ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Abstract
A compound of Formula I,
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

[Intentionally left blank]


FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as hosts or emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a compound of Formula I,




embedded image


wherein:

    • rings B and C are each independently a 5-membered or 6-membered carbocyclic or heterocyclic ring;
    • Z is selected from the group consisting of B, Al, and Ga;
    • Y1 and Y2 are each independently BR, BRR′, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR′, C═CRR, S═O, SO2, CRR′, SiRR′, and GeRR′;
    • X1, X2, and X3 are each independently C or N;
    • each of RA, RB, and RC independently represents mono, or up to a maximum allowed substitutions, or no substitutions;
    • each R, R′, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, selenyl, and combinations thereof;
    • at least one of R, R′, RA, RB, and RC comprises -L-SiAr1Ar2Ar3;
    • wherein each custom-character is independently a single bond or a double bond;
    • L is a direct bond or an organic linker;
    • L is joined to a C atom of one of rings A, B, and C;
    • each of Ar1, Ar2, and Ar3 is independently a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further substituted;
    • any two substituents of R, R′, RA, RB, and RC may be joined or fused to form a ring;
    • with the proviso that if ring B is a 5-membered ring, ring C is benzene, and -L-SiAr1Ar2Ar3 is bonded to X2, then L is not a direct bond;
    • with the proviso that if Y1 and Y2 are O, and rings B and C are benzene rings, and L bonded to X2 and is selected from the group consisting of a direct bond,




embedded image




    •  then at least one RA, RB, and RC that does not comprise -L-SiAr1Ar2Ar3 is selected from the group consisting of an alkyl group containing five or more carbon atoms, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, silyl, germyl, amino, halogen, and combinations thereof; and

    • with the proviso that the compound is not







embedded image


In another aspect, the present disclosure provides a formulation comprising a compound of Formula I as described herein.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising a compound of Formula I as described herein.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising a compound of Formula I as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The terms “selenyl” refers to a —SeRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “germyl” refers to a —Ge(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[fh]quinoxaline and dibenzo[fh]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound of Formula I,




embedded image


wherein:

    • rings B and C are each independently a 5-membered or 6-membered carbocyclic or heterocyclic ring;
    • Z is selected from the group consisting of B, Al, and Ga;
    • Y1 and Y2 are each independently BR, BRR′, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR′, C═CRR, S═O, SO2, CRR′, SiRR′, and GeRR′;
    • X1, X2, and X3 are each independently C or N;
    • each of RA, RB, and RC independently represents mono, or up to a maximum allowed substitutions, or no substitutions;
    • each R, R′, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein;
    • at least one of R, R′, RA, RB, and RC comprises -L-SiAr1Ar2Ar3;
    • wherein each custom-character is independently a single bond or a double bond;
    • L is a direct bond or an organic linker;
    • L is joined to a C atom of one of rings A, B, and C;
    • each of Ar1, Ar2, and Ar3 is independently a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further substituted;
    • any two substituents of R, R′, RA, RB, and RC may be joined or fused to form a ring;
    • with the proviso that if ring B is a 5-membered ring, ring C is benzene, and -L-SiAr1Ar2Ar3 is bonded to X2, then L is not a direct bond;
    • with the proviso that if Y1 and Y2 are O, and rings B and C are benzene rings, and L bonded to X2 and is selected from the group consisting of a direct bond,




embedded image




    •  then at least one RA, RB, and RC that does not comprise -L-SiAr1Ar2Ar3 is selected from the group consisting of an alkyl group containing five or more carbon atoms, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, silyl, germyl, amino, halogen, and combinations thereof; and

    • with the proviso that the compound is not







embedded image


The compound of claim 1, wherein each RA, RB, and RC independently is a hydrogen or a substituent selected from the group consisting of the Preferred General Substituents defined herein. The compound of claim 1, wherein each RA, RB, and RC independently is a hydrogen or a substituent selected from the group consisting of the More Preferred General Substituents defined herein. The compound of claim 1, wherein each RA, RB, and RC independently is a hydrogen or a substituent selected from the group consisting of the Most Preferred General Substituents defined herein.


In some embodiments, L is a direct bond. In some embodiments, L is an aromatic linker. In some embodiments, L is phenyl.


In some embodiments, L is selected from the group consisting of phenyl, biphenyl, pyridine, pyrimidine, triazine, pyrazine, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, phenyl carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene, azacarbazole, 5,2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole (“bimbim”), aza bimbim, and biscarbazole.


In some embodiments, L is selected from the group consisting of phenyl, biphenyl, pyridine, pyrimidine, triazine, pyrazine, carbazole, azacarbazole, 5,2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole (“bimbim”), aza-bimbim, and biscarbazole.


In some embodiments, L is further substituted. In some embodiments, L is further substituted by at least one aryl or heteroaryl substituents. In some embodiments, L is further substituted by a moiety selected from the group consisting of phenyl, biphenyl, pyridine, pyrimidine, triazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene, azacarbazole, bimbim, aza bimbim, biscarbazole, silyl, and partially or fully deuterated variations thereof. In some embodiments, L is further substituted by triarylsilyl. In some embodiments, L is further substituted by triphenylsilyl.


In some embodiments, each of ring B and ring C is independently selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, triazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, and thiazole. In some embodiments, ring B is benzene. In some embodiments, ring C is benzene.


In some embodiments, two RB are joined to form a ring fused to ring B. In some embodiments, the combination of ring B and the two RB joined together forms a moiety selected from the group consisting of naphthalene, quinoline, isoquinoline, quinazoline, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, dibenzofuran, dibenzothiophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, and fluorene. In some embodiments, the combination of ring B and the two RB joined together forms a moiety selected from the group consisting of benzimidazole, benzopyrazole, indome, isoindole, benzoxazole, benzofuran, benzothiophene, and benzothiazole. In some embodiments, the combination of ring B and the two RB joined together forms a moiety selected from the group consisting of benzofuran and benzothiophene.


In some embodiments, two RC are joined to form a ring fused to ring C. In some embodiments, the combination of ring C and the two RC joined together forms a moiety selected from the group consisting of naphthalene, quinoline, isoquinoline, quinazoline, benzofuran, benzoxazole, benzothiophene, benzothiazole, benzoselenophene, indene, indole, benzimidazole, carbazole, dibenzofuran, dibenzothiophene, quinoxaline, phthalazine, phenanthrene, phenanthridine, and fluorene. In some embodiments, the combination of ring C and the two RC joined together forms a moiety selected from the group consisting of benzimidazole, benzopyrazole, indome, isoindole, benzoxazole, benzofuran, benzothiophene, and benzothiazole. In some embodiments, the combination of ring C and the two RC joined together forms a moiety selected from the group consisting of benzofuran and benzothiophene.


In some embodiments, at least one of ring B and ring C is independently selected from the group consisting of imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, and thiazole. In some embodiments, each of ring B and ring C is independently selected from the group consisting of imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, and thiazole.


In some embodiments, each custom-character is a double bond. In some embodiments, one custom-character is a single bond and one custom-character is a double bond.


In some embodiments, each of X1 to X3 is C. In some embodiments, at least one of X1 to X3 is N. In some embodiments, X1 is N. In some embodiments, X2 is N. In some embodiments, X3 is N.


In some embodiments, Z is B. In some embodiments, Z is Al. In some embodiments, Z is Ga.


In some embodiments, Y1 and Y2 are both O. In some embodiments, Y1 and Y2 are both Si. In some embodiments, Y1 is O and Y2 is Si.


In some embodiments, at least one RA does not comprise -L-SiAr1Ar2Ar3 and is not hydrogen or deuterium. In some embodiments, at least one RA comprises -L-SiAr1Ar2Ar3.


In some embodiments, at least one RB does not comprise -L-SiAr1Ar2Ar3 and is not hydrogen or deuterium. In some embodiments, at least one RB comprises -L-SiAr1Ar2Ar3.


In some embodiments, at least one RC does not comprise -L-SiAr1Ar2Ar3 and is not hydrogen or deuterium. In some embodiments, at least one RC comprises -L-SiAr1Ar2Ar3.


In some embodiments, at least one R or R′ comprises -L-SiAr1Ar2Ar3.


In some embodiments, each of Ar1, Ar2, and Ar3 is independently selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, triazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene. In some embodiments, each of Ar1, Ar2, and Ar3 is benzene. In some embodiments, each of Ar1, Ar2, and Ar3 is independently unsubstituted or substituted with a moiety selected from the group consisting of the General Substituents defined herein. In some embodiments, at least one of Ar1, Ar2, and Ar3 is substituted with a moiety selected from the group consisting of the benzene, pyridine, pyrimidine, pyridazine, pyrazine, triazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, azadibenzothiophene, azadibenzofuran, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, azadibenzoseleonphene, and partially or fully deuterated variations thereof.


In some embodiments, the compound comprises two substituents comprising -L-SiAr1Ar2Ar3, where each -L-SiAr1Ar2Ar3 can be the same or different.


In some embodiments, L is not bonded to X2. In some embodiments, L is not selected from the group consisting of a direct bond




embedded image


In some embodiments, at least one R, R′, RA, RB, or RC does not comprise -L-SiAr1Ar2Ar3 and is selected from the group consisting of an alkyl group containing five or more carbon atoms, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, silyl, germyl, amino, halogen, and combinations thereof. In some embodiments, at least one RA, RB, or RC does not comprise -L-SiAr1Ar2Ar3 and is selected from the group consisting of an alkyl group containing five or more carbon atoms, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, silyl, germyl, amino, halogen, and combinations thereof.


In some embodiments, the compound is selected form the group consisting of:




embedded image




embedded image




    • each of X4 to X11 is independently C or N;

    • Y3 and Y4 are each independently selected from the group consisting of BR, BRR′, NR, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR′, C═CRR, S═O, SO2, CRR′, SiRR′, and GeRR′;

    • each of RA′, RB′, and RC′ independently represents mono, or up to a maximum allowed substitutions, or no substitutions;

    • each R, R′, RA′, RB′, and RC′ is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein;

    • at least one RA′, RB′, or RC′ comprises the moiety -L-SiAr1Ar2Ar3; and

    • any two substitutions can be joined or fused to form a ring.





In some embodiments, at least one RA′, RB′, or RC′ is selected from the group consisting of




embedded image


embedded image


wherein:

    • each of X12 to X42 is independently C or N;
    • each of RD, RE, RF, RG, RH, and RI independently represents mono, or up to a maximum allowed substitutions, or no substitutions;
    • each R, R′, RD, RE, RF, RG, and RH is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and
    • any two substitutions can be joined or fused to form a ring.


In some embodiments, the compound is selected from the group consisting of the structures of the following LIST 1:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein:

    • each of X4 to X46 is independently C or N;
    • Y3 and Y4 are each independently selected from the group consisting of BR, BRR′, NR, PR, P(O)R, O, S, Se, C═O, C═S, C═Se, C═NR′, C═CRR, S═O, SO2, CRR′, SiRR′, and GeRR′;
    • Y10 is selected from the group consisting of BR, BRR′, PR, P(O)R, S, Se, C═O, C═S, C═Se, C═NR′, C═CRR, S═O, SO2, CRR′, SiRR′, and GeRR′;
    • each of RD, RE, RF, RG, RH, and RI independently represents mono, or up to a maximum allowed substitutions, or no substitutions;
    • each R, R′, RD, RE, RF, RG, RH, and RI is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and
    • any two substitutions can be joined or fused to form a ring.


In some embodiments, each of RA, RB, RC, RD, RE, RF, RG, RH, and RI is independently a hydrogen or a substituent selected from the group consisting of deuterium, phenyl, biphenyl, pyridine, pyrimidine, triazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene, azacarbazole, bimbim, aza bimbim, biscarbazole, silyl, partially or fully deuterated variations thereof, and combinations thereof. In some embodiments, each RA, RB, RC, RD, RE, RF, RG, RH, and RI is independently a hydrogen or triarylsilyl. In some embodiments, each RA, RB, RC, RD, RE, RF, RG, RH, and RI is independently a hydrogen or triphenylsilyl.


In some embodiments, each RA, RB, RC, RD, RE, RF, RG, RH, and RI is independently a hydrogen or a deuterium.


In some embodiments, each of X1 to X11 is C. In some embodiments, at least one of X1 to X11 is N. In some embodiments, exactly one of X1 to X11 is N.


In some embodiments, X1 is N. In some embodiment, the remainder of X1 to X11 are C.


In some embodiments, X1 is N. In some embodiment, the remainder of X1 to X11 are C.


In some embodiments, X1 and X3 are both N. In some embodiment, the remainder of X1 to X11 are C.


In some embodiments, each of X17 to X31 is C. In some embodiments, at least one of X17 to X11 is N. In some embodiments, exactly one of X17 to X31 is N.


In some embodiments, each of X1 to X46 is C. In some embodiments, at least one of X1 to X46 is N. In some embodiments, exactly one of X1 to X46 is N.


In some embodiments, no two substituents are joined or fused to form a ring.


In some embodiments, the compound is selected from the group consisting of Compound i-(Ro)(Rp)(Rq)(Rr), Compound i′-(Rmn)(Ro)(Rp)(Rq), Compound 29-(Rm)(Ro)(Rp)(Rq)(Rr), and Compound i″-(Rn)(Ro)(Rp)(Rq), wherein i is an integer from 1 to 26, i′ is an integer from 27, 28, and 30 to 34, and i″ is an integer from 35 to 42, m is an integer from i to 135, n is an integer from i to 23, o is an integer from i to 30, and each of p, q, and r is independently an integer from i to 141; wherein Compound 1-(Rl)(Rl)(Rl)(Rl) to Compound 42-(R30)(R(44)(R14))(R141) are defined in the following LIST 2:













Compound
Structure of compound







Compound 1-(Ro)(Rp)(Rq)(Rr), wherein Compound 1-(R1)(R1)(R1)(R1) to Compound 1- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 2-(Ro)(Rp)(Rq)(Rr), wherein Compound 2-(R1)(R1)(R1)(R1) to Compound 2- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 3-(Ro)(Rp)(Rq)(Rr), wherein Compound 3-(R1)(R1)(R1)(R1) to Compound 3- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 4-(Ro)(Rp)(Rq)(Rr), wherein Compound 4-(R1)(R1)(R1)(R1) to Compound 4- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 5-(Ro)(Rp)(Rq)(Rr), wherein Compound 5-(R1)(R1)(R1)(R1) to Compound 5- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 6-(Ro)(Rp)(Rq)(Rr), wherein Compound 6-(R1)(R1)(R1)(R1) to Compound 6- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 7-(Ro)(Rp)(Rq)(Rr), wherein Compound 7-(R1)(R1)(R1)(R1) to Compound 7- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 8-(Ro)(Rp)(Rq)(Rr), wherein Compound 8-(R1)(R1)(R1)(R1) to Compound 8- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 9-(Ro)(Rp)(Rq)(Rr), wherein Compound 9-(R1)(R1)(R1)(R1) to Compound 9- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 10-(Ro)(Rp)(Rq)(Rr), wherein Compound 10-(R1)(R1)(R1)(R1) to Compound 10- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 11-(Ro)(Rp)(Rq)(Rr), wherein Compound 11-(R1)(R1)(R1)(R1) to Compound 11- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 12-(Ro)(Rp)(Rq)(Rr), wherein Compound 12-(R1)(R1)(R1)(R1) to Compound 12- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 13-(Ro)(Rp)(Rq)(Rr), wherein Compound 13-(R1)(R1)(R1)(R1) to Compound 13- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 14-(Ro)(Rp)(Rq)(Rr), wherein Compound 14-(R1)(R1)(R1)(R1) to Compound 14- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 15-(Ro)(Rp)(Rq)(Rr), wherein Compound 15-(R1)(R1)(R1)(R1) to Compound 15- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 16-(Ro)(Rp)(Rq)(Rr), wherein Compound 16-(R1)(R1)(R1)(R1) to Compound 16- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 17-(Ro)(Rp)(Rq)(Rr), wherein Compound 17-(R1)(R1)(R1)(R1) to Compound 17- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 18-(Ro)(Rp)(Rq)(Rr), wherein Compound 18-(R1)(R1)(R1)(R1) to Compound 18- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 19-(Ro)(Rp)(Rq)(Rr), wherein Compound 19-(R1)(R1)(R1)(R1) to Compound 19- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 20-(Ro)(Rp)(Rq)(Rr), wherein Compound 20-(R1)(R1)(R1)(R1) to Compound 20- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 21-(Ro)(Rp)(Rq)(Rr), wherein Compound 21-(R1)(R1)(R1)(R1) to Compound 21- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 22-(Ro)(Rp)(Rq)(Rr), wherein Compound 22-(R1)(R1)(R1)(R1) to Compound 22- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 23-(Ro)(Rp)(Rq)(Rr), wherein Compound 23-(R1)(R1)(R1)(R1) to Compound 23- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 24-(Ro)(Rp)(Rq)(Rr), wherein Compound 24-(R1)(R1)(R1)(R1) to Compound 24- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 25-(Ro)(Rp)(Rq)(Rr), wherein Compound 25-(R1)(R1)(R1)(R1) to Compound 25- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 26-(Ro)(Rp)(Rq)(Rr), wherein Compound 26-(R1)(R1)(R1)(R1) to Compound 26- (R30)(R141)(R141)(R141) have the structure


embedded image







Compound 27-(Rm)(Ro)(Rp)(Rq), wherein Compound 27-(R1)(R1)(R1)(R1) to Compound 27- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 28-(Rm)(Ro)(Rp)(Rq), wherein Compound 28-(R1)(R1)(R1)(R1) to Compound 28- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 29-(Rm)(Ro)(Rp)(Rq)(Rr), wherein Compound 29-(R1)(R1)(R1)(R1)(R1) to Compound 29-(R135)(R30)(R141)(R141)(R141) have the structure


embedded image







Compound 30-(Rm)(Ro)(Rp)(Rq), wherein Compound 30-(R1)(R1)(R1)(R1) to Compound 30- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 31-(Rm)(Ro)(Rp)(Rq), wherein Compound 31-(R1)(R1)(R1)(R1) to Compound 31- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 32-(Rm)(Ro)(Rp)(Rq), wherein Compound 32-(R1)(R1)(R1)(R1) to Compound 32- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 33-(Rm)(Ro)(Rp)(Rq), wherein Compound 33-(R1)(R1)(R1)(R1) to Compound 33- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 34-(Rm)(Ro)(Rp)(Rq), wherein Compound 34-(R1)(R1)(R1)(R1) to Compound 34- (R135)(R30)(R141)(R141) have the structure


embedded image







Compound 35-(Rn)(Rp)(Rq)(Rr), wherein Compound 35-(R1)(R1)(R1)(R1) to Compound 35- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 36-(Rn)(Rp)(Rq)(Rr), wherein Compound 36-(R1)(R1)(R1)(R1) to Compound 36- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 37-(Rn)(Rp)(Rq)(Rr), wherein Compound 37-(R1)(R1)(R1)(R1) to Compound 37- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 38-(Rn)(Rp)(Rq)(Rr), wherein Compound 38-(R1)(R1)(R1)(R1) to Compound 38- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 39-(Rn)(Rp)(Rq)(Rr), wherein Compound 39-(R1)(R1)(R1)(R1) to Compound 39- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 40-(Rn)(Rp)(Rq)(Rr), wherein Compound 40-(R1)(R1)(R1)(R1) to Compound 40- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 41-(Rn)(Rp)(Rq)(Rr), wherein Compound 41-(R1)(R1)(R1)(R1) to Compound 41- (R23)(R141)(R141)(R141) have the structure


embedded image







Compound 42-(Rn)(Rp)(Rq)(Rr), wherein Compound 42-(R1)(R1)(R1)(R1) to Compound 42- (R23)(R141)(R141)(R141) have the structure


embedded image











wherein R1 to R141 have the structures defined in the following LIST 3:














Structure







R1


embedded image







R2


embedded image







R3


embedded image







R4


embedded image







R5


embedded image







R6


embedded image







R7


embedded image







R8


embedded image







R9


embedded image







R10


embedded image







R11


embedded image







R12


embedded image







R13


embedded image







R14


embedded image







R15


embedded image







R16


embedded image







R17


embedded image







R18


embedded image







R19


embedded image







R20


embedded image







R21


embedded image







R22


embedded image







R23


embedded image







R24


embedded image







R25


embedded image







R26


embedded image







R27


embedded image







R28


embedded image







R29


embedded image







R30


embedded image







R31


embedded image







R32


embedded image







R33


embedded image







R34


embedded image







R35


embedded image







R36


embedded image







R37


embedded image







R38


embedded image







R39


embedded image







R40


embedded image







R41


embedded image







R42


embedded image







R43


embedded image







R44


embedded image







R45


embedded image







R46


embedded image







R47


embedded image







R48


embedded image







R49


embedded image







R50


embedded image







R51


embedded image







R52


embedded image







R53


embedded image







R54


embedded image







R55


embedded image







R56


embedded image







R57


embedded image







R58


embedded image







R59


embedded image







R60


embedded image







R61


embedded image







R62


embedded image







R63


embedded image







R64


embedded image







R65


embedded image







R66


embedded image







R67


embedded image







R68


embedded image







R69


embedded image







R70


embedded image







R71


embedded image







R72


embedded image







R73


embedded image







R74


embedded image







R75


embedded image







R76


embedded image







R77


embedded image







R78


embedded image







R79


embedded image







R80


embedded image







R81


embedded image







R82


embedded image







R83


embedded image







R84


embedded image







R85


embedded image







R86


embedded image







R87


embedded image







R88


embedded image







R89


embedded image







R90


embedded image







R91


embedded image







R92


embedded image







R93


embedded image







R94


embedded image







R95


embedded image







R96


embedded image







R97


embedded image







R98


embedded image







R99


embedded image







R100


embedded image







R101


embedded image







R102


embedded image







R103


embedded image







R104


embedded image







R105


embedded image







R106


embedded image







R107


embedded image







R108


embedded image







R109


embedded image







R110


embedded image







R111


embedded image







R112


embedded image







R113


embedded image







R114


embedded image







R115


embedded image







R116


embedded image







R117


embedded image







R118


embedded image







R119


embedded image







R120


embedded image







R121


embedded image







R122


embedded image







R123


embedded image







R124


embedded image







R125


embedded image







R126


embedded image







R127


embedded image







R128


embedded image







R129


embedded image







R130


embedded image







R131


embedded image







R132


embedded image







R133


embedded image







R134


embedded image







R135


embedded image







R136


embedded image







R137


embedded image







R138


embedded image







R139


embedded image







R140


embedded image







R141


embedded image











In some embodiments, at least one of R, R′, RA, RB, and RC comprises -L-SiAr1Ar2Ar3 selected from the group consisting of R1 to R30 as defined in LIST 3.


In some embodiments, the compound is selected from the group consisting of the structures of the following LIST 4:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound of Formula I described herein can be at least 30% deuterated, at least 40% deuterated, at least 50% deuterated, at least 60% deuterated, at least 70% deuterated, at least 80% deuterated, at least 90% deuterated, at least 95% deuterated, at least 99% deuterated, or 100% deuterated. As used herein, percent deuteration has its ordinary meaning and includes the percent of possible hydrogen atoms (e.g., positions that are hydrogen or deuterium) that are replaced by deuterium atoms.).


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the first organic layer can comprise a compound of Formula I as described herein.


In some embodiments, the organic layer is an emissive layer and the compound can be an emissive dopant or a non-emissive dopant.


In some embodiments, the compound may be a host, and the first organic layer may be an emissive layer that comprises a phosphorescent emitter.


In some embodiments, the phosphorescent emitter may be a transition metal complex having at least one ligand or part of the ligand if the ligand is more than bidentate selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


wherein:

    • T is selected from the group consisting of B, Al, Ga, and In;
    • each of Y1 to Y13 is independently selected from the group consisting of carbon and nitrogen;
    • Y1 is selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C═O, C═S, C═Se, C═NRe, C═CReRf, S═O, SO2, CReRf, SiReRf, and GeReRf;
    • Re and Rf can be fused or joined to form a ring;
    • each Ra, Rb, Rc, and Rd independently represent zero, mono, or up to a maximum allowed number of substitutions to its associated ring;
    • each of Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; the general substituents defined herein; and any two adjacent substituents of Ra, Rb, Rc, Rd, Re and Rf can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, the compound may be an acceptor, and the OLED may further comprise a sensitizer selected from the group consisting of a delayed fluorescence emitter, a phosphorescent emitter, and combination thereof.


In some embodiments, the compound may be a fluorescent emitter, a delayed fluorescence emitter, or a component of an exciplex that is a fluorescent emitter or a delayed fluorescence emitter.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region can comprise a compound of Formula I as described herein.


In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for intervening layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.


The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.


The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors (“DBRs”) in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.


In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.


In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a plurality of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer, and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound of Formula I as described herein.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP, also referred to as organic vapor jet deposition (OVJD)), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18° C. to 30° C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40° C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer.


In some embodiments, the sensitizer is a single component, or one of the components to form an exciplex.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image


wherein Met is a metal, which can have an atomic weight greater than 40; (Y101—Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L11 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101—Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101—Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc*/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


wherein Met is a metal; (Y103—Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103—Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


Experimental Section
Synthesis Section
Synthesis of Compound BH1



embedded image


A mixture of (3-(Triphenylsilyl)phenyl)boronic acid (15.0 g, 39.4 mmol), 7-bromo-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (18.0 g, 59.2 mmol) and potassium carbonate (10.9 g, 79.0 mmol) in 1,4-dioxane (200 mL) and water (50 mL) was sparged with nitrogen 20 minutes. Chloro(2-dicyclohexylposphino-2′,6′-dimethoxy-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (2.8 g, 3.9 mmol) was added with continuous sparging with nitrogen for 10 additional minutes. The mixture was heated to 85° C. and stirred for 16 hours. The reaction mixture was cooled to room temperature (˜ 22° C.) and diluted with dichloromethane (1 L) and water (1 L). The aqueous and combined organic layers were separated. The aqueous layer was extracted with dichloromethane (0.5 L). The combined organic layers were washed with saturated brine (0.5 L), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in dichloromethane at 35° C., then filtered through a plug of silica gel and diatomaceous earth, which was washed with dichloromethane. The filtrate was concentrated under reduced pressure to yield BH1 as a light-yellow solid (16.8 g, 71% yield).


Synthesis of Compound BH2



embedded image


A solution of potassium carbonate (0.29 g, 2.06 mmol) in water (3 mL) was added to a suspension of triphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)silane (0.48 g, 1.03 mmol) and 6-bromo-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (0.36 g, 1.03 mmol) in tetrahydrofuran (THF) (8.6 mL) and the mixture was sparged with nitrogen for 5 minutes. Chloro(2-dicyclohexylphosphino-2′,6′-dimethoxy-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II)(SphosPd-G2) (0.074 g, 0.103 mmol) was added and the reaction mixture was heated at 63° C. for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (180 mL) and water (30 mL). The layers were separated and the organic layer was filtered over a pad of diatomaceous earth (10 g), sodium sulfate (10 g), and silica gel (10 g). The filtrate was concentrated under reduced pressure. The residue was dissolved in toluene (15 mL) and the solution was left at room temperature for 2 hours. The precipitate formed was filtered and dried under high vacuum at 100° C. for 3 hours to yield BH2 (0.4 g, 64% yield) as an off-white solid.


Synthesis of Compound BH3
Step 1: Synthesis of 2-bromo-3′-chloro-1,1′-biphenyl



embedded image


1-bromo-3-chlorobenzene (4.91 ml, 41.8 mmol), (2-bromophenyl)boronic acid (7 g, 34.9 mmol), and sodium carbonate (7.39 g, 69.7 mmol) were combined in toluene (145 ml) and water (29.0 ml). The mixture was sparged with nitrogen for 10 minutes, then Pd(PPh3)4 (2.014 g, 1.743 mmol) was added and nitrogen sparging continued for an additional 5 minutes. The reaction was heated at reflux for 16 hour and diluted with water and brine. The mixture was extracted twice with ethylacetate (EtOAc) and the combined organic were washed with brine and dried. Purification by column chromatography yielded the product, 2-bromo-3′-chloro-1,1′-biphenyl, as a colorless oil, 6.36 g (68%).


Step 2: Synthesis of (3′-Chloro-[1,1′-biphenyl]-2-yl)triphenylsilane



embedded image


2-bromo-3′-chloro-1,1′-biphenyl (6.23 g, 23.28 mmol) was dissolved in Et2O (200 ml) and cooled in an isopropyl alcohol (iPrOH)/CO2 bath. Butyllithium solution in hexanes was added (9.31 ml, 23.28 mmol) and the solution was stirred cold for 40 minutes. Dichlorodiphenylsilane (4.45 ml, 21.16 mmol) was added via syringe and the reaction allowed to warm up to room temperature, forming white precipitates. The mixture was cooled in an iPrOH/CO2 bath, then phenyllithium in dibutyl ether (16.71 ml, 31.7 mmol) was added and the mixture allowed to warm up to room temperature. Although the temperature of the cooling steps was not measured, the cooling steps could be carried out at approximately −78° C. The reaction was quenched with water and brine, extracted twice with EtOAc and the combined organics were washed with brine and dried. Purification by column chromatography yielded the product, (3′-Chloro-[1,1′-biphenyl]-2-yl)triphenylsilane, as a glassy residue that slowly crystallized, 8.77 g (93%).


Step 3: Synthesis of triphenyl(3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-2-yl)silane



embedded image


(3′-Chloro-[1,1′-biphenyl]-2-yl)triphenylsilane (5 g, 11.18 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (3.41 g, 13.42 mmol), 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (X-Phos) (0.427 g, 0.895 mmol), Tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) (0.205 g, 0.224 mmol), and potassium acetate (2.195 g, 22.37 mmol) were combined in a flask under nitrogen. Dry dimethylformamide (DMF) (45 ml) was added and the mixture was heated in a 90° C. oil bath for 16 hours. The product was diluted with water, then extracted with toluene three times. The combined organics were washed with brine, dried, and the crude product was purified by column chromatography to yield Triphenyl(3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-2-yl)silane as a colorless residue that crystallizes upon trituration in heptanes, 5.2 g (86%).


Step 4: Synthesis of BH3



embedded image


Triphenyl(3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-2-yl)silane (0.424 g, 0.788 mmol), 7-bromo-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (0.25 g, 0.716 mmol), Pd(PPh3)4 (0.041 g, 0.036 mmol), and sodium carbonate (0.152 g, 1.433 mmol) were combined in 1,4-Dioxane (5.97 ml) and water (1.194 ml). The mixture was degassed using a nitrogen sparge and then heated at reflux for 3 hours. The mixture was diluted with water, and extracted twice with EtOAc. The organics were washed with brine, dried and purified by column chromatography to yield 310 mg of BH3 as a white solid (63%).


Synthesis of BH4
Step 1: Synthesis of 9-(2-Bromo-4-iodophenyl)-9H-carbazole



embedded image


Cesium carbonate (88 g, 269 mmol) was added to a solution of 4-bromo-2-fluoro-1-iodobenzene (40.5 g, 135 mmol) and 9H-carbazole (15 g, 90 mmol) in N,N-dimethylformamide (199 mL) and the mixture was heated at 135° C. for 16 hours. Liquid chromatography/mass spectroscopy (LC/MS) analysis of the reaction mixture showed complete consumption of starting material to the desired product. The reaction mixture was cooled to room temperature and ice was added resulting in a thick orange gummy substance. Methyl tert-butyl ether (100 mL) and hexanes (300 mL) were added and the mixture was stirred for 20 minutes. A beige colored precipitate formed was filtered, washed with hexanes (300 mL), methyl tert-butyl ether (50 mL) and dried under high vacuum at 50° C. for 16 hours to yield 9-(2-Bromo-4-iodophenyl)-9H-carbazole (29.1 g, 72% yield) as an off-white solid.


Step 2: Synthesis of 9-(2-Bromo-4-(triphenylsilyl)phenyl)-9H-carbazole



embedded image


A mixture of triphenylsilane (0.21 g, 0.8 mmol), 9-(2-Bromo-4-iodophenyl)-9H-carbazole (0.36 g, 0.8 mmol), and potassium phosphate tribasic (0.26 g, 1.21 mmol) in dry N-methyl-2-pyrrolidione (9 mL) was sparged with nitrogen for 10 minutes. Bis(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate (8.2 mg, 0.02 mmol) was added and the reaction was stirred at room temperature for 16 hours. The reaction mixture was diluted with dichloromethane (100 mL) and water (50 mL). The organic layer was separated from the aqueous layer. The organic layer was washed with saturated brine (50 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was loaded onto diatomaceous earth and purified by silica gel chromatography, eluting with dichloromethane and hexanes to give 9-(2-Bromo-4-(triphenylsilyl)phenyl)-9H-carbazole (0.18 g, 39% yield) as an off-white solid.


Step 3: Synthesis of BH4



embedded image


A mixture of 9-(2-Bromo-4-(triphenylsilyl)phenyl)-9H-carbazole (0.27 g, 0.47 mmol), 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (0.18 g, 0.47 mmol), and potassium phosphate tribasic (0.197 g, 0.93 mmol) in THF (4 mL) and water (1 mL) was sparged with nitrogen for 10 minutes. Chloro(2-dicyclohexylphosphino-2′,6′-dimethoxy-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II), SphosPd-G2 (34 mg, 0.047 mmol) was added and the reaction mixture was heated at 70° C. for 16 hours. The reaction mixture was cooled to room temperature and diluted with dichloromethane (50 mL) and water (20 mL). The organic and aqueous layers were separated. The organic layer was washed with saturated brine (50 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was loaded on to diatomaceous earth and purified by silica gel chromatography, eluting with dichloromethane and hexanes to yield BH4 (0.16 g, 45% yield) as an off-white solid.


Experimental Section

The triplet (T1), HOMO, and LUMO levels of compounds BH1, BH2, BH3, and BH4 are shown in Table 1. The triplet state energies (T1) for compound BH1 to BH5 were obtained from emission onset taken at 20% of the peak height of the gated emission of a frozen sample in 2-MeTHF at 77 K. The gated emission spectra were collected on a Horiba Fluorolog-3 spectrofluorometer equipped with a Xenon Flash lamp with a flash delay of 10 milliseconds and a collection window of 50 milliseconds. The sample was excited at 300 nm.


The HOMO and LUMO levels of BH1, BH2, BH3, and BH4 were determined by solution electrochemistry. Solution cyclic voltammetry and differential pulsed voltammetry were performed using a CH Instruments model 6201B potentiostat using anhydrous dimethylformamide solvent and tetrabutylammonium hexafluorophosphate as the supporting electrolyte. Glassy carbon, and platinum and silver wires were used as the working, counter and reference electrodes, respectively. Electrochemical potentials were referenced to an internal ferrocene-ferroconium redox couple (Fc/Fc+) by measuring the peak potential differences from differential pulsed voltammetry. The corresponding highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were determined by referencing the cationic and anionic redox potentials to ferrocene (4.8 eV vs. vacuum) according to literature ((a) Fink, R.; Heischkel, Y.; Thelakkat, M.; Schmidt, H.-W. Chem. Mater. 1998, 10, 3620-3625. (b) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551).









TABLE 1







Measured optoelectronic properties











Compound
Structure
T1 (nm)
HOMO (eV)
LUMO (eV)





BH1


embedded image


417 nm
−5.88
−2.61





BH2


embedded image


424 nm
−5.78
−2.58





BH3


embedded image


419 nm
−5.86
−2.62





BH4


embedded image


404 nm
−5.78
−2.64









OLEDs were grown on a glass substrate pre-coated with an indium-tin-oxide (ITO) layer having a sheet resistance of 15-Ω/sq. Prior to any organic layer deposition or coating, the substrate was degreased with solvents and then treated with an oxygen plasma for 1.5 minutes with 50 W at 100 mTorr and with UV ozone for 5 minutes.


The devices in Tables 2 were fabricated in high vacuum (<10−6 Torr) by thermal evaporation. The anode electrode was 750 Å of indium tin oxide (ITO). The device example had organic layers consisting of, sequentially, from the ITO surface, 100 Å of Compound 1 (HIL), 250 Å of Compound 2 (HTL), 50 Å of Compound 3 (EBL), 300 Å of Compound 3 doped with 40% Host material (BH1 or BH5) and 12% of Emitter 1 (EML), 50 Å of Host material (BL), 300 Å of Compound 4 doped with 35% of Compound 5 (ETL), 10 Å of Compound 4 (EIL) followed by 1,000 Å of Al (Cathode). All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication with a moisture getter incorporated inside the package. Doping percentages are in volume percent.




embedded image


embedded image


embedded image









TABLE 2







Device performance













at 20




at 10 mA/cm2
mA/cm2















1931 CIE
λ max
Voltage
EQE
LT90%














Device
Host
x
y
[nm]
[V]
[%]
[h]

















Device 1
BH1
0.131
0.225
468
0.96
0.94
1.93


Comparative
BH5
0.133
0.216
467
1.0
1.00
1.00


Device 1
















The above data shows that Device 1, using BH1 as a host, exhibited a longer lifetime than Comparative Device 1, with BH5 as the host. The 95% longer lifetime for Device 1 (BH1) is beyond any value that could be attributed to experimental error and the observed improvement is significant. Based on the fact that the devices have similar structures with the only difference being the additional phenyl on the host for BH1, the significant performance improvement observed in the above data was unexpected. Without being bound by any theories, this improvement may be attributed to the enhanced stability of phenyl substituted boron triangulene core compared to the direct silylated compound. The T1 and HOMO and LUMO data in Table 1 shows that each of compound BH1 to compound BH4 have triplet energies sufficient for acting as a host in blue OLED devices, and their deep LUMO levels suggest they will be particularly useful as electron transporting hosts. Due to the comparable electronic properties of compound BH2 to compound BH4 and similar phenyl substitution to compound BH1, devices of those hosts are expected to have similar lifetime improvements.

Claims
  • 1. A compound of Formula I,
  • 2. The compound of claim 1, wherein each RA, RB, and RC independently is a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.
  • 3-4. (canceled)
  • 5. The compound of claim 1, wherein L is selected from the group consisting of phenyl, biphenyl, pyridine, pyrimidine, triazine, pyrazine, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, phenyl carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene, azacarbazole, 5,2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole (bimbim), aza bimbim, and biscarbazole.
  • 6. (canceled)
  • 7. The compound of claim 1, wherein L is further substituted by a moiety selected from the group consisting of phenyl, biphenyl, pyridine, pyrimidine, triazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene, azacarbazole, bimbim, aza bimbim, biscarbazole, silyl, and partially or fully deuterated variations thereof.
  • 8. The compound of claim 1, wherein each of ring B and ring C is independently selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, triazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, and thiazole.
  • 9-10. (canceled)
  • 11. The compound of claim 1, wherein each of X1 to X3 is C.
  • 12. The compound of claim 1, wherein at least one of X1 to X3 is N.
  • 13. The compound of claim 1, wherein Z is B.
  • 14-15. (canceled)
  • 16. The compound of claim 1, wherein Y1 and Y2 are both O.
  • 17. (canceled)
  • 19. The compound of claim 1, wherein at least one RA, RB, or RC does not comprise -L-SiAr1Ar2Ar3 and is not hydrogen or deuterium.
  • 20-21. (canceled)
  • 22. The compound of claim 1, wherein at least one RA, RB, or RC comprises -L-SiAr1Ar2Ar3.
  • 23-25. (canceled)
  • 26. The compound of claim 1, wherein each of Ar1, Ar2, and Ar3 is independently selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, triazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, dibenzothiophene, dibenzofuran, dibenzoseleonphene, carbazole, azadibenzothiophene, azadibenzofuran, azadibenzoseleonphene and thiazole.
  • 27-32. (canceled)
  • 33. The compound of claim 1, wherein the compound has a structure selected form the group consisting of:
  • 34. The compound of claim 33, wherein at least one RA′, RB′, or RC′ is selected from the group consisting of
  • 35. The compound of claim 1, wherein the compound is selected from the group consisting of the structures of the following LIST1:
  • 36-41. (canceled)
  • 42. The compound of claim 35, wherein each of X1 to X46 is C.
  • 43. (canceled)
  • 44. The compound of claim 35, wherein no two substituents are joined or fused to form a ring.
  • 45. (canceled)
  • 46. The compound of claim 1, wherein the compound is selected from the group consisting of the structures of the following LIST 4:
  • 47. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode,wherein the organic layer comprises a compound of Formula I,
  • 48-52. (canceled)
  • 53. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode,wherein the organic layer comprises a compound of Formula I,
  • 54-56. (canceled)