ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Information

  • Patent Application
  • 20210066614
  • Publication Number
    20210066614
  • Date Filed
    November 04, 2020
    3 years ago
  • Date Published
    March 04, 2021
    3 years ago
Abstract
Devices containing novel carbazole-containing compounds are provided. The novel compounds also contain electron donor groups, aryl linkers, and at least one nitrogen heterocycle. These novel organic compounds can exhibit delayed fluorescence in the devices.
Description
PARTIES TO A JOINT RESEARCH AGREEMENT

The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.


FIELD OF THE INVENTION

The present invention relates to carbazole-containing compounds bearing an electron donor group that are suitable for use in OLED devices. These compounds also exhibit delayed fluorescence characteristics.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY OF THE INVENTION

A compound having the formula:




embedded image


is provided.


Z1, Z2, Z3, Z4 and Z5 are each independently selected from group consisting of CR9 and N, and any adjacent R9 are optionally joined to form a fused ring. At least one of Z1, Z2, Z3, Z4 and Z5 is N.


L1 is selected from the group consisting of:




embedded image


and combinations thereof;


where X1 is O, S, or CRR′ and R, R′ are optionally joined to form a ring. n1 is an integer from 1 to 20, and L can be further substituted by a substituent selected from the group consisting of alkyl, aryl, and heteroaryl. At least one of R1, R2, R3, R4, R5, R6, R7, and R8 comprises at least one electron donor group selected from the group consisting of:




embedded image


embedded image


X and Y is selected from the group consisting of O, S, NR14; and R11, R12, R13 and R14 are selected from the group consisting of aryl and heteroaryl. Any two adjacent R1, R2, R3, R4, R5, R6, R7, and R8 are not joined to form a ring, m is an integer from 1 to 20, and n2 is an integer from 1 to 20. R1, R2, R3, R4, R5, R6, R7, and R8 do not contain an electron acceptor group, and R9 does not contain an electron donor group.


R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof; and R9, R, and R′ are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, arylalkyl, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof.


In one aspect, at least one of R1, R2, R3, R4, R5, R6, R7, and R8 comprises the electron donor group selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one aspect, the compound has the formula:




embedded image


and where R91 and R92 are independently selected from aryl or heteroaryl, and can be further substituted.


In one aspect, the compound is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one aspect, the compound is selected from the group consisting of: Compounds 1, 5, 13, 9, 33, 37, 41, 45, 57, 61, 69, 65, 77, 73, 97, 101, 105, 121, 125, 109, 133, 129, 141, 137, 161, 165, 169, 173, 185, 189, 197, 193, 205, 201, 225, 229, 233, 237, 249, 253, 261, 257, 269, 265, 289, 293, 297, 301, 313, 317, 325, 321, 333, 329, 353, 357, 361, 365, 377, 381, 389, 385, 393, 417, 421, 425, 429, 441, 445, 453, 449, 461, 457, 481, 485, 489, 493, 505, 509, 517, 513, 525, 521, 545, 549, 553, 557, 569, 573, 581, 577, 589, 585, 609, 613, 617, 621, 633, 637, 645, 641, 653, 649, 673, 677, 681, 685, 697, 701, 709, 705, 717, 713, 737, 741, 745, 749, 761, 765, 773, 769, 781, 777, 801, 805, 809, 813, 825, 829, 837, 833, 845, 841, 865, 869, 873, 877, 889, 873, 877, 889, 893, 1029, 1025, 1037, 1033, 1057, 1061, 1065, 1069, 1081, 1085, 1093, 1089, 1111, 1097, 1121, 1125, 1129, 1133, 1145, 1149, 1157, 1153, 1165, 1161, 1185, 1189, 1193, 1197, 1209, 1213, 1221, 1217, 1229, 1225, 1249, 1253, 1257, 1261, 1173, 1177, 1477, 1473, 1485, 1481, 1505, 1509, 1513, 1517, 1529, 1533, 1605, 1601, 1613, 1609, 1633, 1637, 1641, 1645, 1657, 1661, 1669, 1665, 1677, 1673, 1697, 1701, 1705, 1709, 1721, 1725, 1797, 1793, 1805, 1801, 1833, 1837, 1853, 1849, 1861, 1857, 1869, 1865, 1889, 1893, 1897, 1901, 1913, 1917, 1989, 1985, 1997, 1993, 2017, 2021, 2025, 2029, 2041, and 2045.


In one aspect, a first device comprising a first organic light emitting device, further comprising an anode, a cathode; and an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having the formula:




embedded image


Z1, Z2, Z3, Z4 and Z5 are each independently selected from group consisting of CR9 and N, and any adjacent R9 are optionally joined to form a fused ring. At least one of Z1, Z2, Z3, Z4 and Z5 is N.


L1 is selected from the group consisting of:




embedded image


and combinations thereof;


where X1 is O, S, or CRR′ and R, R′ are optionally joined to form a ring. n1 is an integer from 1 to 20, and L can be further substituted by a substituent selected from the group consisting of alkyl, aryl, and heteroaryl. At least one of R1, R2, R3, R4, R5, R6, R7, and R8 comprises an electron donor group.


Any two adjacent R1, R2, R3, R4, R5, R6, R7, and R8 are not joined to form a ring. R1, R2, R3, R4, R5, R6, R7, and R8 do not contain an electron acceptor group, and R9 does not contain an electron donor group.


R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof; and R9, R, and R′ are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, arylalkyl, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof.


In one aspect, the electron donor group comprises at least one chemical group selected from the group consisting of amino, indole, carbazole, benzothiohpene, benzofuran, benzoselenophene, dibenzothiophene, dibenzofuran, dibenzoselenophene, and combinations thereof.


In one aspect, the electron donor group comprises at least one chemical group selected from the group consisting of:




embedded image


embedded image


where X and Y are selected from the group consisting of O, S, NR14, m is an integer from 1 to 20, n2 is an integer from 1 to 20, and where R11, R12, R13 and R14 are selected from the group consisting of aryl and heteroaryl.


In one aspect, the donor group is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one aspect, the first emitting compound having the formula:




embedded image


wherein R91 and R92 are independently selected from aryl or heteroaryl, and can be further substituted.


In one aspect, the electron donor group has a formula selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one aspect, the first emitting compound has a formula selected from the group consisting of: Compounds 1, 5, 13, 9, 33, 37, 41, 45, 57, 61, 69, 65, 77, 73, 97, 101, 105, 121, 125, 109, 133, 129, 141, 137, 161, 165, 169, 173, 185, 189, 197, 193, 205, 201, 225, 229, 233, 237, 249, 253, 261, 257, 269, 265, 289, 293, 297, 301, 313, 317, 325, 321, 333, 329, 353, 357, 361, 365, 377, 381, 389, 385, 393, 417, 421, 425, 429, 441, 445, 453, 449, 461, 457, 481, 485, 489, 493, 505, 509, 517, 513, 525, 521, 545, 549, 553, 557, 569, 573, 581, 577, 589, 585, 609, 613, 617, 621, 633, 637, 645, 641, 653, 649, 673, 677, 681, 685, 697, 701, 709, 705, 717, 713, 737, 741, 745, 749, 761, 765, 773, 769, 781, 777, 801, 805, 809, 813, 825, 829, 837, 833, 845, 841, 865, 869, 873, 877, 889, 873, 877, 889, 893, 1029, 1025, 1037, 1033, 1057, 1061, 1065, 1069, 1081, 1085, 1093, 1089, 1111, 1097, 1121, 1125, 1129, 1133, 1145, 1149, 1157, 1153, 1165, 1161, 1185, 1189, 1193, 1197, 1209, 1213, 1221, 1217, 1229, 1225, 1249, 1253, 1257, 1261, 1173, 1177, 1477, 1473, 1485, 1481, 1505, 1509, 1513, 1517, 1529, 1533, 1605, 1601, 1613, 1609, 1633, 1637, 1641, 1645, 1657, 1661, 1669, 1665, 1677, 1673, 1697, 1701, 1705, 1709, 1721, 1725, 1797, 1793, 1805, 1801, 1833, 1837, 1853, 1849, 1861, 1857, 1869, 1865, 1889, 1893, 1897, 1901, 1913, 1917, 1989, 1985, 1997, 1993, 2017, 2021, 2025, 2029, 2041, 2045, 2117, 2113, 2125, 2121, 2145, 2149, 2153, 2157, 2169, 2173, 2181, 2177, 2189, 2185, 2209, 2213, 2217, 2221, 2233, 2237, 2245, 2241, 2253, 2249, 2273, 2277, 2281, 2285, 2297, 2301, 2373, 2369, 2381, 2277, 2401, 2405, 2409, 2413, 2425, 2429, 2503, 2497, 2511, 2507, 2529, 2533, 2537, 2541, 2553, 2557, 2629, 2625, 2637, 2633, 2657, 2661, 2665, 2669, 2681, 2685, 2757, 2753, 2765, 2761, 2785, 2789, 2793, 2797, 2809, 2813, 2885, 2881, 2893, 2889, 2913, 2917, 2921, 2925, 2937, 2941, 2949, 2945, 2957, 2953, 2977, 2981, 2985, 2989, 3001, 3005, 3013, 3009, 3021, 3017, 3041, 3045, 3049, 3053, 3065, and 3069.


In one aspect, the first device emits a luminescent radiation at room temperature when a voltage is applied across the organic light emitting device, wherein the luminescent radiation comprises a delayed fluorescence process.


In one aspect, the emissive layer further comprises a first phosphorescent emitting material.


In one aspect, the emissive layer further comprises a second phosphorescent emitting material.


In one aspect, the emissive layer further comprises a host material.


In one aspect, the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device.


In one aspect, the first emitting compound emits a blue light with a peak wavelength of about 400 nm to about 500 nm.


In one aspect, the emitting compound emits a yellow light with a peak wavelength of about 530 nm to about 580 nm.


In one aspect, the first device comprises a second organic light emitting device, wherein the second organic light emitting device is stacked on the first organic light emitting device.


In one aspect, the first device is a consumer product.


In one aspect, the first device is an organic light-emitting device.


In one aspect, the first device is a lighting panel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 shows a compound of Formula I.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.


It is believed that the internal quantum efficiency (IQE) of fluorescent OLEDs can exceed the 25% spin statistics limit through delayed fluorescence. As used herein, there are two types of delayed fluorescence, i.e. P-type delayed fluorescence and E-type delayed fluorescence. P-type delayed fluorescence is generated from triplet-triplet annihilation (TTA).


On the other hand, E-type delayed fluorescence does not rely on the collision of two triplets, but rather on the thermal population between the triplet states and the singlet excited states. Compounds that are capable of generating E-type delayed fluorescence are required to have very small singlet-triplet gaps. Thermal energy can activate the transition from the triplet state back to the singlet state. This type of delayed fluorescence is also known as thermally activated delayed fluorescence (TADF). A distinctive feature of TADF is that the delayed component increases as temperature rises due to the increased thermal energy. If the reverse intersystem crossing rate is fast enough to minimize the non-radiative decay from the triplet state, the fraction of back populated singlet excited states can potentially reach 75%. The total singlet fraction can be 100%, far exceeding the spin statistics limit for electrically generated excitons.


E-type delayed fluorescence characteristics can be found in an exciplex system or in a single compound. Without being bound by theory, it is believed that E-type delayed fluorescence requires the luminescent material to have a small singlet-triplet energy gap (ΔES-T). Organic, non-metal containing, donor-acceptor luminescent materials may be able to achieve this. The emission in these materials is often characterized as a donor-acceptor charge-transfer (CT) type emission. The spatial separation of the HOMO and LUMO in these donor-acceptor type compounds often results in small ΔES-T. These states may involve CT states. Often, donor-acceptor luminescent materials are constructed by connecting an electron donor moiety such as amino- or carbazole-derivatives and an electron acceptor moiety such as N-containing six-membered aromatic rings.


A compound having the formula:




embedded image


is provided.


Z1, Z2, Z3, Z4 and Z5 are each independently selected from group consisting of CR9 and N, and any adjacent R9 are optionally joined to form a fused ring. At least one of Z1, Z2, Z3, Z4 and Z5 is N.


L1 is selected from the group consisting of:




embedded image


and combinations thereof;


where X1 is O, S, or CRR′ and R, R′ are optionally joined to form a ring. n1 is an integer from 1 to 20, and L1 can be further substituted by a substituent selected from the group consisting of alkyl, aryl, and heteroaryl. At least one of R1, R2, R3, R4, R5, R6, R7, and R8 comprises at least one electron donor group selected from the group consisting of:




embedded image


embedded image


X and Y is selected from the group consisting of O, S, NR14; and R11, R12, R13 and R14 are selected from the group consisting of aryl and heteroaryl. Any two adjacent R1, R2, R3, R4, R5, R6, R7, and R8 are not joined to form a ring, m is an integer from 1 to 20, and n2 is an integer from 1 to 20. R1, R2, R3, R4, R5, R6, R7, and R8 do not contain an electron acceptor group, and R9 does not contain an electron donor group.


R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof; and R9, R, and R′ are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, arylalkyl, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof.


In one embodiment, at least one of R1, R2, R3, R4, R5, R6, R7, and R8 comprises the electron donor group selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


As used herein, the phrase “electron acceptor” means a fragment that can accept electron density from an aromatic system, and the phrase “electron donor” means a fragment that donates electron density into an aromatic system.


In one embodiment, the compound has the formula:




embedded image


and where R91 and R92 are independently selected from aryl or heteroaryl, and can be further substituted.


In one embodiment, the compound is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one embodiment, the compound is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one embodiment, a first device comprising a first organic light emitting device, further comprising an anode, a cathode; and an emissive layer, disposed between the anode and the cathode, wherein the emissive layer comprises a first emitting compound having the formula:




embedded image


Z1, Z2, Z3, Z4 and Z5 are each independently selected from group consisting of CR9 and N, and any adjacent R9 are optionally joined to form a fused ring. At least one of Z1, Z2, Z3, Z4 and Z5 is N.


L1 is selected from the group consisting of:




embedded image


and combinations thereof;


where X1 is O, S, or CRR′ and R, R′ are optionally joined to form a ring. n1 is an integer from 1 to 20, and L can be further substituted by a substituent selected from the group consisting of alkyl, aryl, and heteroaryl. At least one of R1, R2, R3, R4, R5, R6, R7, and R8 comprises an electron donor group.


Any two adjacent R1, R2, R3, R4, R5, R6, R7, and R8 are not joined to form a ring. R1, R2, R3, R4, R5, R6, R7, and R8 do not contain an electron acceptor group, and R9 does not contain an electron donor group.


R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof; and R9, R, and R′ are independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, arylalkyl, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combinations thereof.


In one embodiment, the electron donor group comprises at least one chemical group selected from the group consisting of amino, indole, carbazole, benzothiohpene, benzofuran, benzoselenophene, dibenzothiophene, dibenzofuran, dibenzoselenophene, and combinations thereof.


In one embodiment, the electron donor group comprises at least one chemical group selected from the group consisting of:




embedded image


embedded image


where X and Y are selected from the group consisting of O, S, NR14, m is an integer from 1 to 20, n2 is an integer from 1 to 20, and where R11, R12, R13 and R14 are selected from the group consisting of aryl and heteroaryl.


In one embodiment, the donor group is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


In one embodiment, the first emitting compound having the formula:




embedded image


and


wherein R91 and R92 are independently selected from aryl or heteroaryl, and can be further substituted.


In one embodiment, the electron donor group has a formula selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


In one embodiment, the first emitting compound has a formula selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one embodiment, the compound is selected from the group consisting of compound i based on the formula of




embedded image


and compound i+1 based on the formula of




embedded image


wherein is an odd integer from 1 to 3327; wherein for each i, R3, R6, L and Z3 are defined as follow:
















i
R3
R6
L1
Z3



















1.
D101
H
L101
N


3.
D101
H
L101
CH


5.
D101
H
L102
N


7.
D101
H
L102
CH


9.
D101
H
L103
N


11.
D101
H
L103
CH


13.
D101
H
L104
N


15.
D101
H
L104
CH


17.
D101
H
L105
N


19.
D101
H
L105
CH


21.
D101
H
L106
N


23.
D101
H
L106
CH


25.
D101
H
L107
N


27.
D101
H
L107
CH


29.
D101
H
L108
N


31.
D101
H
L108
CH


33.
D101
H
L109
N


35.
D101
H
L109
CH


37.
D101
H
L110
N


39.
D101
H
L110
CH


41.
D101
H
L111
N


43.
D101
H
L111
CH


45.
D101
H
L112
N


47.
D101
H
L112
CH


49.
D101
H
L113
N


51.
D101
H
L113
CH


53.
D101
H
L114
N


55.
D101
H
L114
CH


57.
D101
H
L115
N


59.
D101
H
L115
CH


61.
D101
H
L116
N


63.
D101
H
L116
CH


65.
D101
D101
L101
N


67.
D101
D101
L101
CH


69.
D101
D101
L102
N


71.
D101
D101
L102
CH


73.
D101
D101
L103
N


75.
D101
D101
L103
CH


77.
D101
D101
L104
N


79.
D101
D101
L104
CH


81.
D101
D101
L105
N


83.
D101
D101
L105
CH


85.
D101
D101
L106
N


87.
D101
D101
L106
CH


89.
D101
D101
L107
N


91.
D101
D101
L107
CH


93.
D101
D101
L108
N


95.
D101
D101
L108
CH


97.
D101
D101
L109
N


99.
D101
D101
L109
CH


101.
D101
D101
L110
N


103.
D101
D101
L110
CH


105.
D101
D101
L111
N


107.
D101
D101
L111
CH


109.
D101
D101
L112
N


111.
D101
D101
L112
CH


113.
D101
D101
L113
N


115.
D101
D101
L113
CH


117.
D101
D101
L114
N


119.
D101
D101
L114
CH


121.
D101
D101
L115
N


123.
D101
D101
L115
CH


125.
D101
D101
L116
N


127.
D101
D101
L116
CH


129.
D102
H
L101
N


131.
D102
H
L101
CH


133.
D102
H
L102
N


135.
D102
H
L102
CH


137.
D102
H
L103
N


139.
D102
H
L103
CH


141.
D102
H
L104
N


143.
D102
H
L104
CH


145.
D102
H
L105
N


147.
D102
H
L105
CH


149.
D102
H
L106
N


151.
D102
H
L106
CH


153.
D102
H
L107
N


155.
D102
H
L107
CH


157.
D102
H
L108
N


159.
D102
H
L108
CH


161.
D102
H
L109
N


163.
D102
H
L109
CH


165.
D102
H
L110
N


167.
D102
H
L110
CH


169.
D102
H
L111
N


171.
D102
H
L111
CH


173.
D102
H
L112
N


175.
D102
H
L112
CH


177.
D102
H
L113
N


179.
D102
H
L113
CH


181.
D102
H
L114
N


183.
D102
H
L114
CH


185.
D102
H
L115
N


187.
D102
H
L115
CH


189.
D102
H
L116
N


191.
D102
H
L116
CH


193.
D102
D102
L101
N


195.
D102
D102
L101
CH


197.
D102
D102
L102
N


199.
D102
D102
L102
CH


201.
D102
D102
L103
N


203.
D102
D102
L103
CH


205.
D102
D102
L104
N


207.
D102
D102
L104
CH


209.
D102
D102
L105
N


211.
D102
D102
L105
CH


213.
D102
D102
L106
N


215.
D102
D102
L106
CH


217.
D102
D102
L107
N


219.
D102
D102
L107
CH


221.
D102
D102
L108
N


223.
D102
D102
L108
CH


225.
D102
D102
L109
N


227.
D102
D102
L109
CH


229.
D102
D102
L110
N


231.
D102
D102
L110
CH


233.
D102
D102
L111
N


235.
D102
D102
L111
CH


237.
D102
D102
L112
N


239.
D102
D102
L112
CH


241.
D102
D102
L113
N


243.
D102
D102
L113
CH


245.
D102
D102
L114
N


247.
D102
D102
L114
CH


249.
D102
D102
L115
N


251.
D102
D102
L115
CH


253.
D102
D102
L116
N


255.
D102
D102
L116
CH


257.
D103
H
L101
N


259.
D103
H
L101
CH


261.
D103
H
L102
N


263.
D103
H
L102
CH


265.
D103
H
L103
N


267.
D103
H
L103
CH


269.
D103
H
L104
N


271.
D103
H
L104
CH


273.
D103
H
L105
N


275.
D103
H
L105
CH


277.
D103
H
L106
N


279.
D103
H
L106
CH


281.
D103
H
L107
N


283.
D103
H
L107
CH


285.
D103
H
L108
N


287.
D103
H
L108
CH


289.
D103
H
L109
N


291.
D103
H
L109
CH


293.
D103
H
L110
N


295.
D103
H
L110
CH


297.
D103
H
L111
N


299.
D103
H
L111
CH


301.
D103
H
L112
N


303.
D103
H
L112
CH


305.
D103
H
L113
N


307.
D103
H
L113
CH


309.
D103
H
L114
N


311.
D103
H
L114
CH


313.
D103
H
L115
N


315.
D103
H
L115
CH


317.
D103
H
L116
N


319.
D103
H
L116
CH


321.
D104
H
L101
N


323.
D104
H
L101
CH


325.
D104
H
L102
N


327.
D104
H
L102
CH


329.
D104
H
L103
N


331.
D104
H
L103
CH


333.
D104
H
L104
N


335.
D104
H
L104
CH


337.
D104
H
L105
N


339.
D104
H
L105
CH


341.
D104
H
L106
N


343.
D104
H
L106
CH


345.
D104
H
L107
N


347.
D104
H
L107
CH


349.
D104
H
L108
N


351.
D104
H
L108
CH


353.
D104
H
L109
N


355.
D104
H
L109
CH


357.
D104
H
L110
N


359.
D104
H
L110
CH


361.
D104
H
L111
N


363.
D104
H
L111
CH


365.
D104
H
L112
N


367.
D104
H
L112
CH


369.
D104
H
L113
N


371.
D104
H
L113
CH


373.
D104
H
L114
N


375.
D104
H
L114
CH


377.
D104
H
L115
N


379.
D104
H
L115
CH


381.
D104
H
L116
N


383.
D104
H
L116
CH


385.
D105
H
L101
N


387.
D105
H
L101
CH


389.
D105
H
L102
N


391.
D105
H
L102
CH


393.
D105
H
L103
N


395.
D105
H
L103
CH


397.
D105
H
L104
N


399.
D105
H
L104
CH


401.
D105
H
L105
N


403.
D105
H
L105
CH


405.
D105
H
L106
N


407.
D105
H
L106
CH


409.
D105
H
L107
N


411.
D105
H
L107
CH


413.
D105
H
L108
N


415.
D105
H
L108
CH


417.
D105
H
L109
N


419.
D105
H
L109
CH


421.
D105
H
L110
N


423.
D105
H
L110
CH


425.
D105
H
L111
N


427.
D105
H
L111
CH


429.
D105
H
L112
N


431.
D105
H
L112
CH


433.
D105
H
L113
N


435.
D105
H
L113
CH


437.
D105
H
L114
N


439.
D105
H
L114
CH


441.
D105
H
L115
N


443.
D105
H
L115
CH


445.
D105
H
L116
N


447.
D105
H
L116
CH


449.
D106
H
L101
N


451.
D106
H
L101
CH


453.
D106
H
L102
N


455.
D106
H
L102
CH


457.
D106
H
L103
N


459.
D106
H
L103
CH


461.
D106
H
L104
N


463.
D106
H
L104
CH


465.
D106
H
L105
N


467.
D106
H
L105
CH


469.
D106
H
L106
N


471.
D106
H
L106
CH


473.
D106
H
L107
N


475.
D106
H
L107
CH


477.
D106
H
L108
N


479.
D106
H
L108
CH


481.
D106
H
L109
N


483.
D106
H
L109
CH


485.
D106
H
L110
N


487.
D106
H
L110
CH


489.
D106
H
L111
N


491.
D106
H
L111
CH


493.
D106
H
L112
N


495.
D106
H
L112
CH


497.
D106
H
L113
N


499.
D106
H
L113
CH


501.
D106
H
L114
N


503.
D106
H
L114
CH


505.
D106
H
L115
N


507.
D106
H
L115
CH


509.
D106
H
L116
N


511.
D106
H
L116
CH


513.
D107
H
L101
N


515.
D107
H
L101
CH


517.
D107
H
L102
N


519.
D107
H
L102
CH


521.
D107
H
L103
N


523.
D107
H
L103
CH


525.
D107
H
L104
N


527.
D107
H
L104
CH


529.
D107
H
L105
N


531.
D107
H
L105
CH


533.
D107
H
L106
N


535.
D107
H
L106
CH


537.
D107
H
L107
N


539.
D107
H
L107
CH


541.
D107
H
L108
N


543.
D107
H
L108
CH


545.
D107
H
L109
N


547.
D107
H
L109
CH


549.
D107
H
L110
N


551.
D107
H
L110
CH


553.
D107
H
L111
N


555.
D107
H
L111
CH


557.
D107
H
L112
N


559.
D107
H
L112
CH


561.
D107
H
L113
N


563.
D107
H
L113
CH


565.
D107
H
L114
N


567.
D107
H
L114
CH


569.
D107
H
L115
N


571.
D107
H
L115
CH


573.
D107
H
L116
N


575.
D107
H
L116
CH


577.
D108
H
L101
N


579.
D108
H
L101
CH


581.
D108
H
L102
N


583.
D108
H
L102
CH


585.
D108
H
L103
N


587.
D108
H
L103
CH


589.
D108
H
L104
N


591.
D108
H
L104
CH


593.
D108
H
L105
N


595.
D108
H
L105
CH


597.
D108
H
L106
N


599.
D108
H
L106
CH


601.
D108
H
L107
N


603.
D108
H
L107
CH


605.
D108
H
L108
N


607.
D108
H
L108
CH


609.
D108
H
L109
N


611.
D108
H
L109
CH


613.
D108
H
L110
N


615.
D108
H
L110
CH


617.
D108
H
L111
N


619.
D108
H
L111
CH


621.
D108
H
L112
N


623.
D108
H
L112
CH


625.
D108
H
L113
N


627.
D108
H
L113
CH


629.
D108
H
L114
N


631.
D108
H
L114
CH


633.
D108
H
L115
N


635.
D108
H
L115
CH


637.
D108
H
L116
N


639.
D108
H
L116
CH


641.
D109
H
L101
N


643.
D109
H
L101
CH


645.
D109
H
L102
N


647.
D109
H
L102
CH


649.
D109
H
L103
N


651.
D109
H
L103
CH


653.
D109
H
L104
N


655.
D109
H
L104
CH


657.
D109
H
L105
N


659.
D109
H
L105
CH


661.
D109
H
L106
N


663.
D109
H
L106
CH


665.
D109
H
L107
N


667.
D109
H
L107
CH


669.
D109
H
L108
N


671.
D109
H
L108
CH


673.
D109
H
L109
N


675.
D109
H
L109
CH


677.
D109
H
L110
N


679.
D109
H
L110
CH


681.
D109
H
L111
N


683.
D109
H
L111
CH


685.
D109
H
L112
N


687.
D109
H
L112
CH


689.
D109
H
L113
N


691.
D109
H
L113
CH


693.
D109
H
L114
N


695.
D109
H
L114
CH


697.
D109
H
L115
N


699.
D109
H
L115
CH


701.
D109
H
L116
N


703.
D109
H
L116
CH


705.
D110
H
L101
N


707.
D110
H
L101
CH


709.
D110
H
L102
N


711.
D110
H
L102
CH


713.
D110
H
L103
N


715.
D110
H
L103
CH


717.
D110
H
L104
N


719.
D110
H
L104
CH


721.
D110
H
L105
N


723.
D110
H
L105
CH


725.
D110
H
L106
N


727.
D110
H
L106
CH


729.
D110
H
L107
N


731.
D110
H
L107
CH


733.
D110
H
L108
N


735.
D110
H
L108
CH


737.
D110
H
L109
N


739.
D110
H
L109
CH


741.
D110
H
L110
N


743.
D110
H
L110
CH


745.
D110
H
L111
N


747.
D110
H
L111
CH


749.
D110
H
L112
N


751.
D110
H
L112
CH


753.
D110
H
L113
N


755.
D110
H
L113
CH


757.
D110
H
L114
N


759.
D110
H
L114
CH


761.
D110
H
L115
N


763.
D110
H
L115
CH


765.
D110
H
L116
N


767.
D110
H
L116
CH


769.
D111
H
L101
N


771.
D111
H
L101
CH


773.
D111
H
L102
N


775.
D111
H
L102
CH


777.
D111
H
L103
N


779.
D111
H
L103
CH


781.
D111
H
L104
N


783.
D111
H
L104
CH


785.
D111
H
L105
N


787.
D111
H
L105
CH


789.
D111
H
L106
N


791.
D111
H
L106
CH


793.
D111
H
L107
N


795.
D111
H
L107
CH


797.
D111
H
L108
N


799.
D111
H
L108
CH


801.
D111
H
L109
N


803.
D111
H
L109
CH


805.
D111
H
L110
N


807.
D111
H
L110
CH


809.
D111
H
L111
N


811.
D111
H
L111
CH


813.
D111
H
L112
N


815.
D111
H
L112
CH


817.
D111
H
L113
N


819.
D111
H
L113
CH


821.
D111
H
L114
N


823.
D111
H
L114
CH


825.
D111
H
L115
N


827.
D111
H
L115
CH


829.
D111
H
L116
N


831.
D111
H
L116
CH


833.
D112
H
L101
N


835.
D112
H
L101
CH


837.
D112
H
L102
N


839.
D112
H
L102
CH


841.
D112
H
L103
N


843.
D112
H
L103
CH


845.
D112
H
L104
N


847.
D112
H
L104
CH


849.
D112
H
L105
N


851.
D112
H
L105
CH


853.
D112
H
L106
N


855.
D112
H
L106
CH


857.
D112
H
L107
N


859.
D112
H
L107
CH


861.
D112
H
L108
N


863.
D112
H
L108
CH


865.
D112
H
L109
N


867.
D112
H
L109
CH


869.
D112
H
L110
N


871.
D112
H
L110
CH


873.
D112
H
L111
N


875.
D112
H
L111
CH


877.
D112
H
L112
N


879.
D112
H
L112
CH


881.
D112
H
L113
N


883.
D112
H
L113
CH


885.
D112
H
L114
N


887.
D112
H
L114
CH


889.
D112
H
L115
N


891.
D112
H
L115
CH


893.
D112
H
L116
N


895.
D112
H
L116
CH


897.
D113
H
L101
N


899.
D113
H
L101
CH


901.
D113
H
L102
N


903.
D113
H
L102
CH


905.
D113
H
L103
N


907.
D113
H
L103
CH


909.
D113
H
L104
N


911.
D113
H
L104
CH


913.
D113
H
L105
N


915.
D113
H
L105
CH


917.
D113
H
L106
N


919.
D113
H
L106
CH


921.
D113
H
L107
N


923.
D113
H
L107
CH


925.
D113
H
L108
N


927.
D113
H
L108
CH


929.
D113
H
L109
N


931.
D113
H
L109
CH


933.
D113
H
L110
N


935.
D113
H
L110
CH


937.
D113
H
L111
N


939.
D113
H
L111
CH


941.
D113
H
L112
N


943.
D113
H
L112
CH


945.
D113
H
L113
N


947.
D113
H
L113
CH


949.
D113
H
L114
N


951.
D113
H
L114
CH


953.
D113
H
L115
N


955.
D113
H
L115
CH


957.
D113
H
L116
N


959.
D113
H
L116
CH


961.
D114
H
L101
N


963.
D114
H
L101
CH


965.
D114
H
L102
N


967.
D114
H
L102
CH


969.
D114
H
L103
N


971.
D114
H
L103
CH


973.
D114
H
L104
N


975.
D114
H
L104
CH


977.
D114
H
L105
N


979.
D114
H
L105
CH


981.
D114
H
L106
N


983.
D114
H
L106
CH


985.
D114
H
L107
N


987.
D114
H
L107
CH


989.
D114
H
L108
N


991.
D114
H
L108
CH


993.
D114
H
L109
N


995.
D114
H
L109
CH


997.
D114
H
L110
N


999.
D114
H
L110
CH


1001.
D114
H
L111
N


1003.
D114
H
L111
CH


1005.
D114
H
L112
N


1007.
D114
H
L112
CH


1009.
D114
H
L113
N


1011.
D114
H
L113
CH


1013.
D114
H
L114
N


1015.
D114
H
L114
CH


1017.
D114
H
L115
N


1019.
D114
H
L115
CH


1021.
D114
H
L116
N


1023.
D114
H
L116
CH


1025.
D115
H
L101
N


1027.
D115
H
L101
CH


1029.
D115
H
L102
N


1031.
D115
H
L102
CH


1033.
D115
H
L103
N


1035.
D115
H
L103
CH


1037.
D115
H
L104
N


1039.
D115
H
L104
CH


1041.
D115
H
L105
N


1043.
D115
H
L105
CH


1045.
D115
H
L106
N


1047.
D115
H
L106
CH


1049.
D115
H
L107
N


1051.
D115
H
L107
CH


1053.
D115
H
L108
N


1055.
D115
H
L108
CH


1057.
D115
H
L109
N


1059.
D115
H
L109
CH


1061.
D115
H
L110
N


1063.
D115
H
L110
CH


1065.
D115
H
L111
N


1067.
D115
H
L111
CH


1069.
D115
H
L112
N


1071.
D115
H
L112
CH


1073.
D115
H
L113
N


1075.
D115
H
L113
CH


1077.
D115
H
L114
N


1079.
D115
H
L114
CH


1081.
D115
H
L115
N


1083.
D115
H
L115
CH


1085.
D115
H
L116
N


1087.
D115
H
L116
CH


1089.
D116
H
L101
N


1091.
D116
H
L101
CH


1093.
D116
H
L102
N


1095.
D116
H
L102
CH


1097.
D116
H
L103
N


1099.
D116
H
L103
CH


1101.
D116
H
L104
N


1103.
D116
H
L104
CH


1105.
D116
H
L105
N


1107.
D116
H
L105
CH


1109.
D116
H
L106
N


1111.
D116
H
L106
CH


1113.
D116
H
L107
N


1115.
D116
H
L107
CH


1117.
D116
H
L108
N


1119.
D116
H
L108
CH


1121.
D116
H
L109
N


1123.
D116
H
L109
CH


1125.
D116
H
L110
N


1127.
D116
H
L110
CH


1129.
D116
H
L111
N


1131.
D116
H
L111
CH


1133.
D116
H
L112
N


1135.
D116
H
L112
CH


1137.
D116
H
L113
N


1139.
D116
H
L113
CH


1141.
D116
H
L114
N


1143.
D116
H
L114
CH


1145.
D116
H
L115
N


1147.
D116
H
L115
CH


1149.
D116
H
L116
N


1151.
D116
H
L116
CH


1153.
D117
H
L101
N


1155.
D117
H
L101
CH


1157.
D117
H
L102
N


1159.
D117
H
L102
CH


1161.
D117
H
L103
N


1163.
D117
H
L103
CH


1165.
D117
H
L104
N


1167.
D117
H
L104
CH


1169.
D117
H
L105
N


1171.
D117
H
L105
CH


1173.
D117
H
L106
N


1175.
D117
H
L106
CH


1177.
D117
H
L107
N


1179.
D117
H
L107
CH


1181.
D117
H
L108
N


1183.
D117
H
L108
CH


1185.
D117
H
L109
N


1187.
D117
H
L109
CH


1189.
D117
H
L110
N


1191.
D117
H
L110
CH


1193.
D117
H
L111
N


1195.
D117
H
L111
CH


1197.
D117
H
L112
N


1199.
D117
H
L112
CH


1201.
D117
H
L113
N


1203.
D117
H
L113
CH


1205.
D117
H
L114
N


1207.
D117
H
L114
CH


1209.
D117
H
L115
N


1211.
D117
H
L115
CH


1213.
D117
H
L116
N


1215.
D117
H
L116
CH


1217.
D118
H
L101
N


1219.
D118
H
L101
CH


1221.
D118
H
L102
N


1223.
D118
H
L102
CH


1225.
D118
H
L103
N


1227.
D118
H
L103
CH


1229.
D118
H
L104
N


1231.
D118
H
L104
CH


1233.
D118
H
L105
N


1235.
D118
H
L105
CH


1237.
D118
H
L106
N


1239.
D118
H
L106
CH


1241.
D118
H
L107
N


1243.
D118
H
L107
CH


1245.
D118
H
L108
N


1247.
D118
H
L108
CH


1249.
D118
H
L109
N


1251.
D118
H
L109
CH


1253.
D118
H
L110
N


1255.
D118
H
L110
CH


1257.
D118
H
L111
N


1259.
D118
H
L111
CH


1261.
D118
H
L112
N


1263.
D118
H
L112
CH


1265.
D118
H
L113
N


1267.
D118
H
L113
CH


1269.
D118
H
L114
N


1271.
D118
H
L114
CH


1273.
D118
H
L115
N


1275.
D118
H
L115
CH


1277.
D118
H
L116
N


1279.
D118
H
L116
CH


1281.
D119
H
L101
N


1283.
D119
H
L101
CH


1285.
D119
H
L102
N


1287.
D119
H
L102
CH


1289.
D119
H
L103
N


1291.
D119
H
L103
CH


1293.
D119
H
L104
N


1295.
D119
H
L104
CH


1297.
D119
H
L105
N


1299.
D119
H
L105
CH


1301.
D119
H
L106
N


1303.
D119
H
L106
CH


1305.
D119
H
L107
N


1307.
D119
H
L107
CH


1309.
D119
H
L108
N


1311.
D119
H
L108
CH


1313.
D119
H
L109
N


1315.
D119
H
L109
CH


1317.
D119
H
L110
N


1319.
D119
H
L110
CH


1321.
D119
H
L111
N


1323.
D119
H
L111
CH


1325.
D119
H
L112
N


1327.
D119
H
L112
CH


1329.
D119
H
L113
N


1331.
D119
H
L113
CH


1333.
D119
H
L114
N


1335.
D119
H
L114
CH


1337.
D119
H
L115
N


1339.
D119
H
L115
CH


1341.
D119
H
L116
N


1343.
D119
H
L116
CH


1345.
D120
H
L101
N


1347.
D120
H
L101
CH


1349.
D120
H
L102
N


1351.
D120
H
L102
CH


1353.
D120
H
L103
N


1355.
D120
H
L103
CH


1357.
D120
H
L104
N


1359.
D120
H
L104
CH


1361.
D120
H
L105
N


1363.
D120
H
L105
CH


1365.
D120
H
L106
N


1367.
D120
H
L106
CH


1369.
D120
H
L107
N


1371.
D120
H
L107
CH


1373.
D120
H
L108
N


1375.
D120
H
L108
CH


1377.
D120
H
L109
N


1379.
D120
H
L109
CH


1381.
D120
H
L110
N


1383.
D120
H
L110
CH


1385.
D120
H
L111
N


1387.
D120
H
L111
CH


1389.
D120
H
L112
N


1391.
D120
H
L112
CH


1393.
D120
H
L113
N


1395.
D120
H
L113
CH


1397.
D120
H
L114
N


1399.
D120
H
L114
CH


1401.
D120
H
L115
N


1403.
D120
H
L115
CH


1405.
D120
H
L116
N


1407.
D120
H
L116
CH


1409.
D121
H
L101
N


1411.
D121
H
L101
CH


1413.
D121
H
L102
N


1415.
D121
H
L102
CH


1417.
D121
H
L103
N


1419.
D121
H
L103
CH


1421.
D121
H
L104
N


1423.
D121
H
L104
CH


1425.
D121
H
L105
N


1427.
D121
H
L105
CH


1429.
D121
H
L106
N


1431.
D121
H
L106
CH


1433.
D121
H
L107
N


1435.
D121
H
L107
CH


1437.
D121
H
L108
N


1439.
D121
H
L108
CH


1441.
D121
H
L109
N


1443.
D121
H
L109
CH


1445.
D121
H
L110
N


1447.
D121
H
L110
CH


1449.
D121
H
L111
N


1451.
D121
H
L111
CH


1453.
D121
H
L112
N


1455.
D121
H
L112
CH


1457.
D121
H
L113
N


1459.
D121
H
L113
CH


1461.
D121
H
L114
N


1463.
D121
H
L114
CH


1465.
D121
H
L115
N


1467.
D121
H
L115
CH


1469.
D121
H
L116
N


1471.
D121
H
L116
CH


1473.
D122
H
L101
N


1475.
D122
H
L101
CH


1477.
D122
H
L102
N


1479.
D122
H
L102
CH


1481.
D122
H
L103
N


1483.
D122
H
L103
CH


1485.
D122
H
L104
N


1487.
D122
H
L104
CH


1489.
D122
H
L105
N


1491.
D122
H
L105
CH


1493.
D122
H
L106
N


1495.
D122
H
L106
CH


1497.
D122
H
L107
N


1499.
D122
H
L107
CH


1501.
D122
H
L108
N


1503.
D122
H
L108
CH


1505.
D122
H
L109
N


1507.
D122
H
L109
CH


1509.
D122
H
L110
N


1511.
D122
H
L110
CH


1513.
D122
H
L111
N


1515.
D122
H
L111
CH


1517.
D122
H
L112
N


1519.
D122
H
L112
CH


1521.
D122
H
L113
N


1523.
D122
H
L113
CH


1525.
D122
H
L114
N


1527.
D122
H
L114
CH


1529.
D122
H
L115
N


1531.
D122
H
L115
CH


1533.
D122
H
L116
N


1535.
D122
H
L116
CH


1537.
D123
H
L101
N


1539.
D123
H
L101
CH


1541.
D123
H
L102
N


1543.
D123
H
L102
CH


1545.
D123
H
L103
N


1547.
D123
H
L103
CH


1549.
D123
H
L104
N


1551.
D123
H
L104
CH


1553.
D123
H
L105
N


1555.
D123
H
L105
CH


1557.
D123
H
L106
N


1559.
D123
H
L106
CH


1561.
D123
H
L107
N


1563.
D123
H
L107
CH


1565.
D123
H
L108
N


1567.
D123
H
L108
CH


1569.
D123
H
L109
N


1571.
D123
H
L109
CH


1573.
D123
H
L110
N


1575.
D123
H
L110
CH


1577.
D123
H
L111
N


1579.
D123
H
L111
CH


1581.
D123
H
L112
N


1583.
D123
H
L112
CH


1585.
D123
H
L113
N


1587.
D123
H
L113
CH


1589.
D123
H
L114
N


1591.
D123
H
L114
CH


1593.
D123
H
L115
N


1595.
D123
H
L115
CH


1597.
D123
H
L116
N


1599.
D123
H
L116
CH


1601.
D124
H
L101
N


1603.
D124
H
L101
CH


1605.
D124
H
L102
N


1607.
D124
H
L102
CH


1609.
D124
H
L103
N


1611.
D124
H
L103
CH


1613.
D124
H
L104
N


1615.
D124
H
L104
CH


1617.
D124
H
L105
N


1619.
D124
H
L105
CH


1621.
D124
H
L106
N


1623.
D124
H
L106
CH


1625.
D124
H
L107
N


1627.
D124
H
L107
CH


1629.
D124
H
L108
N


1631.
D124
H
L108
CH


1633.
D124
H
L109
N


1635.
D124
H
L109
CH


1637.
D124
H
L110
N


1639.
D124
H
L110
CH


1641.
D124
H
L111
N


1643.
D124
H
L111
CH


1645.
D124
H
L112
N


1647.
D124
H
L112
CH


1649.
D124
H
L113
N


1651.
D124
H
L113
CH


1653.
D124
H
L114
N


1655.
D124
H
L114
CH


1657.
D124
H
L115
N


1659.
D124
H
L115
CH


1661.
D124
H
L116
N


1663.
D124
H
L116
CH


1665.
D125
H
L101
N


1667.
D125
H
L101
CH


1669.
D125
H
L102
N


1671.
D125
H
L102
CH


1673.
D125
H
L103
N


1675.
D125
H
L103
CH


1677.
D125
H
L104
N


1679.
D125
H
L104
CH


1681.
D125
H
L105
N


1683.
D125
H
L105
CH


1685.
D125
H
L106
N


1687.
D125
H
L106
CH


1689.
D125
H
L107
N


1691.
D125
H
L107
CH


1693.
D125
H
L108
N


1695.
D125
H
L108
CH


1697.
D125
H
L109
N


1699.
D125
H
L109
CH


1701.
D125
H
L110
N


1703.
D125
H
L110
CH


1705.
D125
H
L111
N


1707.
D125
H
L111
CH


1709.
D125
H
L112
N


1711.
D125
H
L112
CH


1713.
D125
H
L113
N


1715.
D125
H
L113
CH


1717.
D125
H
L114
N


1719.
D125
H
L114
CH


1721.
D125
H
L115
N


1723.
D125
H
L115
CH


1725.
D125
H
L116
N


1727.
D125
H
L116
CH


1729.
D126
H
L101
N


1731.
D126
H
L101
CH


1733.
D126
H
L102
N


1735.
D126
H
L102
CH


1737.
D126
H
L103
N


1739.
D126
H
L103
CH


1741.
D126
H
L104
N


1743.
D126
H
L104
CH


1745.
D126
H
L105
N


1747.
D126
H
L105
CH


1749.
D126
H
L106
N


1751.
D126
H
L106
CH


1753.
D126
H
L107
N


1755.
D126
H
L107
CH


1757.
D126
H
L108
N


1759.
D126
H
L108
CH


1761.
D126
H
L109
N


1763.
D126
H
L109
CH


1765.
D126
H
L110
N


1767.
D126
H
L110
CH


1769.
D126
H
L111
N


1771.
D126
H
L111
CH


1773.
D126
H
L112
N


1775.
D126
H
L112
CH


1777.
D126
H
L113
N


1779.
D126
H
L113
CH


1781.
D126
H
L114
N


1783.
D126
H
L114
CH


1785.
D126
H
L115
N


1787.
D126
H
L115
CH


1789.
D126
H
L116
N


1791.
D126
H
L116
CH


1793.
D127
H
L101
N


1795.
D127
H
L101
CH


1797.
D127
H
L102
N


1799.
D127
H
L102
CH


1801.
D127
H
L103
N


1803.
D127
H
L103
CH


1805.
D127
H
L104
N


1807.
D127
H
L104
CH


1809.
D127
H
L105
N


1811.
D127
H
L105
CH


1813.
D127
H
L106
N


1815.
D127
H
L106
CH


1817.
D127
H
L107
N


1819.
D127
H
L107
CH


1821.
D127
H
L108
N


1823.
D127
H
L108
CH


1825.
D127
H
L109
N


1827.
D127
H
L109
CH


1829.
D127
H
L110
N


1831.
D127
H
L110
CH


1833.
D127
H
L111
N


1835.
D127
H
L111
CH


1837.
D127
H
L112
N


1839.
D127
H
L112
CH


1841.
D127
H
L113
N


1843.
D127
H
L113
CH


1845.
D127
H
L114
N


1847.
D127
H
L114
CH


1849.
D127
H
L115
N


1851.
D127
H
L115
CH


1853.
D127
H
L116
N


1855.
D127
H
L116
CH


1857.
D128
H
L101
N


1859.
D128
H
L101
CH


1861.
D128
H
L102
N


1863.
D128
H
L102
CH


1865.
D128
H
L103
N


1867.
D128
H
L103
CH


1869.
D128
H
L104
N


1871.
D128
H
L104
CH


1873.
D128
H
L105
N


1875.
D128
H
L105
CH


1877.
D128
H
L106
N


1879.
D128
H
L106
CH


1881.
D128
H
L107
N


1883.
D128
H
L107
CH


1885.
D128
H
L108
N


1887.
D128
H
L108
CH


1889.
D128
H
L109
N


1891.
D128
H
L109
CH


1893.
D128
H
L110
N


1895.
D128
H
L110
CH


1897.
D128
H
L111
N


1899.
D128
H
L111
CH


1901.
D128
H
L112
N


1903.
D128
H
L112
CH


1905.
D128
H
L113
N


1907.
D128
H
L113
CH


1909.
D128
H
L114
N


1911.
D128
H
L114
CH


1913.
D128
H
L115
N


1915.
D128
H
L115
CH


1917.
D128
H
L116
N


1919.
D128
H
L116
CH


1921.
D129
H
L101
N


1923.
D129
H
L101
CH


1925.
D129
H
L102
N


1927.
D129
H
L102
CH


1929.
D129
H
L103
N


1931.
D129
H
L103
CH


1933.
D129
H
L104
N


1935.
D129
H
L104
CH


1937.
D129
H
L105
N


1939.
D129
H
L105
CH


1941.
D129
H
L106
N


1943.
D129
H
L106
CH


1945.
D129
H
L107
N


1947.
D129
H
L107
CH


1949.
D129
H
L108
N


1951.
D129
H
L108
CH


1953.
D129
H
L109
N


1955.
D129
H
L109
CH


1957.
D129
H
L110
N


1959.
D129
H
L110
CH


1961.
D129
H
L111
N


1963.
D129
H
L111
CH


1965.
D129
H
L112
N


1967.
D129
H
L112
CH


1969.
D129
H
L113
N


1971.
D129
H
L113
CH


1973.
D129
H
L114
N


1975.
D129
H
L114
CH


1977.
D129
H
L115
N


1979.
D129
H
L115
CH


1981.
D129
H
L116
N


1983.
D129
H
L116
CH


1985.
D130
H
L101
N


1987.
D130
H
L101
CH


1989.
D130
H
L102
N


1991.
D130
H
L102
CH


1993.
D130
H
L103
N


1995.
D130
H
L103
CH


1997.
D130
H
L104
N


1999.
D130
H
L104
CH


2001.
D130
H
L105
N


2003.
D130
H
L105



2005.
D130
H
L106
N


2007.
D130
H
L106
CH


2009.
D130
H
L107
N


2011.
D130
H
L107
CH


2013.
D130
H
L108
N


2015.
D130
H
L108
CH


2017.
D130
H
L109
N


2019.
D130
H
L109
CH


2021.
D130
H
L110
N


2023.
D130
H
L110
CH


2025.
D130
H
L111
N


2027.
D130
H
L111
CH


2029.
D130
H
L112
N


2031.
D130
H
L112
CH


2033.
D130
H
L113
N


2035.
D130
H
L113
CH


2037.
D130
H
L114
N


2039.
D130
H
L114
CH


2041.
D130
H
L115
N


2043.
D130
H
L115
CH


2045.
D130
H
L116
N


2047.
D130
H
L116
CH


2049.
D131
H
L101
N


2051.
D131
H
L101
CH


2053.
D131
H
L102
N


2055.
D131
H
L102
CH


2057.
D131
H
L103
N


2059.
D131
H
L103
CH


2061.
D131
H
L104
N


2063.
D131
H
L104
CH


2065.
D131
H
L105
N


2067.
D131
H
L105
CH


2069.
D131
H
L106
N


2071.
D131
H
L106
CH


2073.
D131
H
L107
N


2075.
D131
H
L107
CH


2077.
D131
H
L108
N


2079.
D131
H
L108
CH


2081.
D131
H
L109
N


2083.
D131
H
L109
CH


2085.
D131
H
L110
N


2087.
D131
H
L110
CH


2089.
D131
H
L111
N


2091.
D131
H
L111
CH


2093.
D131
H
L112
N


2095.
D131
H
L112
CH


2097.
D131
H
L113
N


2099.
D131
H
L113
CH


2101.
D131
H
L114
N


2103.
D131
H
L114
CH


2105.
D131
H
L115
N


2107.
D131
H
L115
CH


2109.
D131
H
L116
N


2111.
D131
H
L116
CH


2113.
D132
H
L101
N


2115.
D132
H
L101
CH


2117.
D132
H
L102
N


2119.
D132
H
L102
CH


2121.
D132
H
L103
N


2123.
D132
H
L103
CH


2125.
D132
H
L104
N


2127.
D132
H
L104
CH


2129.
D132
H
L105
N


2131.
D132
H
L105
CH


2133.
D132
H
L106
N


2135.
D132
H
L106
CH


2137.
D132
H
L107
N


2139.
D132
H
L107
CH


2141.
D132
H
L108
N


2143.
D132
H
L108
CH


2145.
D132
H
L109
N


2147.
D132
H
L109
CH


2149.
D132
H
L110
N


2151.
D132
H
L110
CH


2153.
D132
H
L111
N


2155.
D132
H
L111
CH


2157.
D132
H
L112
N


2159.
D132
H
L112
CH


2161.
D132
H
L113
N


2163.
D132
H
L113
CH


2165.
D132
H
L114
N


2167.
D132
H
L114
CH


2169.
D132
H
L115
N


2171.
D132
H
L115
CH


2173.
D132
H
L116
N


2175.
D132
H
L116
CH


2177.
D132
D132
L101
N


2179.
D132
D132
L101
CH


2181.
D132
D132
L102
N


2183.
D132
D132
L102
CH


2185.
D132
D132
L103
N


2187.
D132
D132
L103
CH


2189.
D132
D132
L104
N


2191.
D132
D132
L104
CH


2193.
D132
D132
L105
N


2195.
D132
D132
L105
CH


2197.
D132
D132
L106
N


2199.
D132
D132
L106
CH


2201.
D132
D132
L107
N


2203.
D132
D132
L107
CH


2205.
D132
D132
L108
N


2207.
D132
D132
L108
CH


2209.
D132
D132
L109
N


2211.
D132
D132
L109
CH


2213.
D132
D132
L110
N


2215.
D132
D132
L110
CH


2217.
D132
D132
L111
N


2219.
D132
D132
L111
CH


2221.
D132
D132
L112
N


2223.
D132
D132
L112
CH


2225.
D132
D132
L113
N


2227.
D132
D132
L113
CH


2229.
D132
D132
L114
N


2231.
D132
D132
L114
CH


2233.
D132
D132
L115
N


2235.
D132
D132
L115
CH


2237.
D132
D132
L116
N


2239.
D132
D132
L116
CH


2241.
D133
H
L101
N


2243.
D133
H
L101
CH


2245.
D133
H
L102
N


2247.
D133
H
L102
CH


2249.
D133
H
L103
N


2251.
D133
H
L103
CH


2253.
D133
H
L104
N


2255.
D133
H
L104
CH


2257.
D133
H
L105
N


2259.
D133
H
L105
CH


2261.
D133
H
L106
N


2263.
D133
H
L106
CH


2265.
D133
H
L107
N


2267.
D133
H
L107
CH


2269.
D133
H
L108
N


2271.
D133
H
L108
CH


2273.
D133
H
L109
N


2275.
D133
H
L109
CH


2277.
D133
H
L110
N


2279.
D133
H
L110
CH


2281.
D133
H
L111
N


2283.
D133
H
L111
CH


2285.
D133
H
L112
N


2287.
D133
H
L112
CH


2289.
D133
H
L113
N


2291.
D133
H
L113
CH


2293.
D133
H
L114
N


2295.
D133
H
L114
CH


2297.
D133
H
L115
N


2299.
D133
H
L115
CH


2301.
D133
H
L116
N


2303.
D133
H
L116
CH


2305.
D133
D133
L101
N


2307.
D133
D133
L101
CH


2309.
D133
D133
L102
N


2311.
D133
D133
L102
CH


2313.
D133
D133
L103
N


2315.
D133
D133
L103
CH


2317.
D133
D133
L104
N


2319.
D133
D133
L104
CH


2321.
D133
D133
L105
N


2323.
D133
D133
L105
CH


2325.
D133
D133
L106
N


2327.
D133
D133
L106
CH


2329.
D133
D133
L107
N


2331.
D133
D133
L107
CH


2333.
D133
D133
L108
N


2335.
D133
D133
L108
CH


2337.
D133
D133
L109
N


2339.
D133
D133
L109
CH


2341.
D133
D133
L110
N


2343.
D133
D133
L110
CH


2345.
D133
D133
L111
N


2347.
D133
D133
L111
CH


2349.
D133
D133
L112
N


2351.
D133
D133
L112
CH


2353.
D133
D133
L113
N


2355.
D133
D133
L113
CH


2357.
D133
D133
L114
N


2359.
D133
D133
L114
CH


2361.
D133
D133
L115
N


2363.
D133
D133
L115
CH


2365.
D133
D133
L116
N


2367.
D133
D133
L116
CH


2369.
D134
H
L101
N


2371.
D134
H
L101
CH


2373.
D134
H
L102
N


2375.
D134
H
L102
CH


2377.
D134
H
L103
N


2379.
D134
H
L103
CH


2381.
D134
H
L104
N


2383.
D134
H
L104
CH


2385.
D134
H
L105
N


2387.
D134
H
L105
CH


2389.
D134
H
L106
N


2391.
D134
H
L106
CH


2393.
D134
H
L107
N


2395.
D134
H
L107
CH


2397.
D134
H
L108
N


2399.
D134
H
L108
CH


2401.
D134
H
L109
N


2403.
D134
H
L109
CH


2405.
D134
H
L110
N


2407.
D134
H
L110
CH


2409.
D134
H
L111
N


2411.
D134
H
L111
CH


2413.
D134
H
L112
N


2415.
D134
H
L112
CH


2417.
D134
H
L113
N


2419.
D134
H
L113
CH


2421.
D134
H
L114
N


2423.
D134
H
L114
CH


2425.
D134
H
L115
N


2427.
D134
H
L115
CH


2429.
D134
H
L116
N


2431.
D134
H
L116
CH


2433.
D134
H
L101
N


2435.
D134
H
L101
CH


2437.
D134
D134
L102
N


2439.
D134
D134
L102
CH


2441.
D134
D134
L103
N


2443.
D134
D134
L103
CH


2445.
D134
D134
L104
N


2447.
D134
D134
L104
CH


2449.
D134
D134
L105
N


2451.
D134
D134
L105
CH


2453.
D134
D134
L106
N


2455.
D134
D134
L106
CH


2457.
D134
D134
L107
N


2459.
D134
D134
L107
CH


2461.
D134
D134
L108
N


2463.
D134
D134
L108
CH


2465.
D134
D134
L109
N


2467.
D134
D134
L109
CH


2469.
D134
D134
L110
N


2471.
D134
D134
L110
CH


2473.
D134
D134
L111
N


2475.
D134
D134
L111
CH


2477.
D134
D134
L112
N


2479.
D134
D134
L112
CH


2481.
D134
D134
L113
N


2483.
D134
D134
L113
CH


2485.
D134
D134
L114
N


2487.
D134
D134
L114
CH


2489.
D134
D134
L115
N


2491.
D134
D134
L115
CH


2493.
D134
D134
L116
N


2495.
D134
D134
L116
CH


2497.
D135
H
L101
N


2499.
D135
H
L101
CH


2501.
D135
H
L102
N


2503.
D135
H
L102
CH


2505.
D135
H
L103
N


2507.
D135
H
L103
CH


2509.
D135
H
L104
N


2511.
D135
H
L104
CH


2513.
D135
H
L105
N


2515.
D135
H
L105
CH


2517.
D135
H
L106
N


2519.
D135
H
L106
CH


2521.
D135
H
L107
N


2523.
D135
H
L107
CH


2525.
D135
H
L108
N


2527.
D135
H
L108
CH


2529.
D135
H
L109
N


2531.
D135
H
L109
CH


2533.
D135
H
L110
N


2535.
D135
H
L110
CH


2537.
D135
H
L111
N


2539.
D135
H
L111
CH


2541.
D135
H
L112
N


2543.
D135
H
L112
CH


2545.
D135
H
L113
N


2547.
D135
H
L113
CH


2549.
D135
H
L114
N


2551.
D135
H
L114
CH


2553.
D135
H
L115
N


2555.
D135
H
L115
CH


2557.
D135
H
L116
N


2559.
D135
H
L116
CH


2561.
D135
D135
L101
N


2563.
D135
D135
L101
CH


2565.
D135
D135
L102
N


2567.
D135
D135
L102
CH


2569.
D135
D135
L103
N


2571.
D135
D135
L103
CH


2573.
D135
D135
L104
N


2575.
D135
D135
L104
CH


2577.
D135
D135
L105
N


2579.
D135
D135
L105
CH


2581.
D135
D135
L106
N


2583.
D135
D135
L106
CH


2585.
D135
D135
L107
N


2587.
D135
D135
L107
CH


2589.
D135
D135
L108
N


2591.
D135
D135
L108
CH


2593.
D135
D135
L109
N


2595.
D135
D135
L109
CH


2597.
D135
D135
L110
N


2599.
D135
D135
L110
CH


2601.
D135
D135
L111
N


2603.
D135
D135
L111
CH


2605.
D135
D135
L112
N


2607.
D135
D135
L112
CH


2609.
D135
D135
L113
N


2611.
D135
D135
L113
CH


2613.
D135
D135
L114
N


2615.
D135
D135
L114
CH


2617.
D135
D135
L115
N


2619.
D135
D135
L115
CH


2621.
D135
D135
L116
N


2623.
D135
D135
L116
CH


2625.
D136
H
L101
N


2627.
D136
H
L101
CH


2629.
D136
H
L102
N


2631.
D136
H
L102
CH


2633.
D136
H
L103
N


2635.
D136
H
L103
CH


2637.
D136
H
L104
N


2639.
D136
H
L104
CH


2641.
D136
H
L105
N


2643.
D136
H
L105
CH


2645.
D136
H
L106
N


2647.
D136
H
L106
CH


2649.
D136
H
L107
N


2651.
D136
H
L107
CH


2653.
D136
H
L108
N


2655.
D136
H
L108
CH


2657.
D136
H
L109
N


2659.
D136
H
L109
CH


2661.
D136
H
L110
N


2663.
D136
H
L110
CH


2665.
D136
H
L111
N


2667.
D136
H
L111
CH


2669.
D136
H
L112
N


2671.
D136
H
L112
CH


2673.
D136
H
L113
N


2675.
D136
H
L113
CH


2677.
D136
H
L114
N


2679.
D136
H
L114
CH


2681.
D136
H
L115
N


2683.
D136
H
L115
CH


2685.
D136
H
L116
N


2687.
D136
H
L116
CH


2689.
D136
D136
L101
N


2691.
D136
D136
L101
CH


2693.
D136
D136
L102
N


2695.
D136
D136
L102
CH


2697.
D136
D136
L103
N


2699.
D136
D136
L103
CH


2701.
D136
D136
L104
N


2703.
D136
D136
L104
CH


2705.
D136
D136
L105
N


2707.
D136
D136
L105
CH


2709.
D136
D136
L106
N


2711.
D136
D136
L106
CH


2713.
D136
D136
L107
N


2715.
D136
D136
L107
CH


2717.
D136
D136
L108
N


2719.
D136
D136
L108
CH


2721.
D136
D136
L109
N


2723.
D136
D136
L109
CH


2725.
D136
D136
L110
N


2727.
D136
D136
L110
CH


2729.
D136
D136
L111
N


2731.
D136
D136
L111
CH


2733.
D136
D136
L112
N


2735.
D136
D136
L112
CH


2737.
D136
D136
L113
N


2739.
D136
D136
L113
CH


2741.
D136
D136
L114
N


2743.
D136
D136
L114
CH


2745.
D136
D136
L115
N


2747.
D136
D136
L115
CH


2749.
D136
D136
L116
N


2751.
D136
D136
L116
CH


2753.
D137
H
L101
N


2755.
D137
H
L101
CH


2757.
D137
H
L102
N


2759.
D137
H
L102
CH


2761.
D137
H
L103
N


2763.
D137
H
L103
CH


2765.
D137
H
L104
N


2767.
D137
H
L104
CH


2769.
D137
H
L105
N


2771.
D137
H
L105
CH


2773.
D137
H
L106
N


2775.
D137
H
L106
CH


2777.
D137
H
L107
N


2779.
D137
H
L107
CH


2781.
D137
H
L108
N


2783.
D137
H
L108
CH


2785.
D137
H
L109
N


2787.
D137
H
L109
CH


2789.
D137
H
L110
N


2791.
D137
H
L110
CH


2793.
D137
H
L111
N


2795.
D137
H
L111
CH


2797.
D137
H
L112
N


2799.
D137
H
L112
CH


2801.
D137
H
L113
N


2803.
D137
H
L113
CH


2805.
D137
H
L114
N


2807.
D137
H
L114
CH


2809.
D137
H
L115
N


2811.
D137
H
L115
CH


2813.
D137
H
L116
N


2815.
D137
H
L116
CH


2817.
D137
D137
L101
N


2819.
D137
D137
L101
CH


2821.
D137
D137
L102
N


2823.
D137
D137
L102
CH


2825.
D137
D137
L103
N


2827.
D137
D137
L103
CH


2829.
D137
D137
L104
N


2831.
D137
D137
L104
CH


2833.
D137
D137
L105
N


2835.
D137
D137
L105
CH


2837.
D137
D137
L106
N


2839.
D137
D137
L106
CH


2841.
D137
D137
L107
N


2843.
D137
D137
L107
CH


2845.
D137
D137
L108
N


2847.
D137
D137
L108
CH


2849.
D137
D137
L109
N


2851.
D137
D137
L109
CH


2853.
D137
D137
L110
N


2855.
D137
D137
L110
CH


2857.
D137
D137
L111
N


2859.
D137
D137
L111
CH


2861.
D137
D137
L112
N


2863.
D137
D137
L112
CH


2865.
D137
D137
L113
N


2867.
D137
D137
L113
CH


2869.
D137
D137
L114
N


2871.
D137
D137
L114
CH


2873.
D137
D137
L115
N


2875.
D137
D137
L115
CH


2877.
D137
D137
L116
N


2879.
D137
D137
L116
CH


2881.
D138
H
L101
N


2883.
D138
H
L101
CH


2885.
D138
H
L102
N


2887.
D138
H
L102
CH


2889.
D138
H
L103
N


2891.
D138
H
L103
CH


2893.
D138
H
L104
N


2895.
D138
H
L104
CH


2897.
D138
H
L105
N


2899.
D138
H
L105
CH


2901.
D138
H
L106
N


2903.
D138
H
L106
CH


2905.
D138
H
L107
N


2907.
D138
H
L107
CH


2909.
D138
H
L108
N


2911.
D138
H
L108
CH


2913.
D138
H
L109
N


2915.
D138
H
L109
CH


2917.
D138
H
L110
N


2919.
D138
H
L110
CH


2921.
D138
H
L111
N


2923.
D138
H
L111
CH


2925.
D138
H
L112
N


2927.
D138
H
L112
CH


2929.
D138
H
L113
N


2931.
D138
H
L113
CH


2933.
D138
H
L114
N


2935.
D138
H
L114
CH


2937.
D138
H
L115
N


2939.
D138
H
L115
CH


2941.
D138
H
L116
N


2943.
D138
H
L116
CH


2945.
D139
H
L101
N


2947.
D139
H
L101
CH


2949.
D139
H
L102
N


2951.
D139
H
L102
CH


2953.
D139
H
L103
N


2955.
D139
H
L103
CH


2957.
D139
H
L104
N


2959.
D139
H
L104
CH


2961.
D139
H
L105
N


2963.
D139
H
L105
CH


2965.
D139
H
L106
N


2967.
D139
H
L106
CH


2969.
D139
H
L107
N


2971.
D139
H
L107
CH


2973.
D139
H
L108
N


2975.
D139
H
L108
CH


2977.
D139
H
L109
N


2979.
D139
H
L109
CH


2981.
D139
H
L110
N


2983.
D139
H
L110
CH


2985.
D139
H
L111
N


2987.
D139
H
L111
CH


2989.
D139
H
L112
N


2991.
D139
H
L112
CH


2993.
D139
H
L113
N


2995.
D139
H
L113
CH


2997.
D139
H
L114
N


2999.
D139
H
L114
CH


3001.
D139
H
L115
N


3003.
D139
H
L115
CH


3005.
D139
H
L116
N


3007.
D139
H
L116
CH


3009.
D140
H
L101
N


3011.
D140
H
L101
CH


3013.
D140
H
L102
N


3015.
D140
H
L102
CH


3017.
D140
H
L103
N


3019.
D140
H
L103
CH


3021.
D140
H
L104
N


3023.
D140
H
L104
CH


3025.
D140
H
L105
N


3027.
D140
H
L105
CH


3029.
D140
H
L106
N


3031.
D140
H
L106
CH


3033.
D140
H
L107
N


3035.
D140
H
L107
CH


3037.
D140
H
L108
N


3039.
D140
H
L108
CH


3041.
D140
H
L109
N


3043.
D140
H
L109
CH


3045.
D140
H
L110
N


3047.
D140
H
L110
CH


3049.
D140
H
L111
N


3051.
D140
H
L111
CH


3053.
D140
H
L112
N


3055.
D140
H
L112
CH


3057.
D140
H
L113
N


3059.
D140
H
L113
CH


3061.
D140
H
L114
N


3063.
D140
H
L114
CH


3065.
D140
H
L115
N


3067.
D140
H
L115
CH


3069.
D140
H
L116
N


3071.
D140
H
L116
CH


3073.
D101
D102
L101
N


3075.
D101
D102
L101
CH


3077.
D101
D102
L102
N


3079.
D101
D102
L102
CH


3081.
D101
D102
L103
N


3083.
D101
D102
L103
CH


3085.
D101
D102
L104
N


3087.
D101
D102
L104
CH


3089.
D101
D102
L105
N


3091.
D101
D102
L105
CH


3093.
D101
D102
L106
N


3095.
D101
D102
L106
CH


3097.
D101
D102
L107
N


3099.
D101
D102
L107
CH


3101.
D101
D102
L108
N


3103.
D101
D102
L108
CH


3105.
D101
D102
L109
N


3107.
D101
D102
L109
CH


3109.
D101
D102
L110
N


3111.
D101
D102
L110
CH


3113.
D101
D102
L111
N


3115.
D101
D102
L111
CH


3117.
D101
D102
L112
N


3119.
D101
D102
L112
CH


3121.
D101
D102
L113
N


3123.
D101
D102
L113
CH


3125.
D101
D102
L114
N


3127.
D101
D102
L114
CH


3129.
D101
D102
L115
N


3131.
D101
D102
L115
CH


3133.
D101
D102
L116
N


3135.
D101
D102
L116
CH


3137.
D132
D137
L101
N


3139.
D132
D137
L101
CH


3141.
D132
D137
L102
N


3143.
D132
D137
L102
CH


3145.
D132
D137
L103
N


3147.
D132
D137
L103
CH


3149.
D132
D137
L104
N


3151.
D132
D137
L104
CH


3153.
D132
D137
L105
N


3155.
D132
D137
L105
CH


3157.
D132
D137
L106
N


3159.
D132
D137
L106
CH


3161.
D132
D137
L107
N


3163.
D132
D137
L107
CH


3165.
D132
D137
L108
N


3167.
D132
D137
L108
CH


3169.
D132
D137
L109
N


3171.
D132
D137
L109
CH


3173.
D132
D137
L110
N


3175.
D132
D137
L110
CH


3177.
D132
D137
L111
N


3179.
D132
D137
L111
CH


3181.
D132
D137
L112
N


3183.
D132
D137
L112
CH


3185.
D132
D137
L113
N


3187.
D132
D137
L113
CH


3189.
D132
D137
L114
N


3191.
D132
D137
L114
CH


3193.
D132
D137
L115
N


3195.
D132
D137
L115
CH


3197.
D132
D137
L116
N


3199.
D132
D137
L116
CH


3201.
D133
D137
L101
N


3203.
D133
D137
L101
CH


3205.
D133
D137
L102
N


3207.
D133
D137
L102
CH


3209.
D133
D137
L103
N


3211.
D133
D137
L103
CH


3213.
D133
D137
L104
N


3215.
D133
D137
L104
CH


3217.
D133
D137
L105
N


3219.
D133
D137
L105
CH


3221.
D133
D137
L106
N


3223.
D133
D137
L106
CH


3225.
D133
D137
L107
N


3227.
D133
D137
L107
CH


3229.
D133
D137
L108
N


3231.
D133
D137
L108
CH


3233.
D133
D137
L109
N


3235.
D133
D137
L109
CH


3237.
D133
D137
L110
N


3239.
D133
D137
L110
CH


3241.
D133
D137
L111
N


3243.
D133
D137
L111
CH


3245.
D133
D137
L112
N


3247.
D133
D137
L112
CH


3249.
D133
D137
L113
N


3251.
D133
D137
L113
CH


3253.
D133
D137
L114
N


3255.
D133
D137
L114
CH


3257.
D133
D137
L115
N


3259.
D133
D137
L115
CH


3261.
D133
D137
L116
N


3263.
D133
D137
L116
CH


3265.
D134
D137
L101
N


3267.
D134
D137
L101
CH


3269.
D134
D137
L102
N


3271.
D134
D137
L102
CH


3273.
D134
D137
L103
N


3275.
D134
D137
L103
CH


3277.
D134
D137
L104
N


3279.
D134
D137
L104
CH


3281.
D134
D137
L105
N


3283.
D134
D137
L105
CH


3285.
D134
D137
L106
N


3287.
D134
D137
L106
CH


3289.
D134
D137
L107
N


3291.
D134
D137
L107
CH


3293.
D134
D137
L108
N


3295.
D134
D137
L108
CH


3297.
D134
D137
L109
N


3299.
D134
D137
L109
CH


3301.
D134
D137
L110
N


3303.
D134
D137
L110
CH


3305.
D134
D137
L111
N


3307.
D134
D137
L111
CH


3309.
D134
D137
L112
N


3311.
D134
D137
L112
CH


3313.
D134
D137
L113
N


3315.
D134
D137
L113
CH


3317.
D134
D137
L114
N


3319.
D134
D137
L114
CH


3321.
D134
D137
L115
N


3323.
D134
D137
L115
CH


3325.
D134
D137
L116
N


3327.
D134
D137
L116
CH










wherein L101 to L116 are defined as follows:




embedded image


embedded image


embedded image


In one embodiment, the first device emits a luminescent radiation at room temperature when a voltage is applied across the organic light emitting device, wherein the luminescent radiation comprises a delayed fluorescence process.


In one embodiment, the emissive layer further comprises a first phosphorescent emitting material.


In one embodiment, the emissive layer further comprises a second phosphorescent emitting material.


In one embodiment, the emissive layer further comprises a host material.


In one embodiment, the first device emits a white light at room temperature when a voltage is applied across the organic light emitting device.


In one embodiment, the first emitting compound emits a blue light with a peak wavelength of about 400 nm to about 500 nm.


In one embodiment, the emitting compound emits a yellow light with a peak wavelength of about 530 nm to about 580 nm.


In one embodiment, the first device comprises a second organic light emitting device, wherein the second organic light emitting device is stacked on the first organic light emitting device.


In one embodiment, the first device is a consumer product.


In one embodiment, the first device is an organic light-emitting device.


In one embodiment, the first device is a lighting panel.


Table 1 shows the PLQY of compounds with or without a phenylene spacer doped in poly(methyl methacrylate) (PMMA) films. The compounds of Formula I were doped at 5% in all the films. Compound A has a photoluminescent quantum yield (PLQY) of 42% compared to 100% for Compound 2757. Compound B has a PLQY of 46% compared to 88% for Compound 2117. Without being bound by theory, it is believed that the unexpectedly PLQY of the compounds of Formula I was achieved by the use of the spacer L1.









TABLE 1







PLQY of inventive compounds and comparative compounds in 5% doped


PMMA films








Compound
PLQY in 5% doped PMMA





Comparative Compound A
 42%


Comparative Compound B
 46%


Compound 2757
100%


Compound 2117
 88%









The structures of the compounds used in the device examples are as follows:




embedded image


embedded image


Device Examples

All example devices were fabricated by high vacuum (<10-7 Torr) thermal evaporation. The anode electrode is 800 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1,000 Å of Al. All devices are encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.


The device described herein have the following architectures:


Device 1=ITO/TAPC (200 Å)/Hostl:Compound 2757 (5%, 400 Å)/TmPyPB (400 Å)/LiF/Al.









TABLE 2







Performance of electroluminescent devices using Compound 2757 as emitting material
















Maximum EQE
@1000 nits




















λmax
L
V
LEmax
EQEmax
Voltage
LE
EQE


Device #
x
y
(nm)
nits
(V)
(cd/A)
(%)
(V)
(cd/A)
(%)





Device 1
0.155
0.163
460
2
4.2
25.8
20
8.8
10.5
8.1









Device 1 was fabricated with TAPC as HIL/HTL, a 5% Compound 2757 doped in Host 1 as EML, and TmPyPB as ETL. The results are shown in Table 2. Deep blue emission with a kmax of 460 nm and CIE of (0.155, 0.163) was observed from the device. The maximum external quantum efficiency (EQE) was 20% that was observed at the brightness of 2 nits. The maximum luminous efficiency (LE) was 25.8 cd/A at the same brightness. At 100 nits, the EQE and LE were 13.4% and 17.2 cd/A, respectively. At 1000 nits, the EQE and LE were 8.1% and 10.5 cd/A, respectively.


The photoluminescence quantum yield (PLQY) of the 5% Compound 2757 doped in Host 1 was measured to be around 90% (PL quantum efficiency measurements were carried out on a Hamamatsu C9920 system equipped with a xenon lamp, integrating sphere and a model C10027 photonic multi-channel analyzer). For a standard fluorescent OLED with only prompt singlet emission, the theoretical percentage of singlet excitons is 25%. The outcoupling efficiency of a bottom-emitting lambertian OLED is considered to be around 20-25%. Therefore, for a fluorescent emitter having a PLQY of 90% without delayed fluorescence, the highest EQE should not exceed 6% based on the statistical value of 25% for electrically generated singlet excitons. The devices with compounds of Formula I, such as Compound 2757, as the emitter showed EQE far exceeding the theoretic limit even with a non-optimal device structure.


Combination with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


HIL/HTL:

A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula:




embedded image


Met is a metal; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative.


In another aspect, (Y101-Y102) is a carbene ligand.


In another aspect, Met is selected from Ir, Pt, Os, and Zn.


In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Host:

The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. While the Table below categorizes host materials as preferred for devices that emit various colors, any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


(O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt.


In a further aspect, (Y103-Y104) is a carbene ligand.


Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atome, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


R101 to R107 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.


k is an integer from 1 to 20; k′ is an integer from 0 to 20.


X101 to X108 is selected from C (including CH) or N.


Z101 and Z102 is selected from NR101, O, or S.


HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


R101 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.


Ar1 to Ar3 has the similar definition as Ar's mentioned above.


k is an integer from 1 to 20.


X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


(O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. encompasses undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also encompass undeuterated, partially deuterated, and fully deuterated versions thereof.


In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exciton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 3 below. Table 3 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.











TABLE 3





MATERIAL
EXAMPLES OF MATERIAL
PUBLICATIONS















Hole injetion materials









Phthalocyanine and porphryin compounds


embedded image


Appl. Phys. Lett. 69, 2160 (1996)





Starburst triarylamines


embedded image


J. Lumin. 72-74, 985 (1997)





CFx Fluorohydrocarbon polymer


embedded image


Appl. Phys. Lett. 78, 673 (2001)





Conducting polymers (e.g., PEDOT:PSS, polyaniline, polypthiophene)


embedded image


Synth. Meth. 87, 171 (1997) WO2007002683





Phosphonic acid and sliane SAMs


embedded image


US20030162053





Triarylamine or polythiophene polymers with conductivity dopants


embedded image


EP1725079A1








embedded image








Organic compounds with conductive inorganic compounds, such as molybdenum and tungsten oxides


embedded image


US20050123751 SID Symposium Digets, 37, 923 (2006) WO2009018009





n-type semiconducting organic complexes


embedded image


US20020158242





Metal organometallic complexes


embedded image


US20060240279





Cross-linkable compounds


embedded image


US20080220265





Polythiophene based polymers and copolymers


embedded image


WO2011075644 EP2350216










Hole transporting materials









Triarylamines (e.g., TPD, □-NPD)


embedded image


Appl. Phys. Lett. 51, 913








embedded image


US5061569








embedded image


EP650955








embedded image


J. Mater. Chem. 3, 319 (1993)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)





Triaylamine on spirofluorene core


embedded image


Synth. Met. 91, 209 (1997)





Arylamine carbazole compounds


embedded image


Adv. Mater. 6, 677 (1994), US20080124572





Triarylamine with (di)benzothiophene/ (di)benzofuran


embedded image


US20070278938, US20080106190 US20110163302





Indolocarbazoles


embedded image


Synth. Met. 111, 421 (2000)





Isoindole compounds


embedded image


Chem. Mater. 15, 3148 (2003)





Metal carbene complexes


embedded image


US20080018221










Phosphorescent OLED host materials


Red hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)





Metal 8-hydroxyquinolates (e.g., Alq3, BAlq)


embedded image


Nature 395, 151 (1998)








embedded image


US20060202194








embedded image


WO2005014551








embedded image


WO2006072002





Metal phenoxybenzothiazole compounds


embedded image


Appl. Phys. Lett. 90, 123509 (2007)





Conjugated oligomers and polymers (e.g., polyfluorene)


embedded image


Org. Electron. 1, 15 (2000)





Aromatic fused rings


embedded image


WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730, WO2009008311, US20090008605, US20090009065





Zinc complexes


embedded image


WO2010056066





Chrysene based compounds


embedded image


WO2011086863










Green hosts









Arylcarbazoles


embedded image


Apply Phys. Lett. 78, 1622 (2001)








embedded image


US20030175553








embedded image


WO2001039234





Aryltriphenylene compounds


embedded image


US20060280965








embedded image


US20060280965








embedded image


WO2009021126





Poly-fused heteroaryl compounds


embedded image


US20090309488 US20090302743 US20100012931





Donor acceptor type molecules


embedded image


WO2008056746








embedded image


WO2010107244





Aza-carbazole/DBT/DBF


embedded image


JP2008074939








embedded image


US20100187984





Polymers (e.g., PVK)


embedded image


Appl. Phys. Lett. 77, 2280 (2000)





Spiroluforene compounds


embedded image


WO2004093207





Metal phenoxybenzooxazole compounds


embedded image


WO2005089025








embedded image


WO2006132173








embedded image


JP200511610





Spirofluorene-carbazole compounds


embedded image


JP2007254297








embedded image


JP2007254297





Indolocabazoles


embedded image


WO2007063796








embedded image


WO2007063754





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)


embedded image


J. Appl. Phys. 90, 5048 (2001)








embedded image


WO2004107822





Tetraphenylene complexes


embedded image


US20050112407





Metal phenoxypyridine compounds


embedded image


WO2005030900





Metal coordination complexes (e.g., Zn, Al with N{circumflex over ( )}N ligands)


embedded image


US20040137268, US20040137267










Blue hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett, 82, 2422 (2003)








embedded image


US20070190359





Dibenzothiophene/ Dibenzofuran- carbazole compounds


embedded image


WO2006114966, US20090167162








embedded image


US20090167162








embedded image


WO2009086028








embedded image


US20090030202, US20090017330








embedded image


US20100084966





Silicon aryl compounds


embedded image


US20050238919








embedded image


WO2009003898





Silicon/Germanium aryl compounds


embedded image


EP2034538A





Aryl benzoyl ester


embedded image


WO2006100298





Carbazole linked by non- conjugated groups


embedded image


US20040115476





Aza-carbazoles


embedded image


US20060121308





High triplet metal organometallic complex


embedded image


US7154114










Phosphorescent dopants


Red dopants









Heavy metal porphyrins (e.g., PtOEP)


embedded image


Nature 395, 151 (1998)





Iridium(III) organometallic complexes


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US2006835469








embedded image


US2006835469








embedded image


US20060202194








embedded image


US20060202194








embedded image


US20070087321








embedded image


US20080261076 US20100090591








embedded image


US20070087321








embedded image


Adv. Mater. 19, 739 (2007)








embedded image


WO2009100991








embedded image


WO2008101842








embedded image


US7232618





Platinum (II) organometallic complexes


embedded image


WO2003040257








embedded image


US20070103060





Osminum(III) complexes


embedded image


Chem. Mater. 17, 3532 (2005)





Ruthenium(II) complexes


embedded image


Adv. Mater. 17, 1059 (2005)





Rhenium (I), (II), and (III) complexes


embedded image


US20050244673










Green dopants









Iridium(III) organometallic complexes


embedded image


Inorg. Chem. 40, 1704 (2001)








embedded image


US20020034656








embedded image


US7332232








embedded image


US20090108737








embedded image


WO2010028151








embedded image


EP1841834B








embedded image


US20060127696








embedded image


US20090039776








embedded image


US6921915








embedded image


US20100244004








embedded image


US6687266








embedded image


Chem. Mater. 16, 2480 (2004)








embedded image


US20070190359








embedded image


US 20060008670 JP2007123392








embedded image


WO2010086089, WO2011044988








embedded image


Adv. Mater. 16, 2003 (2004)








embedded image


Angew. Chem. Int. Ed. 2006, 45, 7800








embedded image


WO2009050290








embedded image


US20090165846








embedded image


US20080015355








embedded image


US20010015432








embedded image


US20100295032





Monomer for polymeric metal organometallic compounds


embedded image


US7250226, US7396598





Pt(II) organometallic complexes, including polydentated ligands


embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Chem. Lett. 34, 592 (2005)








embedded image


WO2002015645








embedded image


US20060263635








embedded image


US20060182992 US20070103060





Cu complexes


embedded image


WO2009000673








embedded image


US20070111026





Gold complexes


embedded image


Chem. Commun. 2906 (2005)





Rhenium(III) complexes


embedded image


Inorg. Chem. 42, 1248





Osmium(II) complexes


embedded image


US7279704





Deuterated organometallic complexes


embedded image


US20030138657





Organometallic complexes with two or more metal centers


embedded image


US20030152802








embedded image


US7090928










Blue dopants









Iridium(III) organometallic complexes


embedded image


WO2002002714








embedded image


WO2006009024








embedded image


US20060251923 US20110057559 US20110204333








embedded image


US7393599, WO2006056418, US20050260441, WO2005019373








embedded image


US7534505








embedded image


WO2011051404








embedded image


US7445855








embedded image


US20070190359 US20080297033 US20100148663








embedded image


US7338722








embedded image


US20020134984








embedded image


Angew. Chen. Int. Ed. 47, 1 (2008)








embedded image


Chem. Mater. 18, 5119 (2006)








embedded image


Inorg. Chem. 46, 4308 (2007)








embedded image


WO2005123873








embedded image


WO2005123873








embedded image


WO2007004380








embedded image


WO2006082742





Osmium(II) complexes


embedded image


US7279704








embedded image


Organometallics 23, 3745 (2004)





Gold complexes


embedded image


Appl. Phys. Lett. 74, 1361 (1999)





Platinum(II) complexes


embedded image


WO2006098120, WO2006103874





Pt tetradentate complexes with at least one metal-carbene bond


embedded image


US7655323










Exciton/hole blocking layer materials









Bathocuprine compounds (e.g., BCP, BPhen)


embedded image


Appl. Phys. Lett. 75, 4 (1999)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





Metal 8-hydroxyquinolates (e.g., BAlq)


embedded image


Appl. Phys. Lett. 81, 162 (2002)





5-member ring electron deficient heterocycles such as triazole, oxiadiazole, imidazole, benzoimidazole


embedded image


Appl. Phys. Lett. 81, 162 (2002)





Triphenylene compounds


embedded image


US20050025993





Fluorinated aromatic compounds


embedded image


Appl. Phys. Lett. 79, 156 (2001)





Phenothiazine-S-oxide


embedded image


WO2008132085





Silylated five-membered nitrogen, oxygen, sulfur or phosphorus dibenzoheterocycles


embedded image


WO2010079051





Aza-carbazoles


embedded image


US20060121308










Electron transporting materials









Anthracene-benzoimidazole compounds


embedded image


WO2003060956








embedded image


US20090179554





Aza triphelene derivatives


embedded image


US20090115316





Anthracene-benzothiazole compounds


embedded image


Appl. Phys. Lett 89, 063504 (2006)





Metal 8-hydroxyquinolates (e.g., Alq3, Zrq4)


embedded image


Appl. Phys. Lett. 51, 913 (1987) US7230107





Metal hydroxybenoquinolates


embedded image


Chem. Lett. 5, 905 (1993)





Bathocuprine compounds such as BCP, BPhen, etc


embedded image


Appl. Phys. Lett. 91, 263503 (2007)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole)


embedded image


Appl. Phys. Lett. 74, 865 (1999)








embedded image


Appl. Phys. Lett. 55, 1489 (1989)








embedded image


Jpn. J. Apply. Phys. 32, L917 (1993)





Silole compounds


embedded image


Org. Electron. 4, 113 (2003)





Arylborane compounds


embedded image


J. Am. Chem. Soc. 120, 9714 (1998)





Fluorinated aromatic compounds


embedded image


J. Am. Chem. Soc. 122, 1832 (2000)





Fullerene (e.g., C60)


embedded image


US20090101870





Triazine complexes


embedded image


US20040036077





Zn (N{circumflex over ( )}N) complexes


embedded image


US6528187









Experimental

It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. An organic light emitting device (OLED), comprising: an anode;a cathode; andan emissive layer, disposed between the anode and the cathode;wherein the emissive layer comprises a compound having the formula:
  • 2. The OLED of claim 1, wherein condition (iii) is met.
  • 3. The OLED of claim 1, wherein the compound has the formula:
  • 4. The OLED of claim 1, wherein at least one of R1, R2, R3, R4, R5, R6, R7, and R8 is
  • 5. The OLED of claim 1, wherein R3 is
  • 6. The OLED of claim 1, wherein the compound is
  • 7. The OLED of claim 1, wherein the first phosphorescent emitting material is an Ir(III) organometallic complex.
  • 8. The OLED of claim 7, wherein the Ir(III) organometallic complex comprises a phenylpyridine ligand.
  • 9. The OLED of claim 1, wherein the first phosphorescent emitting material is a Pt(II) organometallic complex.
  • 10. The OLED of claim 9, wherein the Pt(II) organometallic complex is a Pt tetradentate complex.
  • 11. The OLED of claim 10, wherein the Pt tetradentate complex comprises at least one metal-carbene bond.
  • 12. The OLED of claim 1, wherein the emissive layer further comprises a host material.
  • 13. The OLED of claim 1, wherein the host material comprises a group selected from the group consisting of aromatic fused rings, arylcarbazoles, aryltriphenylene, poly-fused heteroaryl, donor acceptor type molecules, aza-carbazole, aza-dibenzothiophene, aza-dibenzofuran, spirofluorene, spirofluorene-carbazole, indolocabazoles, 5-member ring electron deficient heterocycles, tetraphenylene, dibenzothiophene-carbazole, dibenzofuran-carbazole, silicon aryl, germanium aryl, aryl benzoyl ester, and carbazole linked by non-conjugated groups.
  • 14. An emissive region in an organic light emitting device, the emissive region comprising a compound having the formula:
  • 15. The emissive region of claim 14, wherein condition (iii) is met.
  • 16. The emissive region of claim 14, wherein the compound has the formula:
  • 17. The emissive region of claim 14, wherein at least one of R1, R2, R3, R4, R5, R6, R7, and R8 is
  • 18. The emissive region of claim 14, wherein the compound is
  • 19. A consumer product comprising an organic light emitting device (OLED), comprising: an anode;a cathode; andan emissive layer, disposed between the anode and the cathode;wherein the emissive layer comprises a compound having the formula:
  • 20. The consumer product of claim 19, wherein the consumer product selected from the group consisting of flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, and a sign.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/045,281, filed Jul. 25, 2018, a continuation of U.S. patent application Ser. No. 15/586,997, filed May 4, 2017, now U.S. Pat. No. 10,069,081, which is a continuation of U.S. patent application Ser. No. 14/921,446, filed Oct. 23, 2015, now U.S. Pat. No. 9,670,185, which is a divisional application of U.S. patent application Ser. No. 13/708,189, filed Dec. 7, 2012, now U.S. Pat. No. 9,209,411, the entire contents of which are incorporated herein by reference.

Divisions (1)
Number Date Country
Parent 13708189 Dec 2012 US
Child 14921446 US
Continuations (3)
Number Date Country
Parent 16045281 Jul 2018 US
Child 17089278 US
Parent 15586997 May 2017 US
Child 16045281 US
Parent 14921446 Oct 2015 US
Child 15586997 US