ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Information

  • Patent Application
  • 20250002516
  • Publication Number
    20250002516
  • Date Filed
    August 27, 2024
    4 months ago
  • Date Published
    January 02, 2025
    13 days ago
Abstract
Provided are compounds having a ligand LA of Formula I
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices. More particularly, the present disclosure relates to acetylacetonate related compounds and formulations and their uses in electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a compound comprising a ligand LA of Formula I




embedded image


wherein A1 is fluorine, CH2F, CHF2, or CF3; R1 is selected from the group consisting of alkyl, cycloalkyl, fluorine, and combinations thereof; R2 is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and combinations thereof, but R2 does not comprise fluorine; R3, R4, and R5 are each independently a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, fluorine, and combinations thereof; and R6 is hydrogen, alkyl, or cycloalkyl, wherein the ligand LA is coordinated to a metal M; wherein the metal M can be coordinated to other ligands; wherein the ligand LA can be linked with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand; and wherein any two substituents can be joined or fused together where chemically feasible to form a ring.


In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.


In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound comprising a ligand LA of Formula I




embedded image


wherein A1 is fluorine, CH2F, CHF2, or CF3; R1 is selected from the group consisting of alkyl, cycloalkyl, fluorine, and combinations thereof; R2 is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and combinations thereof, but R2 does not comprise fluorine; R3, R4, and R5 are each independently a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, fluorine, and combinations thereof; and R6 is hydrogen, alkyl, or cycloalkyl,


wherein the ligand LA is coordinated to a metal M; wherein the metal M can be coordinated to other ligands;


wherein the ligand LA can be linked with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand; and wherein any two substituents can be joined or fused together where chemically feasible to form a ring.


In some embodiments, A1 can be fluorine.


In some embodiments, A1 can be CH2F, CHF2, or CF3.


In some embodiments, R6 can be hydrogen.


In some embodiments, A1 can be the same as R5, R1 can be the same as R3, and R2 can be the same as R4.


In some embodiments, R1, R2, R3, and R4 can each be alkyl or cycloalkyl.


In some embodiments, A1 and R5 can each be each fluorine.


In some embodiments, A1 and R5 can each be CH2F, CHF2, or CF3.


In some embodiments, R3, R4, and R5 can each be alkyl.


In some embodiments, R3 and R4 can each be alkyl, and R5 may be hydrogen.


In some embodiments, R3, R4, and R5 can each be fluorine.


In some embodiments, M can be selected from the group consisting of Os, Ir, Pd, Pt, Cu, Ag, and Au.


In some embodiments, M can be Ir or Pt. In some embodiments, M can be Ir.




embedded image


wherein R1 is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, partially or fully fluorinated alkyl, and combinations thereof;


In some embodiments, the ligand LA can be selected from the group consisting of LAz, wherein z is an integer from 1 to 46849770, wherein the structures of LA1 to LA46849770 are defined below:















LAz
Based on Formula
R1, R2, R7
z







LA1-LA7762392
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 [198 (i − 1) +





embedded image


RDj; R7 = RDk;
(j − 1)] + k, wherein i is an integer from 1 to 198, j is an integer from 1 to 198, and k is an integer from 1 to 198;





LA7762393-LA15524784
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 [198 (i − 1) +





embedded image


RDj; R7 = RDk;
(j − 1)] + k + 7762392, wherein i is an integer from 1 to 198, j is an integer from 1 to 198, and k is an integer from 1 to 198;





LA15524785-LA23287176
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 [198 (i − 1) +





embedded image


RDj; R7 = RDk;
(j − 1)] + k + 15524784, wherein i is an integer from 1 to 198, j is an integer from 1 to 198, and k is an integer from 1 to 198;





LA23287177-LA31049568
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 [198 (i − 1) +





embedded image


RDj; R7 = RDk;
(j − 1)] + k + 23287176, wherein i is an integer from 1 to 198, j is an integer from 1 to 198, and k is an integer from 1 to 198;





LA31049568-LA31088772
based on formula
wherein R2 = RDi; R7 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 31049568, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA31088773-LA31127976
based on formula
wherein R2 = RDi; R7 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 31088772, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA31127977-LA31128174
based on formula
wherein R7 = RDi;
wherein z = i + 31127976,





embedded image



wherein i is an integer from 1 to 198;





LA31128175-LA31128372
based on formula
wherein R7 = RDi;
wherein z = i + 31128174,





embedded image



wherein i is an integer from 1 to 198;





LA31128373-LA31128570
based on formula
wherein R7 = RDi;
wherein z = i + 31128372,





embedded image



wherein i is an integer from 1 to 198;





LA31128571-LA31128768
based on formula
wherein R7 = RDi;
wherein z = i + 31128570,





embedded image



wherein i is an integer from 1 to 198;





LA31128769-LA38891160
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 [198 (i − 1) +





embedded image


RDj; R7 = RDk;
(j − 1)] + k + 31128768, wherein i is an integer from 1 to 198, j is an integer from 1 to 198, and k is an integer from 1 to 198;





LA38891161-LA46653552
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 [198 (i − 1) +





embedded image


RDj; R7 = RDk;
(j − 1)] + k + 38891160, wherein i is an integer from 1 to 198, j is an integer from 1 to 198, and k is an integer from 1 to 198;





LA46653553-LA46692756
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 46653552, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA46692757-LA46731960
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 46692756, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA46731961-LA46771164
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 46731960, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA46771165-LA46810368
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 46771164, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA46810369-LA46849572
based on formula
wherein R1 = RDi; R2 =
wherein z = 198 (i − 1) +





embedded image


RDj;
j + 46810368, wherein i is an integer from 1 to 198, and j is an integer from 1 to 198;





LA46849573-LA46849770
based on formula
wherein R1 = RDi;
wherein z = i + 46849572,





embedded image



wherein i is an integer from 1 to 198;










wherein RD1 to RD198 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the ligand LA is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of M(LA)x(LB)y(LC)z wherein LA is as defined above, and LB and LC are each a bidentate ligand; and wherein x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M.


In some embodiments, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); wherein LA is as defined above; and wherein LA, LB, and LC are different from each other.


In some embodiments, the compound has a formula of Pt(LA)(LB); wherein LA is as defined above; and wherein LA and LB can be same or different.


In some embodiments, the ligands LA and LB can be connected to form a tetradentate ligand.


In some embodiments, the ligands LB and LC each can be independently selected from the group consisting of:




embedded image


embedded image


embedded image


wherein each Y1 to Y13 are independently selected from the group consisting of carbon and nitrogen; Y′ is selected from the group consisting of B Re, N Re, P Re, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; Re and Rf are optionally fused or joined to form a ring; each Ra, Rb, Rc, and Rd independently represents from mono substitution to the maximum possible number of substitutions, or no substitution; each Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and any two adjacent substituents of Ra, Rb, Rc, and Rd can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, the ligands LB and LC each can be independently selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


In some embodiments, LB can be selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein j′ is an integer from 1 to 400, and for each LBj, the substituents RE and G are defined as follows:
















Ligand
RE
G








LB1
R1
G1



LB2
R2
G1



LB3
R3
G1



LB4
R4
G1



LB5
R5
G1



LB6
R6
G1



LB7
R7
G1



LB8
R8
G1



LB9
R9
G1



LB10
R10
G1



LB11
R11
G1



LB12
R12
G1



LB13
R13
G1



LB14
R14
G1



LB15
R15
G1



LB16
R16
G1



LB17
R17
G1



LB18
R18
G1



LB19
R19
G1



LB20
R20
G1



LB21
R1
G2



LB22
R2
G2



LB23
R3
G2



LB24
R4
G2



LB25
R5
G2



LB26
R6
G2



LB27
R7
G2



LB28
R8
G2



LB29
R9
G2



LB30
R10
G2



LB31
R11
G2



LB32
R12
G2



LB33
R13
G2



LB34
R14
G2



LB35
R15
G2



LB36
R16
G2



LB37
R17
G2



LB38
R18
G2



LB39
R19
G2



LB40
R20
G2



LB41
R1
G3



LB42
R2
G3



LB43
R3
G3



LB44
R4
G3



LB45
R5
G3



LB46
R6
G3



LB47
R7
G3



LB48
R8
G3



LB49
R9
G3



LB50
R10
G3



LB51
R11
G3



LB52
R12
G3



LB53
R13
G3



LB54
R14
G3



LB55
R15
G3



LB56
R16
G3



LB57
R17
G3



LB58
R18
G3



LB59
R19
G3



LB60
R20
G3



LB61
R1
G4



LB62
R2
G4



LB63
R3
G4



LB64
R4
G4



LB65
R5
G4



LB66
R6
G4



LB67
R7
G4



LB68
R8
G4



LB69
R9
G4



LB70
R10
G4



LB71
R11
G4



LB72
R12
G4



LB73
R13
G4



LB74
R14
G4



LB75
R15
G4



LB76
R16
G4



LB77
R17
G4



LB78
R18
G4



LB79
R19
G4



LB80
R20
G4



LB81
R1
G5



LB82
R2
G5



LB83
R3
G5



LB84
R4
G5



LB85
R5
G5



LB86
R6
G5



LB87
R7
G5



LB88
R8
G5



LB89
R9
G5



LB90
R10
G5



LB91
R11
G5



LB92
R12
G5



LB93
R13
G5



LB94
R14
G5



LB95
R15
G5



LB96
R16
G5



LB97
R17
G5



LB98
R18
G5



LB99
R19
G5



LB100
R20
G5



LB101
R1
G6



LB102
R2
G6



LB103
R3
G6



LB104
R4
G6



LB105
R5
G6



LB106
R6
G6



LB107
R7
G6



LB108
R8
G6



LB109
R9
G6



LB110
R10
G6



LB111
R11
G6



LB112
R12
G6



LB113
R13
G6



LB114
R14
G6



LB115
R15
G6



LB116
R16
G6



LB117
R17
G6



LB118
R18
G6



LB119
R19
G6



LB120
R20
G6



LB121
R1
G7



LB122
R2
G7



LB123
R3
G7



LB124
R4
G7



LB125
R5
G7



LB126
R6
G7



LB127
R7
G7



LB128
R8
G7



LB129
R9
G7



LB130
R10
G7



LB131
R11
G7



LB132
R12
G7



LB133
R13
G7



LB134
R14
G7



LB135
R15
G7



LB136
R16
G7



LB137
R17
G7



LB138
R18
G7



LB139
R19
G7



LB140
R20
G7



LB141
R1
G8



LB142
R2
G8



LB143
R3
G8



LB144
R4
G8



LB145
R5
G8



LB146
R6
G8



LB147
R7
G8



LB148
R8
G8



LB149
R9
G8



LB150
R10
G8



LB151
R11
G8



LB152
R12
G8



LB153
R13
G8



LB154
R14
G8



LB155
R15
G8



LB156
R16
G8



LB157
R17
G8



LB158
R18
G8



LB159
R19
G8



LB160
R20
G8



LB161
R1
G9



LB162
R2
G9



LB163
R3
G9



LB164
R4
G9



LB165
R5
G9



LB166
R6
G9



LB167
R7
G9



LB168
R8
G9



LB169
R9
G9



LB170
R10
G9



LB171
R11
G9



LB172
R12
G9



LB173
R13
G9



LB174
R14
G9



LB175
R15
G9



LB176
R16
G9



LB177
R17
G9



LB178
R18
G9



LB179
R19
G9



LB180
R20
G9



LB181
R1
G10



LB182
R2
G10



LB183
R3
G10



LB184
R4
G10



LB185
R5
G10



LB186
R6
G10



LB187
R7
G10



LB188
R8
G10



LB189
R9
G10



LB190
R10
G10



LB191
R11
G10



LB192
R12
G10



LB193
R13
G10



LB194
R14
G10



LB195
R15
G10



LB196
R16
G10



LB197
R17
G10



LB198
R18
G10



LB199
R19
G10



LB200
R20
G10



LB201
R1
G11



LB202
R2
G11



LB203
R3
G11



LB204
R4
G11



LB205
R5
G11



LB206
R6
G11



LB207
R7
G11



LB208
R8
G11



LB209
R9
G11



LB210
R10
G11



LB211
R11
G11



LB212
R12
G11



LB213
R13
G11



LB214
R14
G11



LB215
R15
G11



LB216
R16
G11



LB217
R17
G11



LB218
R18
G11



LB219
R19
G11



LB220
R20
G11



LB221
R1
G12



LB222
R2
G12



LB223
R3
G12



LB224
R4
G12



LB225
R5
G12



LB226
R6
G12



LB227
R7
G12



LB228
R8
G12



LB229
R9
G12



LB230
R10
G12



LB231
R11
G12



LB232
R12
G12



LB233
R13
G12



LB234
R14
G12



LB235
R15
G12



LB236
R16
G12



LB237
R17
G12



LB238
R18
G12



LB239
R19
G12



LB240
R20
G12



LB241
R1
G13



LB242
R2
G13



LB243
R3
G13



LB244
R4
G13



LB245
R5
G13



LB246
R6
G13



LB247
R7
G13



LB248
R8
G13



LB249
R9
G13



LB250
R10
G13



LB251
R11
G13



LB252
R12
G13



LB253
R13
G13



LB254
R14
G13



LB255
R15
G13



LB256
R16
G13



LB257
R17
G13



LB258
R18
G13



LB259
R19
G13



LB260
R20
G13



LB261
R1
G14



LB262
R2
G14



LB263
R3
G14



LB264
R4
G14



LB265
R5
G14



LB266
R6
G14



LB267
R7
G14



LB268
R8
G14



LB269
R9
G14



LB270
R10
G14



LB271
R11
G14



LB272
R12
G14



LB273
R13
G14



LB274
R14
G14



LB275
R15
G14



LB276
R16
G14



LB277
R17
G14



LB278
R18
G14



LB279
R19
G14



LB280
R20
G14



LB281
R1
G15



LB282
R2
G15



LB283
R3
G15



LB284
R4
G15



LB285
R5
G15



LB286
R6
G15



LB287
R7
G15



LB288
R8
G15



LB289
R9
G15



LB290
R10
G15



LB291
R11
G15



LB292
R12
G15



LB293
R13
G15



LB294
R14
G15



LB295
R15
G15



LB296
R16
G15



LB297
R17
G15



LB298
R18
G15



LB299
R19
G15



LB300
R20
G15



LB301
R1
G16



LB302
R2
G16



LB303
R3
G16



LB304
R4
G16



LB305
R5
G16



LB306
R6
G16



LB307
R7
G16



LB308
R8
G16



LB309
R9
G16



LB310
R10
G16



LB311
R11
G16



LB312
R12
G16



LB313
R13
G16



LB314
R14
G16



LB315
R15
G16



LB316
R16
G16



LB317
R17
G16



LB318
R18
G16



LB319
R19
G16



LB320
R20
G16



LB321
R1
G17



LB322
R2
G17



LB323
R3
G17



LB324
R4
G17



LB325
R5
G17



LB326
R6
G17



LB327
R7
G17



LB328
R8
G17



LB329
R9
G17



LB330
R10
G17



LB331
R11
G17



LB332
R12
G17



LB333
R13
G17



LB334
R14
G17



LB335
R15
G17



LB336
R16
G17



LB337
R17
G17



LB338
R18
G17



LB339
R19
G17



LB340
R20
G17



LB341
R1
G18



LB342
R2
G18



LB343
R3
G18



LB344
R4
G18



LB345
R5
G18



LB346
R6
G18



LB347
R7
G18



LB348
R8
G18



LB349
R9
G18



LB350
R10
G18



LB351
R11
G18



LB352
R12
G18



LB353
R13
G18



LB354
R14
G18



LB355
R15
G18



LB356
R16
G18



LB357
R17
G18



LB358
R18
G18



LB359
R19
G18



LB360
R20
G18



LB361
R1
G19



LB362
R2
G19



LB363
R3
G19



LB364
R4
G19



LB365
R5
G19



LB366
R6
G19



LB367
R7
G19



LB368
R8
G19



LB369
R9
G19



LB370
R10
G19



LB371
R11
G19



LB372
R12
G19



LB373
R13
G19



LB374
R14
G19



LB375
R15
G19



LB376
R16
G19



LB377
R17
G19



LB378
R18
G19



LB379
R19
G19



LB380
R20
G19



LB381
R1
G20



LB382
R2
G20



LB383
R3
G20



LB384
R4
G20



LB385
R5
G20



LB386
R6
G20



LB387
R7
G20



LB388
R8
G20



LB389
R9
G20



LB390
R10
G20



LB391
R11
G20



LB392
R12
G20



LB393
R13
G20



LB394
R14
G20



LB395
R15
G20



LB396
R16
G20



LB397
R17
G20



LB398
R18
G20



LB399
R19
G20



LB400
R20
G20










wherein R1 to R20 have the following structures:




embedded image


embedded image


and


wherein G1 to G20 have the following structures:




embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of Ir(LA)(LBj-k)2, wherein LA is selected from the group consisting of LAz, wherein z is an integer from 1 to 46849770, wherein the structures of LA1 through LA46849770 are as described herein, and LB is selected from the group consisting of LBj-K, wherein j is an integer from 1 to 400 and k is an integer from 1 to 50, wherein the structures of LB1-1 through LB400-50 are as described herein.


In some embodiments, the compound is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the OLED comprises an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer can comprise a compound comprising a ligand LA of




embedded image


wherein A1 is fluorine, CH2F, CHF2, or CF3; R1 is selected from the group consisting of alkyl, cycloalkyl, fluorine, and combinations thereof; R2 is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and combinations thereof, but R2 does not comprise fluorine; R3, R4, and R5 are each independently a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, fluorine, and combinations thereof; and R6 is hydrogen, alkyl, or cycloalkyl, wherein the ligand LA is coordinated to a metal M; wherein the metal M can be coordinated to other ligands; wherein the ligand LA can be linked with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand; and wherein any two substituents can be joined or fused together where chemically feasible to form a ring.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).


In some embodiments, the host may be selected from the HOST Group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region can comprise a compound comprising a ligand LA of Formula I




embedded image


wherein A1 is fluorine, CH2F, CHF2, or CF3; R1 is selected from the group consisting of alkyl, cycloalkyl, fluorine, and combinations thereof; R2 is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and combinations thereof, but R2 does not comprise fluorine; R3, R4, and R are each independently a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, fluorine, and combinations thereof; and R6 is hydrogen, alkyl, or cycloalkyl, wherein the ligand LA is coordinated to a metal M; wherein the metal M can be coordinated to other ligands; wherein the ligand LA can be linked with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand; and wherein any two substituents can be joined or fused together where chemically feasible to form a ring.


In some embodiments of the emissive region, the compound can be an emissive dopant or a non-emissive dopant. In some embodiments, the emissive region further comprises a host, wherein the host contains at least one group selected from the group consisting of metal complex, triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene). In some embodiments, the emissive region further comprises a host, wherein the host is selected from the Host Group defined above.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer can comprise a compound comprising a ligand LA of




embedded image


wherein A1 is fluorine, CH2F, CHF2, or CF3; R1 is selected from the group consisting of alkyl, cycloalkyl, fluorine, and combinations thereof; R2 is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and combinations thereof, but R2 does not comprise fluorine; R3, R4, and R5 are each independently a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, fluorine, and combinations thereof; and R6 is hydrogen, alkyl, or cycloalkyl, wherein the ligand LA is coordinated to a metal M; wherein the metal M can be coordinated to other ligands; wherein the ligand LA can be linked with other ligands to form a tridentate, tetradentate, pentadentate, or hexadentate ligand; and wherein any two substituents can be joined or fused together where chemically feasible to form a ring.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image


wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


E. Experimental Data
Synthesis of Materials
Example 1
Synthesis of Compound Ir(LB86-9)2(LA7762396)



embedded image


Di-μ-chloro-tetrakis-[(1-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo-[4,5]thieno[2,3-c]pyridin-2-yl]diiridium(III): A solution of 1-(4-(tert-butyl)naphthalen-2-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridine (130 g, 306 mmol, 1.8 equiv) in 2-ethoxyethanol (2420 mL) and water (580 mL) was sparged with nitrogen for 1 hour. Iridium(III) chloride hydrate (63 g, 170 mmol, 1.0 equiv) was added and the reaction mixture heated at 90° C. for 36 hours. 1H-NMR analysis indicated the reaction was complete. The reaction mixture was cooled to 35° C., the resulting solid was filtered and washed with methanol (4×250 mL). The solid was dried under vacuum at 40° C. to give di-μ-chloro-tetrakis-[(1-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo[4,5] thieno[2,3-c]pyridin-2-yl]diiridium(III) (153.2 g, 93% yield) as a red solid.




embedded image


Bis[1-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridin-2-yl]-(1,1,1-trifluoro-2,2,6-trimethylheptane-3,5-dionato-k2O,O′) iridium(III): 1,1,1-Trifluoro-2,2,6-trimethyl-heptane-3,5-dione (1.42 g, 6.3 mmol, 2.7 equiv) was added via syringe, to a solution of di-μ-chloro-tetrakis-[(1-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo[4,5] thieno[2,3-c]pyridin-2-yl]diiridium(III) (5.0 g, 2.3 mmol, 1.0 equiv) in a 1 to 1 mixture of dichloromethane and methanol (70 mL). The reaction mixture was sparged with nitrogen for 15 minutes. Powdered potassium carbonate (1.2 g, 8.3 mmol, 3.6 equiv) was added and the reaction mixture heated at 40° C. for 16 hours in a flask wrapped in foil to exclude light. 1H-NMR analysis indicated the reaction was complete. The cooled mixture was poured into methanol (300 mL), the resulting solid was filtered and washed with methanol (150 mL). The red solid was diluted with water (150 mL) and the slurry stirred for 15 minutes. The suspension was filtered, washed sequentially with water (150 mL) and methanol (2×25 mL) and dried under vacuum at 45° C. for 2 hours. The red solid (˜5 g) was dry-loaded onto basic alumina (122 g) and chromatographed on an Interchim automated chromatography system (220 g silica gel cartridge), eluting with a gradient of 10 to 40% dichloromethane in hexanes. Purest product fractions were combined and concentrated under reduced pressure. The residual solid (3.8 g) was triturated with methanol (10 volumes) at 40° C., filtered, and dried under vacuum at 45° C. for 2 hours to give bis[1-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo [4,5]thieno[2,3-c]pyridin-2-yl]-(1,1,1-trifluoro-2,2,6-trimethylheptane-3,5-dionato-k2O,O′)iridium(III) (3.72 g, 63% yield, 99.7% UPLC purity) as a red solid.


Example 2
Synthesis of Compound Ir(LB91-27)2(LA7762396)



embedded image


Di-μ-chloro-tetrakis[(4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-7-methyl-6-(3,3,3-trifluoropropyl)thieno[3,2-d]pyrimidin-3-yl]diiridium(III): A mixture of 4-(4-(tert-butyl)naphthalen-2-yl)-7-methyl-6-(3,3,3-trifluoropropyl)-thieno[3,2-d]pyrimidine (30.2 g, 70.5 mmol, 2.0 equiv), 2-ethoxyethanol (150 mL) and water (50 mL) was sparged with nitrogen for 25 minutes. Iridium(III) chloride hydrate (11.14 g, 35.2 mmol, 1.0 equiv) was added and sparging continued for 5 minutes. The reaction mixture was heated at 100° C. for 15 hours at which time 1H NMR analysis showed 95% conversion to product. The reaction mixture was cooled to room temperature, filtered and the solids washed with methanol (50 mL) to give di-μ-chloro-tetrakis[4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-7-methyl-6-(3,3,3-trifluoropropyl)thieno[3,2-d]pyrimidin-3-yl]diiridium(III) (60 g, wet) as a red solid.




embedded image


Bis[(4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-6-(3,3,3-trifluoropropyl)-7-methyl-thieno[3,2-d]pyrimidin-3-yl)]-(1,1,1-trifluoro-2,2,6-trimethyl-3,5-heptanedio-nato-k2O,O′)iridium(III): A suspension of di-μ-chloro-tetrakis[4-(4-(tert-butyl)-naphthalen-2-yl)-1′-yl)-7-methyl-6-(3,3,3-trifluoropropyl)thieno[3,2-d]pyrimidin-3-yl]diiridium(III) (2.5 g, 1.16 mmol, 1.0 equiv), 1,1,1-trifluoro-2,2,6-trimethylhep-tane-3,5-dione (650 mg, 2.88 mmol, 2.5 equiv) and powdered potassium carbonate (480 mg, 3.48 mmol, 3.0 equiv) in methanol (12 mL) and dichloro-methane (2 mL) was heated at 40° C. for 24 hours. 1H NMR analysis indicated the reaction was complete. The reaction mixture was cooled to room temperature, water (10 mL) added and the suspension stirred for 30 minutes. The suspension was filtered, the solid washed with water (30 mL) and methanol (10 mL) then air-dried. The red solid (3.1 g) was chromatographed on silica gel (90 g) topped with basic alumina (20 g), eluting with 80% dichloro-methane in hexanes. Cleanest product containing fractions were concentrated to give bis[(4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-6-(3,3,3-trifluoropropyl)-7-methylthieno[3,2-d]-pyrimidin-3-yl)]-(1,1,1-trifluoro-2,2,6-trimethyl-3,5-heptanedionato-k2O,O′)-iridium(III) (1.51 g, 51% yield, 99.6% UPLC purity) as a red solid.


Comparative Example 1



embedded image


Bis[1-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridin-2-yl]-(2,6-dimethyl-heptane-3,5-dionato-k2O,O′) iridium(III): 2,6-Dimethyl-heptane-3,5-dione (655 mg, 4.2 mmol, 3.0 equiv) was added to a solution of di-μ-chloro-tetrakis-[(1-(4-(tert-butyl) naphthalen-2-yl)-1′-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridin-2-yl]diiridium(III) (3.0 g, 1.40 mmol, 1.0 equiv) in a 1 to 1 mixture of dichloromethane and methanol (60 mL). The reaction mixture sparged with nitrogen for 5 minutes. Powdered potassium carbonate (775 mg, 5.6 mmol, 4.0 equiv) was added and the reaction mixture stirred at room temperature in a flask wrapped in foil to exclude light. After 25 hours, 1H-NMR analysis indicated the reaction was complete. The reaction mixture was poured into methanol (150 mL) and the slurry stirred for 30 minutes. The suspension was filtered and the solid washed with methanol (3×30 mL). The crude product (3.7 g) was dissolved in dichloromethane (100 mL), dry-loaded onto basic alumina (25 g) and chromatographed on an Interchim automated chromatography system (80 g, silica gel cartridge), eluting with a gradient of 0 to 50% dichloromethane in hexanes. Cleanest product containing fractions were concentrated under reduced pressure to give bis[1-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridin-2-yl]-(2,6-dimethyl-heptane-3,5-dionato-k2O,O′) iridium(III) (1.75 g, 52% yield, 99.2% UPLC purity) as a red solid.


Comparative Example 2



embedded image


Bis[(4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-6-(3,3,3-trifluoropropyl)-7-methyl-thieno[3,2-d]pyrimidin-3-yl)]-(2,6-dimethyl-3,5-heptane-dionato-k2O,O′)-iridium(III): A suspension of di-μ-chloro-tetrakis[4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-7-methyl-6-(3,3,3-trifluoropropyl)thieno[3,2-d]pyrimidin-3-yl]diiridium(III) (3 g (wet), est. 1.385 mmol, 1.0 equiv), 2,6-dimethyl-3,5-heptane-dione (0.87 g, 5.54 mmol, 4.0 equiv) and powdered potassium carbonate (1.15 g, 8.31 mmol, 6.0 equiv) in methanol (15 mL) and dichloromethane (5 mL) was heated at 40° C. for 2 hours. 1H-NMR analysis indicated the reaction was complete and the mixture was cooled to room temperature. Water (10 mL) was added, the resulting solid was filtered, washed with water (3 mL) and methanol (3 mL). The crude solid was purified on an Interchim automated system (80 g silica gel cartridge), eluting with a gradient of 0 to 80% dichloromethane in heptanes. The cleanest product fractions were concentrated under reduced pressure. The residue was triturated with a mixture of dichloromethane (2 mL) and methanol (10 mL) at 50° C. to give the desired product (˜2.9 g, 98.9% UPLC purity, containing 0.9% oxides). The product was further purified by trituration with a mixture of dichloromethane (2 mL) and acetonitrile (10 mL) at 50° C. to give bis[(4-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-6-(3,3,3-trifluoropropyl)-7-methyl-thieno[3,2-d]pyrimidin-3-yl)]-(2,6-dimethyl-3,5-heptane-dionato-k2O,O′)-iridium(III) (2.5 g, 75% yield, 99.6% UPLC purity) as a red solid.


Device Examples

All example devices were fabricated by high vacuum (<10-7 Torr) thermal evaporation. The anode electrode was 1,200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of Liq (8-hydroxyquinoline lithium) followed by 1,000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package. The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 Å of LG101 (purchased from LG Chem) as the hole injection layer (HIL); 400 Å of HTM as a hole transporting layer (HTL); 50 Å of EBM as a electron blocking layer (EBL); 400 Å of an emissive layer (EML) containing RH as red host and 3% of emitter, and 350 Å of Liq (8-hydroxyquinolinelithium) doped with 35% of ETM as the electron transporting layer (ETL). Table 1 shows the thickness of the device layers and materials.









TABLE 1







Device layer materials and thicknesses









Layer
Material
Thickness [Å]












Anode
ITO
1,200


HIL
LG101
100


HTL
HTM
400


EBL
EBM
50


EML
Host: Red emitter 3%
400


ETL
Liq: ETM 35%
350


EIL
Liq
10


Cathode
Al
1,000









The chemical structures of the device materials are shown below:




embedded image


Upon fabrication devices have been EL and JVL tested. For this purpose, the sample was energized by the 2 channel Keysight B2902A SMU at a current density of 10 mA/cm2 and measured by the Photo Research PR735 Spectroradiometer. Radiance (W/str/cm2) from 380 nm to 1080 nm, and total integrated photon count were collected. The device is then placed under a large area silicon photodiode for the JVL sweep. The integrated photon count of the device at 10 mA/cm2 is used to convert the photodiode current to photon count. The voltage is swept from 0 to a voltage equating to 200 mA/cm2. The EQE of the device is calculated using the total integrated photon count. All results are summarized in Table 2. Voltage, EQE, and LE of inventive examples (Devices 1 and 3) are reported as relative numbers normalized to the results of the comparative examples (Devices 2 and 4).















TABLE 2












At 10 mA/cm2


















1931 CIE
λ max
FWHM
Voltage
EQE
LE
Tsub
















Device
Red emitter
x
y
[nm]
[nm]
[V]
[%]
[cd/A]
[° C.]





Device 1
Example 1
0.671
0.328
622
35
0.97
1.00
1.07
290


Device 2
Comparative
0.678
0.321
624
34
1.00
1.00
1.00
320



Example 1






















TABLE 3












At 10 mA/cm2


















1931 CIE
λ max
FWHM
Voltage
EQE
LE
Tsub
















Device
Red emitter
x
y
[nm]
[nm]
[V]
[%]
[cd/A]
[° C.]





Device 3
Example 2
0.674
0.325
625
38
1.03
1.00
1.09
250


Device 4
Comparative
0.681
0.318
627
38
1.00
1.00
1.00
280



Example 2










Tables 2 and 3 provide a summary of performance of electroluminescence device and sublimation temperature of the materials. The inventive devices (device 1 and 3) showed similar voltage, EQE, and FWHM compared to the comparative examples (device 2 and device 4), but both inventive devices showed 2 nm blue shift in λmax and 7 to 9% improvement in LE. As a result, both inventive devices emit more saturated red light and showed improved current efficiency. In addition, both inventive examples showed a lower sublimation temperature by 30° C. than the comparative examples, which is important to improve the device fabrication process.

Claims
  • 1. A compound comprising a ligand LA of Formula I
  • 2. The compound of claim 1, wherein A1 is fluorine.
  • 3. The compound of claim 1, wherein A1 is CH2F, CHF2, or CF3.
  • 4. The compound of claim 1, wherein R1, R2, R3, and R4 are each alkyl or cycloalkyl.
  • 5. The compound of claim 1, wherein A1 is the same as R5.
  • 6. The compound of claim 1, wherein R3 and R4 are each alkyl, and R5 is alkyl or hydrogen.
  • 7. The compound of claim 1, wherein R3, R4, and R5 are each fluorine.
  • 8. The compound of claim 1, wherein R1 and R2 and/or two of R3, R4, and R5 join together to form a saturated ring.
  • 9. The compound of claim 1, wherein M is Ir.
  • 10. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 11. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LAY, wherein z is an integer from 1 to 46849770, wherein the structures of LA1 to LA46849770 are defined below:
  • 12. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 13. The compound of claim 1, wherein the compound has a formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand; and wherein x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M; wherein LB and LC are each independently selected from the group consisting of:
  • 14. The compound of claim 13, wherein the ligand LB can be selected from the following structures consisting of:
  • 15. The compound of claim 14, wherein the compound has a formula of Ir(LA)(LBj-k)2, wherein k is an integer from 1 to 50, wherein the ligand LA is selected from the group consisting of LAz, wherein z is an integer from 1 to 46849770 and the structures of LA1 to LA46849770 are defined below:
  • 16. The compound of claim 1, wherein the compound is selected from the group consisting of:
  • 17. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound comprising a ligand LA of Formula I
  • 18. The OLED of claim 17, wherein the organic layer further comprises a host, wherein the host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).
  • 19. The OLED of claim 18, wherein the host is selected from the group consisting of:
  • 20. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound comprising a ligand LA of Formula I
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of copending U.S. patent application Ser. No. 16/941,123, filed Jul. 28, 2020, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/888,081, filed on Aug. 16, 2019, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
62888081 Aug 2019 US
Continuations (1)
Number Date Country
Parent 16941123 Jul 2020 US
Child 18816122 US