ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Abstract
A compound having the formula Ir(LA)n(LB)3-n is disclosed wherein LA is an aza-DBF ligand and LB is an alkyl-substituted phenylpyridine ligand, wherein the compound has a structure according to Formula I:
Description
PARTIES TO A JOINT RESEARCH AGREEMENT

The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.


FIELD OF THE INVENTION

The present invention relates to organic light emitting devices. More specifically, the present disclosure pertains to luminescent iridium complexes comprising alkyl-substituted phenylpyridine ligand and aza-dibenzofuran (aza-DBF) ligand that are useful as green phosphorescent emitters in phosphorescent light emitting devices (PHOLEDs).


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY OF THE INVENTION

According to an embodiment of the present disclosure, a compound having the formula Ir(LA)n(LB)3-n is disclosed wherein LA is an aza-DBF ligand and LB is an alkyl-substituted phenylpyridine ligand, wherein the compound has a structure according to Formula I:




embedded image


wherein A1, A2, A3, A4, A5, A6, A7, and A8 comprise carbon or nitrogen;


wherein at least one of A1, A2, A3, A4, A5, A6, A7, and A8 is nitrogen;


wherein ring B is bonded to ring A through a C—C bond;


wherein the iridium is bonded to ring A through a Ir—C bond;


wherein X is O, S, or Se;


wherein R1 and R2 each independently represent mono-, di-, tri-, tetra-substitution, or no substitution;


wherein R′ and R″ each independently represent mono-, di-substitution, or no substitution;


wherein any adjacent substitutions in R′, R″, R1, R2, R3, R4, R5, and R6 are optionally linked together to form a ring;


wherein R1, R2, R′, and R″ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof;


wherein R3, R4, R5, and R6 are each independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, and combinations thereof;


wherein n is an integer from 1 to 3; and


wherein total number of carbons in at least one of the pairs R3 and R4, and R5 and R6 is at least four.


According to another embodiment, a first device comprising a first organic light emitting device is also disclosed. The first organic light emitting device comprises:


an anode; a cathode; and an organic layer, disposed between the anode and the cathode. The organic layer comprises a compound having a structure according to Formula I.


According to yet another embodiment, a formulation comprising a compound that having a structure according to Formula I is also disclosed.


The luminescent iridium complexes disclosed herein can be used in OLEDs as emitters in phosphorescent OLEDs. The compound exhibits lower sublimation temperature more saturated color CIE which is desired.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device that can incorporate the inventive host material disclosed herein.



FIG. 2 shows an inverted organic light emitting device that can incorporate the inventive host material disclosed herein.



FIG. 3 shows Formula I as disclosed herein.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet slates (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo−1”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al., which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, 3-D displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many attic devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from −40 degree C. to +80 degree C.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The term “halo” or “halogen” as used herein includes fluorine, chlorine, bromine, and iodine.


The term “alkyl” as used herein contemplates both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” as used herein contemplates cyclic alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 7 carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The term “alkenyl” as used herein contemplates both straight and branched chain alkene radicals. Preferred alkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl group may be optionally substituted.


The term “alkynyl” as used herein contemplates both straight and branched chain alkyne radicals. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” as used herein are used interchangeably and contemplate an alkyl group that has as a substituent an aromatic group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” as used herein contemplates aromatic and non-aromatic cyclic radicals. Hetero-aromatic cyclic radicals also refer to heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 or 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperdino, pyrrolidino, and the like, and cyclic ethers, such as tetrahydrofuran, tetrahydropyran, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” or “aromatic group” as used herein contemplates single-ring groups and polycyclic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is aromatic, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” as used herein contemplates single-ring hetero-aromatic groups that may include from one to three heteroatoms, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine and pyrimidine, and the like. The term heteroaryl also includes polycyclic hetero-aromatic systems having two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Additionally, the heteroaryl group may be optionally substituted.


The alkyl, cycloalkyl, alkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl may be optionally substituted with one or more substituents selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, cyclic amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


As used herein, “substituted” indicates that a substituent other than H is bonded to the relevant position, such as carbon. Thus, for example, where R1 is mono-substituted, then one R1 must be other than H. Similarly, where W is di-substituted, then two of R1 must be other than H. Similarly, where W is unsubstituted, R1 is hydrogen for all available positions.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective fragment can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzoftiryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


As used herein, the phrase “electron acceptor” or “acceptor” means a fragment that can accept electron density from an aromatic system, and the phrase “electron donor” or “donor” means a fragment that donates electron density into an aromatic system.


In this disclosure, luminescent iridium complexes comprising alkyl-substituted phenylpyridine ligand and aza-dibenzofuran (aza-DBF) ligand that are useful as green phosphorescent emitters in PHOLEDs are disclosed. Thermal stability of iridium complexes is an important factor in the usability of such complexes in manufacturing of PHOLED devices. Molecular modification of iridium complexes can effectively change solid state packing of the complexes and therefore has impact on their thermal stability and sublimation temperature. The inventors have discovered that di-substituted alkyl groups (at least four carbon atoms in total) on heteroleptic iridium complex containing ppy and aza-DBF ligands unexpectedly lowered sublimation temperature and improved color CIE to a significant degree.


According to an embodiment, a compound having the formula Ir(LA)n(LB)3-n is disclosed wherein LA is an aza-dibenzofuran ligand and is an alkyl-substituted phenylpyridine ligand, wherein the compound has a structure according to Formula I:




embedded image


wherein A1, A2, A3, A4, A5, A6, A7, and A8 comprise carbon or nitrogen;


wherein at least one of A1, A2, A3, A4, A5, A6, A7, and A8 is nitrogen;


wherein ring B is bonded to ring A through a C—C bond;


wherein the iridium is bonded to ring A through a Ir—C bond;


wherein X is O, S, or Se;


wherein R1 and R2 each independently represent mono-, di-, tri-, tetra-substitution, or no substitution;


wherein R′ and R″ each independently represent mono-, di-substitution, or no substitution;


wherein any adjacent substitutions in R′, R″, R1, R2, R3, R4, R5, and R6 are optionally linked together to form a ring;


wherein R1, R2, R′, and R″ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrite, isonitrile, sulfanyl, sulfonyl, sulfonyl, phosphino, and combinations thereof;


wherein R3, R4, R5, and R6 are each independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, and combinations thereof;


wherein n is an integer from 1 to 3; and


wherein total number of carbons in at least one of the pairs R3 and R4, and R5 and R6 is at least four.


In one embodiment of the compound having a structure according to Formula I, n is 1.


In one embodiment, the compound according to Formula I has a structure according to Formula II:




embedded image


In one embodiment, the compound according to Formula I has a structure according to Formula III:




embedded image


In one embodiment, the compound according to Formula I has a structure according to Formula IV:




embedded image


In another embodiment of the compound having a structure according to Formula I, only one of A1 to A8 is nitrogen and the remainder of A1 to A8 are carbon. In another embodiment, one of A5 to A8 is nitrogen and the remainder of A1 to A8 are carbon.


According to an embodiment, X is O in Formula I through Formula IV.


According to an embodiment, R1 and R2 in Formula I through Formula IV are each independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, and combinations thereof.


According to another aspect, in the compound having a structure according to Formula I, at least one of the following conditions (1) and (2) is true:


(1) R3 and R4 are each independently selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof, and total number carbons in R5 and R6 combined is at least four; and


(2) R5 and R6 are each independently selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof; and total number of carbons in R5 and R6 combined is at least four.


According to another aspect, in the compound having a structure according to Formula I, at least one of the following conditions (3) and (4) is true:


(3) R3 and R4 are each independently selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof; at least one of R3 and R4 contain at least one deuterium; and total number of carbons in R3 and R4 combined is at least four; and


(4) R5 and R6 are each independently selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof; at least one of R3 and R4 contain at least one deuterium; and total number of carbons in R5 and R6 combined is at least four.


According to another aspect, R3, R4, R5, and R6 in Formula I through Formula IV are each independently selected from the group consisting of hydrogen, deuterium, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, cyclohexyl, and combinations thereof. In some embodiments, R3, R4, R5, and R6 in Formula I through Formula IV are each independently selected from the group consisting of hydrogen, deuterium, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, and cyclohexyl, where at least one deuterium is bonded to the α-carbon of the alkyl group. In some embodiments, R3, R4, R5, and R6 in Formula I through Formula IV are each independently selected from the group consisting of hydrogen, deuterium, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, and cyclohexyl, where exactly one deuterium atom is bonded to the α-carbon of an alkyl group. In some embodiments, R3, R4, R5, and R6 in Formula I through Formula IV are each independently selected from the group consisting of hydrogen, deuterium, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, and cyclohexyl, where exactly two deuterium atoms are bonded to the α-carbon of an alkyl group.


In some embodiments, at least one of R1, R3, R4, R5, and R6 comprises alkyl, cycloalkyl, or combinations thereof with at least one deuterium atom bonded to the α-carbon. In some embodiments, at least one of R3, R4, R5, and R6 comprises alkyl, cycloalkyl, or combinations thereof with one or two deuterium atoms bonded to the α-carbon.


In some embodiments, R1 comprises alkyl, cycloalkyl, or combinations thereof with at least one deuterium atom bonded to the α-carbon. In some embodiments, R1 comprises alkyl, cycloalkyl, or combinations thereof with one or two deuterium atoms bonded to the α-carbon.


In some embodiments, at least two of R1, R3, R4, R5, and R6 comprise alkyl, cycloalkyl, or combinations thereof with at least one deuterium atom bonded to the α-carbon. In some embodiments, at least two of R1, R3, R4, R5, and R6 comprise alkyl, cycloalkyl, or combinations thereof with one or two deuterium atoms bonded to the α-carbon.


In some embodiments, at least one of R1, R3, R4, R5, and R6 comprises cycloalkyl with one deuterium atom bonded to the α-carbon. In some embodiments, at least one of R1, R3, R4, R5, and R6 comprises cycloalkyl where the α-carbon is part of the cycloalkyl moiety and is bonded to a deuterium atom. In some such embodiments, the cycloalkyl is selected from the group consisting of cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.


In some embodiments, at least one of R1, R3, R4, R5, and R6 comprises spiro cycloalkyl-cycloalkyl with at least one deuterium atom bonded to the α-carbon. In some embodiments, at least one of R1, R3, R4, R5, and R6 comprises spiro cycloalkyl-cycloalkyl where the α-carbon is part of a cycloalkyl moiety and is bonded to a deuterium atom. In some such embodiments, the spiro-cycloalkyl is a spiro cyclohexyl-cyclohexyl moiety.


In some embodiments, at least one of R1, R3, R4, R5, and R6 is —CD2C(CH3)3.


In some embodiments, at least one of R1, R3, R4, R5, and R6 comprises alkyl, cycloalkyl, or combinations thereof with at least one deuterium atom bonded to the α-carbon, and another one of R1, R3, R4, R5, and R6 comprises alkyl, cycloalkyl, or combinations thereof with one or two deuterium atoms bonded to the α-carbon.


In another aspect of the present disclosure, the compound according to Formula I has a structure according to Formula V:




embedded image


wherein R is selected from the group consisting of alkyl, cycloalkyl, its partially or fully deuterated variants thereof, and combinations thereof.


In one embodiment of the compound according to Formula V, R is selected from the group consisting of methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, cyclopentyl, cyclohexyl, partially or fully deuterated variants thereof, and combinations thereof. In one embodiment of the compound according to Formula V, X is O.


In one embodiment of the compound disclosed herein, the ligand LA in formula Ir(LA)n(LB)3-n is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another embodiment of the compound disclosed herein, the ligand LB in formula Ir(LA)n(LB)3-n is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another embodiment of the compound disclosed herein, the compound is selected from the group consisting of Compound A-1 through Compound A-146,598, wherein each of Compound A-x, where x=461j+k−461, k is an integer from 1 to 461, and j is an integer from 1 to 318, has the formula Ir(LAk)(LBj)2 and from the group of Compound B-1 through Compound B-146,598, wherein each Compound B-x, where x=461j+k−461, k is an integer from 1 to 461, and j is an integer from 1 to 318, has the formula Ir(LAk)2(LBj).


In another embodiment of the compound disclosed herein, the compound is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


According to another aspect of the present disclosure, a first device comprising a first organic light emitting device is also disclosed. The first organic light emitting device comprises:


an anode; a cathode; and an organic layer, disposed between the anode and the cathode. The organic layer comprises a compound having a structure according to Formula I,

    • wherein A1, A2, A3, A4, A5, A6, A7, and A8 comprise carbon or nitrogen;
    • wherein at least one of A1, A2, A3, A4, A5, A6, A7, and A8 is nitrogen;
    • wherein ring B is bonded to ring A through a C—C bond;
    • wherein the iridium is bonded to ring A through a Ir—C bond;
    • wherein X is O, S, or Se;
      • wherein R1 and R2 each independently represent mono-, di-, tri-, tetra-substitution, or no substitution;
      • wherein R′ and R″ each independently represent mono-, di-substitution, or no substitution;
      • wherein any adjacent substitutions in R′, R″, R1, R2, R3, R4, R5, and R6 are optionally linked together to form a ring;
      • wherein R1, R2, R′, and R″ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;
      • wherein R3, R4, R5, and R6 are each independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, and combinations thereof;
      • wherein n is an integer from 1 to 3; and
      • wherein total number of carbons in at least one of the pairs R3 and R4, and R5 and R6 is at least four.


In one embodiment, the first device can be a consumer product. The first device can be an organic light-emitting device. The first device can be a lighting panel.


In one embodiment, the organic layer in the first device is an emissive layer and the compound is an emissive dopant.


In another embodiment, the organic layer in the first device is an emissive layer and the compound is a non-emissive dopant.


In another embodiment, the organic layer in the first device can further comprise a host material. The host material comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan; wherein any substituent in the host is an un fused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡C—CnH2n+1, Ar1, Ar1—Ar2, CnF2n—Ar1, or no substitution;


wherein n is from 1 to 10; and


wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In one embodiment, the host material comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, azatriphenylenc, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. In another embodiment, the host material is selected from the group consisting of:




embedded image


embedded image


and


combinations thereof.


In another embodiment of the first device, the host material comprises a metal complex.


According to another aspect of the present disclosure, a formulation comprising the compound having a structure according to Formula I is also disclosed, wherein Formula I being as defined above. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, and an electron transport layer material, disclosed herein.


Materials Synthesis


All reactions were carried out under nitrogen protections unless specified otherwise. All solvents for reactions are anhydrous and used as received from commercial sources. Precursors and ligands can be produced by methods known to those skilled in the art, and have been described in detail in U.S. patent application Ser. No. 13/928,456, which is incorporated herein by reference in its entirety.


Synthesis of Compound 2




embedded image


A mixture of 8-(4-d3-methyl-5-isopropyl)pyridine-2-yl (LA187) (1.925 g, 6.30 mmol), an iridium precursor (i) (2.5 g, 3.50 mmol), 2-ethoxyethanol 40.0 mL, and dimethylformamide (DMF) 40 mL was heated in a 130° C. oil bath for 20 hours under N2. The reaction mixture was concentrated to remove solvents and filtered through a small plug of silica gel and then further purified by column chromatography on silica gel using ethyl acetate and dichloromethane solvent mixture as elute to give 0.93 g of the desired product, Compound 2, (33% yield).


Synthesis of Compound 6




embedded image


A mixture of aza-dibenzofuran ligand (LA196) (1.5 g, 4.55 mmol) and an iridium precursor (ii) (1.98 g, 2.53 mmol), 2-ethoxyethanol 40 mL and DMF 40 mL was heated in a 130° C. oil bath for 17 hours wider N2. The reaction mixture was concentrated to remove solvents and filtered through a small silica gel plug and further purified by column chromatography using dichloromethane to give 0.65 g of the desired product, Compound 6, (29% yield).


Synthesis of Compound 8




embedded image


The aza-dibenzofuran ligand (LA189) (1.1 g, 3.52 mmol), an iridium precursor (ii) (1.72 g, 2.20 mmol), 2-ethoxyethanol (30 mL) and DMF (30 mL) were charged in a flask and heated in a 130° C. oil bath for 15 hours under N2. The reaction solvent was evaporated and the solid was dissolved to filter through a small silica gel plug and further purified by column chromatography using ethyl acetate in dichloromethane to give 0.34 g of Compound 8 (18% yield).


Synthesis of Compound 12




embedded image


A mixture of an iridium precursor (iii) (2.34 g, 3.02 nunol), 8-(5-isopropyl-4-methylpyridin-2-yl)-2-methylbenzofuro[2,3-b]pyridine-d13 (LA190) (1.7 g, 5.44 mmol), 2-ethoxyethanol (60 mL) and DMF (60 mL) was heated at 130° C. overnight. The reaction mixture was concentrated to remove solvents and filtered through a small plug of silica gel and further chromatographed to give 0.77 g of Compound 12 (35% yield).


Synthesis of Compound 13




embedded image


A mixture of an iridium precursor (iv) (2.2 g, 2.67 mmol), 8-(4-(3-isopropylphenyl)pyridine-2-yl)-2-methylbenzofuro[2,3-b]pyridine (LA113) (1.5 g, 4.80 mmol), 2-ethoxyethanol (40 mL) and DMF (40 mL) was heated at 130° C. overnight. The reaction mixture was concentrated to remove solvents and filtered through a small plug of silica gel and further chromatographed to give 0.49 g of Compound 13 (19.8% yield).


Synthesis of Compound 9




embedded image


The aza-dibenzofuran ligand (LA140) (1.5 g, 4.55 mmol) and an iridium precursor (v) (1.9 g, 2.66 mmol) were charged into the reaction flask with 30 mL of DMF and 30 mL of 2-ethoxyethanol. This mixture was stirred and heated in an oil bath set at 130° C. for 19 hours. The reaction mixture was cooled to room temperature then was concentrated under vacuum. The crude residue was dried under vacuum. This crude residue was dissolved in 200 mL of DCM then was passed through a silica gel plug. The DCM filtrate was concentrated under vacuum. This crude residue was passed through a silica gel column using 60-75% DCM/heptanes. Clean product fractions were combined and concentrated under vacuum yielding (1.0 g, 45.5%) of the desired iridium complex, Compound 9. The desired mass was confirmed by LC/MS analysis.


Synthesis of Compound 11




embedded image


The aza-dibenzofuran ligand (LA190) (1.5 g, 4.55 mmol) and an iridium precursor (vi) (1.98 g, 2.53 mmol) were charged into the reaction flask with 40 mL of DMF and 40 mL of 2-ethoxyethanol. This mixture was stirred and heated in an oil bath set at 130° C. for 18 hours. The reaction mixture was cooled to room temperature then was concentrated under vacuum. The crude residue was dried under vacuum. This crude residue was dissolved in 200 mL of DCM then was passed through a silica gel plug. The DCM filtrate was concentrated under vacuum. This crude residue was passed through a silica gel column using 60-75% DCM/heptanes. Clean product fractions were combined and concentrated under vacuum yielding (0.45 g, 19.8%) of the desired iridium complex, Compound 11. The mass was confirmed by LC/MS.


Synthesis of Compound 14




embedded image


The aza-dibenzofuran ligand (LA190) (1.5 g, 4.55 mmol) and the iridium precursor (vi) (1.98 g, 2.53 mmol) were charged into the reaction flask with 40 mL of DMF and 40 mL of 2-ethoxyethanol. This mixture was stirred and heated in an oil bath set at 130° C. for 18 hours. The reaction mixture was cooled to room temperature then was concentrated under vacuum. The crude residue was dried under vacuum. This crude residue was dissolved in 200 mL of DCM then was passed through a silica gel plug. The DCM filtrate was concentrated under vacuum. This crude residue was passed through a silica gel column using 60-75% DCM/heptanes. Clean product fractions were combined and concentrated under vacuum yielding (0.77 g, 29.3%) of the desired iridium complex, Compound 14. The desired mass was confirmed by LC/MS analysis.


Synthesis of Compound 3




embedded image


The aza-dibenzofuran ligand (LA196) (1.5 g, 4.55 mmol) and the iridium precursor (v) (1.9 g, 2.66 mmol) were charged into the reaction mixture with 30 mL of DMF and 30 mL of 2-ethoxyethanol. The reaction mixture was degassed with nitrogen then was stirred and heated in an oil bath set at 130° C. for 17 hours. Heating was then discontinued. The solvent were removed under vacuum. The crude residue was dissolved in DCM then was passed through a silica gel plug. The plug was eluted with 2 L of DCM. The DCM filtrate was evaporated under vacuum. This crude residue was passed through a silica gel column using 90% DCM/heptanes. The clean column fractions were combined and concentrated under vacuum yielding the desired iridium complex, Compound 3 (0.95 g, 1.146 mmol, 43.0% yield) as a yellow solid. The desired mass was confirmed by LC/MS analysis.


Synthesis of Compound 18




embedded image


The aza-dibenzofuran ligand) (1.406 g, 4.02 mmol) and iridium precursor (vi) (1.85 g, 2.366 mmol) were charged into the reaction mixture with 35 mL of DMF and 35 mL of 2-ethoxyethanol. This mixture was degassed with nitrogen then was stirred and heated in an oil bath set at 130° C. for 18 hours. The reaction mixture was concentrated and dried under vacuum. This crude product was dissolved in 300 mL of DCM then was passed through a plug of silica gel. The DCM filtrate was concentrated under vacuum. The crude residue was passed through a silica gel column eluting the column with 60-90% DCM/heptanes. The desired iridium complex, Compound 18 (0.6 g, 0.65 mmol, 27.6% yield) was isolated as a yellow solid. The desired mass was confirmed by LC/MS analysis.


Synthesis of Compound 19




embedded image


The aza-dibenzofuran ligand (LA251) (1.406 g, 4.02 mmol) and the iridium precursor (vi) (1.85 g, 2.366 mmol) were charged into the reaction mixture with 35 mL of DMF and 35 mL of 2-ethoxyethanol. This mixture was degassed with nitrogen then was stirred and heated in an oil bath set at 130° C. for 18 hours. The reaction mixture was concentrated and dried under vacuum. This crude product was dissolved in 300 mL of DCM then was passed through a plug of silica gel. The DCM filtrate was concentrated under vacuum. The crude residue was passed through a silica gel column eluting the column with 60-90% DCM/heptanes. The desired iridium complex, Compound 19 (0.7 g, 0.65 mmol, 27.3% yield) was isolated as a yellow solid. The desired mass was confirmed by LC/MS analysis.


Synthesis of Compound 20




embedded image


The aza-dibenzofuran (LA251) (1.45 g, 415 mmol) and the iridium precursor (vii) (1.85 g, 2.474 mmol) were charged into the reaction flask with 35 mL of DMF and 35 mL of 2-ethoxyethanol. This mixture was degassed with nitrogen then was heated in an oil bath set at 130° C. for 24 hours. The reaction mixture was cooled to room temperature then was evaporated and dried under vacuum. The crude product was dissolved in 600 mL of hot DCM then was passed through a silica gel plug. The DCM filtrate was evaporated under vacuum then was passed through a silica gel column eluting the column with 60-75% DCM/heptanes. The clean column fractions were combined and concentrated under vacuum yielding the desired iridium complex, Compound 20 (0.7 g, 0.79 mmol, 32% yield). The desired mass was confirmed using LC/MS analysis.


Synthesis of Compound 21




embedded image


The aza-dibenzofuran ligand (LA410) (1.45 g, 4.14 mmol) and the iridium precursor (vi) (1.9 g, 2.430 mmol) were charged into the reaction flask with 35 mL of DMF and 35 mL of 2-ethoxyethanol. This mixture was degassed with nitrogen then was heated in an oil bath set at 130° C. for 22 hours. The reaction mixture was cooled to room temperature then was concentrated and dried under vacuum. The crude product was passed through a silica gel plug. The plug was eluted with 2.5 L of DCM. The DCM filtrate was concentrated under vacuum and the crude residue was passed through a silica gel column eluting with 60-70% DCM/heptanes. The clean column fractions were combined and concentrated under vacuum yielding the desired Iridium complex, Compound 21 (0.72 g, 0.82 mmol, 33.6% yield) as a yellow solid. The mass of the desired product was confirmed by LC/MS analysis.


Synthesis of Compound 22




embedded image


The aza-dibenzofuran ligand (LA216) (1.43 g, 4.06 mmol) and the iridium precursor (vi) (1.9 g, 2.430 mmol) were charged into the reaction flask with 35 mL of DMF and 35 mL of 2-ethoxyethanol. This mixture was degassed with nitrogen then was heated in an oil bath set at 130° C. for 22 hours. The reaction mixture was cooled to room temperature then was concentrated and dried under vacuum. The crude product was passed through a silica gel plug. The plug was eluted with 2.5 L of DCM. The DCM filtrate was concentrated under vacuum and the crude residue was passed through a silica gel column eluting with 60-70% DCM/heptanes. The clean column fractions were combined and concentrated under vacuum yielding the desired iridium complex, Compound 22 (0.73 g, 0.79 mmol, 32.6% yield) as a yellow solid. The mass of the desired product was confirmed by LC/MS analysis.


Synthesis of Compound 1




embedded image


A mixture of 8-(4-d3-methyl-5-isopropyl)pyridine-2-yl (LA187) (1.985 g, 6.50 mmol), iridium precursor (viii) (2.7 g, 3.61 mmol), 2-ethoxyethanol 40 mL and DMF 40 mL was heated in an oil bath at 130° C. for 20 hours under N2. The reaction mixture was purified by column chromatography on silica gel to give 1.45 g of the desired product Compound 2 (48% yield).


Synthesis of Compound 4




embedded image


A mixture of 8-(4-d3-methyl-5-isopropyl)pyridine-2-yl (LA187) (1.406 g, 4.6 mmol), iridium precursor (ii) (2.0 g, 2.56 mmol), 2-ethoxyethanol 30 mL and DMF 30 mL was heated in an oil bath at 130° C. for 20 hours under N2. The reaction mixture was purified by column chromatography on silica gel to give 0.77 g of the desired product, Compound 4 (35% yield).


Synthesis of Compound 5




embedded image


A mixture of aza-dibenzofuran ligand (LA196) (1.5 g, 4.55 mmol) and iridium precursor (viii) (1.891 g, 2.53 mmol), 2-ethoxyethanol 40 mL and DMF 40 mL was heated in an oil birth at 130° C. for 17 hours under N2. The reaction mixture was purified by silica gel column chromatography using ethyl acetate and dichloromethane solvent mixture to give 0.88 g of the desired product, Compound 5. (39% yield).


Synthesis of Compound 10




embedded image


A mixture of aza-dibenzofuran ligand (LA196) (1.5 g, 4.55 mmol) and iridium precursor (ii) (1.978 g, 2.53 mmol), 2-ethoxyethanol 40 mL and DMF 40 mL was heated in an oil bath at 130° C. for 17 hours under N2. The reaction mixture was purified by silica gel column chromatography using ethyl acetate and dichloromethane solvent mixture to give 0.77 g (29% yield) of the desired product, Compound 10, which was confirmed by LC-MS.


Synthesis of Compound 7




embedded image


The aza-dibenzofuran ligand (LA189) (1.1 g, 3.52 mmol), iridium precursor (viii) (1.72 g, 2.20 mmol), 2-ethoxyethanol 40 mL and DMF 40 mL were charged in a flask and heated in an oil bath at 130° C. for 18 hours under N2. The reaction solvent was evaporated and the solid was dissolved to filter through a small silica gel plug and further purified by column chromatography using ethyl acetate in dichloromethane to give 1.05 g the desired product, Compound 7 (52% yield).


Synthesis of Compound 15




embedded image


A mixture of 8-(4-d3-methyl-5-isopropyl)pyridine-2-yl (LA187) (0.943 g, 3.01 mmol), iridium precursor (ix) (1.4 g, 1.72 mmol), 2-ethoxyethanol 30.0 mL and DMF 30 mL was heated in an oil bath at 130° C. for 72 hours under N2. The reaction mixture was concentrated to remove solvents and filtered through a small plug of silica gel and then further purified by column chromatography on silica gel using ethyl acetate in dichloromethane to give 0.95 g of the desired product, Compound 15 (61% yield).


Synthesis of Compound 17




embedded image


A mixture of an aza-dibenzofuran ligand (LA203) (0.9 g, 2.66 mmol) and iridium precursor (ii) (1.29 g, 1.66 mmol), 2-ethoxyethanol 30 mL and DMF 30 mL was heated in an oil bath at 130° C. for 18 hours under N2. The reaction mixture was purified by silica gel column chromatography using ethyl acetate and dichloromethane solvent mixture to give 0.5 g of the desired product, Compound 17. (33% yield).


Synthesis of Compound 16




embedded image


A mixture of aza-dibenzofuran ligand (LA208) (0.85 g, 2.51 mmol) and iridium precursor (ii) (1.22 g, 1.56 mmol), 2-ethoxyethanol 30 mL and DMF 30 mL was heated in an oil bath at 130° C. for 20 hours under N2. The reaction mixture was purified by silica gel column chromatography using ethyl acetate and dichloromethane solvent mixture to give 0.5 g of the desired product, Compound 16. (35% yield).


Synthesis of Compound 31




embedded image


A mixture of aza-dibenzofuran ligand (LA208) (0.85 g, 2.51 mmol) and iridium precursor (viii) (1.12 g, 1.56 mmol), 2-ethoxyethanol 30 mL and DMF 30 mL was heated in an oil bath at 130° C. for 18 hours under N2. The reaction mixture was purified by silica gel column chromatography using ethyl acetate and dichloromethane solvent mixture to give 0.55 g of the desired product, Compound 31. (40% yield).


Combination with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


HIL/HTL:

A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS: a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives: a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula:




embedded image


wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc′/Fc couple less than about 0.6 V.


Host:

The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. While the Table below categorizes host materials as preferred for devices that emit various colors, any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrite, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


wherein R101 to R107 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrite, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20; k′″ is an integer from 0 to 20. X101 to X108 is selected from C (including CH) or N.


Z101 and Z102 is selected from NR101, O, or S.


HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L101 is an another ligand, k′ is an integer from 1 to 3.


ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to A3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. encompasses undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also encompass undeuterated, partially deuterated, and fully deuterated versions thereof.


In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table A below. Table A lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.











TABLE A





MATERIAL
EXAMPLES OF MATERIAL
PUBLICATIONS















Hole injection materials









Phthalocyanine and porphyrin compounds


embedded image


Appl. Phys. Lett. 69, 2160 (1996)





Starburst triarylamines


embedded image


J. Lumin. 72-74, 985 (1997)





CFx Fluorohydrocarbon polymer


embedded image


Appl. Phys. Lett. 78, 673 (2001)





Conducting polymers (e.g., PEDOT:PSS, polyaniline, polythiophene)


embedded image


Synth. Met. 87, 171 (1997) WO2007002683





Phosphonic acid and silane SAMs


embedded image


US20030162053





Triarylamine or polythiophene polymers with conductivity dopants


embedded image


EP1725079A1








embedded image











embedded image








Organic compounds with conductive inorganic compounds, such as molybdenum and tungsten oxides


embedded image


US20050123751 SID Symposium Digest, 37, 923 (2006) WO2009018009





n-type semiconducting organic complexes


embedded image


US20020158242





Metal organometallic complexes


embedded image


US20060240279





Cross-linkable compounds


embedded image


US20080220265





Polythiophene based polymers and copolymers


embedded image


WO 2011075644 EP2350216










Hole transporting materials









Triarylamines (e.g., TPD, α-NPD)


embedded image


Appl. Phys. Lett. 51, 913 (1987)








embedded image


US5061569








embedded image


EP650955








embedded image


J. Mater. Chem. 3, 319 (1993)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)





Triarylamine on spirofluorene core


embedded image


Synth. Met. 91, 209 (1997)





Arylamine carbazole compounds


embedded image


Adv. Mater. 6, 677 (1994), US20080124572





Triarylamine with (di)benzothiophene/ (di)benzofuran


embedded image


US20070278938, US20080106190 US20110163302





Indolocarbazoles


embedded image


Synth. Met. 111, 421 (2000)





Isoindole compounds


embedded image


Chem. Mater, 15, 3148 (2003)





Metal carbene complexes


embedded image


US20080018221










Phosphorescent OLED host materials


Red hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)





Metal 8- hydroxyquinolates (e.g., Alq3, BAlq)


embedded image


Nature 395, 151 (1998)








embedded image


US20060202194








embedded image


WO2005014551








embedded image


WO2006072002





Metal phenoxybenzothiazole compounds


embedded image


Appl. Phys. Lett. 90, 123509 (2007)





Conjugated oligomers and polymers (e.g., polyfluorene)


embedded image


Org. Electron. 1, 15 (2000)





Aromatic fused rings


embedded image


WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730, WO2009008311, US20090008605, US20090009065





Zinc complexes


embedded image


WO2010056066





Chrysene based compounds


embedded image


WO2011086863










Green hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US20030175553








embedded image


WO2001039234





Aryltriphenylene compounds


embedded image


US20060280965








embedded image


US20060280965








embedded image


WO2009021126





Poly-fused heteroaryl compounds


embedded image


US20090309488 US20090302743 US20100012931





Donor acceptor type molecules


embedded image


WO2008056746








embedded image


WO2010107244





Aza-carbazole/ DBT/DBF


embedded image


JP2008074939








embedded image


US20100187984





Polymers (e.g., PVK)


embedded image


Appl. Phys. Lett. 77, 2280 (2000)





Spirofluorene compounds


embedded image


WO2004093207





Metal phenoxybenzooxazole compounds


embedded image


WO2005089025








embedded image


WO2006132173








embedded image


JP200511610





Spirofluorene- carbazole compounds


embedded image


JP2007254297








embedded image


JP2007254297





Indolocarbazoles


embedded image


WO2007063796








embedded image


WO2007063754





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)


embedded image


J. Appl. Phys. 90, 5048 (2001)








embedded image


WO2004107822





Tetraphenylene complexes


embedded image


US20050112407





Metal phenoxypyridine compounds


embedded image


WO2005030900





Metal coordination complexes (e.g., Zn, Al with N∧N ligands)


embedded image


US20040137268, US20040137267










Blue hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett. 82, 2422 (2003)








embedded image


US20070190359





Dibenzothiophene/ Dibenzofuran- carbazole compounds


embedded image


WO2006114966, US20090167162








embedded image


US20090167162








embedded image


WO2009086028








embedded image


US20090030202, US20090017330








embedded image


US20100084966





Silicon aryl compounds


embedded image


US20050238919








embedded image


WO2009003898





Silicon/ Germanium aryl compounds


embedded image


EP2034538A





Aryl benzoyl ester


embedded image


WO2006100298





Carbazole linked by non- conjugated groups


embedded image


US20040115476





Aza-carbazoles


embedded image


US20060121308





High triplet metal organometallic complex


embedded image


US7154114










Phosphorescent dopants


Red dopants









Heavy metal porphyrins (e.g., PtOEP)


embedded image


Nature 395, 151 (1998)





Iridium(III) organometallic complexes


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US20030072964








embedded image


US20030072964








embedded image


US20060202194








embedded image


US20060202194








embedded image


US20070087321








embedded image


US20080261076 US20100090591








embedded image


US20070087321








embedded image


Adv. Mater. 19, 739 (2007)








embedded image


WO2009100991








embedded image


WO2008101842








embedded image


US7232618





Platinum(II) organometallic complexes


embedded image


WO2003040257








embedded image


US20070103060





Osminum(III) complexes


embedded image


Chem. Mater. 17, 3532 (2005)





Ruthenium(II) complexes


embedded image


Adv. Mater. 17, 1059 (2005)





Rhenium (I), (II), and (III) complexes


embedded image


US20050244673










Green dopants









Iridium(III) organometallic complexes


embedded image


Inorg. Chem. 40, 1704 (2001)



and its derivatives









embedded image


US20020034656








embedded image


US7332232








embedded image


US20090108737








embedded image


WO2010028151








embedded image


EP1841834B








embedded image


US20060127696








embedded image


US20090039776








embedded image


US6921915








embedded image


US20100244004








embedded image


US6687266








embedded image


Chem. Mater. 16, 2480 (2004)








embedded image


US20070190359








embedded image


US 20060008670 JP2007123392








embedded image


WO2010086089, WO2011044988








embedded image


Adv. Mater. 16, 2003 (2004)








embedded image


Angew. Chem. Int. Ed. 2006, 45, 7800








embedded image


WO2009050290








embedded image


US20090165846








embedded image


US20080015355








embedded image


US20010015432








embedded image


US20100295032





Monomer for polymeric metal organometallic compounds


embedded image


US7250226, US7396598





Pt(II) organometallic complexes, including polydentated ligands


embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Chem. Lett. 34, 592 (2005)








embedded image


WO2002015645








embedded image


US20060263635








embedded image


US20060182992 US20070103060





Cu complexes


embedded image


WO2009000673








embedded image


US20070111026





Gold complexes


embedded image


Chem. Commun. 2906 (2005)





Rhenium(III) complexes


embedded image


Inorg. Chem. 42, 1248 (2003)





Osmium(II) complexes


embedded image


US7279704





Deuterated organometallic complexes


embedded image


US20030138657





Organometallic complexes with two or more metal centers


embedded image


US20030152802








embedded image


US7090928










Blue dopants









Iridium(III) organometallic complexes


embedded image


WO2002002714








embedded image


WO2006009024








embedded image


US20060251923 US20110057559 US20110204333








embedded image


US7393599, WO2006056418, US20050260441, WO2005019373








embedded image


US7534505








embedded image


WO2011051404








embedded image


US7445855








embedded image


US20070190359, US20080297033 US20100148663








embedded image


US7338722








embedded image


US20020134984








embedded image


Angew. Chem. Int. Ed. 47, 4542 (2008)








embedded image


Chem. Mater. 18, 5119 (2006)








embedded image


Inorg. Chem. 46, 4308 (2007)








embedded image


WO2005123873








embedded image


WO2005123873








embedded image


WO2007004380








embedded image


WO2006082742





Osmium(II) complexes


embedded image


US7279704








embedded image


Organometallics 23, 3745 (2004)





Gold complexes


embedded image


Appl. Phys. Lett. 74, 1361 (1999)





Platinum(II) complexes


embedded image


WO2006098120, WO2006103874





Pt tetradentate complexes with at least one metal-carbene bond


embedded image


US7655323










Exciton/hole blocking layer materials









Bathocuprine compounds (e.g., BCP, BPhen)


embedded image


Appl. Phys. Lett. 75, 4 (1999)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





Metal 8- hydroxyquinolates (e.g., BAlq)


embedded image


Appl. Phys. Lett. 81, 162 (2002)





5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole


embedded image


Appl. Phys. Lett. 81, 162 (2002)





Triphenylene compounds


embedded image


US20050025993





Fluorinated aromatic compounds


embedded image


Appl. Phys. Lett. 79, 156 (2001)





Phenothiazine-S-oxide


embedded image


WO2008132085





Silylated five- membered nitrogen, oxygen, sulfur or phosphorus dibenzoheterocycles


embedded image


WO2010079051





Aza-carbazoles


embedded image


US20060121308










Electron transporting materials









Anthracene- benzoimidazole compounds


embedded image


WO2003060956








embedded image


US20090179554





Aza triphenylene derivatives


embedded image


US20090115316





Anthracene- benzothiazole compounds


embedded image


Appl. Phys. Lett. 89, 063504 (2006)





Metal 8- hydroxyquinolates (e.g., Alq3, Zrq4)


embedded image


Appl. Phys. Lett. 51, 913 (1987) US7230107





Metal hydroxybenzoquinolates


embedded image


Chem. Lett. 5, 905 (1993)





Bathocuprine compounds such as BCP, BPhen, etc


embedded image


Appl. Phys. Lett. 91, 263503 (2007)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





5-member ring electron deficient heterocycles (e.g.,triazole, oxadiazole, imidazole, benzoimidazole)


embedded image


Appl. Phys. Lett. 74, 865 (1999)








embedded image


Appl. Phys. Lett. 55, 1489 (1989)








embedded image


Jpn. J. Apply. Phys. 32, L917 (1993)





Silole compounds


embedded image


Org. Electron. 4, 113 (2003)





Arylborane compounds


embedded image


J. Am. Chem. Soc. 120, 9714 (1998)





Fluorinated aromatic compounds


embedded image


J. Am. Chem. Soc. 122, 1832 (2000)





Fullerene (e.g., C60)


embedded image


US20090101870





Triazine complexes


embedded image


US20040036077





Zn (N∧N) complexes


embedded image


US6528187









EXPERIMENTAL DATA

The inventors have compared the performance of some examples of the inventive compound against prior art compounds. The compounds' sublimation temperature and color CIE values were compared and their respective values are summarized in Table I below. The sublimation temperature of Comparative example 2 compound is 281° C. In the inventive compounds Compound 9 and Compound 3, one of the deuterated di-substituted methyl groups on pyridine of Comparative example 2 compound is replaced by isopropyl-d7. The sublimation temperatures of Compound 9 and Compound 3 are significantly lower at 261° C. and 253° C., respectively, despite the fact that these compounds have higher molecular weight than Comparative example 2 compound. Lower sublimation temperatures advantageously allow for easier purification of the compounds of Formula land allow the compounds of Formula I to have better thermal stability in manufacturing. In addition, the color CIE x coordinates of Compound 9 and Compound 3 are both less than Comparative example 1 and 2. Thus, they are more saturated green than Comparative example 1 and 2, which is a desired property, especially for display application. In 1931 CIE (Commission Internationale de l'Eclairage) Chromaticity Diagram the lower value for CIE x and higher value for CIE y represent higher green color saturation. These results were unexpected because in comparison between Comparative example 1 and Comparative example 2 complexes, the di-methyl substitution on pyridine of Comparative example 2 actually increased the sublimation temperature. Although Comparative example 1 has a lower sublimation temperature than the inventive compounds Compound 9 and Compound 3, the color CIE of Comparative example 1 is red shifted compared to the other compounds, which is not desired for this class of green phosphorescent emitters. Therefore, the inventive compounds result in more color saturation and lower sublimation temperature which are beneficial properties in manufacturing of PHOLED device.











TABLE 1






Sublimation T
1931 CIE


Compound
(° C.)
(x, y)









embedded image


246
0.352, 0.622


Comparative example 1









embedded image


281
0.312, 0.638


Comparative example 2









embedded image


261
0.311, 0.639


Compound 9









embedded image


253
0.310, 0.640


Compound 3









Similar substitution effect was observed in the 2-phenylpyridine ligand in the claimed heteroleptic iridium complexes. In Table 2 below, the sublimation temperatures of Comparative examples 3, are fairly high around 270° C. In the inventive compound Compound 13, in which one of the methyl groups in the 2-phenylpyridine ligand is replaced with isopropyl, the observed sublimation temperature is significantly lower at 235° C., despite the fact that Compound 13 have higher molecular weight than Comparative example 3 compound.










TABLE 2






Sublimation T


Compounds
(° C.)









embedded image


268


Comparative example 3








embedded image


235


Compound 13









It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound having the formula Ir(LA)n(LB)3-n, wherein the compound has a structure according to Formula I:
  • 2. The compound of claim 1, wherein n is 1.
  • 3. The compound of claim 1, wherein the compound has a structure according to Formula III:
  • 4. The compound of claim 1, wherein only one of A1 to A8 is nitrogen.
  • 5. The compound of claim 4, wherein one of A5 to A8 is nitrogen.
  • 6. The compound of claim 1, wherein X is O.
  • 7. The compound of claim 1, wherein R1 and R2 are each independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, and combinations thereof.
  • 8. The compound of claim 1, wherein at least one of the following conditions (1) and (2) is true: (1) R3 and R4 are each independently selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof; and total number carbons in R3 and R4 combined is at least four; and(2) R5 and R6 are each independently selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof; and total number of carbons in R5 and R6 combined is at least four.
  • 9. The compound of claim 1, wherein the compound has a structure according to Formula V:
  • 10. The compound of claim 1, wherein LA is selected from the group consisting of the structures of the following LA Substituent List:
  • 11. The compound of claim 1, wherein LB is selected from the group consisting of:
  • 12. The compound of claim 10, wherein compound has a structure selected from formula Ir(LA)(LB)2 and formula Ir(LA)2(LB), wherein LA is selected from the group consisting of the LA Substituent List, and LB is selected from the group consisting of the structures of the following LB Substituent List:
  • 13. The compound of claim 1, wherein the compound is selected from the group consisting of:
  • 14. The compound of claim 1, wherein at least one of the following conditions (1) and (2) is true: (1) one of R3 and R4 is hydrogen, and the other one of R3 and R4 has total number carbons of at least four and is selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof; and(2) one of R5 and R6 is hydrogen, and the other one of R5 and R6 has total number carbons of at least four and is selected from the group consisting of alkyl, cycloalkyl, partially or fully deuterated variants thereof, and combinations thereof.
  • 15. A first device comprising a first organic light emitting device, the first organic light emitting device comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, the organic layer comprising a compound having a structure according to Formula I:
  • 16. The first device of claim 15, wherein the organic layer further comprises a host, wherein the host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.
  • 17. The first device of claim 15, wherein the host is selected from the group consisting of:
  • 18. A formulation comprising a compound according to claim 1.
  • 19. A consumer product comprising a first organic light emitting device, the first organic light emitting device comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, the organic layer comprising a compound having a structure according to Formula I:
  • 20. The consumer product of claim 19, wherein the consumer product is selected from the group consisting of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, lights for interior or exterior illumination and/or signaling, a heads up display, a fully transparent display, a flexible display, a laser printer, a telephone, a cell phone, a personal digital assistants (PDAs), a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display, a 3-D display, a vehicle, an area wall, theater or stadium screen, and a sign.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/970,244, filed May 3, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 14/796,213, filed on Jul. 10, 2015, now U.S. Pat. No. 10,411,200, which is a continuation-in-part of U.S. patent application Ser. No. 14/453,777, filed on Aug. 7, 2014, the entire contents of which are incorporated herein by reference.

Continuations (1)
Number Date Country
Parent 15970244 May 2018 US
Child 17232764 US
Continuation in Parts (2)
Number Date Country
Parent 14796213 Jul 2015 US
Child 15970244 US
Parent 14453777 Aug 2014 US
Child 14796213 US