RD10
RD50
LC539
RD116
RD143
LC731
RD133
RD87


LC156
RD156
RD156
LC348
RD10
RD54
LC540
RD116
RD144
LC732
RD133
RD88


LC157
RD157
RD157
LC349
RD10
RD55
LC541
RD116
RD145
LC733
RD133
RD89


LC158
RD158
RD158
LC350
RD10
RD58
LC542
RD116
RD146
LC734
RD133
RD93


LC159
RD159
RD159
LC351
RD10
RD59
LC543
RD116
RD147
LC735
RD133
RD117


LC160
RD160
RD160
LC352
RD10
RD78
LC544
RD116
RD149
LC736
RD133
RD118


LC161
RD161
RD161
LC353
RD10
RD79
LC545
RD116
RD151
LC737
RD133
RD119


LC162
RD162
RD162
LC354
RD10
RD81
LC546
RD116
RD154
LC738
RD133
RD120


LC163
RD163
RD163
LC355
RD10
RD87
LC547
RD116
RD155
LC739
RD133
RD133


LC164
RD164
RD164
LC356
RD10
RD88
LC548
RD116
RD161
LC740
RD133
RD134


LC165
RD165
RD165
LC357
RD10
RD89
LC549
RD116
RD175
LC741
RD133
RD135


LC166
RD166
RD166
LC358
RD10
RD93
LC550
RD143
RD3
LC742
RD133
RD136


LC167
RD167
RD167
LC359
RD10
RD116
LC551
RD143
RD5
LC743
RD133
RD146


LC168
RD168
RD168
LC360
RD10
RD117
LC552
RD143
RD17
LC744
RD133
RD147


LC169
RD169
RD169
LC361
RD10
RD118
LC553
RD143
RD18
LC745
RD133
RD149


LC170
RD170
RD170
LC362
RD10
RD119
LC554
RD143
RD20
LC746
RD133
RD151


LC171
RD171
RD171
LC363
RD10
RD120
LC555
RD143
RD22
LC747
RD133
RD154


LC172
RD172
RD172
LC364
RD10
RD133
LC556
RD143
RD37
LC748
RD133
RD155


LC173
RD173
RD173
LC365
RD10
RD134
LC557
RD143
RD40
LC749
RD133
RD161


LC174
RD174
RD174
LC366
RD10
RD135
LC558
RD143
RD41
LC750
RD133
RD175


LC175
RD175
RD175
LC367
RD10
RD136
LC559
RD143
RD42
LC751
RD175
RD3


LC176
RD176
RD176
LC368
RD10
RD143
LC560
RD143
RD43
LC752
RD175
RD5


LC177
RD177
RD177
LC369
RD10
RD144
LC561
RD143
RD48
LC753
RD175
RD18


LC178
RD178
RD178
LC370
RD10
RD145
LC562
RD143
RD49
LC754
RD175
RD20


LC179
RD179
RD179
LC371
RD10
RD146
LC563
RD143
RD54
LC755
RD175
RD22


LC180
RD180
RD180
LC372
RD10
RD147
LC564
RD143
RD58
LC756
RD175
RD37


LC181
RD181
RD181
LC373
RD10
RD149
LC565
RD143
RD59
LC757
RD175
RD40


LC182
RD182
RD182
LC374
RD10
RD151
LC566
RD143
RD78
LC758
RD175
RD41


LC183
RD183
RD183
LC375
RD10
RD154
LC567
RD143
RD79
LC759
RD175
RD42


LC184
RD184
RD184
LC376
RD10
RD155
LC568
RD143
RD81
LC760
RD175
RD43


LC185
RD185
RD185
LC377
RD10
RD161
LC569
RD143
RD87
LC761
RD175
RD48


LC186
RD186
RD186
LC378
RD10
RD175
LC570
RD143
RD88
LC762
RD175
RD49


LC187
RD187
RD187
LC379
RD17
RD3
LC571
RD143
RD89
LC763
RD175
RD54


LC188
RD188
RD188
LC380
RD17
RD5
LC572
RD143
RD93
LC764
RD175
RD58


LC189
RD189
RD189
LC381
RD17
RD18
LC573
RD143
RD116
LC765
RD175
RD59


LC190
RD190
RD190
LC382
RD17
RD20
LC574
RD143
RD117
LC766
RD175
RD78


LC191
RD191
RD191
LC383
RD17
RD22
LC575
RD143
RD118
LC767
RD175
RD79


LC192
RD192
RD192
LC384
RD17
RD37
LC576
RD143
RD119
LC768
RD175
RD81


LC769
RD193
RD193
LC877
RD1
RD193
LC985
RD4
RD193
LC1093
RD9
RD193


LC770
RD194
RD194
LC878
RD1
RD194
LC986
RD4
RD194
LC1094
RD9
RD194


LC771
RD195
RD195
LC879
RD1
RD195
LC987
RD4
RD195
LC1095
RD9
RD195


LC772
RD196
RD196
LC880
RD1
RD196
LC988
RD4
RD196
LC1096
RD9
RD196


LC773
RD197
RD197
LC881
RD1
RD197
LC989
RD4
RD197
LC1097
RD9
RD197


LC774
RD198
RD198
LC882
RD1
RD198
LC990
RD4
RD198
LC1098
RD9
RD198


LC775
RD199
RD199
LC883
RD1
RD199
LC991
RD4
RD199
LC1099
RD9
RD199


LC776
RD200
RD200
LC884
RD1
RD200
LC992
RD4
RD200
LC1100
RD9
RD200


LC777
RD201
RD201
LC885
RD1
RD201
LC993
RD4
RD201
LC1101
RD9
RD201


LC778
RD202
RD202
LC886
RD1
RD202
LC994
RD4
RD202
LC1102
RD9
RD202


LC779
RD203
RD203
LC887
RD1
RD203
LC995
RD4
RD203
LC1103
RD9
RD203


LC780
RD204
RD204
LC888
RD1
RD204
LC996
RD4
RD204
LC1104
RD9
RD204


LC781
RD205
RD205
LC889
RD1
RD205
LC997
RD4
RD205
LC1105
RD9
RD205


LC782
RD206
RD206
LC890
RD1
RD206
LC998
RD4
RD206
LC1106
RD9
RD206


LC783
RD207
RD207
LC891
RD1
RD207
LC999
RD4
RD207
LC1107
RD9
RD207


LC784
RD208
RD208
LC892
RD1
RD208
LC1000
RD4
RD208
LC1108
RD9
RD208


LC785
RD209
RD209
LC893
RD1
RD209
LC1001
RD4
RD209
LC1109
RD9
RD209


LC786
RD210
RD210
LC894
RD1
RD210
LC1002
RD4
RD210
LC1110
RD9
RD210


LC787
RD211
RD211
LC895
RD1
RD211
LC1003
RD4
RD211
LC1111
RD9
RD211


LC788
RD212
RD212
LC896
RD1
RD212
LC1004
RD4
RD212
LC1112
RD9
RD212


LC789
RD213
RD213
LC897
RD1
RD213
LC1005
RD4
RD213
LC1113
RD9
RD213


LC790
RD214
RD214
LC898
RD1
RD214
LC1006
RD4
RD214
LC1114
RD9
RD214


LC791
RD215
RD215
LC899
RD1
RD215
LC1007
RD4
RD215
LC1115
RD9
RD215


LC792
RD216
RD216
LC900
RD1
RD216
LC1008
RD4
RD216
LC1116
RD9
RD216


LC793
RD217
RD217
LC901
RD1
RD217
LC1009
RD4
RD217
LC1117
RD9
RD217


LC794
RD218
RD218
LC902
RD1
RD218
LC1010
RD4
RD218
LC1118
RD9
RD218


LC795
RD219
RD219
LC903
RD1
RD219
LC1011
RD4
RD219
LC1119
RD9
RD219


LC796
RD220
RD220
LC904
RD1
RD220
LC1012
RD4
RD220
LC1120
RD9
RD220


LC797
RD221
RD221
LC905
RD1
RD221
LC1013
RD4
RD221
LC1121
RD9
RD221


LC798
RD222
RD222
LC906
RD1
RD222
LC1014
RD4
RD222
LC1122
RD9
RD222


LC799
RD223
RD223
LC907
RD1
RD223
LC1015
RD4
RD223
LC1123
RD9
RD223


LC800
RD224
RD224
LC908
RD1
RD224
LC1016
RD4
RD224
LC1124
RD9
RD224


LC801
RD225
RD225
LC909
RD1
RD225
LC1017
RD4
RD225
LC1125
RD9
RD225


LC802
RD226
RD226
LC910
RD1
RD226
LC1018
RD4
RD226
LC1126
RD9
RD226


LC803
RD227
RD227
LC911
RD1
RD227
LC1019
RD4
RD227
LC1127
RD9
RD227


LC804
RD228
RD228
LC912
RD1
RD228
LC1020
RD4
RD228
LC1128
RD9
RD228


LC805
RD229
RD229
LC913
RD1
RD229
LC1021
RD4
RD229
LC1129
RD9
RD229


LC806
RD230
RD230
LC914
RD1
RD230
LC1022
RD4
RD230
LC1130
RD9
RD230


LC807
RD231
RD231
LC915
RD1
RD231
LC1023
RD4
RD231
LC1131
RD9
RD231


LC808
RD232
RD232
LC916
RD1
RD232
LC1024
RD4
RD232
LC1132
RD9
RD232


LC809
RD233
RD233
LC917
RD1
RD233
LC1025
RD4
RD233
LC1133
RD9
RD233


LC810
RD234
RD234
LC918
RD1
RD234
LC1026
RD4
RD234
LC1134
RD9
RD234


LC811
RD235
RD235
LC919
RD1
RD235
LC1027
RD4
RD235
LC1135
RD9
RD235


LC812
RD236
RD236
LC920
RD1
RD236
LC1028
RD4
RD236
LC1136
RD9
RD236


LC813
RD237
RD237
LC921
RD1
RD237
LC1029
RD4
RD237
LC1137
RD9
RD237


LC814
RD238
RD238
LC922
RD1
RD238
LC1030
RD4
RD238
LC1138
RD9
RD238


LC815
RD239
RD239
LC923
RD1
RD239
LC1031
RD4
RD239
LC1139
RD9
RD239


LC816
RD240
RD240
LC924
RD1
RD240
LC1032
RD4
RD240
LC1140
RD9
RD240


LC817
RD241
RD241
LC925
RD1
RD241
LC1033
RD4
RD241
LC1141
RD9
RD241


LC818
RD242
RD242
LC926
RD1
RD242
LC1034
RD4
RD242
LC1142
RD9
RD242


LC819
RD243
RD243
LC927
RD1
RD243
LC1035
RD4
RD243
LC1143
RD9
RD243


LC820
RD244
RD244
LC928
RD1
RD244
LC1036
RD4
RD244
LC1144
RD9
RD244


LC821
RD245
RD245
LC929
RD1
RD245
LC1037
RD4
RD245
LC1145
RD9
RD245


LC822
RD246
RD246
LC930
RD1
RD246
LC1038
RD4
RD246
LC1146
RD9
RD246


LC823
RD17
RD193
LC931
RD50
RD193
LC1039
RD145
RD193
LC1147
RD168
RD193


LC824
RD17
RD194
LC932
RD50
RD194
LC1040
RD145
RD194
LC1148
RD168
RD194


LC825
RD17
RD195
LC933
RD50
RD195
LC1041
RD145
RD195
LC1149
RD168
RD195


LC826
RD17
RD196
LC934
RD50
RD196
LC1042
RD145
RD196
LC1150
RD168
RD196


LC827
RD17
RD197
LC935
RD50
RD197
LC1043
RD145
RD197
LC1151
RD168
RD197


LC828
RD17
RD198
LC936
RD50
RD198
LC1044
RD145
RD198
LC1152
RD168
RD198


LC829
RD17
RD199
LC937
RD50
RD199
LC1045
RD145
RD199
LC1153
RD168
RD199


LC830
RD17
RD200
LC938
RD50
RD200
LC1046
RD145
RD200
LC1154
RD168
RD200


LC831
RD17
RD201
LC939
RD50
RD201
LC1047
RD145
RD201
LC1155
RD168
RD201


LC832
RD17
RD202
LC940
RD50
RD202
LC1048
RD145
RD202
LC1156
RD168
RD202


LC833
RD17
RD203
LC941
RD50
RD203
LC1049
RD145
RD203
LC1157
RD168
RD203


LC834
RD17
RD204
LC942
RD50
RD204
LC1050
RD145
RD204
LC1158
RD168
RD204


LC835
RD17
RD205
LC943
RD50
RD205
LC1051
RD145
RD205
LC1159
RD168
RD205


LC836
RD17
RD206
LC944
RD50
RD206
LC1052
RD145
RD206
LC1160
RD168
RD206


LC837
RD17
RD207
LC945
RD50
RD207
LC1053
RD145
RD207
LC1161
RD168
RD207


LC838
RD17
RD208
LC946
RD50
RD208
LC1054
RD145
RD208
LC1162
RD168
RD208


LC839
RD17
RD209
LC947
RD50
RD209
LC1055
RD145
RD209
LC1163
RD168
RD209


LC840
RD17
RD210
LC948
RD50
RD210
LC1056
RD145
RD210
LC1164
RD168
RD210


LC841
RD17
RD211
LC949
RD50
RD211
LC1057
RD145
RD211
LC1165
RD168
RD211


LC842
RD17
RD212
LC950
RD50
RD212
LC1058
RD145
RD212
LC1166
RD168
RD212


LC843
RD17
RD213
LC951
RD50
RD213
LC1059
RD145
RD213
LC1167
RD168
RD213


LC844
RD17
RD214
LC952
RD50
RD214
LC1060
RD145
RD214
LC1168
RD168
RD214


LC845
RD17
RD215
LC953
RD50
RD215
LC1061
RD145
RD215
LC1169
RD168
RD215


LC846
RD17
RD216
LC954
RD50
RD216
LC1062
RD145
RD216
LC1170
RD168
RD216


LC847
RD17
RD217
LC955
RD50
RD217
LC1063
RD145
RD217
LC1171
RD168
RD217


LC848
RD17
RD218
LC956
RD50
RD218
LC1064
RD145
RD218
LC1172
RD168
RD218


LC849
RD17
RD219
LC957
RD50
RD219
LC1065
RD145
RD219
LC1173
RD168
RD219


LC850
RD17
RD220
LC958
RD50
RD220
LC1066
RD145
RD220
LC1174
RD168
RD220


LC851
RD17
RD221
LC959
RD50
RD221
LC1067
RD145
RD221
LC1175
RD168
RD221


LC852
RD17
RD222
LC960
RD50
RD222
LC1068
RD145
RD222
LC1176
RD168
RD222


LC853
RD17
RD223
LC961
RD50
RD223
LC1069
RD145
RD223
LC1177
RD168
RD223


LC854
RD17
RD224
LC962
RD50
RD224
LC1070
RD145
RD224
LC1178
RD168
RD224


LC855
RD17
RD225
LC963
RD50
RD225
LC1071
RD145
RD225
LC1179
RD168
RD225


LC856
RD17
RD226
LC964
RD50
RD226
LC1072
RD145
RD226
LC1180
RD168
RD226


LC857
RD17
RD227
LC965
RD50
RD227
LC1073
RD145
RD227
LC1181
RD168
RD227


LC858
RD17
RD228
LC966
RD50
RD228
LC1074
RD145
RD228
LC1182
RD168
RD228


LC859
RD17
RD229
LC967
RD50
RD229
LC1075
RD145
RD229
LC1183
RD168
RD229


LC860
RD17
RD230
LC968
RD50
RD230
LC1076
RD145
RD230
LC1184
RD168
RD230


LC861
RD17
RD231
LC969
RD50
RD231
LC1077
RD145
RD231
LC1185
RD168
RD231


LC862
RD17
RD232
LC970
RD50
RD232
LC1078
RD145
RD232
LC1186
RD168
RD232


LC863
RD17
RD233
LC971
RD50
RD233
LC1079
RD145
RD233
LC1187
RD168
RD233


LC864
RD17
RD234
LC972
RD50
RD234
LC1080
RD145
RD234
LC1188
RD168
RD234


LC865
RD17
RD235
LC973
RD50
RD235
LC1081
RD145
RD235
LC1189
RD168
RD235


LC866
RD17
RD236
LC974
RD50
RD236
LC1082
RD145
RD236
LC1190
RD168
RD236


LC867
RD17
RD237
LC975
RD50
RD237
LC1083
RD145
RD237
LC1191
RD168
RD237


LC868
RD17
RD238
LC976
RD50
RD238
LC1084
RD145
RD238
LC1192
RD168
RD238


LC869
RD17
RD239
LC977
RD50
RD239
LC1085
RD145
RD239
LC1193
RD168
RD239


LC870
RD17
RD240
LC978
RD50
RD240
LC1086
RD145
RD240
LC1194
RD168
RD240


LC871
RD17
RD241
LC979
RD50
RD241
LC1087
RD145
RD241
LC1195
RD168
RD241


LC872
RD17
RD242
LC980
RD50
RD242
LC1088
RD145
RD242
LC1196
RD168
RD242


LC873
RD17
RD243
LC981
RD50
RD243
LC1089
RD145
RD243
LC1197
RD168
RD243


LC874
RD17
RD244
LC982
RD50
RD244
LC1090
RD145
RD244
LC1198
RD168
RD244


LC875
RD17
RD245
LC983
RD50
RD245
LC1091
RD145
RD245
LC1199
RD168
RD245


LC876
RD17
RD246
LC984
RD50
RD246
LC1092
RD145
RD246
LC1200
RD168
RD246


LC1201
RD10
RD193
LC1255
RD55
RD193
LC1309
RD37
RD193
LC1363
RD143
RD193


LC1202
RD10
RD194
LC1256
RD55
RD194
LC1310
RD37
RD194
LC1364
RD143
RD194


LC1203
RD10
RD195
LC1257
RD55
RD195
LC1311
RD37
RD195
LC1365
RD143
RD195


LC1204
RD10
RD196
LC1258
RD55
RD196
LC1312
RD37
RD196
LC1366
RD143
RD196


LC1205
RD10
RD197
LC1259
RD55
RD197
LC1313
RD37
RD197
LC1367
RD143
RD197


LC1206
RD10
RD198
LC1260
RD55
RD198
LC1314
RD37
RD198
LC1368
RD143
RD198


LC1207
RD10
RD199
LC1261
RD55
RD199
LC1315
RD37
RD199
LC1369
RD143
RD199


LC1208
RD10
RD200
LC1262
RD55
RD200
LC1316
RD37
RD200
LC1370
RD143
RD200


LC1209
RD10
RD201
LC1263
RD55
RD201
LC1317
RD37
RD201
LC1371
RD143
RD201


LC1210
RD10
RD202
LC1264
RD55
RD202
LC1318
RD37
RD202
LC1372
RD143
RD202


LC1211
RD10
RD203
LC1265
RD55
RD203
LC1319
RD37
RD203
LC1373
RD143
RD203


LC1212
RD10
RD204
LC1266
RD55
RD204
LC1320
RD37
RD204
LC1374
RD143
RD204


LC1213
RD10
RD205
LC1267
RD55
RD205
LC1321
RD37
RD205
LC1375
RD143
RD205


LC1214
RD10
RD206
LC1268
RD55
RD206
LC1322
RD37
RD206
LC1376
RD143
RD206


LC1215
RD10
RD207
LC1269
RD55
RD207
LC1323
RD37
RD207
LC1377
RD143
RD207


LC1216
RD10
RD208
LC1270
RD55
RD208
LC1324
RD37
RD208
LC1378
RD143
RD208


LC1217
RD10
RD209
LC1271
RD55
RD209
LC1325
RD37
RD209
LC1379
RD143
RD209


LC1218
RD10
RD210
LC1272
RD55
RD210
LC1326
RD37
RD210
LC1380
RD143
RD210


LC1219
RD10
RD211
LC1273
RD55
RD211
LC1327
RD37
RD211
LC1381
RD143
RD211


LC1220
RD10
RD212
LC1274
RD55
RD212
LC1328
RD37
RD212
LC1382
RD143
RD212


LC1221
RD10
RD213
LC1275
RD55
RD213
LC1329
RD37
RD213
LC1383
RD143
RD213


LC1222
RD10
RD214
LC1276
RD55
RD214
LC1330
RD37
RD214
LC1384
RD143
RD214


LC1223
RD10
RD215
LC1277
RD55
RD215
LC1331
RD37
RD215
LC1385
RD143
RD215


LC1224
RD10
RD216
LC1278
RD55
RD216
LC1332
RD37
RD216
LC1386
RD143
RD216


LC1225
RD10
RD217
LC1279
RD55
RD217
LC1333
RD37
RD217
LC1387
RD143
RD217


LC1226
RD10
RD218
LC1280
RD55
RD218
LC1334
RD37
RD218
LC1388
RD143
RD218


LC1227
RD10
RD219
LC1281
RD55
RD219
LC1335
RD37
RD219
LC1389
RD143
RD219


LC1228
RD10
RD220
LC1282
RD55
RD220
LC1336
RD37
RD220
LC1390
RD143
RD220


LC1229
RD10
RD221
LC1283
RD55
RD221
LC1337
RD37
RD221
LC1391
RD143
RD221


LC1230
RD10
RD222
LC1284
RD55
RD222
LC1338
RD37
RD222
LC1392
RD143
RD222


LC1231
RD10
RD223
LC1285
RD55
RD223
LC1339
RD37
RD223
LC1393
RD143
RD223


LC1232
RD10
RD224
LC1286
RD55
RD224
LC1340
RD37
RD224
LC1394
RD143
RD224


LC1233
RD10
RD225
LC1287
RD55
RD225
LC1341
RD37
RD225
LC1395
RD143
RD225


LC1234
RD10
RD226
LC1288
RD55
RD226
LC1342
RD37
RD226
LC1396
RD143
RD226


LC1235
RD10
RD227
LC1289
RD55
RD227
LC1343
RD37
RD227
LC1397
RD143
RD227


LC1236
RD10
RD228
LC1290
RD55
RD228
LC1344
RD37
RD228
LC1398
RD143
RD228


LC1237
RD10
RD229
LC1291
RD55
RD229
LC1345
RD37
RD229
LC1399
RD143
RD229


LC1238
RD10
RD230
LC1292
RD55
RD230
LC1346
RD37
RD230
LC1400
RD143
RD230


LC1239
RD10
RD231
LC1293
RD55
RD231
LC1347
RD37
RD231
LC1401
RD143
RD231


LC1240
RD10
RD232
LC1294
RD55
RD232
LC1348
RD37
RD232
LC1402
RD143
RD232


LC1241
RD10
RD233
LC1295
RD55
RD233
LC1349
RD37
RD233
LC1403
RD143
RD233


LC1242
RD10
RD234
LC1296
RD55
RD234
LC1350
RD37
RD234
LC1404
RD143
RD234


LC1243
RD10
RD235
LC1297
RD55
RD235
LC1351
RD37
RD235
LC1405
RD143
RD235


LC1244
RD10
RD236
LC1298
RD55
RD236
LC1352
RD37
RD236
LC1406
RD143
RD236


LC1245
RD10
RD237
LC1299
RD55
RD237
LC1353
RD37
RD237
LC1407
RD143
RD237


LC1246
RD10
RD238
LC1300
RD55
RD238
LC1354
RD37
RD238
LC1408
RD143
RD238


LC1247
RD10
RD239
LC1301
RD55
RD239
LC1355
RD37
RD239
LC1409
RD143
RD239


LC1248
RD10
RD240
LC1302
RD55
RD240
LC1356
RD37
RD240
LC1410
RD143
RD240


LC1249
RD10
RD241
LC1303
RD55
RD241
LC1357
RD37
RD241
LC1411
RD143
RD241


LC1250
RD10
RD242
LC1304
RD55
RD242
LC1358
RD37
RD242
LC1412
RD143
RD242


LC1251
RD10
RD243
LC1305
RD55
RD243
LC1359
RD37
RD243
LC1413
RD143
RD243


LC1252
RD10
RD244
LC1306
RD55
RD244
LC1360
RD37
RD244
LC1414
RD143
RD244


LC1253
RD10
RD245
LC1307
RD55
RD245
LC1361
RD37
RD245
LC1415
RD143
RD245


LC1254
RD10
RD246
LC1308
RD55
RD246
LC1362
RD37
RD246
LC1416
RD143
RD246










wherein RD1 to RD246 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound can have the formula Ir(LAi-m)(LBk)2, Ir(LAi′-m′)(LBk)2, Ir(LAi-m)2(LBk), or Ir(LAi′-m′)2(LBk), wherein the compound consists of only one of the following structures (LIST 7) for the LBk ligand:


LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB130, LB132, LB134, LB136, LB138, LB140, LB142, LB144, LB156, LB158, LB160, LB162, LB164, LB168, LB172, LB175, LB204, LB206, LB214, LB216, LB218, LB220, LB222, LB231, LB233, LB235, LB237, LB240, LB242, LB244, LB246, LB248, LB250, LB252, LB254, LB256, LB258, LB260, LB262 and LB264, LB265, LB266, LB267, LB268, LB269, and LB270.


In some embodiments, the compound can have the formula Ir(LAi-m)(LBk)2, Ir(LAi′-m′)(LBk)2, Ir(LAi-m)2(LBk), or Ir(LAi′-m′)2(LBk), wherein the compound consists of only one of the following structures for the LBk ligand:


LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB126, LB128, LB132, LB136, LB138, LB142, LB156, LB162, LB204, LB206, LB214, LB216, LB218, LB220, LB231, LB233, LB237, LB264, LB265, LB266, LB267, LB268, LB269, and LB270.


In some embodiments, the compound can have the formula Ir(LAi-m)2(LCj-I), Ir(LAi′-m′)2(LCj-I), Ir(LAi-m)2(LCj-II), or Ir(LAi′-m′)2(LCj-II), wherein for ligands LCj-I and LCj-II, the compound comprises only those LCj-I and LCj-II ligands whose corresponding R201 and R202 are defined to be one the following structures:


RD1, RD3, RD4, RD5, RD9, RD10, RD17, RD18, RD20, RD22, RD37, RD40, RD41, RD42, RD43, RD48, RD49, RD50, RD54, RD55, RD58, RD59, RD78, RD79, RD81, RD87, RD88, RD89, RD93, RD116, RD117, RD118, RD119, RD120, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD147, RD149, RD151, RD154, RD155, RD161, RD175 RD190, RD193, RD200, RD201, RD206, RD210, RD214, RD215, RD216, RD218, RD219, RD220, RD227, RD237, RD241, RD242, RD245, and RD246.


In some embodiments, the compound can have the formula Ir(LAi-m)2(LCj-I), Ir(LAi′-m′)2(LCj-I), Ir(LAi-m)2(LCj-II), or Ir(LAi′-m′)2(LCj-II), wherein for ligands LCj-I and LCj-II, the compound comprises only those LCj-I and LCj-II ligands whose the corresponding R201 and R202 are defined to be one of the following structures: RD1, RD3, RD4, RD5, RD9, RD10, RD17, RD22, RD43, RD50, RD78, RD116, RD118, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD149, RD151, RD154, RD155, RD190, RD193, RD200, RD201, RD206, RD210, RD214, RD215, RD216, RD218, RD219, RD220, RD227, RD237, RD241, RD242, RD245, and RD246,


In some embodiments, the compound can have the formula Ir(LAi-m)2(LCj-I), or Ir(LAi′-m′)2(LCj-I), and the compound consists of only one of the following structures for the LCj-I ligand:




embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound can be selected from the group consisting of the structures in the following LIST:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound having a ligand LA of Formula I described herein can be at least 30% deuterated, at least 40% deuterated, at least 50% deuterated, at least 60% deuterated, at least 70% deuterated, at least 80% deuterated, at least 90% deuterated, at least 95% deuterated, at least 99% deuterated, or 100% deuterated. As used herein, percent deuteration has its ordinary meaning and includes the percent of possible hydrogen atoms (e.g., positions that are hydrogen or deuterium) that are replaced by deuterium atoms.)


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising an organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the organic layer may comprise a compound comprising a ligand LA of




embedded image


wherein ring A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; ring A1 if present is a 5-membered or 6-membered carbocyclic or heterocyclic ring; the maximum number of N atoms that can connect to each other within a ring is three; RA represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA, and R1-R4 is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; at least one of R1-R4 is an electron-withdrawing group; at least one of R1-R4 is a 5-membered or 6-membered carbocyclic or heterocyclic ring which can be further fused to form a fused ring structure; and any two adjacent R1, R2, R3, R4, and RA can be joined or fused to form a ring, wherein the ligand LA is coordinated to a metal M through the two indicated dashed lines; wherein the metal M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, Ag, and Au; and wherein the ligand LA can be joined with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand, with a proviso that R2 is not a pyrimidine ring or a triazine ring.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C═CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical moiety selected from the group consisting of naphthalene, fluorene, triphenylene, carbazole, indolocarbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-naphthalene, aza-fluorene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).


In some embodiments the host may be selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region may comprise a compound comprising a ligand LA of




embedded image


wherein ring A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; ring A1 if present is a 5-membered or 6-membered carbocyclic or heterocyclic ring; the maximum number of N atoms that can connect to each other within a ring is three; RA represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA, and R1-R4 is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; at least one of R1-R4 is an electron-withdrawing group; at least one of R1-R4 is a 5-membered or 6-membered carbocyclic or heterocyclic ring which can be further fused to form a fused ring structure; and any two adjacent R1, R2, R3, R4, and RA can be joined or fused to form a ring, wherein the ligand LA is coordinated to a metal M through the two indicated dashed lines; wherein the metal M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, Ag, and Au; and wherein the ligand LA can be joined with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand, with a proviso that R2 is not a pyrimidine ring or a triazine ring.


In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for interventing layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.


The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.


The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors (“DBRs”) in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.


In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.


In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a plurality of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer, and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound comprising a ligand LA of




embedded image


wherein ring A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; ring A1 if present is a 5-membered or 6-membered carbocyclic or heterocyclic ring; the maximum number of N atoms that can connect to each other within a ring is three; RA represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA, and R1-R4 is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; at least one of R1-R4 is an electron-withdrawing group; at least one of R1-R4 is a 5-membered or 6-membered carbocyclic or heterocyclic ring which can be further fused to form a fused ring structure; and any two adjacent R1, R2, R3, R4, and RA can be joined or fused to form a ring, wherein the ligand LA is coordinated to a metal M through the two indicated dashed lines; wherein the metal M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, Ag, and Au; and wherein the ligand LA can be joined with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand, with a proviso that R2 is not a pyrimidine ring or a triazine ring.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


HIL/HTL examples can be found in paragraphs [0111] through [0117] of Universal Display Corporation's US application publication number US2020/0,295,281A1, and the contents of these paragraphs and the whole publication are herein incorporated by reference in their entireties.


c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Hosts examples can be found in paragraphs [0119] through [0125] of Universal Display Corporation's US application publication number US2020/0,295,281A1, and the contents of these paragraphs and the whole publication are herein incorporated by reference in their entireties.


e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified in paragraphs [0126] through [0127] of Universal Display Corporation's US application publication number US2020/0,295,281A1, and the contents of these paragraphs and the whole publication are herein incorporated by reference in their entireties.


f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L104 is another ligand, k′ is an integer from 1 to 3.


g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal. Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified in paragraphs [0131] through [0134] of Universal Display Corporation's US application publication number US2020/0,295,281A1, and the contents of these paragraphs and the whole publication are herein incorporated by reference in their entireties.


h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


E. Experimental Section
Synthesis of Materials



embedded image


Synthesis of 1-chloro-4-neopentylbenzene

Palladium acetate (0.942 g, 4.19 mmol), XPhos (4.35 g, 8.39 mmol) and 1-chloro-4-iodobenzene (20 g, 84 mmol) were added to an oven-dried 3-necked round bottom flask and cooled to 0° C. under nitrogen. A solution of neopentylmagnesium bromide (399 ml, 84 mmol) was added via a cannula. After stirring for 1.5 hours, the reaction was quenched with saturated ammonium chloride and separated with water and methyl tert-butyl ether (MTBE) dried with MgSO4 and the solvent was removed in vacuo at room temperature due to the volatility of the product. Purification by column chromatography eluting with 100% pentane gave 1-chloro-4-neopentylbenzene (14.38 g, 79 mmol, 94% yield) as a colourless oil.




embedded image


Synthesis of 4,4,5,5-tetramethyl-2-(4-neopentylphenyl)-1,3,2-dioxaborolane

To a dry round bottom flask fitted with a condenser, potassium acetate (11.34 g, 116 mmol), bis(pinacolato)diboron (22.01 g, 87 mmol) and 1-chloro-4-neopentylbenzene (10.5542 g, 57.8 mmol) was added followed by 1,4-dioxane (57.8 ml) and the suspension degassed under vacuum and backfilled with nitrogen (five times). XPhos (5.99 g, 11.55 mmol) and Pd(dba)2 (3.32 g, 5.78 mmol) were added and the vessel was degassed once more, and the reaction was then heated to 110° C. and allowed to stir for 18 hours. The reaction was allowed to cool and separated with DCM and water, dried with MgSO4 and the solvent removed in vacuo to give a red residue. The crude product was purified on a silica gel column chromatography, eluting with a gradient of 0-100% dichloromethane in heptanes to afford 4,4,5,5-tetramethyl-2-(4-neopentylphenyl)-1,3,2-dioxaborolane as a yellow solid with quantitative yield.




embedded image


Synthesis of 6-(4-(tert-butyl)naphthalen-2-yl)-4-chloronicotinonitrile

To a round bottom flask fitted with a condenser, 4,6-dichloronicotinonitrile (6.3 g, 36.4 mmol), 2-(4-(tert-butyl)naphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11.86 g, 38.2 mmol) and potassium carbonate (15.10 g, 109 mmol) were suspended in 1,4-dioxane (101 ml) and water (20.23 ml) and degassed by bubbling through with nitrogen. Pd(PPh3)4(2.104 g, 1.821 mmol) was added and the reaction was heated to 110° C. and stirred for 18 hours. The reaction was removed from the heat, allowed to cool and then filtered through a frit using tetrahydrofuran (THF) as the eluent and the filtrate was concentrated under reduced pressure. The residue was redissolved in THF and then dried with MgSO4, filtered and the solvent removed in vacuo to give a brown residue. The crude product was purified on a silica gel column chromatography, eluting with a gradient of 0-20% EtOAc in heptanes to afford 6-(4-(tert-butyl)naphthalen-2-yl)-4-chloronicotinonitrile (8.6955 g, 27.1 mmol, 74.4% yield) as a beige solid.




embedded image


Synthesis of 6-(4-(tert-butyl)naphthalen-2-yl)-4-(4-(tert-butyl)phenyl)nicotinonitrile

To a round bottom flask fitted with a condenser, 6-(4-(tert-butyl)naphthalen-2-yl)-4-chloronicotinonitrile (7) (4.22 g, 13.15 mmol), 4,4,5,5-tetramethyl-2-(4-neopentylphenyl)-1,3,2-dioxaborolane (5.41 g, 19.73 mmol) and potassium carbonate (7.27 g, 52.6 mmol) were suspended in 1,4-dioxane (105 ml) and water (26.3 ml) and degassed by bubbling through with nitrogen. SPhos (0.540 g, 1.315 mmol) and Pd(dba)2 (0.378 g, 0.658 mmol) were then added and the reaction degassed again, heated to 110° C. and stirred for 18 hours. The reaction was cooled to room temperature and separated with saturated ammonium chloride and EtOAc, dried with MgSO4 and the solvent removed in vacuo to give an oil. The crude product was purified on a silica gel column chromatography, eluting with a gradient of 0-100% EtOAc in heptanes. The resulting residue was concentrated and MeCN was layered on top and left overnight to form crystals. The crystals were collected and recrystallised from hot EtOAc and heptanes, filtered off and washed with ice cold MeCN and dried to give 6-(4-(tert-butyl)naphthalen-2-yl)-4-(4-neopentylphenyl)nicotinonitrile (2.25 g, 5.20 mmol, 39.5% yield) as a colourless solid.




embedded image


Synthesis of bis[6-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-(4-neopentylphenyl)nicotino-1-yl)nitrile]-(3,7-diethyl-4,6-nonanedionato-k2O,O′)-iridium(III)

A suspension of 6-(4-(tert-butyl)naphthalen-2-yl)-4-(4-neopentylphenyl)nicotinonitrile (0.534 g, 1.234 mmol) and iridium(III) chloride hydrate (0.218 g, 0.617 mmol) was heated at 130° C. for 18 hours to give the intermediate μ-dichloride complex. After cooling to room temperature, 3,7-diethylnonane-4,6-dione (0.262 g, 1.234 mmol), powdered potassium carbonate (0.171 g, 1.234 mmol), and 1,4-dioxane (6 ml) were added and the reaction mixture was heated at 80° C. for 16 hours in a flask covered with foil to exclude light. The reaction mixture was cooled to room temperature and deionized ultra-filtered (DIUF) water (250 mL) was added. The slurry was filtered and the solid impure product retained. The filtrate was extracted with dichloromethane. The organic layer was dried over sodium sulfate and filtered. The filtrate was combined with the product solids obtained from the initial filtration and adsorbed onto Celite under reduced pressure. The crude product was purified on a silica gel column chromatography, eluting with a gradient of 30 to 40% dichloromethane in heptanes. Fractions containing product were concentrated under reduced pressure. The product was triturated with methanol (50 mL) and dried under vacuum at 50° C. overnight to give bis[6-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-(4-neopentylphenyl)nicotino-1-yl)nitrile]-(3,7-diethyl-4,6-nonanedionato-k2O,O′)-iridium(III) (0.240 g, 31% yield) as a dark-red solid.




embedded image


Synthesis of 2-neopentylthiophene

/>/NiCl2(dppp) (0.997 g, 1.840 mmol) and 2-bromothiophene (1.781 ml, 18.40 mmol) were added to an oven dried flask fitted with a septum. A solution of neopentylmagnesium bromide (101 ml, 20.24 mmol) was added, the septum replaced with a cap and sealed under a flow of nitrogen and the solution heated to 66° C. and stirred for 18 hours. The reaction mixture was extracted between brine and MTBE, and the organic layer was dried with MgSO4 and the solvents was removed in vacuo. Crude product was purified on a silica gel column chromatography. The solvent was removed in vacuo to give the product (2.38 g, 84% yield).




embedded image


Synthesis of 4,4,5,5-tetramethyl-2-(5-neopentylthiophen-2-yl)-1,3,2-dioxaborolane

2-Neopentylthiophene (3.79 g, 24.549 mmol) was added to an oven dried reaction vessel and dissolved in THF (20 ml) and then cooled to −78° C. n-Butyllithium (13.50 ml, 27.0 mmol) was added, and the reaction warmed to −20° C. using a cold finger and stirred for 30 mins. 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.01 ml, 29.5 mmol) was added and the reaction allowed to warm to room temperature. The reaction mixture was separated with saturated ammonium chloride and MTBE. The organics were dried with Na2SO4, filtered and the solvent removed in vacuo to give an orange oily residue (5.71 g, 83% yield).




embedded image


Synthesis of 6-(4-(tert-butyl)naphthalen-2-yl)-4-(5-neopentylthiophen-2-yl)nicotinonitrile

To a round bottom flask 6-(4-(tert-butyl)naphthalen-2-yl)-4-chloronicotinonitrile (5.00 g, 15.59 mmol), 4,4,5,5-tetramethyl-2-(5-neopentylthiophen-2-yl)-1,3,2-dioxaborolane (6.55 g, 23138 mmol) and potassium carbonate (8.62 g, 62.3 mmol) were suspended in 1,4-Dioxane (83 ml) and Water (20.78 ml) and degassed using the house vacuum. SPhos (0.640 g, 1.559 mmol) and Pd2(dba)3 (0.448 g, 0.779 mmol) were then added and the reaction degassed again and heated to 100° C. and stirred for 18 hours. The reaction was extracted with saturated ammonium chloride and EtOAc. The organic layer was dried with MgSO4, filtered and the solvent was removed in vacuo. Liquid chromatography taken showed little change in the crude profile. The crude product was purified on a silica gel column chromatography, eluting with a gradient of 0 to 100% EtOAc in heptanes.


Fractions containing product were concentrated under reduced pressure. The product was recrystallised from DCM/MTBE/EtOAc and washed with MeOH to give 6-(4-(tert-butyl)naphthalen-2-yl)-4-(5-neopentylthiophen-2-yl)nicotinonitrile (3.457 g, 7.86 mmol, 50% yield).




embedded image


Synthesis of bis[6-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-(5-neopentylthiophen-2-yl)nicotino-1-yl)nitrile]-(3,7-diethyl-4,6-nonanedionato-k2O,O′)-iridium(III)

A suspension of 6-(4-(tert-butyl)naphthalen-2-yl)-4-(5-neopentylthiophen-2-yl)nicotinonitrile (2.74 g, 6.25 mmol, 2.2 equiv) and iridium(III) chloride hydrate (0.9 g, 2.84 mmol, 1.0 equiv) was heated at 125° C. for 18 hours to give complete conversion to the intermediate μ-dichloride complex. After cooling to room temperature, 3,7-diethylnonane-4,6-dione (0.605 g, 2.85 mmol, 2.0 equiv) and powdered potassium carbonate (0.590 g, 4.27 mmol, 3.0 equiv) were added and the reaction mixture heated at 42° C. for 18 hours in a flask covered with foil to exclude light. The reaction mixture was cooled to room temperature and DIUF water (250 mL) was added. The slurry was filtered and the solid impure product retained. The filtrate was extracted with dichloromethane (100 mL). The organic layer was dried over sodium sulfate and filtered. The filtrate was combined with the product solids obtained from the initial filtration and adsorbed onto silica gel (100 g) under reduced pressure. The crude product was purified on a silica gel column chromatography, eluting with a gradient of 5 to 50% dichloromethane in hexanes. Fractions containing product were concentrated under reduced pressure. The product was triturated with methanol (50 mL) and dried under vacuum at 50° C. overnight to give bis[6-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-(5-neopentylthiophen-2-yl)nicotino-1-yl)nitrile]-(3,7-diethyl-4,6-nonanedionato-k2O,O′)-iridium(III) (1.35 g, 37% yield) as a dark-brown solid.


The chemical structures of Inventive Example 1, Inventive Example 2, Comparative Example 1, and Comparative Example 2 are shown below:




embedded image


It is believed that one reason that the present-day deep red and NIR OLEDs have low efficiencies is in part due to the energy gap law (Englman R, Jortner J. Mol. Phys. 1970, 18, 145.). It is predicted that photoluminescence quantum efficiency (PLQY) decreases dramatically when the emission of λ max shifts to a higher value. FIG. 3 and Table 1 show the photoluminescence (PL) spectra, emission peak wavelength, and PLQY measured in poly(methyl methacrylate) (PMMA) of the Inventive Example 1, Inventive Example 2, Comparative Example 1, and Comparative Example 2 taken respectively in PMMA. The PL intensity is normalized to the maximum of the first emission peaks. Inventive Example 1 and Inventive Example 2 have photoluminescent emissions at 656 nm and 641 nm respectively. In comparison, Comparative Example 1 and Comparative Example 2 have photoluminescent emissions at 597 nm and 592 nm. It is unexpectedly found that by adding one cyano group on the pyridine, the emissions can red-shift by 59 nm and 49 nm while maintaining high PLQYs with less than 5% drops. This strategy of red-shifting color is very useful to achieve saturated red and deep red colors.









TABLE 1







Photoluminescent Properties of the


Inventive and Comparative Examples











Compound
λ max (PMMA) [nm]
PLQY [%]







Inventive Example 1
656
87



Inventive Example 2
641
88



Comparative example 1
597
91



Comparative example 2
592
91










Device Example

Example device was fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode was 1,200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of Liq (8-hydroxyquinoline lithium) followed by 1,000 Å of A1. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package. The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 Å of LG101 (purchased from LG Chem) as the hole injection layer (HIL); 400 Å of HTM as a hole transporting layer (HTL); 50 Å of EBM as a electron blocking layer (EBL); 400 Å of an emissive layer (EML) containing RH as red host, 18% of SD as a stability dopant, and 3% of emitter; and 350 Å of Liq (8-hydroxyquinoline lithium) doped with 35% of ETM as the electron transporting layer (ETL).









TABLE 2







Device layer materials and thicknesses











Layer
Material
Thickness [Å]















Anode
ITO
1,200



HIL
LG-101
100



HTL
HTM
400



EBL
EBM
50



EML
RH: SD 18%:Emitter 3%
400



ETL
Liq: ETM 35%
350



EIL
Liq
10



Cathode
Al
1,000











The chemical structures of the device materials are shown below:




embedded image


embedded image


Upon fabrication, the device was tested to measure EL and JVL. For this purpose, the samples were energized by the 2 channel Keysight B2902A SMU at a current density of 10 mA/cm2 and measured by the Photo Research PR735 Spectroradiometer. Radiance (W/str/cm2) from 380 nm to 1080 nm, and total integrated photon count were collected. The devices were then placed under a large area silicon photodiode for the JVL sweep. The integrated photon count of the device at 10 mA/cm2 is used to convert the photodiode current to photon count. The voltage is swept from 0 to a voltage equating to 200 mA/cm2. The EQE of the device is calculated using the total integrated photon count. All results are summarized in Table 2.









TABLE 3







device results












1931 CIE
λ max
FWHM
At 10 mA/cm2















Device
Emitter
x
y
[nm]
[nm]
Voltage [V]
LE [cd/A]
EQE [%]





Inventive
Inventive
0.690
0.308
646
44
4.1
13.8
26.0


device
Example 2









Table 3 is a summary of the performance of the electroluminescence device of the inventive OLED example using Inventive Example 2, which shows deep red emission at 646 nm with good device performance with 26.0% EQE. In addition, the inventive device gives high luminence efficacy (13.8 cd/A) because the inventive example 2 also exhibits a narrow emission spectrum with FWHM=44 run. All results show the great potentials of the inventive compounds for the saturated red, deep red, and NIR applications in organic light emitting diodes (OLED), chemical sensors, and bioimaging.

Claims
  • 1. A compound comprising a ligand LA of
  • 2. The compound of claim 1, wherein each of RA, and R1-R4 is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.
  • 3. The compound of claim 1, wherein the ligand LA has a structure of
  • 4. The compound of claim 1, wherein the electron-drawing group is selected from the group consisting of CN, COCH3, CHO, COCF3, COOMe, COOCF3, NO2, SF3, SiF3, PF4, SF5, OCF3, SCF3, SeCF3, SOCF3, SeOCF3, SO2F, SO2CF3, SeO2CF3, OSO2CF3, OSeO2CF3, OCN, SCN, SeCN, NC, +N(R)3, (R)2CCN, (R)2CCF3, CNC(CF3)2,
  • 5. The compound of claim 1, wherein R2 is a cyano, nitro, CHO, SF5, acyl, or +N(R)3.
  • 6. The compound of claim 1, wherein R3 is a 5-membered or 6-membered aromatic ring; or a 5-membered or 6-membered aromatic ring which is further fused to form a 5-membered or 6-membered ring.
  • 7. The compound of claim 1, wherein one of R1 and R4 is a cyano, nitro, CHO, SF5, acyl, or +N(R)3.
  • 8. The compound of claim 1, wherein ring A or ring A1 is each independently benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, or thiazole.
  • 9. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 10. The compound of claim 1, wherein the ligand LA can be selected from the group consisting of LAi-m, wherein i is an integer from 1 to 3696, and m is an integer from 1 to 138, and the structure of each LAi-m is as defined below:
  • 11. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 12. The compound of claim 1, wherein the compound has a formula of M(LA)p(LB)q(LC)r wherein LB and LC are each a bidentate ligand; and wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and p+q+r is the oxidation state of the metal M.
  • 13. The compound of claim 12, wherein the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other; or has a formula of Pt(LA)(LB); and wherein LA and LB can be same or different.
  • 14. The compound of claim 12, wherein LB and LC are each independently selected from the group consisting of:
  • 15. (canceled)
  • 16. The compound of claim 1, wherein the compound is selected from the group consisting of:
  • 17. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode,wherein the organic layer comprises a compound comprising a ligand LA of
  • 18. The OLED of claim 17, wherein the organic layer further comprises a host, wherein host comprises at least one chemical moiety selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).
  • 19. The OLED of claim 18, wherein the host is selected from the group consisting of:
  • 20. A consumer product comprising an organic light-emitting device comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode,wherein the organic layer comprises a compound comprising a ligand LA of
  • 21. The compound of claim 13, wherein when the ligand LA is selected from the group consisting of LAi-m, wherein i is an integer from 1 to 3696, and m is an integer from 1 to 138, and the structure of each LAi-m is as defined below:
Parent Case Info

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/124,190, filed on Dec. 11, 2020, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63124190 Dec 2020 US